
1 

 

Analytics driving kinetics: advanced mass spectrometric characterization 

of petroleum products 

 

Aleksandar Bojkovic, Florence H. Vermeire, Maja Kuzmanović, Hang Dao Thi, Kevin M. Van Geem* 

 

Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, 

Faculty of Engineering and Architecture, Ghent University, Technologiepark 125, 9052 Zwijnaarde, 

Belgium; 

Correspondence: Kevin.VanGeem@UGent.be 

 

  



2 

 

Abstract 

 

The current state-of-the-art in analysis techniques for petroleum fractions has progressed substantially 

during the last decade. This has helped to further improve the lumping procedures and modeling approaches 

of these complex systems. Recent advances in gas chromatography (GC), GC-field ionization mass 

spectrometry (GC-FIMS), and comprehensive gas chromatography (GC × GC) have made it possible to 

determine the compositions of fractions with up to 45 carbon atoms and in some cases up to C80. The 

combination of MS techniques with other selective detectors and reversed-phase column combinations has 

made it possible to quantify even traces of heteroatomic compounds in these complex hydrocarbon matrices. 

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), in some cases combined with 

GC × GC for the lighter part, has pushed the characterization of larger macromolecules in particular 

asphaltenes. Matrix-assisted laser desorption/ionization (MALDI) is also used widely for this purpose but 

has the disadvantage that quantification is not obvious. The development of more detailed characterization 

techniques has not remained unnoticed in the petrochemical society, and more recently in the petrochemical 

kinetic modeling society. More detailed characterization of petrochemical fractions has made the 

implementation of detailed kinetic models for simulation and optimization possible including more and 

more molecular detail. Additionally, advances in photo-ionization mass spectrometry (PI-MS) have allowed 

the detection of reactive intermediates and direct kinetic measurements in time-resolved experiments. It can 

only be expected that this trend will continue and that the application field will move from now primarily 

petrochemistry, (from catalytic cracking, over hydrotreating and hydrocracking, to pyrolysis, combustion, 

and steam cracking) to larger-scale chemical recycling and biomass conversion processes. 
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1 Introduction  

Nowadays, the petrochemical industry is continually striving to improve the performance of its installations. 

Despite the long tradition and wide knowledge base about these processes, there is still a place to improve 

their performance in order to achieve savings in energy, improve selectivity, and to better protect the 

environment. To this end, accurate mathematical simulation models are an indispensable tool and many 

chemical engineers use simulation programs routinely. It is well known that the analytical characterization 

of petroleum fractions plays a crucial role to predict physicochemical and thermodynamic properties, while 

the kinetic models describe chemical transformations of these streams via the occurring reactions.1-4 

However, petroleum and the products obtained thereof contain a variety of compounds, usually but not 

always hydrocarbons. As the number of carbon atoms increases, the complexity of petroleum fractions also 

rapidly increases.5-7 Consequently, detailed analysis of the individual constituents of higher boiling fractions 

becomes increasingly difficult. In these cases, chemical engineers rely on the average properties of the 

mixture (e.g. the average molecular weight, the specific density, the H/C-ratio, etc.), so-called commercial 

indices of the mixture8, 9. Measurements of bulk properties are generally easy to perform and, therefore, 

quick and economical. Several properties may correlate well with certain compositional characteristics and 

are widely used as a quick and inexpensive approach to determine those characteristics. The most important 

properties of a whole crude oil are its boiling-point distribution, density (or API gravity)6, and viscosity.10 

These global characteristics can be either used directly to develop kinetic models or indirectly. In this last 

case, a reconstructed composition of the mixture is determined based on the global properties. 

Understanding the chemical composition of heavier crude oils is of the utmost importance for the oil 

industry and has been a long-term goal of the analytical community.11, 12 However, the characterization of 

these products is not always simple. Many different analytical techniques have been used for the analysis of 

crude oil such as nuclear magnetic resonance (NMR),13 Fourier transform infrared (FTIR) spectroscopy,14 

liquid/gas chromatography (LC/GC)15, and mass spectrometry (MS).16, 17 The advanced MS is one of the 

most informative methods for the analysis of multicomponent mixtures which makes it indispensable in the 

investigation of the composition of samples.18 It has been already reported that the success of MS depends 

on converting compounds into gas‐phase ions.19 To be able to achieve this from compounds with high 

sensitivity, the expansion of MS has initiated. The key factor that makes the application of MS possible, is 

the methods of ionization such as electron ionization (EI), chemical ionization (CI), electrospray ionization 

(ESI),20-23 atmospheric pressure photoionization (APPI),24-29 atmospheric pressure chemical ionization 

(APCI),29-32 atmospheric pressure laser ionization (APLI)33-35, and laser desorption/ionization including 

matrix-assisted laser desorption/ionization (LDI7, 36-41 and MALDI,42-58 respectively), and field desorption 

ionization (FDI).59-62 For example, the use of field desorption ionization, plasma desorption, fast‐atom 

bombardment (FAB), laser desorption, and thermo-spray ionization, non-volatile compounds could 

successfully be converted into gas‐phase ions.19, 63-65 Especially, with the introduction of LDI and MALDI, 

the characterization of various petroleum products has been enabled that previously was difficult or 

impossible by using MS.46, 49, 66-68 MALDI is considered a soft ionization technique where the ions are 

generated in the gas phase for the MS analysis of non-volatile analytes. The term soft means that minimum 

internal energy is transmitted to the analytes during the ionization process.46 Besides, LDI and MALDI, fast 

atom bombardment (FAB),69, 70 liquid secondary ion mass spectrometry (LSIMS),71 and ESI are considered 

soft techniques too. Moreover, since ESI and MALDI were introduced in the 1980s, significant progress 

has been made, for example characterizing minute quantities of non-volatile and high‐mass compounds even 

in complex mixtures. It has been utilized within the industry since the earliest models of mass spectrometers 

were made. Furthermore, Trimpin et al.19 presented the proposed mechanism of ionization, implications for 

instrumentation, and unique applications utilizing matrix-assisted ionization (MAI), laser spray ionization 

(LSI), and solvent‐assisted ionization (SAI) with small portable mass spectrometers, (ultra) high‐resolution 

MS, automation, ion mobility spectrometry (IMS), MS/MS using advanced collision‐induced dissociation 

(CID) and/or advanced fragmentation technology such as electron transfer dissociation (ETD). With these 

methods, it is possible to identify and characterize both large and small sample molecules, either with spatial 

or temporal resolution information. 
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Apart from all these advances within MS, the use of Fourier Transform Ion Cyclotron Resonance Mass 

spectrometry (FT-ICR-MS) allows to detect and assign unique elemental formulas to thousands of 

molecules in a crude oil sample and is considered the gold standard for MS analysis of petroleum.4, 72-78 

Furthermore, conjugation of MS detector with gas chromatography (GC),79 liquid chromatography (LC),80 

and capillary electrophoresis (CE),81 the structural information of complex samples can be disclosed. 

The majority of the petroleum studies is performed using gas chromatography (GC) coupled to a quadrupole 

ion mass analyzer (qMS) using electron impact (EI) ionization which may enable the separation, detection, 

and identification of molecules up to C40.7 On the one hand, one-dimensional gas chromatography mass 

spectrometry (1D GC-MS)82, 83 and tandem MS (MS-MS)84 are useful techniques due to the vapor pressure 

or final boiling point being compatible with the maximum temperatures of gas chromatograph (GC) 

columns.85 On the other hand, the use of 1D-GC can incompletely deconvolute the compounds in the 

complex samples (aka co-elution phenomena), even though it is equipped with enhanced separation 

capabilities of the multiple reaction monitoring (MRM) or MS-MS techniques. Therefore, there is the 

necessity to develop new techniques to improve the separation of crude oil. At the current time, GC-MS has 

been widely used for qualification, while GC coupled with flame ionization detector (GC-FID) has been 

applied for the quantification of hydrocarbon components due to their stable and linear response.86, 87 The 

advent of comprehensive two-dimensional gas chromatography (GC × GC) can improve significantly 

separation due to its high chromatographic resolution, high peak capacity, and selectivity.88 By using GC × 

GC, the sample components can be eluted into chemical classes, a so-called “group-tile” that may simplify 

the process of characterization and quantification. Numerous studies have shown the advantages of GC × 

GC, i.e. the characterization of naphtha,89, 90 gasoline,91-94 kerosene and diesel cuts,95-98 but also for trace 

analysis99-101, and the control of the chemical processes.102, 103 

Figure 1 represents a scheme of these advanced mass spectrometry techniques and ionization sources 

discussed in this review paper. The main goal of this review paper is to point out the advantages and 

disadvantages of the most important techniques used in the characterization of fuels and chemical products. 

The main novelty of this review is its specific focus on applications of MS to petroleum products and the 

additional discussion on how advances in MS diagnostics are valuable to kinetic model development for 

petroleum processes. Recent advances in the field of mass spectrometry from the aspect of petroleum 

fractions and their physical and thermodynamical properties are addressed in the second section. Substantial 

attention is paid to GC and LC systems coupled to MS analyzers, focusing on applications of GC-FIMS, 

GC × GC-TOF-MS, and GC × GC-qMS. Afterward, ICP-MS is introduced and the most recent findings are 

stressed in this section. The last part is dedicated to the FT-ICR-MS system coupled to different ionization 

sources such as APPI, ESI, APCI, APLI, LDI, MALDI, and FDI. And finally, a summary of this overview 

with a future outlook is presented in the last section.  
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Figure 1. Overview of advanced mass spectrometry techniques and ionization sources for petroleum product characterization 

discussed in this review paper. Note that also other combinations of ionization methods and analyzers are possible. 

 

2 Petroleum fractions and products  

 Composition of crude oil and oil refining 

Crude oil is rarely used in its raw form, therefore, it is processed into different products forming a complex 

mixture of hydrocarbons ranging from methane to asphalt, wherein proportions of paraffins, olefins, 

naphthenes, and aromatics can be varied.104, 105 Petroleum is a mixture of compounds formed from carbon 

and hydrogen atoms with impurities such as nitrogen, sulfur, oxygen, and certain metals. They often consist 

of alkanes, cycloalkanes, aromatics, and polyaromatic hydrocarbons.106 Olefins, on the other hand, are rarely 

present in petroleum fractions, but they are important products in the refinery, for example from catalytic 

cracking and steam cracking. Additionally, olefins are abundant in pyrolysis oil of plastic waste, which is a 

new alternative feedstock that will be integrated in refineries.107 Petroleum hydrocarbons are commonly 

found in reservoirs, petroleum products, and fuel products. A small portion leaks into the environment such 

that they are also found as contaminants or pollutants in soil, sediments, and water. Petroleum hydrocarbons 

are a blend of a large number of compounds that are derived from fossil fuels.108 Further on, refining 

processes can be generally divided into three major types:  

1. separation 

2. conversion 

3. finishing 

From the product quality point of view, it is well known that the co-production of water and crude oil in a 

form of an emulsion is undesirable.109 Separation of crude oil and water during the processing of petroleum 

is of utmost importance, and over the years, researchers were focusing on understanding this separation 

process. Destabilization of crude oil-in-water emulsions is crucial for the purification of produced water and 

clean-up of oil spills.109-111 Various techniques may be utilized for the separation of the compounds. 

Distillation is the most important separation process in which compounds are separated based on the 
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difference in their boiling points.105, 112 The goal of crude oil distillation is to fractionate crude oil into light-

end hydrocarbons (C1-C4), naphtha, kerosene, diesel, and heavier fractions including atmospheric and 

vacuum gas oils and residues.112 Besides distillation, other physical separation processes can be considered 

too, such as absorption, stripping, and extraction. As an example, in a refinery gas plant that produces light 

gases, the heavy hydrocarbons (C5 and heavier) in the gas mixture are separated through their absorption 

by a liquid oil solvent.113 During the conversion process, various chemical changes occur with hydrocarbons 

in reactors. Thus, the purpose of these reactions is to convert hydrocarbon compounds from one type to 

another.  

The most important reaction in which heavy hydrocarbons are converted to lighter hydrocarbons is called 

“cracking”.105 Catalytic cracking, visbreaking, delayed coking, hydrocracking and steam cracking are 

commonly used for this purpose,114-118 while reactions such as isomerization or alkylation are used to 

produce high octane number gasoline. The last step in refining is the finishing step where the purification 

of various product streams takes the place. The removal of the impurities can be done by different processes 

such as desulfurization or acid treatment of petroleum fractions. Further on, once the desalting process is 

over, the crude oil enters the atmospheric distillation column, where compounds are separated according to 

their boiling points. In general, hydrocarbons in crude oil have boiling points between -160°C (boiling point 

of methane) and more than 600°C (characteristic boiling point of heavy compounds in the crude oil). 

However, it is well known that the carbon-carbon bond in hydrocarbons breaks down at temperatures about 

350°C. This process is called cracking and it is undesirable during the distillation process since it changes 

the structure of hydrocarbons. For this reason, compounds with boiling points above 350°C are removed 

from the bottom of an atmospheric distillation column. They are sent to a vacuum distillation column where 

the pressure is about 50-100 mm Hg, thus, the hydrocarbons are boiled at much lower temperatures. Since 

distillation cannot completely separate the compounds, no pure hydrocarbon can be obtained as a product. 

In general, a group of hydrocarbons can be separated through distillation by the boiling point of the lightest 

and heaviest compounds in the mixtures. A mixture of methane and ethane that has a boiling range between 

-180°C and -80°C is considered the lightest product of an atmospheric column. This gaseous mixture is 

known as fuel gas, which is a petroleum fraction. In fact, during distillation, a crude is converted into a 

series of petroleum fractions where each one is a mixture of a limited number of hydrocarbons with a specific 

range of boiling points. Fractions with a wider range of boiling points contain greater numbers of 

hydrocarbons. 

All petroleum fractions have a known boiling range, except the residuum for which the upper boiling point 

is usually not known. The boiling point of the heaviest component in crude oil is not known, but it is quite 

high. The problem of the nature and properties of the heaviest compounds in crude oils and petroleum 

residue is still under investigation by researchers.119, 120 Theoretically, it can be assumed that the boiling 

point of the heaviest component in crude oil is infinity. Atmospheric residue has compounds with carbon 

numbers greater than 25 while vacuuming residue has carbon numbers greater than 50. Some of the 

petroleum fractions produced from distillation columns with their boiling point ranges and applications are 

given in Table 1. 

Table 1. General Summary of Product Types and Distillation Range121 

 

Petroleum fraction 
Approximate hydrocarbon 

range 

Approximate boiling range 

°C °F 

Atmospheric 

distillation 

   

Light gases C2 – C4 -90 to 1 -130 – 30 
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Light gasoline C4 – C7 -1 – 83 30 – 180 

Naphtha C7– C11 83 – 205 180 – 400 

Kerosene C11 – C16 205 – 275 400 – 525 

Light gas oil 

(LGO) 

C16– C21 275 – 345 525 – 650 

Sum C2 – C21 -90 – 345 -130 – 650 

Vacuum distillation 

(VD) 

   

Heavy gas oil 

(HGO) 

C21 – C31 345 – 455 650 – 850 

Vacuum gas oil 

(VGO) 

C31 – C48 455 – 655 850 – 1050 

Residuum > C48 655+ 1050+ 

Sum C21 – C48+ 345 – 655+ 650 – 1050 

Total crude C2 – C48+ -90 –655+ -130 – 650+ 

 

It can be seen from the table that the boiling point and equivalent carbon number ranges are approximate, 

therefore, they may vary according to the desired specific product. For example, the fraction containing 

light gases is mainly a mixture of ethane, propane, and butane; however, some heavier compounds (C5+) 

may be detected in this fraction too. The fraction is fractionated to obtain ethane (a fuel gas), propane, and 

butane (petroleum gases). In addition, the isobutane is separated from the gas mixture and used as a feed for 

alkylation. These fractions may undergo further processes to produce desired products. 

 Physical and Thermodynamic Properties  

The characterization of crude oils and petroleum fractions depends on the properties of pure hydrocarbons. 

The most used properties of fluids are distillation data, boiling point, specific gravity composition (PNA 

content), molecular weight, refractive index, elemental analysis (CHNSO composition), kinematic viscosity 

at 37.8 and 98.9°C. 

2.2.1 Boiling point and distillation curves  

It is known that pure compounds have a single value for the boiling point, while for the mixtures, 

vaporization may occur, hence, the boiling points may vary.113 For a defined mixture, the boiling point may 

be represented by several boiling points for each component present in the mixture with respect to their 

composition. In a petroleum mixture, the boiling point of the lightest component is called the initial boiling 

point (IBP), while the heaviest component is called the final boiling point (FBP). Petroleum fractions having 

a wider range of boiling points usually contain more compounds than those with a more narrow boiling 

point range. The reason for that lies in the continuity of hydrocarbon compounds in the fraction.113 It is 

expected that a boiling range for a pure component is zero, hence that the distillation curve is horizontal. On 
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the other hand, for gas oil, the IBP may be found at 248 °C and FBP at 328 °C, meaning that the boiling 

range is 80 °C, while crude oils may have boiling ranges of more than 550 °C. 

2.2.2 Specific Gravity  

Specific gravity (SG) for liquid oils can be defined by Eq. 2.2.2.1122: 

 

                                                                                𝑆𝐺𝑜𝑖𝑙 =
𝜌𝑜𝑖𝑙

𝜌𝑤𝑎𝑡𝑒𝑟
                                                   (2.2.2.1) 

 

where ρoil is the oil density and ρwater is the water density. To measure the specific gravity, a temperature of 

15.5°C is used, however, absolute density is usually reported at 20 °C.  

Besides the specific gravity, there is another parameter for oil density called API gravity (Eq. 2.2.2.2): 

 

                                                                           𝐴𝑃𝐼 =  
141.5

𝑆𝐺
− 131.5                                             (2.2.2.2) 

 

It is well known, that heavy oils have low API and light oils have high API gravities. Usually, the density 

of petroleum fractions and crude oils is carried out using a pycnometer or a Mettler/Parr densitometer. 

2.2.3 Molecular Weight  

Molecular weight is another property that may provide us with information about petroleum products. The 

average molecular weight can be determined using different experimental methods, such as a vapor pressure 

method, a size exclusion chromatography (SEC) method, and a cryoscopy method.119 The vapor pressure 

method is based on the measurement of the difference between the vapor pressure of the sample and that of 

a known reference solvent with a vapor pressure greater than that of the sample. For heavy petroleum 

fractions and asphaltenic compounds, the SEC method is commonly used to measure the distribution of the 

molecular weight of the fraction. This method is also called gel permeation chromatography (GPC) and is 

described in the ASTM D 5296 test method. The molecular weight range that can be covered using this 

ASTM method is limited by the elution volume of polystyrene standards, i.e. molecular weights can in 

general be detected between 2000 to 2×106 g/mol. The third, and most widely used method of determining 

the molecular weight is the cryoscopy method, which is based on freezing point depression. 

2.2.4 Viscosity 

The viscosity of petroleum fractions is another property of high importance. Viscosity may vary from 

several thousand to several million poises. It increases with a decrease in the API gravity and for residues 

and heavy oils with the API gravity of less than 10 (specific gravity of above 1). Viscosity is an important 

parameter because it may be used to estimate other physical properties, the composition, and the quality of 

petroleum products. The viscosity is a temperature-dependent property; therefore, its values need to be 

reported with specified temperatures. In reality, kinematic viscosity is measured at temperatures of 37.8°C 

and 98.9 °C, while for very heavy fractions it is reported at temperatures above 38°C i.e., 50°C or 60°C.113 

2.2.5 Refractive Index 

The refractive index is a property that may be used as an input parameter for other correlations, and it is 

defined as a ratio of the speed of light in a vacuum and the speed of light in the medium. The refractive 

indices of petroleum products are usually not known; thus, they should be predicted. For this purpose, it can 

be used the following equation (Eq. 2.2.5.1)113, 122:  
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                                                                               𝑛 = (
1+2𝐼

1−𝐼
)

1
2⁄
                                                (2.2.5.1) 

In which n is the refractive index at 20°C, and I is the Huang characterization parameter at 20°C that can be 

calculated from the mean average boiling point and the specific gravity of the petroleum fraction. It is known 

that refractive indexes of hydrocarbons may vary from 1.35 to 1.6, while for aromatics, the values can be 

greater than those for naphthenes. Paraffins and paraffinic oils have lower refractive indices.113  

 Methods for compositional analysis of petroleum products 

Since the petroleum fractions are mixtures composed of different types of hydrocarbon compounds, it is of 

crucial importance to determine the overall effects of the chemical composition of transportation fuel on its 

physical properties. Therefore, a reliable characterization of detailed hydrocarbon and heteroatom 

composition is essential.123 In fact, the compositional information of petroleum fractions can be obtained 

through different methods. 

• separation by solvents 

• chromatography methods (e.g. GC, HTGC, GC × GC, HPLC, and TLC) 

• spectroscopy methods (e.g. UV-VIS, IR, Raman, and NMR) 

• spectrometry methods (e.g. MS) 

Separation by solvents is based on the solubility of compounds in a mixture. According to the chosen ASTM 

standard, different solvents may be used. For example, when ASTM D 2007 test method is performed, n-

pentane is used as the solvent, while for ASTM D 4124, the solvent is n-heptane. SARA (Saturates-

Aromatics-Resins-Asphaltenes) analysis, shown in Figure 2, can be used for heavy petroleum fractions, 

residues, and fossil fuels (coal liquids), as they have high contents of aromatics, resins, asphaltenes, and 

residue124. This analysis is relatively quick and has several applications in the oil industry.125 Further on, the 

elemental analysis may give us information on carbon, hydrogen, nitrogen, sulfur, and oxygen contents 

(CHNS&O). Various information can be obtained from elemental analysis such as the C/H ratio and/or 

sulfur content of a petroleum mixture, which will indicate oil quality. For example, sulfur content for very 

heavy fractions may reach up to 6-8%, while the nitrogen content up to 2.0-2.5 wt%.  

 

Figure 2. SARA-separation scheme. Adapted from 124 

Spectroscopy is a valuable tool in detecting basic and bulk properties of petroleum samples and it is also 

usable in the primary analysis of unknown type oil samples. For example, Infrared Spectroscopy (IR) can 

be used to identify functional groups and hydrogen bonding in a mixture and also structural parameters such 
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as paraffinic, aromatic, and naphthenic character of hydrocarbons. While Nuclear Magnetic Resonance 

spectroscopy (NMR) can detect different average chemical structures and compositions in petroleum 

samples. 

The detailed information of composition in petroleum fractions such as PONA (paraffins, olefins, 

naphthenes, and aromatics), PNA (paraffins, naphthenes, and aromatics), and PIONA (paraffins, 

isoparaffins, olefins, naphthenes, and aromatics) is often required. It is already known that petroleum 

fractions are free of olefins, therefore, the compositional analysis would be expressed as PINA, or in case 

that paraffins and isoparaffins are combined in one fraction, simply as PNA composition. This type of 

analysis, in general, is used for light and narrow boiling range petroleum products such as distillates from 

atmospheric crude distillation units. In turn, the detailed compositions on the molecular level of oil fractions 
can be obtained by applying chromatography methods in combination with mass spectrometry. 

In the framework of this review, only advanced analytical techniques consisting of advanced 

chromatography methods coupled with mass spectrometry are discussed. 

 

3 Advances in analytical tools for complex petroleum mixtures 

 

Despite research related to alternative resources, petroleum is still of substantial importance for the 

production of energy, as well as the precursor for materials, like plastics and medicines.126 During the last 

decade, the progress in analytical chemistry has been enormous for petroleum fractions and continuous 

research efforts have led to more advanced chromatographic techniques resulting in a more detailed mixture 

characterization. Researchers continue striving to improve the separation and detection techniques, 

therefore, in the field of the analysis of heavy petroleum fractions significant progress has been made.127-135 

An in-depth compositional characterization of petroleum crude oil can be obtained by applying new 

techniques and the advancement of existing analytical tools. Chromatographic techniques (GC and LC) 

coupled to MS have played a dominating role in revealing thousands of different species and even some of 

the isomers present in petroleum and petrochemical samples.  

Over the years, huge progress has been made on one-dimensional (1D) GC which can separate between 100 

and 150 peaks in one run. However, this technique is insufficient for the separation of the individual 

constituents in complex samples (i.e. crude oils and petrochemical products). Hence, the introduction of the 

two-dimensional (2D) GC has proven its superiority over 1D-GC. Although the comprehensive two-

dimensional GC × GC can be used to provide a detailed specification of saturates and aromatic 

hydrocarbons, this technique is only suitable to characterize fractions having medium-boiling components. 

Alternatively, LC15, 136-139 has been applied to separate the components in the very high-boiling and non-

boiling petroleum fractions beyond the reach of GC × GC by class or group level based on their polarity, 

hydrophobicity, and bonding affinities. LC is most used for the analysis of crude oil with 80 % heavy oil 

fraction that needs temperatures higher than 350 °C to vaporize.140  

Nevertheless, these chromatography techniques cannot provide individual molecular-level information due 

to their limitations in terms of solubility and low peak resolution. Frequently, gas or liquid chromatographic 

separation is applied to reduce the sample complexity first, followed by MS to identify the chemical 

compositions in samples. Given the fact that MS can distinguish different ions based on their different mass-

to-charge ratio (m/z) by secondary measurement methods such as flight time, flight path, or resonance 

frequency. Molecules are first ionized in an ion source and then ions are separated by a mass analyzer. 

Lastly, ions are detected with an ion detector together with a computer data system. 

MS is composed of a considerable number of different assemblies of ionization methods, mass analyzers, 

and detectors. In which ionization methods play an important role in the successful application of MS. No 

one ionization method is optimal for the total spectrum of oil samples and therefore, depending on the nature 
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of analytes, a suitable ionization mode can be applied. For example, an APPI141-145 should be applied to 

access the aromatic compounds and an ESI can be used for polar components, etc. 

The ionization techniques can be divided into three groups: (1) gas-phase techniques, including EI and CI 

due to thermal evaporation of the sample performed before the ionization; (2) liquid-phase techniques, 

consisting of ESI, APPI, and APCI in which spraying of the solution with the sample under analysis occurs 

instead of evaporation; (3) desorption techniques, including LDI and MALDI, in which the object under 

analysis is sublimated by laser radiation pulses from a condensed (generally solid) phase.146 Another way to 

divide ionization methods is based on ion source operation pressure: 1) Conventional ionization techniques 

operate in high vacuum (EI, CI, MALDI, FI, and FDI) from which EI, CI, FI, and FDI use high temperatures; 

2) Atmospheric pressure ionization methods include ESI, APCI, APPI, APLI, and AP-MALDI. 

The newest, powerful, and most fast progressing MS ionization field is Ambient Ionization (AI), which can 

transfer analytes directly from their natural environments to a high vacuum system of mass spectrometers. 

AI has been mainly used in the petroleum field to analyze the saturated hydrocarbon mixtures, petroleum 

model-molecule compounds (ellipticine, perylene, diphenylbenzoquinoline, benzo(ghi)perylene, coronene, 

rubrene, 9-phenylanthracene, benzo[c]benzofuran, benzo- [c]benzothiophene, and the hormone estradiol; 

5,10,15,20- tetraphenyl-21H,23H-porphine, 5,10,15,20-tetraphenyl21H, 23H-porphine vanadium (IV) 

oxide, and fullerene), naphthenate deposits, some petroleum constituents (hydronaphthalenes, thiophenes, 

alkyl-substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons), and 

characterization of crude oil samples, and their respective distillation cuts. Progression and possible non-

polar sample capability of AI makes it a really interesting ionization method in petroleomics.147 

While ionization methods are techniques to attain gas-phase ions, mass analyzers are responsible for 

distinguishing different ions based on their mass-to-charge (m/z) values after ionization. Many types of mass 

analyzers have been introduced, of which four mass analyzers are suitable with complex and heavy 

petroleum samples, including Time of Flight Mass Analyzers (TOF), Magnetic Sector Mass Analyzers, 

Electrostatic Sector Mass Analyzers, Fourier Transform Ion Cyclotron Resonance (FT-ICR) analyzers, and 

Orbitrap analyzers. Quadrupole and ion traps having low resolution can also be used in petroleum analysis 

such as crude, lubricant, and base oil samples. Some factors should be considered when different analyzers 

are used, including accuracy, resolution, mass range, scan speed, measurement speed, maintenance 

requirements, and price. Mass spectrometry has achieved significant improvements to expand the range of 

analytical samples, however, no mass analyzer is superior in all aspects as well as compatible with all 

ionization methods. 

Analysis of petroleum samples is not straightforward in terms of selecting a suitable ionization method and 

mass analyzer. Depending on sample type (e.g. molecular weight range, complexity, and polarity), a suitable 

ionization method will be applied. Table 2 presents an overview of different ionization methods published 

for analyzing the petroleum samples. 

Table 2. Overview of ionization methods and their application in petroleum samples 

Ionization method 

 

Application 

 

Notes 

EI 

(Electron Ionization) 

Conventional method High fragmentation, difficult to identify the heavy 

molecules  

 

Soft- EI 

Petroleum heavy fractions;148-150 Petroleum 

fuels151, 152 

 

Fragmentation is not prominent, but the resulting 

spectra is still complex. Significant ion dissociation 

with labile hydrocarbons. 
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Cold-EI 

 

Linear alkanes up to C70;153 Jet fuel.151 

 

Intensity of molecular ions are enhanced compared 

to normal EI.  

 

Soft-Cold-EI 

 

Linear alkanes (C12-C40);154 Squalane, C24H50
155 

 

Soft-Cold EI retains molecular ion reproducibly. 

Fragmentation is smaller compared to soft or cold 

EI method.  

FI/FDI 

(Field Ionization/Field 

Desorption Ionization) 

Saturated hydrocarbon and the low-mass 

hydrocarbon polymers;156 Sewing machine oil;157 

Sulfur/coker vacuum gas oil158 

 

FI 

 

 Petroleum based waxes;159 Diesel fuel;123, 160-163 

Broad range of nonpolar hydrocarbons;164, 165 

Base oils;166 Olefins;167 Heavy hydrocarbons;168, 

169 Petroleum heavy fractions170-173 

Much petroleum studies already from 1960-1970, a 

laborious method. 

FDI Petroleum heavy fractions174-176  

AI 

(Ambient Ionization) 

Condensed aromatics;147 Paraffinic samples;147, 

177 Lubricant oils178-181 

Can be applied for nonpolar and polar compounds, 

without sample preparation step. 

APPI 

(Atmospheric 

Pressure Photo 

Ionization) 

 

Base oils;182 Petroleum oil;183 SARA fractions of 

crude oil;184, 185 Canadian Athabasca bitumen 

middle distillate;186 Asphaltenes;27, 187-197 N-, S-, 

and O-containing compounds in petroleum 

(heavy) fractions;25-28, 55, 129, 175, 198-224 

Polychlorinated naphthalenes (PCNs);225 

Polycyclic aromatic hydrocarbons (PAHs)207, 226-

229  

Isobaric ions require high resolution. More suitable 

for nonpolar samples than APCI and ESI. Can 

quantitatively measure polar fractions and nonpolar 

fractions simultaneously. Too high ionization 

potential can be a problem with certain samples and 

may require dopant and low ionization effiency.230 

(References from 2015-2021). 

APCI 

(Atmospheric 

Pressure Chemical 

Ionization) 

 

Lubricant base oils;166 Asphaltene fractions;193, 

194, 231-234 Bitumen;235 S-containing compounds;28, 

182, 232, 236-239 polychlorinated naphthalenes 

(PCNs);225 polycyclic aromatic hydrocarbons 

(PAHs);28, 78, 226, 233, 240 Cycloalkanes;78, 241, 242 

Steroids compounds;243 N-, O-containing 

compounds28, 206, 232, 244, 245 

 

More suitable for non-polar samples than ESI but 

less than APPI. Thermal degradation and 

fragmentation are problems. Limited suitability 

with labile and heavy samples due to the 

vaporization process.  

(References from 2015-2021). 

 

ASAP 

(Atmospheric Solid 

Analysis Probe) 

APGC 

(Atmospheric 

Pressure Gas 

Chromatography) 

DART 

(Direct Analysis in 

Real Time) 

Paraffins, isoparaffins, and alkylbenzenes;147, 246 

S-containing compounds129 

 

LDI Pitch and petroleum vacuum residue;7 

Asphaltenes;192, 247-250 sulfur-rich heavy oil 

Aggregation and fragmentation occur if mass above 

500 Da.230 
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(Laser Desorption 

Ionization) 

 

fractions;251 N-, S-, and O-containing compounds 

in petroleum heavy fractions252 

L2DI 

 

Asphaltenes;253 Asphaltene molecule 

distributions254, 255  

 

Aggregation  

 

MALDI 

(Matrix Assisted Laser 

Desorption Ionization) 

 

Oil resins;256 Molecular structures of 

asphaltenes;7 Vanadyl porphyrins;257, 258 

Polycyclic aromatic hydrocarbons (PAHs);58, 259-

263 Molecular weight distribution of kerogen264 

Heavy Oils and Vacuum Residua;7, 51, 265-269 

Asphaltenes;7, 270-272 Petroleum Porphyrin;7, 55, 273 

Biofuel Research;7 Molecular weight of  

pitches;263, 274-283 Naphthenic acids;284, 285 

Well suited to heaviest samples. Aggregation, low 

shot-by-shot reproducibility, sample preparation 

requirements.230 

(References from 2015-2021). 

LIAD 

(Laser Induced 

Acoustic Ionization) 

 

 

LIAD/ClMn- (H2O)+ CI with base oils;286 LIAD 

with saturated heavy petroleum products and 

intermediates;287 Petroleum distillates;288 

Petroleum aromatics;289 AP/LIAD-CI saturated 

hydrocarbon mixtures;290 LIAD/EI with 

asphaltenes and asphaltene model compounds;291 

LIAD-APCI non-polar hydrocarbons292 

LIAD/EI could detect from complex petroleum 

sample without significant fragmentation, limited 

study. 

 

APLI Polycyclic aromatic hydrocarbons (PAHs);34, 228, 

293-295 Aromatic, sulfur-, and oxygen-

compounds;33 

Suitable for polyaromatic compounds 

ESI 

(Electrospray 

Ionization) 

 

 

Vanadium compounds;296 Non-polar aromatic 

compounds;297 

thiols;298-300 Sulfides;301, 302 

N-, S-, and O-containing species;129, 198, 205, 207, 212, 

214, 221, 224, 236, 244, 303-347 Porphyrins;348-352 

Molecular structure of Asphaltenes;185, 216, 353, 354 

naphthenic acids;284, 285, 355-360 petroleum 

sulfonates;361-364 acidic compounds;213, 215, 216, 323, 

362, 365-372 Polycyclic aromatic hydrocarbons 

(PAHs);226, 373 Naphthenoaromatics;374 

Suitable, common method for polar samples  

Limited suitability for nonpolar samples with 

HCOONH4 as ionization promoter  

(References from 2015-2021). 

 

Nano-ESI 

 

Bitumens, heavy vacuum gas oils, and light and 

heavy distillates;375 

Nonpolar samples, mainly for automated 

measurement and very limited study. 

EASI 

(Easy Ambient sonic-

Spray Ionization) 

Gasoline;376 Biodiesel376, 377 Favorable for ionization of the more polar 

compounds, need only small amount of sample 

DESI 

(Desorption 

Electrospray 

Ionization) 

Saturated hydrocarbons;378 Lubricant oil 

matrix;379 petroleum crude oil;147 Nano-DESI 

petroleum crude oil380 

Rapid and sensitive analysis of a broad range of 

compounds, without sample preparation step. Some 

disadvantages of this technique are: efficiency of 

ionization and droplet formation might be affected 

by matrix; measurement automation and 

reproducibility problems; and difficulties in 

quantification and complex data processing 402
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Each ionization technique possesses advantages as well as disadvantages, thus sometimes multiple 

techniques can be applied to complement each other. The limitation of EI/CI/APCI ionization methods is 

that they require thermal evaporation and this possibly results in thermal degradation limiting heavy 

molecular weight samples. ESI mainly is used for polar components in petroleum samples, but also few 

studies have been reported using this technique for nonpolar samples.77, 146 Furthermore, ESI and MALDI 

are used preferably for ionization of acidic and basic compounds, and nonpolar molecular ions are hardly 

detected.287 MALDI and other LDI methods often suffer from sample aggregation during measuring heavy 

petroleum samples.381 APPI couples preferably with high-resolution mass analyzers such as FT-ICR or 

Orbitrap mass analyzer due to the production of isobaric ions when applying this technique. Besides, the 

FI/FDI methods suffer from laborious measurement practice and reproducibility could be an issue. Field 

ionization and desorption methods are most suited to quantitative measurements of base oil fractions and 

are mostly coupled to FT-ICR.  

Not only ionization methods, but mass analyzer also plays an important role in selecting a suitable method 

for analysis of a specific sample. Table 3 will present a comparison of typical performance parameters of 

mass analyzers. 

 

Table 3: Comparison of typical performance parameters of mass analyzers230, 382, 383 

 

Mass analyzer  FT-ICR  Orbitrap  Quadrupole  Sector  TOF  

Mass limit  30 000  50 000  4000  20 000  >1 000 000  

10 000  

Resolution  

 

>1 000 000  450 000  <4000  100 000  5 000  

80 000  

Accuracy  

 

<1 ppm  <3 ppm  100 ppm  <5 ppm  <5 ppm  

<50 ppm  

Ion sampling  

 

Pulsed  Pulsed  Continuous  Continuous  Pulsed  

Advantages  

 

Costly, high 

resolution, 

suitable for 

tandem mass 

spectrometry  

Quite costly, 

high resolution, 

suitable for 

tandem mass 

spectrometry 

Small size, 

reasonable 

price, tolerant of 

high pressure, 

suitable for 

electrospray  

Quite costly, 

capable of high 

resolution, 

capable of 

exact mass, 

medium mass 

range, reliable  

Highest mass 

range, very 

fast scan 

speed, 

reasonable 

cost, suitable 

for pulsed 

ionization 

method (i.e. 

MALDI)  

Disadvantages  High vacuum 

required, low 

temperature 

High vacuum 

required, low 

aptitude with 

Mass range 

limited to about 

3 000 m/z, poor 

Not tolerant of 

high pressures, 

Expensive, 

Low 

resolution 

linear but 



15 

 

required, 

massive size  

low and very 

low energy ions  

adaptability 

with pulsed 

ionization 

methods (i.e. 

MALDI)  

massive size, 

relatively low 

scanning  

suitable for 

reflector TOF  

Suitability  Heavy and 

nonpolar base oil 

type samples 

Heavy and 

nonpolar base 

oil type 

samples 

Commonly 

coupled to GC 

for light 

petroleum 

samples. 

Moderate 

heavy samples  

Commonly 

coupled to 

GC for light 

petroleum 

samples, 

more 

accurate 

resolution 

than 

quadrupole. 

 

The application of mass spectrometry in the petroleum field is enormous, the following parts will only 

provide recent advances in gas chromatography and liquid chromatography coupled to MS, inductively 

coupled plasma mass spectrometry, and Fourier transform ion cyclotron resonance mass spectrometry with 

different ionization sources. 

 Gas Chromatography coupled to Mass Spectrometry (GC - MS) 

In the respect of separation capability, GC can be generally categorized into one-dimensional (1D-GC) and 

comprehensive two-dimensional gas chromatography (GC × GC). In the past decade, GC × GC appeared 

as an important analytical tool and an excellent choice for studying the composition of complex samples. 

This powerful separation technique was invented in the early 1990s by Phillips.384 A schematic of the GC × 

GC setup is shown in Figure 3. It can be seen that the first column is housed in one oven while the second 

column is in a separate one. The reason for it is to enable more temperature control. 

 

Figure 3. Typical GC × GC set-up; (S0) General set-up of the dual-jet cryogenic modulator; (S1) Right-hand-side jet traps eluent 

from 1st dimension column (S2); cold spot heats up, analyte pulse into 2nd dimension column + left-hand-side jet switch on; (S3) 

next modulation cycle. Reproduced with permission from 385, Copyright 2006 Elsevier. 
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In order to maintain the separation obtained in the first-dimension column, the narrow fractions trapped by 

the modulator and released in the 2nd column should be no wider than one-quarter of the peak widths in the 

1st dimension.386, 387 The term “comprehensive” refers to this aspect of comprehensive GC × GC. As a 

consequence of this characteristic, and since the modulation time must equal the 2nd dimension run time, the 

separation on the second column should be very fast, in the order of 2 to 8 seconds. This will render very 

narrow 2nd dimension peaks and demand of correspondingly fast analyzers such as a Time-of-Flight Mass 

Spectrometer (TOF-MS).  

Recent publications are mainly focused on the coupling of GC × GC to primary detection, i.e. TOF-MS388-

391 and qMS, which has rapidly become the preferred option. Today, a majority of all published studies are 

devoted to applications such as environmental,392-394 biological395-397, and petrochemical analysis.88, 103, 385, 

386, 389, 398-402 

Until today, GC × GC - MS is applied to petrochemical samples such as gasoline,91, 92, 403-408 jet fuels,405, 409 

light gas oils,410, 411 diesel fuels,91, 99, 100, 404, 406 crude oils,95, 406, 412 non-aromatic solvents,95 kerosene,95, 410, 413 

wash oils,414 biomarkers,415-417 and environmental pollutants in soil and sediments,404, 416, 418-422 in water423-

425, and air.421, 426 The applications of GC × GC are discussed according to the general characterization of 

petroleum fractions pointing out the separations of classes of structurally related compounds. 

Wang et al.161 have performed a two-dimensional separation (GC × MS) study of diesel composition and 

compared it with the GC × GC technique. A GC × MS chromatogram is shown in Figure 4. The advantage 

of GC × MS is the class separation of the compounds. It can be noticed that the groups within a compound 

class are well-separated based on their parent masses. The specific element-containing compound 

distribution can be generated through the extraction of specific mass groups due to the exact mass operation. 

For qualitative analysis, GC × MS is a technique where one experiment may generate a wide range of 

information. Furthermore, it may also perform quantitative analysis when appropriate response factors for 

various compound groups are available. The power of two/multiple dimensional separations started 

exposing its advantages for complex mixture analysis. Still, the biggest challenge is a combination of two 

or more different analytical techniques to study a specific complex separation problem. With the utilization 

of GC × MS advances in analytical techniques are pushed one step forward. 

 

 

Figure 4. GC × MS chromatogram of a refinery stream boiling at diesel temperature range.161 
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Further on, the ASTM Committee D2 has developed a heart-cutting gas chromatography (GC-GC) 

method for the analysis of methanol in crude.427 GC-GC has experienced a revival due to the advanced 

technology of modern columns and instruments.428 Dumont et al.429 have published a paper on heart-cutting 

GC-GC combined with isotope ratio mass spectrometry (IRMS). There is a limited number of publications 

on this topic, as there are no commercially available instruments. Therefore, it seems that combining these 

techniques is quite challenging since GC needs to be coupled to reactors. GC-GC may be combined with 

IRMS via combustion or HTC reactors but it should be taken into account the specific flow settings, back-

flush options for reactor regeneration, etc. 

Ruiz-Guerrero et al.430 have compared GC × GC coupled to a Sulfur Chemiluminescence Detector (SCD) 

with standard methods, which are employed in the petroleum industry, such as X-ray fluorescence (XRF), 

conventional GC-SCD, and High-Resolution Mass Spectrometry (HRMS) for the speciation of S-containing 

compounds in middle distillates. The results achieved in their study were found to be similar to the total 

sulfur content obtained by the standard XRF method. On the other hand, the comprehensive technique has 

an advantage of an excellent separation of the classes, which makes GC × GC a preferred tool for the 

quantification of individual components.  

HRMS170, 231, 431-434 is considered an important analytical technique due to its ability to determine structure 

and elemental composition of crude oil constituents. When assisted by MS/MS techniques, structural 

information can be obtained from mass sequences and trends associated with heteroatom content. Moreover, 

use of FT-ICR, orbitrap, and TOF-MS in a combination with ionization techniques, such as ESI, APPI, 

APCI, or laser LDI, has largely contributed to the recent advances in petroleum science. Beside these 

advances, recently a novel circular design based on traveling-wave ion mobility spectrometry (IMS) has 

been presented. Researchers435 mentioned that this so-called cyclic IMS (cIMS) may overcome practical 

limitations in scaling drift tube devices. Ruger et al.434 have explored the capabilities of cIMS-HRMS for 

analysis of petrochemical samples with high isobaric and isomeric complexity. They mentioned that the 

cIMS-HRMS was capable to address different core structural motives of PAHs and heterocycles. 

 

3.1.1 GC- Field Ionization Mass Spectrometry (GC-FIMS) 

Field ionization is considered a soft ionization technique in which a relatively small quantity of internal 

energy is supplied to the molecule. Compared to electron impact ionization, field ionization may afford 

substantially reduced fragmentation and much higher molecular ion intensities. Therefore, it can assign the 

peaks to different types of compounds straight forward and allow the quantitation based on the intensity of 

molecular ions. For example, Shiraishi and co-workers have investigated the molecular mass distributions 

of sulfur-containing hydrocarbon types in a vacuum gas oil (VGO) before and after desulfurization by means 

of FI-MS. The result showed that substituted tetrahydro-dibenzothiophenes appeared to be the most 

refractory compounds with respect to desulfurization.171 

Field ionization mass spectrometry is a valuable technique in combination with gas chromatography for 

analyzing complex mixtures, particularly fossil fuels. The combination of chromatographic separation and 

mass spectrometric resolution in GC-FIMS analysis have enabled accurate mass measurements nominally 

isobaric ions having different elemental compositions.436, 437 Briker et al.123 have developed a modified GC-

FIMS method for detailed hydrocarbon type determination of diesel fuel. Diesel fuels were analyzed by GC-

FIMS, and the calculated hydrocarbon type composition profile was compared with that determined by other 

standard techniques. Selected ion chromatograms demonstrated the separation of isoparaffins and normal 

paraffins in typical diesel fuels.123 The results for total saturates, aromatics, monoaromatics, and 

polyaromatics obtained by GC-FIMS have shown a good correlation with the results achieved from LC 

separation and SFC. Furthermore, analysis of a gasoline sample showed excellent agreement between GC-

FIMS and detailed hydrocarbon analysis, or PIONA for total cycloparaffin content, and reasonable 

agreement for iso- and normal paraffin contents. Experiments with internal standard verified the accuracy 

of the GC-FIMS method for selected hydrocarbon isomers.123  
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It should be noticed that GC-FIMS can give more information than GC-MS because it provides information 

about n-paraffin and isoparaffin contents, as well as each compound type which is reported by carbon 

number. Qian et al. have reported on the online coupling of supercritical chromatography (SFC) with FI-

TOFMS, in parallel with UV absorption detection and flame ionization detection (FID), for quantitative 

molecular analysis of petroleum middle distillates.438 Recently, the method has been extended by the 

incorporation of a silver-loaded silica column for the analysis of olefins in catalytically cracked products.167 

Further, this group has also applied the concept of Kendrick mass defect (KMD) in the analysis of 

catalytically cracked hydrocarbon products. They demonstrate that the KMD parameter may be treated as 

an independent analytical dimension that is orthogonal to nominal mass.439 In another study, this group also 

has described the use of nominal mass classes, accurate mass analysis, and Kendrick mass defect in 

conjunction with GC × GC separation to determine full chemical compositions in terms of hydrocarbons 

and sulfur-containing molecules across the whole carbon number range of vacuum gas oil distillates at the 

molecular level. In particular, all masses were first separated into nominal mass classes. Subsequently, KMD 

plots (KMD versus molecular weight) within each nominal mass class were generated for easy recognition 

of the homologs series. Then, KMD windows of identified homologs were then imposed to the 2DGC data 

for complete resolution and full accounts of petroleum molecules (petroleum types and carbon numbers).170 

Moreover, Wang and co-workers have reported a comparison of GC-FI-TOFMS with GC × GC for the 

analysis of diesel fuel samples. A conclusion has been given that the two techniques are complementary to 

each other.161 

To investigate the compositions of diesel fuels, Ogawa et al. have made an effort in optimum instrumental 

parameters for the FIMS analysis.160 Using GC-FIMS, Ha et al.440 developed different methods for de-

lumping detailed analytical information for the determination of the detailed molecular composition of 

middle-distillates. The authors have integrated PIONA and GC-FIMS results and determined an accurate 

and complete hydrocarbon-type distribution profile. 

It can be concluded that field ionization is a preferable method for hydrocarbon analysis, proving by the 

number of recent reports on the mass spectrometric characterization of petroleum. 

 

3.1.2 Comprehensive 2D Gas Chromatography coupled to Time-of-Flight Mass Analyzer (GC × 

GC-TOF-MS) 

The use of chromatographic techniques prior to mass spectrometric detection is widely applied for the 

characterization of complex petroleum oils as shown earlier.441 Among different chromatographic 

techniques, comprehensive gas chromatography GC × GC provides enhanced peak capacity and separating 

powers. Furthermore, time of flight mass spectrometry is often coupled to GC × GC, due to its high 

resolution and high peak capacity, giving a powerful tool in the analysis of complex petroleum samples.  

Many different ionization methods can be used for a time-of-flight-mass analyzer, in which Electron 

Ionization (EI) at 70 eV - a standard technique is often employed. By using the EI method, molecules can 

be identified based on analyzing their fragmentation mass spectra and matching them with a published EI 

MS library (NIST library).442 Many publications have been reported using GC × GC-EI-TOF-MS for 

analyzing the aromatic components in the petroleum samples.443-445 In one of the scientific papers published 

by Hamilton et al.102 demonstrated the usefulness of GC × GC-EI-TOF-MS for the analysis of the feed and 

the product from the hydrocracker coal liquefaction process. This comprehensive approach successfully 

solved issues encountered when using traditional GC-MS. For example, n-alkanes and other saturates could 

be identified in more detail. Furthermore, the most desirable product fraction, which corresponds to naphtha 

or diesel fuel substitute could be analyzed. In a study published by von Mühlen et al.,446 the content of 

nitrogen-containing compounds has been identified in heavy gas oil fractions by GC × GC-EI-TOF-MS 

based on a separation strategy that incorporated a non-polar 1D column phase and 2D polar phase. The 

researchers applied a solid-liquid fractionation scheme for the separation of neutral and basic N-compounds 

prior to chromatographic analysis. In this way, they could identify 228 N-containing compounds, including 
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alkyl indoles, alkyl carbazoles, alkyl benzocarbazoles, alkyl quinolines, alkyl-indene pyridines, alkyl 

benzoquinolines, and alkyl dibenzoquinolines (Figure 5). The authors mentioned that 108 out of these 228 

components were not present in the commercial MS library but according to retention times in the first and 

second dimension, analytical standard co-injection, and the structured pattern of the separation space with 

specific m/z values, they could identify all the compounds. Compared to the previous studies, it is obvious 

that MS can provide additional benefits for molecular identification. For example, GC × GC-EI-TOF-MS 

can provide additional analytical information over and above classically used retention times in 1D and 2D.  

 

Figure 5. GC×GC-TOFMS 2D-color diagram (EIC mode) showing group-type separations of the neutral fraction of an HGO 

sample (left) and of the basic fraction (right), highlighting the region of elutions of nitrogen-containing compounds. (A) Alkyl-

indoles from C0 to C3. (B) CC at the lower region of the TID corresponds to alkyl carbazoles from C0 to C12. (C) BC C corresponds 

to alkyl benzocarbazoles from C0 to C6. 446 

Recently, Mostafapour et al. have proposed a combination of GC × GC-EI-TOF-MS with multivariate 

chemometric methods (e.g., N-way partial least squares) for identification of the most influential chemical 

components on the toxicity values of different aromatic oil fractions (fresh and weathered), with a potential 

to reduce the number of fractionation steps, which needed to obtain necessary chromatographic and mass 

spectral information.447 This approach was also used to investigate the presence of aryl hydrocarbon receptor 

agonist and androgen receptor antagonist in the fresh and artificially weathered samples of North Sea crude 

oil and residual heavy fuel oil.448 

https://link.springer.com/article/10.1007%2Fs00216-014-8076-1#auth-Sara-Mostafapour
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A comprehensive evaluation of ionic liquid (IL) columns for separation and identification of sulfur- and 

nitrogen-containing compounds in naphtha and diesel samples has been performed by using GC × GC-EI-

TOF-MS. The use of an ionic liquid capillary column (sets DB-5MS/IL-59 and IL-59/DB-5MS) resulted in 

the detection of a higher number of sulfur compounds compared to the utilization of usual stationary phases 

such as DB-17. The IL-59/DB-5MS column combination provided better results for the analysis of nitrogen 

compounds, including a higher number of tentative identification of detected compounds and higher 2D 

chromatographic space occupation.449 

In another study, Wang and his workers have reported the combination of GC × GC-EI-TOF MS and 

electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) 

enabled to identify and quantify the unique compounds in the DB301 condensate, involving a high 

abundance of diamondoid and ethanodiamondoid (1–2 cages) hydrocarbons. In addition, the dicyclic 

monoterpene pinane (trans and cis isomers) and aromatic amine fused with the pinane skeleton were also 

determined.450 Furthermore, ethanodiamondoids, pinanes, and aromatic amine were discovered for the first 

time in naturally occurring petroleum liquids.450, 451 

The use of GC × GC coupled to a Flame Ionization Detector (FID) and a Time-Of-Flight Mass Spectrometer 

(TOF-MS) enabled to characterize for the first time two PFO’s derived from naphtha (N-PFO) and vacuum 

gas oil (V-PFO). The result reveals that both samples are highly aromatic, with the H/C ratios lower than 1 

and with a significant content of compounds with solubility characteristics typical for asphaltenes and coke. 

In addition, the dominant chemical family in both samples are diaromatics with a concentration of 28.6 and 

27.8 for N-PFO and V-PFO, respectively.452 

Although electron ionization at 70 eV is often hyphened with mass spectrometers, most molecules have 

significantly lower ionization energies, the mass spectra contain an abundance of small fragment ions, and 

the molecular ions are barely visible or absent. Therefore, many organic compounds, such as the isomeric 

alkane structures found in the unresolved complex mixture, are indistinguishable because they have similar 

mass fragmentation i.e. m/z 43, 57, 71, 85, 99.453 Alternatively, soft ionization can be applied using lower 

energy to ionize the compound, resulting in less fragmentation. As a result, the obtaining spectra contain a 

molecular ion in greater abundance and fewer, but more distinctive fragmentation ions that make the 

identification of specific isomers within oil samples was accomplished.170 Alam and his co-workers have 

reported that the use of variable ionization time-of-flight mass spectrometry, ranging from 10 eV(lower 

ionization energy) to conventional 70eV EI allowed determining the structures of aliphatic and aromatic 

compounds in the unresolved complex mixture (UCM) of hydrocarbons isolated from a biodegraded crude 

oil.453  

Several soft ionization techniques used in GC × GC-TOF-MS such as field ionization (FI)164, 170, 437, 439 and 

photon ionization (PI)454-458 for analysis of the petroleum has been successfully explored. GC × GC-TOF-

MS coupled with multiple ionization methods, such as electron ionization, photon ionization, and chemical 

ionization has been evaluated for petroleum base oil analysis. The detailed structural elucidation of 

hydrocarbon classes including saturated branched alkanes, naphthenic, polycyclic, and aromatic compounds 

were implemented for the understanding of the complex molecular composition of base oils through 

evaluating the ionization mechanisms and extent of fragmentation for a wide range of molecules.150  

Recently, Borisov et al. have just published a short review using mass spectrometry for the analysis of crude 

oils and some oil refining products. In this review, the ionization techniques, as well as their application, 

were thoroughly discussed.77  

 

Table 4 presents the application of GC × GC-TOF-MS in the analysis of petroleum published in the period from 2015-2021.  

Authors, publishing year Application Combined with other 

techniques  

https://www.sciencedirect.com/topics/chemistry/ionic-liquid
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Cheng, B., et al.459, 2015 

 

Distributions of low molecular weight 

alkylbenzenes (C-0-C-4) in 37 oils from three 

basins in China 

 

Li, S. F., et al.460, 2015 

 

 

 

Li, S. F., et al.461, 2015 

Saturated hydrocarbons (e.g., branched alkanes 

and naphthenes of low-to-medium molecular 

weight) in crude oils. 

 

Molecular compositions (paraffin hydrocarbons, 

cycloalkanes and aromatics, in particular 1–3 

cyclic paraffins with a short-chain alkyl group, 

multi-branched isoparaffins and their 

homologous series) of unresolved complex 

mixtures in black shale.  

 

Mostafapour, S., et al.447, 2015 Identification of the most influential chemical 

components (alkyl substituted three- and four-

ring aromatic hydrocarbons) on the toxicity 

values of different fuel oil fractions 

Multivariate chemometric 

methods (N-way partial least 

squares or N-PLS) 

Wang, H. T., et al.462, 2015 Identification and validation of 

decahydronaphthalene isomers in crude oil and a 

source rock extract sample. 

 

Zhang, W. F., et al.463, 2015 Distinguish the oil sources based on biomarkers 

(tri-aromatic steroid (TAS) series)  

 

Weng, N., et al.,464 2015 Aromatic biomarkers and aromatic 

hydrocarbons in heavy oil 

GC-MS 

   

Zhu, G. Y., et al.,465 2015 

 

 

Zhu, G. Y., et al.,466 2015 

n-Alkanes from nC(3) to nC(34) and in 

diamondoid hydrocarbons in condensate  

 

Adamantane compounds, diamantane 

compounds, and sulphur-containing compounds 

(including the benzothiophene series, and the 

dibenzothiophene series) in condensate 

 

Araujo, B. Q., et al.467, 2016 Steranes in branched-cyclic hydrocarbon 

fractions of crude oils 

 

Cappelli Fontanive, F., et al.,449 2016 Sulfur-, Nitrogen-containing compounds in 

Diesel and naphtha sample 

 

Gao, X. B., et al.,468 2016 Diamondoid series, pyrrolic nitrogen 

compounds and biomarkers such as terpane and 

sterane series in crude oil 

GP-MSE 

(Gas Purge Microsyringe 

Extraction) 

Parsons, B. A., et al.,469 2016 Aromatic species, alkenes and alkynes in diesel 

fuel 

 

Ristic, N. D., et al.,470 2016 Nitrogen-Containing Compounds in shale oil GC × GC - NCD 

Potgieter, H., et al.,471 2016 Cyclic/olefinic structures in complex 

petrochemical streams 

 

Qiao, L., et al.,472 2016 Chlorinated paraffins in sediments  

Zhang, W. F., et al.,468 2016 Diamondoids in crude oil samples GP-MSE 

Chattopadhyay, K., et al.,473 2017 Hydrocarbon class composition (paraffins, 

naphthenes, monoaromatics, diaromatics, and 

polyaromatic hydrocarbons) and trace level of 

benzene, toluene, ethylbenzene, and xylene in 

Raffinate Column Bottom 

HPLC (ASTM D6591) 

Jennerwein, M. K., et al.,474 2017 Separation of carbon numbers between C-10 and 

C-60 in crude oils 

 

Kulsing, C., et al.,475 2017 Hydrocarbons and sulfur compounds in thermal 

oxidation of jet fuels 

GC × GC – FPD 

(Flame Photometric Detection) 

Laakia, J., et al.,476 2017 tricyclic terpanes, steranes, tetracyclic terpanes, 

pentacyclic terpanes, and pentacyclic terpanes in 

the Brazilian crude oils 

 

Hu, S. Z., et al.,477 2018 Origin of unresolved complex mixtures (UCMs) 

in biodegraded oils 
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Liang, Z. R., et al.,478 2018 Semi-volatile organic compounds (alkane 

species) within engine emissions derived 

predominantly from unburned fuel and 

lubricants 

 

Lin, C. H., et al.,479 2018 Polyaromatic hydrocarbons in pretreatment of 

slurry oil 

NMR 

Vale, D. L., et al.,480 2018 Property prediction of crude oil N-PLS 

Vanini, G., et al.,481 2018 alkanes, aromatics, and oxygen-, nitrogen- and 

sulfur-containing compounds in Brazilian crude 

oils 

ESI(-)-FT-ICR MS 

Walters, C. C., et al.,482 2018 Biomarker analysis of saturated hydrocarbon 

fractions. 

GC × GC coupled to FID and 

TOF-MS (EI/FI) 

Zhu, G., et al.,451 2018 Ethanodiamondoids in petroleum (ZS1C 

condensate oil) from the Tarim Basin 

 

Jennerwein, M., et al.,483 2019 Quantification of aromatics and paraffins in 

middle distillates 

 

Scarlett, A. G., et al.,484 2019 

 

 

 

Scarlett, A. G., et al.,485 2019 

Molecular fossil biomarkers (diamondoid 

hydrocarbons, demethylated hopanes and 

secohopanes, mono- and tri-aromatic steroid) in 

degraded oils 

Comparing asphaltene-derived compounds with 

the maltene fractions 

 

Zhang, Z. Y., et al.,486, 487 2019 Diamondoids in condensate oil samples  

Ljesevic, M., et al.,488 2019 Polycyclic aromatic hydrocarbons (PAHs) from 

petroleum and fossil fuels 

 

Kafer, U., et al.,489 2019 Detailed Chemical Characterization of Bunker 

Fuels 

DIP-, and TGA-HRTOFMS 

Giri, A., et al.,150 2019 Compositional elucidation of heavy petroleum 

base oil 

GC × GC-EI/PI/CI/FI-TOFMS 

Boswell, H. A., et al.,442 2020 Characterization of base oils through thermal 

and flow modulators 

 

Bowman, D. T., et al.,490 2020 Naphthenic acids in oils  

Gieleciak, R., et al.,491 2020 Sulfur-containing hydrocarbons in the bitumen-

derived gas oi 

GC × GC-TOFMS/SCD/FID, 

SARA fraction 

Karakhanov, E., et al.,492 2020 activity of sulfide catalysts in hydrotreating of 

oil fractions 

 

Mohler, R. E., et al.,337 2020 Oxygen-containing organic compounds in 

groundwater at a crude oil spill site 

Orbitrap ESI-MS 

Spaak, G., et al.,493 2020 Diamondoids and semi-volatile aromatics in 

oil/condensate samples 

 

Tong, R. L., et al.,494 2020 Alkanes, aromatics, N-, O-containing 

compounds, and polyheteroatomic compounds 

in distilates 

GC-MS, 1H-NMR, and FTIR 

Trinklein, T. J., et al.,495 2020 jet fuel GC × GC × GC -TOFMS 

Wang, M., et al.,450 2020 Comprehensive Molecular Compositions of 

DB301 Crude Oil 

 

Xu, J. J., et al.,496 2020 Polycyclic aromatic compounds in 

Carboniferous-Permian coaly source rocks 

FTIR 

Lai, T. T., et al.,341 2020 Nitrogen-containing compounds in the vacuum 

gas oil 

FT-ICR MS 

Zhang, Z. Y., et al.,497 2020 Diamondoids and ethanodiamondoids in the 

GT1 oil 

GC-MS 

Zhu, G. Y., et al.,498 2020 

 

Zhu, G. Y., et al.,499 2020 

Gas Invasion on the Composition of Crude Oil 

Diamondoids and ethanodiamondoids in crude 

oil 

 

Franca, D., et al.,500 2021 Chemical characterization of Brazilian pre-salt 

oils. 

HT-GC × GC - FID 

Jencik, J., et al.,501 2021 Evaluation of the fuel properties of Fischer-

Tropsch diesel blends with conventional diesel 

1H-NMR, FTIR 

Jiao, S. H., et al.,502 2021 Sequential pretreatments of an FCC slurry oil 

sample 
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Kumar, S., et al.,503 2021 Elucidation of aromatic hydrocarbon biomarkers 

(riterpenoids and aromatic steroids) 

GC-MS 

Li, J. F., et al.,504 2021 Diamondoids, ethanodiamondoids, and 

thiadiamondoids in condensate samples 

 

Liang, M., et al.,505 2021 Polycyclic aromatic hydrocarbons (PAHs)  

Pontes, N. S., et al.,304 2021 Identification of nitrogen, oxygen, sulfur, and 

mixed heteroatomic classes 

ESI(+/-)-Orbitrap HRMS 

Zhu, G. Y., et al.,506 2021 Characteristics of petroleum system in the Tarim 

basin 

 

 

3.1.3 GC × GC coupled to Quadrupole Mass Analyzer (GC × GC - qMS) 

It is already known that volatile organic compounds (VOCs) play an important role in air pollution, such as 

the formation of boundary layer ozone and secondary organic aerosols (SOA), while some VOCs may 

significantly affect human health. However, the accurate measurement of VOCs still is a challenge for the 

scientific community. In general, techniques GC and/or GC-MS are currently utilized for the monitoring of 

VOCs that encompasses more than 100 toxic or ozone-depleting target compounds. Since GC × GC has 

been applied for analysis of atmospheric VOCs,507-509 a significant improvement in terms of separation and 

complete compound information has been achieved. In general, the thermal modulation GC × GC requires 

high consumption of cryogens, such as liquid nitrogen or liquid carbon dioxide. However, even with 

cryogens, the system is not able to reliably trap compounds more volatile than C4.508 Utilizing a solid-state 

modulator that includes the Peltier cooling device equipped with a special modulation column in GC × GC 

- qMS could successfully modulate light hydrocarbons down to C2 without the use of any cryogens. 545 

Guan and his co-workers510 have developed a hybrid primary dimension column in which the first part of 

the column is temperature-dependent for a better separation of the C2-C4 components. They analyzed 

standard PAMS and TO-15 gas mixtures. Researchers demonstrated that all target compounds from C2 to 

C12 in PAMS and TO-15 lists can be analyzed in the single-channel GC × GC-qMS system. Figure 6 shows 

the GC × GC chromatograms of the standard PAMS and TO-15 gas mixtures. A signal-to-noise ratio (S/N) 

of >30 is used for peak detection. It can be noticed that ethylene and ethane have a low response, while 

acetylene was not found. The sensitivity loss of these compounds was attributed to incomplete trapping in 

the pre-concentrator as there was no apparent break-through observed. For the TO-15 gas mixture, 

researchers confirmed that all the targeted compounds in the standards were successfully separated with 

decent resolution. The common species present in both standards are highlighted in the red circles. 
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Figure 6. GC × GC-qMS chromatogram of PAMS (up) and TO-15 (down) gas mixtures. Insert is a zoom-in display of a coelution 

pair of cyclohexane and 2,3-dimethyl pentane (PAMS sample). Peaks marked with red circle indicate common compounds present 

in both PAMS and TO-15. Reproduced with permission from510, Copyright 2019 Elsevier.  

 

 Liquid Chromatography coupled to Mass Spectrometry (LC-MS) 

Over the last decades, liquid chromatography coupled to mass spectrometry (LC-MS)138, 139, 511-514 has 

evolved from a scientific curiosity into a routinely applied technique finding increasingly more use in routine 

field laboratories. Compared to traditional chromatography techniques, LC-MS may offer additional 

selectivity and confirmation of identity by determining the mass/charge ratio of the ions or recording MS 

data which can result in three-dimensional data sets. Although LC-MS is famous for its complexity, it is 

often applied to the most complex samples. As mentioned, the LC-MS technique has the ability to give 

three-dimensional data. First of all, the compounds are separated in time. Afterward, the generated ions in 

the ionization source are separated according to their m/z ratios in the mass analyzer of MS. In the end, the 

MS detector measures the abundance of each ion. The MS detector can enable more reliable identification 

of the compounds eluting from LC compared to visible spectrophotometry (UV-Vis) or fluorescence 

detectors. Thus, LC-MS may significantly reduce the risk of false-positive identification.  
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Furthermore, it should be pointed out that one of the most useful types of liquid analytical techniques is 

high-performance liquid chromatography (HPLC).515-518 The advantage of the HPLC lies in its ability to be 

applied to samples with high boiling points and a quite short time (just a few minutes) which is required to 

analyze a sample. The most common detectors used in liquid chromatography are refractive index detector 

(RID) and wavelength UV detector, where UV spectroscopy is particularly useful for the identification of 

all types of aromatics in asphaltene fractions.113 HPLC is extensively used for the characterization of crude 

oils, petroleum distillates, and coal-derived liquids. The hydrocarbon separation and identification is one of 

the main applications of HPLC, while particularly it is used for the identification of asphaltene and resin 

type constituents in nonvolatile feedstocks. 

Islas-Flores et al.519 made a comparison between HPLC and open-column chromatography (OPC) in one of 

their scientific articles. They have reported that the separation of oil samples using HPLC is rather simple 

and effective, as well as that yields are comparable to results achieved by traditional OPC. 

There are different modes of HPLC that may be afforded by using normal- or reversed-phase columns. The 

possibility of column switching may allow carrying out the desired separation with adequate resolution, 

rapidity, and accuracy.520 For example, it is known that the type and amount of polycyclic aromatic 

hydrocarbons (PAHs) may vary widely among different crude oils. Therefore, the analysis of any sample to 

isolate fractions containing PAHs involves using normal-phase HPLC separation. Afterward, the fractions 

are subjected to reversed-phase HPLC for the separation of individual PAH isomers.  

Saravanabhavan et al.125 studied an offline multi-dimensional HPLC technique for the group separation and 

analysis of PAHs in a heavy gas oil fraction (boiling range 287-481°C). They precipitated waxes present in 

the heavy gas oil fraction using cold acetone at -20 °C. Recovery studies showed that the extract contained 

93% (+/- 1%; n = 3) of the PAHs that were originally present while the waxy residue contained only 6% 

(+/- 0.5%; n = 3) meaning that PAHs were not lost during the precipitation of wax. PAHs present in the 

extract were fractionated, based on the number of rings, into five fractions using a semi-preparative silica 

column. These fractions were analyzed using reverse-phase HPLC coupled to a diode array detector. UV 

spectra of the chromatographic peaks were used to differentiate among PAH groups. They proved the 

usefulness of this method by analyzing PAHs present in the heavy gas oil fraction crude. This study has 

shown very promising results pointing out the suitability of the current method for PAH profiling in oil 

fractions. 

Magi et al.521 combined LC-diode array detection (DAD) and MS for the determination of porphyrins and 

metalloporphyrins in marine matrices. The authors coupled HPLC to UV-Vis DAD, and then MS was 

coupled at the exit of the DAD system to verify if it was possible to obtain reliable electron impact (EI) 

spectra and achieve a more specific technique. An excellent separation and low retention times, as well as 

good detection limits and linearity, were achieved during the analysis of porphyrins by using HPLC-DAD-

MS. The results achieved from experiments done with Zn, Cu, and Fe octa-ethyl-porphyrins indicated that 

this method may be applied to other classes of porphyrins or other homologous compounds.  

Encinas et al.522 applied high-pressure LC-DAD-MS to study the determination of fullerene C60 in the 

atmospheric particulate fraction. The detection and quantification of fullerenes are of crucial importance for 

the determination of their environmental fluxes and evaluation of the environmental risk. However, 

fullerenes are not easy compounds to study.523 LC-MS is found as the most common technique to study 

fullerenes. Fullerenes can absorb light within the range of 300-350 nm, therefore UV-Vis is considered a 

powerful detector for their analysis in combination with LC, due to its wide range of linearity and high 

sensitivity. The researchers522 investigated the presence of fullerene C60 in air samples which were collected 

from different outdoor and indoor locations in the city of Vitoria-Gasteiz (Spain), as well as at the exhaust 

outlets of various combustion engines with and without catalytic converters. In the outdoor samples in the 

region of high-density traffic, they detected the concentrations of fullerene C60 of 2.27 pg/m3, which was 

expected due to combustion processes at high temperatures of fullerene. However, it was interesting that 

detected fullerene C60 was mainly found in situations of high photochemical activity when the 

concentrations of primary pollutants from the combustion processes were low. The authors mentioned that 
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the maximum concentration of fullerene C60 was detected in indoor samples and was 10.5 pg/m3. Results 

obtained for the samples from the exhaust outlets of various engines without catalytic converters showed 

concentrations of fullerene C60 above 170 pg/m3, while in the case of vehicles with catalytic converters, the 

detected concentration of fullerene C60 was lower than the limit of quantification. No significant variations 

were noticed in the emission to air related to the type of fuel used. These results have been contributed to 

the currently available information regarding the fullerene C60 and its environmental behavior. This way of 

fullerene characterization and their evaluation in the air will allow new investigations on its potentially 

harmful ecological impact.  

 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

It is well known that coal impurities cannot be controlled because they occur naturally during coal genesis 

under a long period of microbiological and geological processes. Besides, trace elements may form part of 

coal impurities, and cause environmental problems.524 Additionally, various fractions are used to produce 

petroleum fuels, such as gasoline and diesel. Apart from hydrocarbons, nitrogen, oxygen, and trace metals, 

crude oil also contains some sulfuric compounds. During the conversion via combustion of petroleum fuels 

into energy, the sulfuric compounds are oxidized, and thus, producing sulfur oxides. All these impurities 

are released into the atmosphere, which results in pollution of the air and acid rain.525 Inductively coupled 

plasma mass spectrometry (ICP-MS) is considered an excellent technique for trace element detection in 

different sample matrices. ICP-MS was developed by Houk526 over 30 years ago, however, there are still 

many older techniques that are in use by some laboratories. Many factors are usually considered when 

evaluating the suitability of a technique for installation in the laboratory, especially from a perspective of 

small laboratories, where the price of equipment plays a crucial role, as ICP-MS instrument is quite 

expensive. Nonetheless the price, ICP-MS is an instrument with a lot of advantages. It is a multi-element 

capability, which allows multiple elements to be measured simultaneously in a single analysis. ICP-MS 

provides a very short analysis time and simple sample preparation, therefore, it offers a high sample 

throughput in the laboratory.527 Numerous features are provided by ICP-MS such as high sensitivity, wide 

linear dynamic range, wide elemental coverage and multi-element capability which make it very attractive 

for the laboratory. However, one of the biggest disadvantages of ICP-MS is the use of the high volatility of 

petroleum fuels. They can make the plasma unstable, and its carbon-rich matrix may cause problems for 

ICP-MS, such as clogging of the nebulizer and carbon deposition on the sampler and skimmer cones after 

sample application.525  

Mketo et al.524 have developed a novel microwave-assisted hydrogen peroxide digestion procedure followed 

by ICP-MS analysis for trace elements determination in coal samples. Their method has been shown as cost-

effective and environmentally friendly due to the utilization of the diluted hydrogen peroxide as a digestion 

reagent instead of concentrated inorganic acids that may release carcinogenic nitrous oxides. 

Lu et al.525 have used the sector field (SF) ICP-MS for routine quality control of the total sulfur content of 

petroleum fuels at ultralow levels. They diluted fourteen fuel samples (gasoline- and diesel-type) with 

isopropanol (IPA) or IPA containing 10% toluene. It was reported that the variability of the sample 

components did not affect quantification by the SF-ICP-MS. Hence, their method is proven suitable for 

routine analysis of total sulfur content in petroleum fuels. 

Further on, Moulian and his co-workers528 have developed a method for the separation of free porphyrins 

from asphaltenes based on their polarity using high-performance thin-layer chromatography (HP-TLC). 

They detected porphyrins by laser ablation (LA) ICP-MS and UV densitometry. It was found that eluted 

fraction contained free porphyrins, while the major fraction at the application point corresponded to trapped 

or highly polar porphyrins. Moreover, the molecular and elemental detection analysis of vanadium and 

vanadyl porphyrins was successfully performed. The combination of these two analyses proved the presence 

of a large number of porphyrins which remained inaccessible to molecular analyses. The reason for that was 

due to matrix effects, ionization preferences, and that the porphyrins are linked to archipelago asphaltenes. 
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Their results suggested that such a method for separation might be a good solution for pilot efficient 

processes using a hydrodemetalation step. 

 

 

Figure 7. Comparison of vanadium, nickel, and sulfur GPC-ICP HR MS profiles, before (no heat; red profile) and after heating 

(blue profile), for Boscan samples.529 

In another work done by Moulian et al.,257 researchers have coupled HP-TLC and extrography with 

elemental LA-ICP-MS and MALDI FT-ICR MS to characterize metals contained in the asphaltene reference 

sample. They wanted to determine which fractions contained vanadium and porphyrin types present in these 

fractions. The MALDI FT-ICR MS analyses showed migration of the porphyrins till they reach the solvent 

front. Their results indicated that a high quantity of free porphyrins or porphyrins with weak interactions 

with the island nanoaggregates in the acetone fraction was present. 

Different studies211, 530-533 have been performed on using GPC technique together with ICP-MS detector for 

the characterization of the asphaltenes, separating them according to their size (hydrodynamic volume) or 

molecular weight, and subsequent detection of component species bearing heteroatoms. Gonzalez et al.529 

recently published a study about the asphaltene characterization by GPC-ICP HR-MS. In this work, they 

reported cluster presence for whole asphaltenes, and their A1 and A2 subfractions. Tetrahydrofuran (THF) 

has been used as a solvent for measuring the dependence of these profiles on temperature and the exchange 

of clusters with other components. The comparison of GPC-ICP HR-MS profiles of measured isotopic 

detection of 32S, 51V, and 58Ni for asphaltenes, as well as for A1 and A2 subfractions, for Boscan crude 

oil, is represented in Figure 7. It can be seen that chromatogram profiles are separated by a valley which 

indicates that bands seen in the cluster zone should correspond to material with MW several folds higher 

than the one corresponding to the HMW sector. Researchers explained that this is consistent with the cluster 

as being an agglomerate of nanoparticles. Graphs represented in Figure 7a,d,g show the low retention times 

(22min) for the asphaltene clusters at low concentrations. Furthermore, profiles measured for A1 subfraction 
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at 25 °C (Figure 7b,e,h) showed very thin bands at low retention times which is expected for the material 

excluded from the columns. After heating, for the nickel profile it was detected a reduction in the excluded 

material and the LMW region, with an increment in the HMW and MMW signals. Contrary to A1, for the 

A2 subfraction a significant increase in the signal of the SHMW region, at the expense of a reduction in the 

other three regions were noted. From the results can be seen that under thermal stress the asphaltene 

fractionation causes changes in the arrangement of nanoaggregate in solution. 

 Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) 

Due to the complexity of the sample, a combination of chromatographic separation methods and mass 

spectrometry is preferred. However, the requirement of coupling a GC with an MS detector is that the 

analytes should be volatile. As a result, GC-MS is less suitable for increasingly heavier oil samples with 

heteroatoms such as the resin and asphaltene fractions. The new techniques equipped with improved 

ionization method and/or the analyzer allow performing a comprehensive analysis of the chemically very 

diverse components of a petroleum sample. These analytes range from non-polar (saturates) to polar 

constituents (asphaltenes), while masses go up to over 1,000 Da.534 This broad spectrum makes a novel 

ionization technique, enabling the analysis of all different components with equal efficiency, highly 

desirable. In addition, the ultra-complex nature of crude oils with over 100,000 chemically different 

constituents within the mass range 200-1,000 Da demands an ultra-high-resolution mass analyzer (HRMS) 

for precise analysis.535 Therefore, at the current moment, Fourier transform ion cyclotron resonance mass 

spectrometry (FT-ICR-MS)170, 431, 433 is considered the most powerful technique for this application in terms 

of mass resolution and accuracy (Figure 8).536 It may resolve the ionized analytes according to their 

individual cyclotron frequencies, which are inversely related to the mass-to-charge ratios (m/z) of the 

analyte ions.37 FT-ICR-MS can be utilized for very high-boiling and non-boiling petroleum fractions beyond 

the reach of GC/GC × GC through direct insertion or infusion. FT-ICR measures the motion of ion orbiting 

trapped in a magnetic field of an analyzer cell. To excite ions to higher cyclotron orbits is done by Radio 

Frequency (RF) field. Further on, the current that is gathered at the ends of a capacitor during relaxation is 

analyzed by Fast Fourier Transform (FFT) to reveal the ions cyclotron frequency that depends on m/z.  

 

Figure 8. Schematic of the FT-ICR mass spectrometry principle. 
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FT-ICR MS can achieve resolutions approximately between 10 and 100 times higher than those of other 

analyzers.383 For example, Djokic et al. have reported the use of HT-GC × GC-FID/TOF-MS and APPI FT-

ICR MS for the detailed characterization of hydrotreated distilled crude oil feedstock and a pyrolysis fuel 

oil produced during steam cracking of this feed. The result revealed that much higher carbon numbers were 

detected by using FT-ICR MS compared to HT-GC × GC-FID/TOF-MS. This can be directly attributed to 

the FT-ICR MS's ability to separate elemental compositions by number of carbon atoms which remain 

unresolved in complex, high boiling petroleum fractions using even state-of-the-art high temperature 

hyphenated chromatographic techniques HT-GC × GC-FID/TOF-MS.537 

Recently, an FT-Orbitrap analyzer has been introduced, and its specified resolution can reach up to 100,000 

at m/z 400. Additionally, FT-ICR instruments have maintained their supremacy by providing a combination 

of the highest resolution (350,000) and highest accuracy (50 ppb)538 available, thus leaving other analyzers 

far behind. 

 

 

Figure 9. Excitation events in the ICR analyzer cell. 

  

The principle involved in the function of an FT-ICR-MS system is extensively documented in the work of 

Marshall.539, 540 The cyclotron frequency of the individual ions is carried out in two steps. The first step 

implies the excitement of the trapped ions, which is followed by the detection of the motion of the excited 

ions. Initially, those trapped ions are composed of many m/z values, thus, they have a small amount of 

kinetic energy and cyclotron radii. Next, the excitation of the ions to a larger cyclotron radius may bring 

ions close enough to the detection plate. By the application of the RF signal, the excitation is carried out to 

excitation plates of the analyzer cell (Figure 9). Furthermore, when the RF signal frequency is on-resonance 

with the cyclotron frequency of a particular m/z, the ions will be excited to a larger ICR radius. Ions that 

have different cyclotron frequency from that of the RF signal will remain unaffected, and at the center of 

the cell. Once the RF signal frequency is turned off, the excitation is complete, and the ions may remain at 

a larger radius. A single petroleum FT-ICR mass spectrum can contain up to 50000 peaks, whereas detection 

is typically limited to 1000000 ions at a time. Thus, the number of ions corresponding to each resolved 

mass-to-charge ratio is relatively small, therefore, it is often desirable to sum at least 100 time-domain 

transients to increase the signal-to-noise ratio and dynamic range. A chip-based micro-ESI system has been 

successfully automated in combination with FT-ICR-MS analysis of petroleum samples.375 It is obvious that 

ICR accurate mass measurements may provide elemental compositions for thousands of petroleum 

components from a single mass spectrum. Further, the elemental compositions can be analyzed to reveal 

heteroatom content, double bond equivalents, and carbon distribution, and H/C ratios.26 When coupled to 

MS/MS, it is possible to determine the number of carbon atoms in core structures and the number of carbon 

atoms in alkyl side chains.541-543 

FT-ICR-MS has been seen as one of the most practical approaches to analyze sulfur compounds in non-

volatile residues like vacuum residues.24 Due to its high resolving power, FT-ICR-MS is able to detect 

minute variations in mass in the order of an electron, as well as effectively resolve ions by assigning unique 

elemental compositions to each. Some ionization techniques are used in FT-ICR-MS such as electron 
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ionization (EI), atmospheric pressure photoionization (APPI), electrospray ionization (ESI), atmospheric 

pressure chemical ionization (APCI), matrix-assisted laser desorption ionization (MALDI), and others have 

been developed. Depending on the compounds of interest, the different modes of ionization can be 

employed. For instance, for the analysis of sulfur aromatic and polar petroleum components, particularly, 

two ionization modes have been successfully employed - ESI and APPI.544, 545 In the following sections, the 

detailed ionization techniques used in FT-ICR-MS will be discussed. 

3.4.1 Electron Ionization (EI) 

Electron Ionization (EI) coupled to FT-ICR MS relies on thermal desorption of the sample in an inert heated 

inlet system prior to ionization. The operating temperature limit of the oven and thermal stability of the inert 

inlet coatings prevent operation above 400 °C. As a result, EI FT-ICR MS is not well suited for analysis of 

extremely heavy materials such as resides, but well suited for the analysis of light to moderately heavy 

distillates that may be lost to volatilization in FD analysis performed in a vacuum.546  

However, the application of internal low-voltage EI FT-ICR MS (10-18 eV) allowed Hsu et al. and Guan et 

al. to obtain the accurate mass measurement of a heavy petroleum distillate (atmospheric pressure boiling 

range of 343-566 °C).537, 547 Similarly, Marshall et al. have reported the characterization of nonpolar volatile 

constituents in the low-, middle-, and high-boiling fractions from a VGO sample by the use of low-voltage 

(10 eV) external EI high-resolution and high-mass accuracy 7 T FT-ICR MS. The result revealed that for 

the first time hydrocarbons and sulfur-containing hydrocarbons have been completely mass-resolved across 

the full VGO range. Aromatic hydrocarbons are the major detected components in all three samples. In 

addition, many sulfur-, nitrogen-, and oxygen-containing compounds were directly observed.149, 548 

Furthermore, Miyabayashi et al. modified a conventional EI FT-ICR MS to an in-beam EI FT-ICR MS that 

allowed to successfully detect molecular ions of non-volatile components in vacuum residues.549 Besides, 

the combination of different ionization techniques, such as in-beam electron ionization (EI), electrospray 

ionization (ESI), field desorption (FD), and liquid secondary ionization (LSI) was evaluated by this group 

to characterize extremely complex heavy oil sample.550 

3.4.2 Atmospheric Pressure Photoionization (APPI) 

Atmospheric Pressure Photoionization in both the positive and the negative ion mode is an efficient 

ionization technique for samples containing non-polar or low polar compounds such as polyaromatic 

hydrocarbons (PAHs) and sulfur aromatic species.551  

Muller et al.552 have reported that using APPI FT-ICR-MS it is possible to quantify the compositions of 

vacuum gas oil by using innate sulfur compounds as internal standards. Specifically, the molecular weight 

and number of sulfur atoms per species were identified in the high-resolution measurement, in which their 

mass spectrometric abundance and the total sulfur content were combined to calculate the mass fraction of 

each aromatic sulfur species present. Furthermore, they quantified aromatic hydrocarbon compounds and 

nitrogen species which was based on an equimolar response compared to the aromatic sulfur species. The 

same approach was applied in the estimation of the composition of marine fuel oil feedstocks by APPI FT-

ICR-MS.552 

The use of the APPI FT-ICR-MS method has been also conducted to provide elemental compositions in the 

hydro-deoxygenated bio-oil blended with light gas oil, which contains components that are not GC-

amenable.553 

Marshall et al.554 performed off-line (+) APPI FT-ICR-MS characterization of GPC asphaltene fractions. 

The observed result revealed that earlier-eluting compounds were more aliphatic, and later-eluting fractions 

contain abundant highly-aromatic/alkyl-depleted species. A similar trend has been also observed for the 

parent whole crude oil, thereby suggesting that interactions between aliphatic moieties could be central in 

petroleum and asphaltene aggregation. In another study, Marshall and his co-workers555 have applied APPI 

(+) FT-ICR-MS but this time to reveal the coexistence of island and archipelago structural motifs through 

the application of the extrography separation to an unaltered Illinois coal No. 6 asphaltene. The results 
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showed that the Wyoming crude oil asphaltenes contain mainly island species, whereas coal asphaltenes 

contain archipelago and island compounds with high oxygen content. Moreover, the use of a new “multi-

notch” stored-waveform inverse Fourier transform isolation enables the unambiguous determination of 

island versus archipelago species in samples that contain compounds with high and low aromaticity.190 

Additionally, the combination of 9.4T FT-ICR-MS and infrared multiphoton dissociation allowed to 

determine the molecular composition of the asphaltene subfractions that were produced from Wyoming 

deposit n-heptane asphaltenes. The result disclosed that the compositional range of polyoxygenated 

compounds shifts toward lower aromaticity and present pivotal in asphaltene solubility, whereas oxygen-

depleted species are more aromatic. 

Abdul Jameel et al.27 reported about de-asphalting of heavy fuel oil (HFO) by using n-heptane as a solvent, 

and the molecular characterization of the acquired de-asphalted oil (DAO) using APPI (+) FT-ICR mass 

spectrometry, and 1H and 13C NMR spectroscopy. They showed that de-asphalting had a significant 

improvement in reducing the kinematic viscosity of HFO by more than five times. Moreover, the heavy 

metals nickel and vanadium were significantly reduced, by more than 50%, while sulfur content was slightly 

reduced in the DAO. The ions for HFO and DAO were recorded with a mass to charge ratio (m/z) ranging 

from 150 to 1200. The authors noticed that the HC class species were slightly more in DAO (29.2%) 

compared to HFO (28.6%), while the S1 class species were more in HFO. The higher amount of S1 class of 

species in HFO (42.5%) and DAO (41.8%) may indicate the presence of a core thiophenic skeletal structure. 

They also reported an approximately 10% higher C/H ratio for APPI FT-ICR/MS than those reported by 

other techniques. It might be explained by an inherently non-quantitative nature of MS. Another reason 

might be the APPI ionization source used in their study. It is effective in ionizing non-polar hydrocarbon 

molecules such as benzo- and dibenzo-thiophenes, PAHs, and cycloalkanes, comprising the bulk of the fuel. 

However, it is less effective in ionizing highly polar molecules such as heteroatoms (N, O, S). 

Giraldo-Davila et al.26 have employed a combination of tools such as extrography, Soxhlet extraction and 

column chromatography fractionation for increasing compositional space accessibility in FT-ICR-MS 

analysis of a Colombian heavy crude oil. They used extrography followed by Soxhlet extraction with 

acetonitrile, methanol, n-heptane, and toluene to produce four subfractions with unique composition, as the 

extrography is found to be useful for selective isolation of metal-complexes, maltenes and asphaltenes. The 

metal-porphyrins enriched fractions were subjected to column chromatography to achieve increment of the 

compositional space accessibility in MS analysis for this particular group. The obtained FT-ICR-MS results 

show that fractionation enables the observation of 13 new compound classes which are usually undetectable 

when the whole crude oil sample is analyzed. Apart from this, the molecular analysis of the extracted 

fractions indicated that compositions with high heteroatom content exhibit preferential adsorption on 

alumina. Researchers mentioned several reasons to explain their results. First of all, to have a complete view 

into the composition of crude oil; secondly, to understand adsorption processes of particular compound 

families on mineral surfaces; and third, to access specific fractions, such as vanadyl porphyrins, with 

potential use in geochemistry. In the end, it can be concluded that fractionation methods coupled to FT-

ICR-MS are outstanding strategies for the analysis of crude oil molecular composition, meaning that without 

selective fractionation of crude oil samples is not possible to conceive Petroleomics. 
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Figure 10. a) GC × GC color plot of the HTAL-FEED; b) HT-GC × GC-FID color plot of HTAL-PFO. Adapted from 556 

Djokic et al.556 have combined the capabilities of GC × GC-FID/TOF-MS and atmospheric pressure 

photoionization (APPI) FT-ICR-MS for the characterization of a hydrotreated distilled crude oil feedstock 

and a PFO produced during steam cracking of this feed. A good separation of the complex feedstocks was 

observed. In Figure 10a, the most dominant compounds classes showing the color plot obtained by analyzing 

the HTAL-FEED using high temperature (HT)-GC × GC-FID can be seen. Next, in the chromatogram 

presented in Figure 10b, a wrap-around can be observed. The authors explained that the compounds which 

show wrap-around do not coelute with the analytes from the next modulation cycle, therefore, the obtained 

chromatographic separation and ordered structures were preserved. Since the compounds which contain five 

and more aromatics rings cannot be identified independently, the detected compounds were lumped and 

presented as penta+aromatics. 

Furthermore, the researchers presented a comparison of the HT-GC × GC-FID and FT-ICR-MS results 

shown in form of two DBE vs. carbon number plots (Figure 11). They noticed that both carbon number and 

DBE results for the HTAL-FEED sample differ between the methods and pointed out that the reason might 

lie in a mismatch on the DBE scale which can be explained by a structure-dependent sensitivity of the 

photoionization used for the FT-ICR-MS method. Probably, the molecules with higher DBE values are 

favorably ionized whereas aliphatic molecules are discriminated, and therefore, not detected.  
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From this study, it is obvious that much higher carbon numbers can be detected by using FT-ICR-MS, due 

to its ability to separate elemental compositions by a number of carbon atoms when compared to HT-GC × 

GC.557-561 

 

 

Figure 11. Carbon number vs. DBE plots showing HTGC × GC-FID data (red dots) in comparison to APPI FT-ICR MS data (empty 

circles) for HTAL-FEED with a) original FT-ICR MS and GC × GC data scaled to the same order of magnitude (100%) and b) 

abundance with corrected APPI FT-ICR MS data. Reprinted from 556, with permission from Elsevier. 

3.4.3 Electron Spray Ionization (ESI) 

Electron Spray Ionization (ESI)24, 29, 551, 562-568 is another promising method to ionize non-volatile and 

complex molecular samples bearing polar functional groups, especially nitrogen- and oxygen-containing 

groups. A number of samples, such as gas-oil, vacuum residues, coal liquefaction products, bio-oil, crude 

oils, and tire pyrolysis oils have been analyzed using ESI ionization coupled to FT-ICR-MS.  

Abdul Jameel et al.24 have performed an investigation in which they characterized the sulfur species present 

in a sample of vacuum residue using FT-ICR-MS coupled with a positive ion ESI source. They developed 

a surrogate molecule of the fuel using data from the two ionization techniques and assigned unique chemical 

formulas based on the masses. Results showed that 99.6% of the detected species were polar molecules, out 

of which 37% were N-class, followed by NS- and OS-classes. Further on, they designed a single surrogate 

molecule based on the average molecular parameters (AMP) representing the average structure of the 

vacuum residue obtained from ESI FT-ICR-MS. It was mentioned that the proposed single molecule vacuum 

residue surrogate could be used for predicting various physical and thermochemical properties. 

Cui et al.566 have used the negative-ion (-) ESI FT-ICR-MS to investigate the effect of pyrolysis temperature 

on neutral nitrogen and acidic species in Huadian shale oil. They analyzed the pyrolysis characteristics of 

neutral nitrogen and acidic species such as carbazole, phenol, and carboxylic acid compounds. The results 

showed valuable information about the molecular composition of heteroatom species in shale oil and the 

probable heteroatom core structures were suggested based on the DBE values. 

In another work published by Cui and co-authors,567 they analyzed Huadian shale oil collected at five 

different processing temperatures using positive-ion (+) ESI FT-ICR-MS and GC-NCD. Their results 

indicated that the pyrolysis temperature exerts different effects on different types of heteroatom compounds. 

Therefore, it was concluded that the pyrolysis temperature can affect the number, relative abundance, DBE 

value distribution, and carbon number distribution of heteroatom compounds in shale oil. 

Trubetskaya et al.569 have reported the use of FT-ICR MS technique coupled to an ESI source ionization in 

the characterization of tar and bio-oil samples from high-temperature biomass treatment. The direct infusion 

liquid tar sample in DMSO to FT-ICR-MS enables the identification of polar and non-volatile compounds, 
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such as sugars, proteins, and extractive derivatives. Moreover, the developed method using FT-ICR dynamic 

range of m/z can identify a broad spectrum of compounds that were difficult to detect with the other 

analytical techniques. Furthermore, the detailed molecular characterization of the sulfur compounds in 

vacuum residues was obtained by the combination of positive ion APPI for sulfur speciation and ESI the 

polar groups coupled to FT-ICR-MS.24 The assigned masses reveal the presence of sulfur families, including 

sulfides, thiophenes, benzothiophenes, dibenzothiophenes, benzonaphthothiophene, and their derivatives in 

the vacuum residue sample. Moreover, the average structure of the sample was also designed based on the 

obtained average molecular parameters.24 

Recently, Xiang et al.570 have successfully applied FT-ICR MS coupled with ESI in the negative-ion mode 

to investigate the chemical composition of the heavy tars produced from the pyrolysis of biomass at various 

temperatures and heating rates. The result shows that the low temperature promotes the formation of heavy 

tars via the polymerization of bio-oil components and at slow heating rates the condensed aromatics are 

formed via the polymerization of small aromatics with one or two rings. On the other hand, high temperature 

promotes the breakage of the oxygen-containing functional groups, and highly condensed aromatics with 

more than 4 rings are formed at 800 °C via the strong secondary reactions especially at fast heating rates. 

This group has also explored the use of (-) ESI FT-ICR MS in combination with an ultraviolet fluorescence 

(UV-F) spectrometer to characterize the heavy components in bio-oils from the pyrolysis of 

cellulose, hemicellulose, and lignin, the molecular formulas of the heavy compounds and the large aromatic 

structures.571 Furthermore, this technique has also been applied to investigate the effects of alkali/alkaline 

earth metal species on the formation of heavy components in bio-oil prepared from pyrolysis of original 

sample/acid-washed/impregnated sawdust (typical agroforestry waste) at various temperatures and heating 

rates.572 In another study, the molecular structures comprising the bio-oil oligomer fraction and the pathways 

by which these structures form during biomass pyrolysis reactions were revealed by using the (-) ESI FT-

ICR MS technique.573 

3.4.4 Atmospheric Pressure Chemical Ionization (APCI) 

The pyrolysis oil contents may be extensively ionized by using a sensitive and selective ion source, such as 

an APCI source, which is coupled to an ultrahigh-resolving (UHR) mass analyzer, i.e. FT-ICR-MS. APCI 

is considered a special form of chemical ionization (CI), where a corona needle regulated high voltage direct 

current (HV-DC) gradient is employed to generate a corona plasma which causes the formation of reactive 

species. These species ionize the analyte molecules in a subsequent secondary ionization process. Contrary 

to the other API techniques, APCI shows the best results for aliphatic hydrocarbons, thus is mainly used to 

analyze compounds with higher polarity, such as phosphoric acid esters and carbamates.30, 551 Combining 

GC with FT-ICR-MS by using a soft APCI ion source should enable separation and detection of molecules 

with the same monoisotopic mass with an ultrahigh mass resolution. 

Zuber et al.32 presented a method for the analysis of the pyrolysis liquid from German brown coal by GC-

FT-ICR-MS using an APCI source. They used a mixture of standard compounds (RMSC) to optimize the 

parameters of the APCI ion source and GC. They demonstrated a high analytical potential of GC-APCI-FT-

ICR-MS by verifying different homologous series in the liquid sample analysis. Different compound classes 

were observed, increasing by the number of CH2 groups, such as alkyl carboxylic acids, alkylene carboxylic 

acids, dicarboxylic acids, alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols. Further on, to 

obtain more information about the structure, they studied double bond equivalent (DBE) versus carbon 

number (𝑛C). They identified saturated and unsaturated monocarboxylic acids, as well as dicarboxylic acids, 

thiophenes, benzo-thiophenes, cycloalkanes, cycloalkenes, and PAH analogous structures, which were 

partially derived by oxygen- and sulfur-containing groups. Moreover, a satisfactory separation of molecules 

of higher polarity was observed due to the polar GC column. In particular, separation of the saturated and 

unsaturated monocarboxylic acids, saturated dicarboxylic acids, and alkyl phenols was achieved. 

Huba and co-workers28 have published a comprehensive overview of the advantages and disadvantages of 

the three ionization techniques ESI, APPI and APCI coupled to HRMS. The overall conclusion for all three 



35 

 

sources was the lack of ionization of non-functionalized alkanes. Furthermore, their results indicated that 

APPI source may provide the best results when is the case of a comprehensive oil characterization. They 

explained that APPI can ionize the broadest range of compounds, provide the best overall ionization 

efficiencies, and ionization suppression compared to APCI. On the other hand, for ESI some severe 

limitations were detected. As a result, the number of different compound classes that are ionized with ESI 

was found to be significantly lower with respect to both APPI and APCI. Apart from this, the authors 

indicated several factors that may affect ionization efficiency such as the presence of easily protonated or 

deprotonated functional groups (primary factor), the presence/absence/type of heteroatoms, the methylation 

level, the size, the isomeric structure, and the presence/absence of a complex matrix. 

Kondyli et al.551 have investigated the efficiency of the combination of three different ionization methods 

ESI, APPI, and APCI for the analysis of a complex crude oil mixture. It was shown that ESI is the method 

of choice for the ionization of basic nitrogen compounds while APPI for the ionization of hydrocarbons and 

containing-oxygen compounds. The combination of different ionization methods provided complementary 

information about complex mixture constituents as the different polarity play a crucial role. Using 

ESI/APPI, the authors noticed a higher number of hydrocarbons and Ox species than with ESI alone. 

However, the APPI/APCI did not show significant changes since most of the detected compounds were 

commonly found among these methods. It was interesting to notice, that the last combination of the methods 

ESI/APCI did not allow the detection of many individual compounds. They could assign about 3262 

compositions in common with both ESI and APCI, as well as with the combination of ESI/APCI. However, 

the highest number of individual compounds was detected only under APCI. The reason could be the fact 

that ESI is known for ion suppression, showing higher matrix effects compared with APCI. 

 

Figure 12. Method integration of TG-APCI-FT-ICR-MS and GC × GC-HRTOFMS exemplarily depicted for the 7 days aged model 

bitumen. Desorbable and pyrolyzable species are separated at the dashed line. Pie charts on the left side correspond to the class 

distribution found for desorption, while pie charts on the right side give the class distribution for the pyrolysis phase.574 
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TG-APCI-FT-ICR-MS is able to attribute sum formulae to semi-volatile to pyrolyzable compounds. 

Because of APCI, semi-polar to polar minorities are highlighted. The 2D survey view of the temperature-

resolved mass spectra for the MS-mode and the MS/MS-mode color-coded with intensity shows the 

characteristic increase of the m/z with the increase of temperature in the desorption phase, while an enlarged 

m/z range is simultaneously covered in the pyrolysis phase. GC × GC-HRTOFMS enables the structural 

elucidation of volatile compounds. With EI, nonpolar compounds are covered as well. 2D-GC allows for 

group-type analysis of volatile compounds up to roughly m/z 600.574 

Neumann and co-authors574 have investigated oxidative short-term aging of bitumen at the molecular level 

trying to achieve a detailed understanding of the complex chemical processes. They claimed that 

identification of the highly aged compounds will help in the design of durable and long-living pavements. 

APCI thermogravimetry (TG) FT-ICR-MS was combined with EI-GC×GC-HR-TOF-MS in this study 

(Figure 12), and consistent results on different chemical changes occurring during prolonged short term 

aging in a specially generated model bitumen were achieved. It was noticed that use TG-FT-ICR-MS can 

enable the attribution of sum formulae up to the highly complex heavy end of the model bitumen. 

3.4.5 Atmospheric Pressure Laser Ionization (APLI) 

Atmospheric pressure laser ionization is an ionization technique that utilizes pulsed laser light to produce 

molecular ions. In contrast to APCI, APLI is the technique that is applied for analysis of preferably non-

polar compounds, such as PAHs,33, 575 and is about thousands of times more sensitive. Therefore, the 

advantage of multidimensional chromatography lies in the sensitivity and selectivity of APLI for the 

examination of complex petrogenic environmental samples.576 

Panda et al.33 have demonstrated APLI as a useful method for analysis of crude oil in one of their studies. 

The results showed that ions were potentially formed from small droplets. It was also noticed that the analyte 

solution did not fully vaporize, which has been pointed out as an advantage when the temperature-sensitive 

compounds are analyzed. Besides this finding, the extent of oxygenated ionic species recorded with APPI 

versus APLI was mentioned as important. Their results indicated that APLI mass spectra can more closely 

reflect the neutral precursor distribution and that this method is a complementary ionization technique to 

ESI. 

Further on, Benigni and co-authors34 have reported about analysis of fossil oils using GC-APLI-FT-ICR- 

MS. They analyzed organics in shale oil, petroleum crude oil, and heavy sweet crude oil. Compared to other 

ionization sources, their results showed that multiple PAH classes may be easily identified with a reduced 

number of contaminants and interferences. They pointed out that the addition of GC prior to APLI-FT-ICR-

MS can increase the ionization efficiency and signal-to-noise ratio of lower abundance fractions. A higher 

molecular coverage, higher sensitivity, and the possibility to separate and identify molecular isomers from 

within a crude oil sample have been achieved. Moreover, it was shown that this combination GC-APLI-FT-

ICR MS contributed to an increase in the number of compounds detected in relation to APLI-FT-ICR-MS. 

Furthermore, it is known that APLI can provide enhanced sensitivity due to very high linear and two-photon 

cross-sections of the target analytes which may lead to saturation of the excitation and ionization transitions; 

and due to none of the LC solvents absorb the 248-nm laser radiation penetrating the ion source. 

In a study published by Thiäner et al.35 the combination of LC-APLI-MS has been demonstrated in the 

analysis of the mixture of 34 PAHs, including (1) phenanthrene, (2) anthracene, (3) 9-methylphenanthrene, 

(4) 9-methylanthracene, (5) fluoranthene, (6) pyrene, (7) 9,10-dimethylanthracene, (8) 1-methylpyrene, (9) 

7H-benzo[c]fluorene, (10) benzo[ghi]fluoranthene, (11) benzo[c]phenanthrene, (12) chrysene, (13) 

benzo[a]anthracene, (14) 5-methylchrysene, (15) 6-methylbenzo[a]anthracene, (16) 7,12-

dimethylbenzo[a]anthracene, (17) perylene, (18) benzo[b]fluoranthene, (19) benzo[j]fluoranthene, (20) 

benzo[e]fluoranthene, (21) benzo[k]fluoranthene, (22) benzo[a]pyrene, (23) 6-methylbenzo[a]pyrene, (24) 

3-methylcholanthrene, (25) dibenzo[a,h]anthracene, (26) indeno[1,2,3-cd]pyrene, (27) benzo[ghi]perylene, 

(28) anthanthrene, coronene (29), (30) dibenzo[a,l]pyrene, (31) dibenzo[a,e]fluoranthene, (32) 

dibenzo[a,e]pyrene, (33) dibenzo[a,i]pyrene, and (34) dibenzo[a,h]pyrene. They detected HMW-PAHs 
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which were separated with high chromatographic resolution. In environmental samples, the concentration 

of PAHs decreases with the increment of aromatic rings, and therefore, it may cause difficulties during the 

detection of PAHs with large numbers of rings. However, LC-APLI-MS is found to be a suitable method 

for detecting those small amounts of C24-C30 PAHs via their mass-to-charge ratios. In this study, 

researchers could detect 211 tentative 6- to 8-ring PAH compounds in a bituminous coal sample. It was 

noticed that compounds with 8 rings elute later than the compounds with 6 or 7 rings. Moreover, it was 

pointed out that the occurrence of similar PAH patterns in the high Mw range, in different environmental 

samples may indicate that selected compounds occur consistently. A similar case has been seen for several 

lower Mw PAHs. 

In another study done by Thiäner et al.576 the identification of 7- and 8-ring PAHs in coals and petrol 

coke by HPLC-diode array detection (DAD) APLI-MS was presented. This method was for the first time 

used and evaluated for the identification of >C24-PAH. The authors576 mentioned that the use of APLI in 

this study had an advantage of high selectivity for aromatic compounds when compared to previous 

studies577, 578 where the combination of DAD and APPI was applied.  

Rüger et al.579 recently published an interesting study about the laser ionization mass spectrometry using 

the VUV laser light under atmospheric pressure. This type of study was for the first time reported. They 

used a fluorine excimer laser operating at 157 nm (7.9 eV). The authors believed that this technique could 

trigger single-photon ionization pathways in contrast to the common APLI. It is known that in APLI, sulfur-

containing polycyclic aromatic hydrocarbons (PASHs) show low ionization cross sections due to the short 

lifetime of the excited state in the resonance-enhanced multiphoton ionization (REMPI) process. However, 

by applying the atmospheric pressure single-photon ionization (APSPLI), the authors mentioned that is 

possible to obtain high ionization cross sections even for PASHs due to the single-photon process. 

Researchers have analyzed petroleum-derived and PAH mixtures by APSLI, which are considered highly 

complex materials.  
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Figure 13. GC-APSPLI at 157 nm of a light crude oil: (a) Survey diagram (time versus m/z) with total ion count (TIC) and base 

peak chromatogram (BPC) as inset, and (b) average mass spectrum color-coded according to the attributed compound class. 

Kendrick mass defect (KMD) diagrams of the light crude oil analyzed by thermal analysis coupled to FT-ICR-MS: (c) Deploying 

APSPLI (157 nm) and (d) APMPLI (266 nm). NM, nominal mass; CH, hydrocarbon class CxHy; CHS1, hydrocarbons with one 

sulfur as heteroatom CxHyS1; CHN1, hydrocarbons with one nitrogen as heteroatom CxHyN1; CHO1, hydrocarbons with one oxygen 

as heteroatom CxHyO1.579 

Figure 13 shows GC-APSLI data of light crude oil obtained at 157nm. The survey diagram can be seen 

in Figure 13a, showing the insets of the total ion chromatogram (TIC) and base peak chromatogram (BPC), 

which reveals the characteristic, complex pattern of the petroleum-derived material. Furthermore, it can be 

noticed that the most dominant class of the compounds was CH-class but CHS1-, CHO1-, CHN1-, and 

CHS1O1-class constituents were also detected with considerable abundance. It was found that APSPLI is 

able to ionize compounds from a broad compositional space, and that way overcomes the limitations of 

classical APLI. Based on the PAH mixture evaluation, it was shown the selective and sensitive ionization 

of constituents with an ionization potential below the photon energy of 7.9 eV. The researchers have proven 

the ionization process driven by single-photon ionization, which resulted in a low abundance of protonated 

species and molecular radical cations. The residual oxygen and water in the ion source atmosphere were 

detected, and they caused unwanted oxidized ionization artifacts. However, as the authors mentioned, they 

could be reduced by increasing the flow rate of the nitrogen gas purified by water and oxygen filter 

cartridges, and by ionizing the analytes at the position near the ionization chamber inlet. It is obvious that 

APSPLI can be successfully applied for the characterization of petroleum-derived materials.  
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3.4.6 Laser Desorption/Ionization (LDI) 

Over the years, upgrading of mass spectrometry techniques has shown a considerable improvement in the 

determination of the composition, molecular weight distribution (MWD), and structure of carbonaceous 

species.19, 36, 44, 47, 54, 56, 102, 167, 170, 535, 580-585 Specifically, laser desorption/ionization mass spectrometry (LDI-

MS) has been achieved a mass resolution capable of discerning chemical composition and structure in 

complex carbonaceous mixtures, particularly when used in combination with chromatographic separation. 

Therefore, this section is focused on the application of LDI-MS techniques for the characterization of 

specific carbonaceous molecules, such as polycondensed hydrocarbons and asphaltenes (heavy oil 

fractions). 

The most enigmatic component of crude oils is asphaltenes due to the difficulty of establishing their 

chemical structure. Asphaltenes belong to a solubility class, usually like n-heptane or n-pentane insoluble 

fraction of oil or coal bitumen. Within the asphaltene research community, the size and molecular weight 

of the asphaltene molecules have been a long controversy. This has been obscured by the disagreement 

regarding the reliability of the MWD of asphaltenes determined with different experimental methods. 

However, results obtained from numerous LDI-MS measurements in different laboratories yield asphaltene 

MWDs with a major contribution within 300-1000 amu, and weights of about 500 amu.36, 580, 586-588 These 

studies have shown that they are in agreement with other mass spectrometry methods, such as plasma 

desorption MS,589, 590 field desorption MS,585 APCI-MS,586 ESI, FT-ICR-MS,581 as well as with fluorescence 

depolarization and correlation spectroscopy solution studies.591 

Various research groups have successfully conducted studies based on the combination of direct ionization 

techniques and FT-ICR-MS, which enabled a simpler analysis of complex solid samples.592, 593 

It is known that direct ionization sources may exhibit drawbacks in comparison to classical ionization 

methods such as ESI, due to pronounced signal suppression and low detection selectivity.37 Therefore, 

coupling LDI source with FT-ICR-MS seems to have a high potential for direct analysis of the volatile and 

reactive part of a complex solid sample. LDI-FT-ICR-MS73, 594-596 can offer a higher mass resolution, mass 

resolving power, and mass accuracy, enabling the analysis of complex petroleum mixtures on a molecular 

level.597 Due to different ionization efficiencies of the constituents of crude oil,598 high-resolution MS data 

have shown that it is possible to discriminate among different compounds.599, 600 The ability of LDI(+)-FT-

ICR-MS technique to generate a huge number of variables per sample makes chemometrics more efficient 

tool for obtaining relevant information.  
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Figure 14. LDI(+)FT-ICR mass spectra of crude oil samples (a) S21, (b) S15, and (c) S41. Note that the Mw decreases as a function 

of the reduction of total nitrogen (wt%).Reproduced with permission from 41, Copyright 2015 Elsevier. 

 

Terra et al.41 have used LDI-FT-ICR-MS to characterize 70 samples of Brazilian crude oil by identifying 

the main basic nitrogen and aromatic species. In Figure 14, the LDI(+)FT-ICR-MS of three representative 

Brazilian crude oils are presented. The content of basic nitrogen and aromatics for sample S21 was 0.1460% 

and 28.6%, while for sample S15 was 0.1020% and 21.9%, and sample S41 was 0.0680% and 28.0%, 

respectively. They noticed that the Mw and the concentration of pyridine derivatives change as a function 

of the total basic nitrogen values. This study showed that LDI-FT-ICR-MS may offer certain improvements 

over the standard approaches for the determination of petroleum quality parameters. 

In a recent work of Zuber et al.37 the application of a direct preparation and analysis method for LDI(-)-FT-

ICR-MS analysis of organic solid samples was demonstrated. The researchers analyzed six carbonaceous 

samples with different degrees of coalification - one peat (PECZ), three brown coals (BCSO, BCSL, 

BCHA), one hard coal (HCPO), and an anthracite (ANIB). Various coal-related analytical standards were 

analyzed at different laser powers in order to investigate the influence of the laser applied on the detectable 

ions. Their results were used to achieve a more detailed insight into the structural properties of those 

complex solid samples. They presented the molecular formulas obtained for the peat and coal samples (see 

Figure 15). It was detected a higher total sulfur amount for the samples BCSO and BCSL than for the other 

samples, which has led to an enhanced assignment of sulfur-, oxygen-containing molecular formulas. 

Further on, it can be seen the lower number of assigned molecular formulas and lower relative abundances 

in oxygen-containing classes with O ≥ 7 indicate a potentially higher degree of coalification of sample 

BCSO, in comparison to brown coals BCSL and BCHA. The authors claimed that these minor differences 

in the degree of coalification between samples can be distinguishable by the methods developed. This 

analytic procedure may give an opportunity to introduce reactive organic molecules of complex solid 

samples in their native state for mass spectrometric analysis. From the practical point of view, the apparent 

MWD obtained in LDI-MS measurements of complex polydispersed mixtures of self-aggregating 

compounds, such as the asphaltenes, is dependent on the experimental conditions. 
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Figure 15. Bar plots of the molecular formula lists for the LDI(−)-FT-ICR-MS analysis of the peat and coal samples using (A) the 

number of assigned molecular formulas and (B) the relative abundancies of selected molecular formula classes CcHh, N1O4, S1O4, 

and O1−O10.37 

Over the years, the LDI technique has developed rapidly and at this moment, is capable to provide valuable 

information related to the chemical composition and structure of complex carbonaceous mixtures. However, 

results relating to the MWD of typical asphaltenes obtained by LDI-MS were found to be inconsistent. It 

was reported that laser power and the surface concentration of asphaltenes are crucial parameters for 

controlling measured asphaltene molecular weights.381 It is well known that asphaltenes have a strong 

propensity to aggregate and flocculation is one of their defining characteristics.601 If in LDI experiments, 

the gas-phase aggregation of asphaltenes is dependent on the fused ring number of asphaltene PAHs, then, 

the coal asphaltenes might be distinguished from crude oil asphaltenes. Coal asphaltenes should have 

smaller fused ring systems than petroleum asphaltenes. In several studies, the evidence for this has been 

reported by comparing the UV-vis absorption and fluorescence,602-604 and the diffusion rates605 of the two 

different asphaltene types. 

In 2005, Xu et al.606 used for the first time LDI-TOF-MS for a characterization of the petroporphyrins. The 

experiment has been shown as a reliable and effective for the analysis of petroporphyrins. The results 
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achieved via LDI-TOF-MS can be compared with those derived from the more conventional UV-vis 

spectrometry. They analyzed Tahe heavy crude oil (marine origin in China), and the results showed a much 

higher concentration of vanadium than nickel in the sample. The nickel porphyrins are extracted from the 

oil and purified afterwards. This type of analysis of petroporphyrins may provide useful information for the 

design of oil refineries and related processes. 

 

Figure 16. LDI spectra of dried–droplet samples of the Arabian Light crude oil (ALCO) asphaltene with average sample densities 

of 200 μg cm-2 (panels a, b) and 1 μg cm-2 (panels c,d). Delayed or cw ion extraction and 40 μJ or 80 μJ laser pulse energies (266 

nm) were employed as indicated. The spectra recorded with 40 μJ laser energy have been scaled by the factors indicated in each 

panel for direct comparison with the spectra measured with 80 μJ. The enhancement of the ion yield for molecular weights above 

1000 amu is indicative of in–plume aggregation of the asphaltenes. ALCO asphaltene. Reproduced with permission from 607, 

Copyright 2007 John Wiley and Sons. 

Haya et al.607 recorded the LDI spectra of the Arabian Light crude oil (ALCO) asphaltene. Figure 16 

represents spectra obtained for dried-droplet samples with two different average surface densities of the 

ALCO asphaltene (1 and 200 μg cm-2) after evaporation of the solvent. They could notice that LDI 

measurements with the lower laser energy applied resulted in peak distributions of 300-600 amu, while with 

an increase of the laser power, an enhancement of the signal associated with the heavier compounds has 

occurred. The authors mentioned that such enhancement becomes even more pronounced for the denser 

samples and under cw ion extraction conditions, which resulted in a neat displacement of the maximum of 

the spectrum to masses about 1500 amu and to a significant ion yield at molecular weights well above 3000 

amu. 

Hortal et al.381 reported in one of their papers investigation based on the comparison of coal and petroleum 

asphaltenes. LDI experiments on coal versus petroleum asphaltenes help discern whether the island or 

archipelago model applies. They showed that asphaltenes have average molecular weights smaller than 1000 

amu. For the coal asphaltenes average weights were found to be smaller than 500 amu, meaning that they 

are significantly lighter than petroleum asphaltenes, which the average weight range is typically found 

between 600 and 800 amu. Petroleum asphaltenes have a high mass tail, which may fall off rapidly above 
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1500 amu. These large PAHs coupled with relatively small molecular weights are consistent with the single 

fused ring molecular architecture of asphaltenes, i.e. island model. 

Besides the applied ionization source, complex organic samples still require ultrahigh resolving analysis 

technique for in-depth characterization.37 We have seen that the application of LDI/MALDI coupled to TOF 

has been used for the characterization of petroporphyrins,606 crude oils,608 and their fractions,583, 587 as well 

as for the determination of the MWDs of asphaltenes.36, 39, 381, 609 

3.4.7 Matrix-Assisted Laser Desorption Ionization (MALDI) 

The analytical community has focused to understand the molecular constituents. Often the complex mixtures 

need hydrocracking or hydrotreating to be able to generate more valuable final products.7 In the introduction 

of this review, it was shortly mentioned the importance of ionization techniques in providing important 

insights to the chemical makeup of the residues but they seem to be insufficient when ionizing fractions 

having a higher content of heteroatoms and alkylation.7, 28 With the appearance of matrix-assisted laser 

desorption ionization (MALDI) and LDI, new technologies have moved a step forward. MALDI is a 

technique in which the organic matrix is used, and that way may facilitate the ionization of target analytes. 

There are several reviews explaining the MALDI process.46, 49, 66, 67 MALDI as an analytical method is found 

to be of wide interest because it represents an effective approach to obtain information on the molecular 

weight of macromolecules. It may lead to information on macromolecules mixtures although the ion 

suppression effects can be present to some extent. This is possible due to the privileged formation of singly 

charged molecular species ([M + H]+, [M-H]-, alkali cationized molecules).66 Various mechanisms are 

proposed to explain MALDI ionization:52 

(i) primary ion formation from the matrix (Ma); 

(ii) secondary ion formation of the analyte (A) originating from the gas phase interaction of reactive 

matrix ions and neutral molecules of the analyte. 

Figure 17 represents the MALDI ionization process from which can be seen that the matrix-analyte crystal 

is bombarded with a UV laser beam exciting the matrix, and transferring the energy to the analytes. 

Consequently, it results in the ionization and desorption of the analytes.46 

 

Figure 17. MALDI ionization process 

Zhang et al.58 have integrated the solvent‐free sample preparation MALDI technique with FT-ICR-MS to 

study the compositional and structural information of solid soot particles. Due to their limited solubility, it 

is difficult to achieve a comprehensive characterization of the entire solid samples by conventional organic 

analysis techniques, such as GC/MS,610, 611 HPLC, and size‐exclusion chromatography (SEC).612, 613 Besides 

the soot particles, MALDI-FT-ICR-MS can be potentially suitable for the characterization of other 

carbonaceous materials. They introduced the modified version of the iso‐abundance plot that could be of 

great importance when comparing the distribution differences among samples. Next, it was mentioned that 

the MALDI technique can minimize the possibility of ion fragmentation in the LDI source. The researchers58 

explained that the mass spectrum reflects the original state of the solid samples with high confidence, which 
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together with the high mass resolution and accuracy of FT-ICR-MS makes the developed method more 

reliable. Applying this technique, it is possible to assign the chemical formulas of the molecules in 

carbonaceous particles, as well as to reveal the minor components in the samples. Also, the sample 

preparation parameters such as matrix/analytes ratio and mixing time were optimized to minimize 

background signals and show good reproducibility. And the last advantage of FT-ICR-MS device is the 

accurate masses, which assists the exclusion of background signals in the mass spectra of samples.58 

Haya et al.607 studied different matrices for Arabian Light crude oil asphaltene at two different laser energies 

(40 and 80 μJ/pulse) using MALDI. They found the peaks for MWDs at about 500 amu with a high–mass 

tail extending up to 3000 amu, yielding average weights of about 900 amu, see Figure 18. They noticed that 

the signal in the low MWD range is smaller for the sample diluted in the CuSO4 salt. Additionally, it can be 

seen that from the first two spectra (a and b) that the aggregation effects have become negligible even in the 

cw ion extraction mode. 

 

Figure 18. MALDI spectra of the Arabian Light crude oil asphaltene diluted in dithranol matrix – a,b) dried–droplet method, c) 

TCNQ matrix (solvent–free method); d) CuSO4 salt (solvent–free method). Delayed and cw ion extraction and 40 μJ or 80 μJ laser 

pulse energies (266 nm) were employed as indicated. The lower laser energy spectra have been scaled by the factors indicated in 

each panel for direct comparison with the higher energy ones. Reproduced with permission from 607, Copyright 2007 John Wiley 

and Sons. 

Further on, MALDI coupled to TOF-MS showed that the presence of a low-molecular-weight crystalline 

matrix with a photo-absorption maximum which is matching the wavelength of the laser pulse may allow 

the desorption and ionization of intact proteins.50 It was reported that the matrix can efficiently absorb UV 

laser radiation, which could result in its rapid ionization and dissociation into the gas phase. This may rapidly 

expand gas phase entrains intact analyte ions.395 Since matrix absorbs most of the laser radiation, and not 

the analyte. Primary, MALDI has been utilized for analysis of high MW biomolecules, such as peptides and 

proteins,42, 43, 395 however, recent studies focus more on the characterization of polymers,48, 614, 615 and heavy 

fossil fuels.51, 616  
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Figure 19. MALDI-TOF chromatogram of heavy oils. Reproduced with permission from 51, Copyright 2016 Elsevier. 

Recently, Kim et al.51 published a short communication about the characterization of petroleum-based heavy 

oil via MALDI-TOF. They performed vis-breaking of various heavy oils such as vacuum residue, bitumen 

and pyrolyzed fuel oil was carried out at 350 ºC, 400 ºC and 450 ºC to investigate the fractions based on 

MWD. A decrease in MWD range from vacuum residue to bitumen and again to pyrolyzed fuel oil have 

been noticed (Figure 19), however, it was expected due to their origins and chemical compositions. The 

highest signal at 400m/z was detected for the vacuum residue, while for the bitumen a peak was found at 

approximately 300 m/z. The narrowest MWD was reported for the pyrolyzed fuel oil, which indicated a 

lighter chemical composition in that sample. Obviously, determination of the MWD range for heavy oils is 

possible via MALDI-TOF characterization. Although quantitative analyses for heavy oil are difficult to 

carry out using a MALDI-TOF due to the complexity of the calculation and spectral separation process, 

still, comparisons of the feed and product following the reaction may contribute to a better understanding 

of the MWD. 
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Figure 20. ET-MALDI-FT-ICR spectra resulting from the direct analysis of the (A) L−L ACN extract and (B) HPTLC band 

(corresponding to porphyrins) from a Middle-Eastern crude oil sample.55 

Further on, it is known that vanadium and nickel are the two most abundant trace metals in petroleum, which 

may occur in two forms - metalloporphyrins (petroporphyrins) and metallononporphyrins. Analytic 

techniques such as ultraviolet-visible (UV-Vis) spectroscopy and MS are of huge importance for the 

characterization of petroporphyrins, and generally, MS has been used to study the MWD of petroporphyrin 

mixtures. However, the electron impact (EI) MS has been used widely. Hence, the MS with molecular ion 

production which has a high sensitivity is found as a promising technique in this field. 606 

Ramírez-Pradilla and his co-workers617 have developed a MALDI matrix that can promote selective 

ionization of petroporphyrins via electron transfer reactions. After an HPTLC step, they used a novel type 

of matrix for the characterization of the asphaltenes. Their results showed the selective ionization of 

petroporphyrins, as well as the increment in several molecular formulas when compared to those reported 

in previous studies. Another study done by Pradilla et al.55 has shown that the compound α-CNPV-CH3 can 

be effectively used as a matrix for the electron transfer (ET) process in MALDI-MS for the selective 

ionization and detection of nickel and vanadyl porphyrins present in ACN extracts, and HPTLC-purified 

fractions from a Middle-Eastern crude oil. They have taken an advantage of the low ionization potential of 

petroporphyrins to develop a MALDI matrix that is capable to selectively ionize molecules in a complex 

mixture. This contributed to simplified sample preparation and increased the number of identified 

porphyrins per sample. Figure 20 is shown the selectivity of their new matrices with an increased porphyrin 

signal in both liquid and TLC extractions. The advantage of minimizing and enhancing the sensitivity of the 

MALDI by limiting ion types to a single class is paramount for porphyrin analysis. This study has proven 

that the combination of the high selectivity of ET reactions in MALDI (+) with the high mass accuracy, and 

resolution of FT-ICR ensures an additional tool for porphyrin analysis by mass spectrometry. Continuous 

progress within the separation technologies will enable cleaner fractions for petroporphyrin analysis. 

For example, for the different MS ionization methods, biochemical matrices may be challenging due to their 

imparted ion signal suppression,618 which can impede the crystallization in the case of MALDI. However, 

Chandler et al.619 have studied the suitability of commonly used buffers for MS analysis. They showed that 

label-based non-MS assays can be adapted for MALDI MS analysis. Also, with the implementation of an 

additional MALDI spot washing step, there is a possibility to reduce buffer concentrations which may result 

in more assays accessible for analysis with MALDI MS.57 Krenkel et al.620 reported in their recent paper 
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that liquid atmospheric pressure (AP) MALDI has the advantage because it combines the versatility of ESI 

and the analysis speed of conventional solid state MALDI under AP. 

3.4.8 Field Desorption Ionization (FDI) 

Field desorption ionization is used for the analysis of a variety of non-volatile analytes that are difficult to 

ionize by other sources.60 FDI is considered a soft technique, which yields intact M+• molecular ions for a 

wide range of compound classes, such as paraffins, cycloparaffins, aromatic hydrocarbons, and non-polar 

sulfur, which are not possible to detect by ESI or MALDI. Despite its advantage, this analysis can be 

extremely difficult to perform due to the pulsed nature of the FDI source, combined with the need to re-

application of the sample after each experiment. However, the development of liquid injection field 

desorption/ionization (LIFDI) enabled sample application without breaking the vacuum.621 LIFDI has been 

used for analyzes of different samples such as petroleum mixtures,61, 548, 622, 623 metal complexes,624-626 and 

fullerenes.627, 628 

Smith et al.59, 60 have reported in one of their papers about automated LIFDI-FT-ICR-MS that enabled 

averaging more than 200 optimized mass spectra of a South American crude oil for improved dynamic 

range, mass resolving power, and mass accuracy relative to a single-application experiment. With these 

techniques, it is possible to achieve a more detailed compositional analysis of non-polar and low-polarity 

species in complex mixtures. 

3.4.9 Others 

Although MALDI has become a powerful analytical tool for the study of thermally labile, non-volatile 

samples by MS, its ionization efficiency depends on the properties of the analyte and matrix, as well as the 

sample preparation conditions, and the deposition method. Therefore, researchers continue to look towards 

alternative desorption/ionization methods. Decades ago, Lindner et al.629 have demonstrated a laser-driven 

shock waves in desorption/ionization mass spectrometry. Later several studies related to laser-induced 

acoustic desorption (LIAD)-ionization have appeared in the literature. Authors employed various thin metal 

films, such as copper630 or mercury631 to shield the samples from the high-intensity laser. Unfortunately, the 

ionization of the samples has been proved to be difficult. Generally, LIAD has not been developed as a 

practical desorption/ionization method because the predominant desorption of neutral molecules predicted 

by Lindner forced researchers to combine LIAD with ionization sources such as EI and CI. Particularly, the 

CI method has been observed as an attractive approach due to its wide range of ionization modes (i.e. 

electron transfer, atom transfer, group transfer). However, this ionization method brings along several 

limitations. One of them is a low ionization efficiency due to short interaction time with reagent ions due to 

high velocities of the molecules. Another limitation is linked to the time necessary to collect the mass 

spectrum. The time is much longer than the duration of the pulse of neutral molecules generated by laser 

desorption.632 We have pointed out in the sections related to FT-ICR various advantages that it may offer 

over other instruments in laser desorption/chemical ionization (LD/CI) experiments. First of all, due to the 

simultaneously detected ions, and secondly, FT-ICR may allow the use of several consecutive reaction/ion 

isolation steps to form reagent ions. Those ions may be stored in the cell prior to the introduction of the 

neutral analyte and consequently, be exposed to a large population of neutral molecules desorbed by several 

laser pulses.632 

Perez et al.632 have studied LIAD of neutral molecules coupled with EI and CI as an analysis method for 

non-volatile organic and biomolecules in FT-ICR-MS. They designed the experiment for a transmission 

mode laser desorption, placing the sample on the opposite side of the metal foils (copper or titanium), from 

which LIAD produced a high-amplitude acoustic wave by laser ablation. The results indicated that LIAD 

coupled to post-desorption IE or CI in FT-ICR can be a practical method for the analysis of thermally labile, 

non-volatile molecules. The main advantage of this approach is better to control the ionization step (through 

a selection of reagent ions) and a broader choice of ionization modes than LDI and MALDI methods. 
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4 Analysis for kinetic studies 

 

In the first part of this review, separation methods coupled to ionization techniques and analyzers are 

discussed with their respective advantages, disadvantages and applications. Because of their importance in 

petrochemical industry, many have focused on optimizing mass spectrometry for detailed identification and 

quantification of petroleum fractions. Besides the analysis of petroleum fractions, the analysis of detailed 

product composition downstream of petrochemical processes is important for the design and optimization 

of processes. Even though research has not focused in that much detail on the use of mass spectrometry for 

downstream product streams, there is tremendous potential to advance chemical process design by detailed 

product characterization and subsequent chemical kinetic modelling. This will only become more 

pronounced when we move to a more circular economy.633  

In this section, we discuss the state-of-the-art of kinetic model development with applications in 

(petro)chemical industrial processes. The combination of GC and MS coupled to a reactive system for 

detailed product characterization is discussed. The advantage of using mass spectrometry compared to other 

conventional product quantification (e.g. GC-FID/TCD) methods is highlighted for the analysis of reactive 

intermediates and for direct kinetic measurements with time-resolved experimentation. 

 Detailed kinetic models for petrochemical processes 

Kinetic models are developed to describe the mechanisms of chemical reactions in (petrochemical) 

processes. Understanding the chemistry on a fundamental level is a crucial step in the development and up-

scaling of those processes. Kinetic models provide physical insights in the complex conversion of feedstock 

molecules to a broad spectrum of products. Besides the specific reactions between species, kinetic models 

also have information on the thermodynamics of the species and the rate coefficients of the reactions. 

Advances in theoretical calculations 634 and computer science (e.g. machine learning635, 636), have shifted to 

use of fitted empirical data for thermodynamics and kinetics to more fundamental approaches. The kinetic 

models are further used in combination with reactor simulations or computational fluid dynamics for the 

design and optimization of the complete process,         

With the increase in computational power, the development of kinetic models for petrochemical processes 

have moved from smaller kinetic models with a limited set of species and reactions to single-event detailed 

kinetic models. Those models contain thousands of products and reactive intermediates and up to hundreds 

of thousand reactions between those species. Details on how those kinetic models are built are beyond the 

scope of this work and can be found in dedicated review papers637-640. The complexity of single-event 

elementary reaction kinetic models increases logarithmically with increasing fuel complexity, specifically 

for kinetic models with radical intermediates (e.g. models for pyrolysis, oxidation and combustion 

processes). With the increasing complexity of the kinetic model, also the product range that can be modelled 

expands. To assess the performance of the kinetic models for the broad product spectrum, accurate and 

detailed experimental quantification and identification of those products is important. For certain 

applications, as discussed below, the use of mass spectrometry has advantages over other conventional 

detectors such as flame ionization detectors (FID), thermal conductivity detectors, and atom-specific 

detectors (nitrogen- or sulfur chemiluminescence and atom emission detectors) that are coupled to gas or 

liquid chromatography.        

 In older or lumped kinetic models, the focus is on modelling the formation of the main products or 

cuts/fractions, e.g. ethylene and propylene in steam cracking or the naphtha yield in an fluid catalytic 

cracker. To validate the performance of the kinetic models, reactor simulations are performed to imitate the 

experimental unit and procedure. Depending on the complexity of the fuel, different lumping strategies or 

model reduction methods are used such that they can be employed to model steam cracking reactor design641 

or combustion engine performance642, 643 with a reasonable computational time. In those cases, the models 

are reduced with the focus on optimizing the model performance for a limited set of important product 

species for a range of experimental conditions. The more recent detailed kinetic models allow to model a 
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broader product spectrum. Some examples are the detailed formation of multi-ring polyaromatic 

hydrocarbons during pyrolysis, the decomposition of hetero-atomic impurities present in petroleum 

feedstocks, and the complex product spectrum during the thermal decomposition of biomass and plastic 

waste. 

 Common MS techniques for kinetic studies 
When coupled to a reactor, the various configurations of ionization sources, mass spectrometers, and 

possible coupling to GC/LC discussed in this review can also be used for kinetic studies. In conventional 

apparatus, diagnostics are implemented downstream of the reactor unit for online characterization of the 

product stream. The ionization source and mass spectrometers are typically preceded by GC or LC for 

detailed analysis of a broad range of products. In those cases, MS coupled to EI is used for a qualitative 

assessment, while other detectors (most commonly FID) are used for quantification. For some specific 

measurements coupling GC or LC is not possible and MS is directly connected to the reactive system. In 

those cases, photoionization is preferred to reduce fragmentation and a dedicated sampling system is 

required. Here, we first discuss the coupling of reactive systems to GC-MS for product identification. Next, 

the two main advantages of the direct coupling of MS to the reactor configurations i.e. for detection of 

reactive intermediates and for characterization of products as a function of time, are explained. 

4.2.1 Reactor-GC/MS analysis  
For complex reaction mixtures, downstream characterization of the broad product spectrum can be tedious. 

Kinetic studies require detailed quantification of all important products. For complex product streams, and 

even more for the conversion of renewable resources, a dual diagnostics system is required with GC or 

GC×GC coupled to both FID and MS. The reactor is in this case directly coupled to the GC by a sampling 

system. The mass spectrometer is usually preceded by EI and used for identification of the different products 

by their molecular fragmentation fingerprint, while the FID is used for quantification of the products. One 

recent example is the frontier micro-pyrolyzer experimental apparatus with a tandem reactor that can be 

used to study the thermal decomposition or catalytic cracking of conventional and renewable feedstocks, 

such as bio-oils or plastic waste644, 645.   

One commonly used method to characterize the chemical composition of involatile components by their 

thermal decomposition products is pyrolysis gas chromatography coupled to mass spectrometry (Py-

GC/MS). The main difference between Py-GC/MS and conventional GC/MS is the way the sample is 

introduced into the gas chromatograph. Instead of direct injection of the sample, the thermal decomposition 

products of the sample are analyzed. The involatile components are introduced in a quartz tube with a pre-

set temperature and in an inert atmosphere. Depending on the pyrolysis temperature and residence time, 

various products are introduced into the GC by decomposition of the weakest bonds in the involatile 

material. By analysis of the decomposition products, information on the structure of the involatile 

component can be revealed. Studies at different operating conditions of the Py-GC/MS allow to further 

study the kinetics for breakage of the weakest bonds.      

Even though some research has been done for applications to heavier fractions of petroleum products646-648, 

the majority of recent research focusses on characterization of the structure and impurities of biomass649-651 

polymers652, and plastic waste653, 654. With respect to petroleum products, Riley et al.655 developed a method 

for the analysis of crude and heavy fuel oil asphaltenes, Calemma et al.647 studied the structural 

characteristics of asphaltenes, and Yin et al.648 used Py-GC×GC-MS to study the composition of coal.  

4.2.2 Photoionization mass spectrometry for quantitative detection of reactive intermediates 
Conventional diagnostics often fail in their ability to detect reactive intermediates, such as radicals in the 

case of pyrolysis or peroxides in the case of combustion processes. Those intermediates are typically present 

in a reactive mixture in trace amounts and at specific reactive conditions such as elevated temperatures or 

low pressures. Since those reactive intermediates are only stable at the studied reactive conditions, they 

cannot be analyzed by GC or LC. Additionally, reactive intermediates will decompose in the columns of 

GC or LC before they reach the detector. One common technique for detection and quantification of such 

species is by direct coupling of the reactor to laser absorption or fluorescence656. However, to detect a broad 

range of reactive intermediates, especially for large hydrocarbon radicals, mass spectrometry with probe 
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sampling has proven to be more successful. Careful control of the sampling system is crucial for accurate 

results. Some common sampling techniques include microprobes or molecular beam sampling. The use of 

EI with molecular beam sampling is well-known and dates back to the 1940s657. The main disadvantages of 

using EI are the numerous fragmentations, which limits compound identification if not preceded by GC or 

LC, and the difficult distinction of isomers because of the low energy resolution of the ionizing electrons.  

More commonly applied is photoionization induced by laser or synchrotron VUV radiation. In particular 

synchrotron vacuum UV photoionization mass spectrometry (SVUV-PIMS) with molecular beam sampling 

is an exceptionally powerful method to determine the composition of complex combustion systems658, 659. 

Some recent reviews by Cool660, Li and Qi661, Qi662, Yang663 summarize the application of SVUV-PIMS to 

combustion systems and the subsequent use in kinetic model development. One major advantage of SVUV-

PIMS compared to traditional mass spectrometry with laser induced photoionization is the tunability of the 

synchrotron radiation which allows for detection and quantification of isomeric structures, and control of 

molecular fragmentation. Laser VUV photoionization has either a fixed wavelength or a wavelength that is 

not easy tunable. Alternatively, REMPI has been used in several applications. This technique is limited to 

smaller species and aromatics, and the wavelength has to be tuned for each molecule with isomers. 

One very recent example of an experimental unit with a cylindrical quartz reaction cell, molecular beam 

sampling, and product characterization using photo-ionization time-of-flight mass spectrometry (PI-TOF-

MS) is built in the Combustion Dynamics Laboratory at Massachusetts Institute of Technology664. A scheme 

of the unit is given in Figure 21. Recently, several kinetic studies have been performed with the focus on 

the complex formation of polyaromatic hydrocarbons during pyrolysis665, 666. The experimental unit allows 

the detection of polyaromatic hydrocarbons, unstable molecular intermediate structures, and radical species, 

With the use of gas chromatography, only the detection of the former would be possible.   

 

Figure 21. Front cross-sectional view of the apparatus showing the reaction cell, the gas sampling region, and the diagnostics 

section. Reproduced with permissions from 664, Copyright 2018 AIP Publishing.  

4.2.3 Time-resolved mass spectrometry for direct kinetic measurements 
One major advantage of mass spectrometry is its ability to process ions in a millisecond time frame. The 

collection of data with a temporal resolution together with the separation of products and reactive 

intermediates based on mass-to-charge ratios allows one to differentiate between various chemical states as 

a function of time. Because of these features, time-resolved mass spectrometry (TRMS) has been one of the 

most prominent techniques in the study of dynamical systems and reaction kinetics667. Many applications 

of TRMS involve biochemical processes such as the study of organic reaction kinetics, the dynamics of 



51 

 

protein folding, biocatalysis, and metabolic profiling668-670. Some studies have focused on kinetics of 

(petro)chemical related processes649, 669, 671-674, for example the pyrolysis or combustion of biomass and 

plastic waste or the screening of various catalysts. One specific method is TGA-MS, where a 

thermogravimetric analysis of involatile components, e.g. biomass or solid waste, is directly coupled to MS 

for direct measurement of the product composition as a function of time675, 676.               

Most of the existing MS techniques are optimized to have a high mass resolution for detailed composition 

measurements. For TRMS, on the other hand, the high temporal resolution is more important to gain 

information on fast changes in chemical composition or measurements of short-living chemical species. The 

temporal resolution depends on various factors such as the ion source, the mass analyzer, and the detector. 

Also decreasing the volume between the reaction zone and the ionization are crucial in time-resolved 

experimentation. One of the main used ionization sources for TRMS with application to biomolecules is 

ESI, since this technique enables efficient transfer of liquid-phase molecules to the gas phase at atmospheric 

pressure669. Typical mass analyzers include quadrupole, TOF, and ion traps. For pyrolysis or combustion 

processes, soft-ionization techniques are preferred. When coupled to gas chromatography, EI methods can 

provide fingerprints of molecules and allow easy identification. However, in case of time-resolved 

experimentation where the usage of GC is not possible, fragmentation needs to be reduced to detect a broad 

range of products. Heger et al.677 used REMPI-TOFMS for online measurements of polyaromatic 

hydrocarbons in a waste incineration plant. Later, Zimmerman et al.678-680 used single-photon ionization 

(SPI) and TOF-MS with μ-probe sampling to study the formation of products in burning cigarettes. Because 

of the wider applicability to all organic compound classes, SPI was preferred over REMPI678. Recently a 

new experimental apparatus was built at Sandia National Laboratories for direct time-resolved probing of 

high-pressure gas-phase chemical reactions by photoionization mass spectrometry681. Ions are created by 

VUV photons originating from laboratory discharge lamps or from a synchrotron beamline from Lawrence 

Berkeley Lab’s Advanced Light Source. The ions are analyzed by a custom TOF-MS. The main applications 

of this apparatus are hydrocarbon oxidation in low-temperature autoignition. 

5 Conclusion and Outlook 

Over the past decades, the characterization of crude oils and petroleum fractions has evolved from the 

analysis of physical-chemical and thermodynamical properties going further to compositional analysis, 

different instrumental methods of analysis, and molecular modeling. 

Early on petroleum fractions and products were only characterized globally, focusing on characteristics that 

correlate with the chemical changes that occur during petroleum refining and upgrading. Advances in 

separation processes have made it possible to go beyond these so-called commercial indices such as boiling 

points, specific gravity, molecular weight, refractive index, and CHNSO, PONA, PIONA, PINA, and PNA 

compositional information. Applying more advanced techniques next to the progress of existing analytical 

tools allows to determine an unprecedented detailed compositional characterization of crude oils and related 

fractions.  

Since society has moved towards using a wide range of energy resources, in particular, heavier crude oils, 

shale oil, plastic waste derived oils, and renewable biomass-derived fractions, it was and it remains essential 

to develop new technologies which will enable the characterization of high-boiling-point and low-solubility 

molecules. Gas chromatography continues playing an important role in shaping the future of R&D in the oil 

and gas industry. The powerful separation which can be achieved by GC in combination with mass 

spectrometry has contributed to easier and faster chemical identification and quantification.  

So it is possible to ode SFC - GC × GC methods for the analysis of heavy petroleum fractions. Indeed, the 

implementation of an SFC step has contributed to the separation of the samples into saturated, unsaturated, 

and polar fractions. Furthermore, it was presented the ability of HPLC to be applied to high-boiling samples. 

LC-MS offers superior selectivity and an ability to identify conformational information based on the 

mass/charge ratio of the measured ions.  
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On the other hand, ICP-MS is an excellent technique for detecting trace elements in different sample 

matrices. It allows the measurement of multiple elements simultaneously in a single analysis. Apart from 

its numerous features, which include high sensitivity, wide linear dynamic range, and wide elemental 

coverage, one of the biggest disadvantages of ICP-MS is the high cost. Moreover, the use of volatile 

petroleum fuels in ICP-MS can make the plasma unstable. 

High-resolution mass spectrometry, such as FT-ICR-MS, stands out among other analytical techniques due 

to its outstanding ability to determine the composition and structure of crude oil constituents. This technique 

may allow detection of the unique elemental formulas of thousands of molecules in a crude oil sample. Also, 

it can be utilized for very high-boiling and non-boiling petroleum fractions beyond the reach of GC/GC × 

GC. Moreover, the combination of FT-ICR-MS with different ionization sources (i.e. APPI, ESI, APCI, 

APLI, LDI, MALDI, and FDI) has largely contributed to the recent advances in petroleum science. APPI is 

an efficient ionization technique for samples containing non-polar or low polar compounds, and sulfur 

aromatic species, as well as APLI which is preferably applied for analysis of non-polar compounds. APCI 

showed the best results for aliphatic hydrocarbons, analyzing compounds with higher polarity, such as 

phosphoric acid esters and carbamates. Furthermore, ESI has been shown as another promising method for 

ionization of non-volatile and complex molecular samples bearing polar functional groups, especially 

nitrogen- and oxygen-containing groups. Besides these ionization methods, LDI and MALDI have extended 

the application of MS into solid, non-volatile petroleum products, which were often difficult to analyze by 

the previously mentioned approaches. LDI-MS has a mass resolution capable of discerning chemical 

composition, and structure in complex carbonaceous mixtures, particularly in combination with 

chromatographic separation. Although MALDI has been utilized often for analysis of high MW 

biomolecules (i.e. peptides and proteins), recent studies have been focused more on polymer 

characterization and heavy fossil fuels. Finally, FDI is used for the analysis of a variety of non-volatile 

analytes that are difficult to ionize by other sources. With this ionization technique, a wide range of 

compound classes, such as paraffins, cycloparaffins, aromatic hydrocarbons, and non-polar sulfur can be 

detected, which were not possible to detect by ESI or MALDI. 

Although the petroleum era may gradually come to its end during the current century, the analytical methods 

have proven tremendous progress to characterize even the most complex residual oils during the past years. 

Nevertheless, crude oils or their fractions with a high viscosity, high melting point, and lower volatility 

remain difficult to analyze. Researchers continue looking towards new advanced analytical and 

computational techniques to assist them in these developments because process-related upsets are typically 

related to small amounts of impurities that are present or accidentally added to those fractions. This will 

become even more important now that feeds derived from plastic waste will be more and more considered 

that contain typically a large amount of impurities. Because of environmental concerns, the detailed analysis 

of hetero-atomic impurities in petroleum fraction have become more important than ever. It is expected that 

research on diagnostics the coming years will focus to characterize those impurities in even more detail 

especially when we try to move to a more circular economy. 

In the coming years, the development of online sample preparation steps in multidimensional systems is 

expected to make a breakthrough, as it may enable the speciation and quantification of individual elemental 

compounds. Also, new solutions might be capable of promoting isomer separations. Next to that, future 

investigations should focus on the elucidation of the molecular properties that affect the stability of 

petroleum products. For example, insights into the role of the dominant molecular structures in the 

aggregation of asphaltenes. Moreover, further studies could be oriented to more automated experimental 

design, especially for the hyphenation of additional chromatographic separations, such as gas or liquid 

chromatography. 

Diagnostics for analysis of petroleum products, in particular MS, have made tremendous progress for several 

decades. The importance of the detailed analysis of petroleum fractions remains, and has shifted to analysis 

of the heavier fractions such as asphaltenes. The comprehensive knowledge on MS will be extensively 

applied during the next decade to characterize alternative resources. The last couple of years, advanced MS 
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techniques have been adapted with application to several kinds of biomass (e.g. lignocellulose and algae). 

It is expected that this trend will continue and find new applications to alternative renewable resources such 

as plastic waste. 

Also the advantages of using MS in kinetic studies and in the analysis of downstream product compositions 

are being more and more embraced. Even though MS is typically used for qualitative purposes rather than 

for quantification of product compositions, it can have significant advantages compared to conventional 

methods for detection of reactive intermediates and in time-resolved experimentation. In those cases, the 

use of GC or LC preceding the MS is not possible. To allow detection of a broad range of products, 

fragmentation needs to be minimized and soft ionization techniques are required. The last few years, 

tremendous progress has been made in this area, and dedicated experimental apparatus are built. Some of 

those are linked to a synchrotron source for ionization. It is expected that those techniques will further 

develop the coming years and lead to new breakthroughs in kinetic studies. One problem that remains and 

should be tackled is the reduced accuracy in product quantification using PI-MS compared to conventional 

methods such as GC-FID. In this aspect, there is a need for better predictive tools for species cross-sections, 

e.g. for reactive intermediates and less common molecules. 
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Nomenclature 

(HP)TLC (High-performance) Thin layer chromatography 

(LI)FDI (Liquid injection) Field desorption ionization 
13C NMR Carbon-13 Nuclear magnetic resonance 

1D GC-MS One-dimensional gas chromatography mass spectrometry 
1H NMR Proton Nuclear magnetic resonance 

ACN Acetonitrile 

AI Ambient ionization 

ALCO Arabian light crude oil 

amu Atomic mass unit 

AP Atmospheric pressure 

APCI Atmospheric pressure chemical ionization 

APGC Atmospheric Pressure Gas Chromatography 

APLI Atmospheric pressure laser ionization 

APLI Atmospheric pressure laser ionization 

APPI Atmospheric pressure photoionization 

APSPLI Atmospheric pressure single-photon ionization 

ASAP Atmospheric Solid Analysis Probe 

ASTM American Society for Testing and Materials 

BPC Base peak chromatogram 

CE Capillary electrophoresis 
CHNSO Carbon, hydrogen, nitrogen, sulfur, oxygen elemental  

CI Chemical ionization 

CID Collision‐induced dissociation 

Da Dalton 

DAD Diode array detection 

DAO De-asphalted oil 

DART Direct Analysis in Real Time 

DBE Double bond equivalent 

DESI Desorption Electrospray Ionization 

DIP Direct Inlet Probe 

DMSO Dimethyl sulfoxide 

EASI Easy Ambient sonic-Spray Ionization 

EI Electron ionization 

ESI Electrospray ionization 

ET Electron transfer 

ETD Electron transfer dissociation 

FAB Fast‐atom bombardment 

FBP Final boiling point 

FFT Fast Fourier transform 

FID Flame ionization detection 

FPD Flame Photometric Detection 

FT-ICR-MS Fourier transform ion cyclotron resonance mass spectrometry 

FTIR Fourier transform infrared 

GC Gas chromatography 

GC × GC Two-dimensional gas chromatography 

GC-FIMS Gas chromatography -field ionization mass spectrometry 

GC-GC Heart-cutting gas chromatography 
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GPC Gel permeation chromatography 

GP-MSE Gas Purge Microsyringe Extraction 

HFO Heavy fuel oil 

HPLC High Pressure liquid chromatography 

HRMS High resolution mass spectrometry 

HTGC High temperature gas chromatography 

IBP Initial boiling point 

ICP-MS Inductively coupled plasma - Mass spectrometry 

IL Ionic liquid 

IMS Ion mobility spectrometry 

IRMS Isotope ratio mass spectrometry 

KMD Kendrick mass defect 

LA Laser ablation 

LC Liquid chromatography 

LC-MS Liquid chromatography - Mass spectrometry 

LDI Laser desorption ionization 

LIAD Laser Induced Acoustic Ionization 

LSI Laser spray ionization 

LSIMS Liquid secondary ion mass spectrometry 

m/z mass-to-charge ratio 

MAI Matrix-assisted ionization 

MALDI Matrix-assisted laser desorption ionization 

MRM Multiple reaction monitoring 

MS Mass spectrometry 

MS-MS Tandem Mass spectrometry 

NCD Nitrogen chemiluminescence detector 

NMR Nuclear magnetic resonance 

PAHs Polycyclic aromatic hydrocarbons 

PCNs Polychlorinated naphthalenes 

PINA Paraffins, isoparaffins, naphthenes, and aromatics 

PIONA Paraffins, isoparaffins, olefins, naphthenes, and aromatics 

PI-TOF-MS Photoionization time-of-flight mass spectrometer 

PNA Paraffins, naphthenes, and aromatics 

PONA Paraffins, olefins, naphthenes, and aromatics 

ppb Parts per billion 

Py-GC/MS Pyrolysis gas chromatography coupled to mass spectrometry 

Ref. Reference 

REMPI Resonance-enhanced multiphoton ionization 

RF Radio frequency 

SAI Solvent‐assisted ionization 

SARA Saturates-Aromatics-Resins-Asphaltenes 

SCD Sulfur chemiluminescence detector 

SEC Size‐exclusion chromatography 

SF Sector field 

SFC Supercritical fluid chromatography 

SOA Secondary organic aerosols 

SPI Single photon ionization 

SVUV-PIMS Synchrotron vacuum ultra-violet photoionization mass spectrometry 

TAS Tri-aromatic steroid 
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TG Thermogravimetry 

TGA Thermal gravimetric analysis  

TIC Total ion chromatogram 

TOF-MS Time of flight mass spectrometer 

TRMS Time-resolved mass spectrometry 

UCM Unresolved complex mixture 

UV-VIS Ultraviolet-visible spectroscopy 

VGO Vacuum gas oil 

VOCs Volatile organic compounds 

XRF X-ray fluorescence 
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