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A Precise and Reliable
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Abstract. The multivariable chain rule is often challenging to students because it is usually presented
with ambiguities and other defects that hamper systematic and reliable application. A very
simple formulation combines the derivation operators for functions and for expressions in
a manner not found elsewhere due to common confusion between them. Some issues are
rooted more deeply than others and are discussed in a broader perspective, starting with
the function concept. The approach is illustrated using various applications including the
transport equation, partial derivatives of a definite integral, and the distortionless (but
not lossless) transmission line. This note is suitable for a lecture in any first-year course
covering partial derivatives, as a complement to the other course material.
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1. Introduction and Teaching Hints. Partial derivatives and differential equa-
tions are ubiquitous in applied mathematics. Conventions have changed little in over
a century [7], yet suffer from sloppy practices. This leads to ambiguous forms of the
chain rule that make its use unreliable in general and puzzling to students in particu-
lar. We present a simple solution in a wide context, assuming only basic knowledge of
ordinary derivatives and an inkling (perhaps just a definition) of partial derivatives.

The material is suitable for a lecture in a first-year calculus course, complementing
the textbooks used. Section 2 paves the path between both sources. Section 3 (on
functions) gives a brief review of fundamentals that are assumed known, plus some
addenda and warnings of pitfalls. Section 4 (on derivatives) recalls the often-forgotten
but crucial distinction between operators for functions and for expressions. These
sections are mainly reminders and can be presented selectively in about one third of
a lecture.

Section 5 extends dimensional analysis (a blind spot in mathematics) to differen-
tial equations. Section 6 builds on the preceding principles to develop various reliable
forms of the multivariable chain rule. Application examples in sections 7, 8, and 9 also
show how to handle further examples provided by the instructor and the textbooks.

2. Motivation and Rationale. Typically the chain rule is stated as follows [6]:
when u = u(x, y), x = x(s, t), and y = y(s, t) (known functions of s and t),

(a)
\partial u

\partial s
=
\partial u

\partial x

\partial x

\partial s
+
\partial u

\partial y

\partial y

\partial s
and (b)

\partial u

\partial t
=
\partial u

\partial x

\partial x

\partial t
+
\partial u

\partial y

\partial y

\partial t
.(2.1)
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A PRECISE AND RELIABLE MULTIVARIABLE CHAIN RULE 855

We usually replace expressions of the form \partial u
\partial x by the simpler \partial xu, as in [11] . This

avoids unnecessary clutter and the wrong idea that \partial x in \partial u
\partial x

\partial x
\partial s might cancel out.

Common forms of the chain rule all resemble (2.1), including its flaws.
At an early stage, students learn the distinction between a function f and its value

f(x) at some point x. Apparently this distinction goes out the window for partial
derivatives. An example is writing u = u(x, y): by the rules for equality [8], this means
that u and u(x, y) are interchangeable, which causes unsoundness. It also forebodes
that different occurrences of u in a formula will require different interpretations.

Let, for instance, u = 1
2ax

2 + bxy + 1
2cy

2, where x = ks + lt and y = ms + nt.
Equation (2.1) requires the reader to figure out whether the partial derivatives are
taken before or after the substitutions for x and y. The intended interpretation is as
follows:

Term Intended interpretation
\partial su \partial s(

1
2a(ks+ lt)2 + b(ks+ lt)(ms+ nt) + 1

2c(ms+ nt)2)
\partial xu \partial sx (a(ks+ lt) + b(ms+ nt)) \partial s(ks+ lt)
\partial yu \partial sy (b(ks+ lt) + c(ms+ nt)) \partial s(ms+ nt)

Moreover, the use of new variables s and t has hidden extra ambiguities that emerge
when reusing variables, for instance, substituting mx+ ny for y and leaving x alone.
Then (2.1a) becomes \partial xu = \partial xu \partial xx+\partial yu \partial xy, which is trivially correct since \partial xx = 1
and \partial xy = 0, but uninformative and not what is intended. The intention is as follows:

Term Intended interpretation
\partial xu \partial x(

1
2ax

2 + bx(mx+ ny) + 1
2c(mx+ ny)2)

\partial xu \partial xx (ax+ b(mx+ ny)) \partial xx
\partial yu \partial xy (bx+ c(mx+ ny)) \partial x(mx+ ny)

Here \partial xu stands for two different expressions, in addition to \partial xu = ax + by using
(2.1a), all with different tacit substitutions. No wonder the chain rule is challenging.
Students looking for clarification on the web will only find utter chaos.

Our general rationale is that, using proper symbolism, the normal rules (sub-
stitution, arithmetic) must yield correct results: anything less may ``undermine the
students' confidence in mathematics"" [9]. One might add: ``or in themselves,"" which
is worse.

Making rules reliable does not require any more formality or effort than basic good
practice and the avoidance of sloppiness. In particular, making the chain rule reliable
requires distinguishing between derivation operators for functions and for expressions.
Most definitions in the literature respect this distinction but lapses occur later, such as

writing \partial f
\partial x for a function f , which is meaningless. In fact, \partial f(x)

\partial x = f \prime (x) and \partial f(y)
\partial x = 0.

Very few sources are as careful as [5], from which we quote some definitions later.
Evidently the concept of function is central. Potentially confusing for students

are the discrepancies between calculus texts and some other texts in use today. This
mostly affects function composition, which is so essential for the chain rule. Because
of these ramifications, we start from a wider perspective and gradually proceed to
derivatives and the chain rule, covering along the way relevant aspects not generally
mentioned in textbooks. For easy reference, selected citations include page numbers.

3. Functions, Composition, and Categorization. This section clears up the
discrepancies mentioned above. Some parts may be rather terse, but every item is
illustrated later. Instructors can also insert material from this section ``just in time""
as needed.
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856 RAYMOND BOUTE

The definition of a function common in many areas including set theory [4, p. 10],
calculus [1, p. 53], [5, p. 4], and discrete mathematics [14, p. 167] is given as follows.

A function f is a functional set of (ordered) pairs x, y. Functional means that
no two pairs have the same first member. Hence if (x, y) \in f , one can write y
unambiguously as f(x) or fx. Parentheses are used only for emphasis (a subjective
factor) or to overrule precedence conventions. Variants are fx, x

f , and so on, chosen
by convention. The set of all first members of the pairs in f is the domain of f ,
written \scrD f .

A direct consequence is the equality theorem [1, p. 54] for functions: f = g iff
(shorthand for if and only if) (a) \scrD f = \scrD g and (b) f(x) = g(x) for each x in \scrD f .

This suggests an equivalent definition not based on pairs: a function f is an object
fully specified by (a) a domain \scrD f , which is a set, and (b) a unique value f(x) for
each x in \scrD f . The range \scrR f of f is then the set of all f(x) for x in \scrD f . Tuples can
now be defined as functions: if x = a, b, then \scrD x = \{ 0, 1\} with x0 = a and x1 = b.

The composition g\circ f of any functions f and g is specified as follows [1, p. 140], [5,
p. 11]: (a) the domain \scrD (g \circ f) is the set of all x in \scrD f such that fx is in \scrD g, and
(b) (g\circ f)x = g(fx) for each x in \scrD (g\circ f). A crucial property is h\circ (g\circ f) = (h\circ g)\circ f .
The identity function idS is defined for any set S by (a) \scrD idS = S and (b) idS x = x.

Using composition and identity, the restriction f \rceil S of a function f to a set S is
defined by f \rceil S = f \circ idS and the subfunction relation by g \subseteq f iff g = f \rceil \scrD g. For
n-fold composition, f0 = id\scrD f and fn+1 = f \circ fn. This will be important in section 4.

Functions can be characterized or categorized according to their domain or range.
A function from X (in)to Y is a function f such that \scrD f = X and \scrR f \subseteq Y [4,

p. 10], [1, p. 578], [14, p. 169]. The set of all such functions is written Y X or X \rightarrow Y ,
and the common notation to introduce (or declare) a function of this type is f : X \rightarrow Y .

A partial function from X to Y is a function f such that \scrD f \subseteq X and \scrR f \subseteq Y .
The set of all such functions is written X \rightarrow Y , as in f : X \rightarrow Y . Any function on a
real (or complex) region is partial on \BbbR (or \BbbC ). Simply writing f : \BbbR n \rightarrow \BbbR m obviates
ad hoc notation mixtures such as ``f : X \subseteq \BbbR n \rightarrow \BbbR m"" found in some textbooks.

By common convention, parentheses are optional in expressions of the form (fx)y
and X \rightarrow (Y \rightarrow Z). Hence they are mandatory in f(g x) and in (X \rightarrow Y ) \rightarrow Z.

To avoid confusion, students should be warned that some textbooks from areas
outside calculus define a function f from X to Y as a functional subset of X\times Y with
domain X (so the function equality theorem holds) and casually call Y the codomain
of f . But if Y \subsetneq Z, then f is also from X to Z, so the codomain of f is ill-defined.
Some texts even say that f : X \rightarrow Y and g : X \rightarrow Z can be equal only if Y = Z,
violating the equality theorem. Self-contradicting definitions should not cause self-
doubt in students.

In fact, as explained in [4], a codomain refers to the set Y in a triplet \langle f,X, Y \rangle ,
which reflects a different function concept altogether. In calculus, codomains cause
problems as noted in [15]. Also, for functions with codomains, g \circ f is defined only
if the domain of g equals the codomain of f , which would be severely limiting in
calculus. It is good for instructors to bear in mind that definitional choices must be
justified [13].

4. Functions versus Expressions in Derivative Formulas. A derivative formula
can be written in terms of either functions or numbers [1, p. 164]. This is rarely
emphasized in textbooks, yet has important ramifications far beyond the chain rule.

For brevity, expressions such as f , g, g \circ f , Df , which always stand for func-
tions, will just be called functions. Expressions such as x, y, f(x2), x+ y may stand
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A PRECISE AND RELIABLE MULTIVARIABLE CHAIN RULE 857

for numbers or vectors or sometimes for themselves and will just be called expres-
sions.

We first apply this to ordinary derivatives, but since these are not our main topic
the discussion is kept short. Consider the following definition from [5, p. 127].

Definition. Let f : \BbbR \rightarrow \BbbR and let x be an interior point of \scrD f . Then f has

a (first) derivative at x iff limh\rightarrow 0
f(x+h) - f(x)

h exists and is finite. The value of the

limit is then called the (first) derivative of f at x and is denoted by f \prime (x) or d
dx (f(x)).

Further, the function f \prime whose domain is the set of interior points x of \scrD f at which
f has a derivative and whose value at x is f \prime (x) is called the (first) derivative of f .

Analyzing the expressions f \prime (x) and d
dx (f(x)) elucidates the style difference.

(i) As defined, the operator \prime maps a function f to a function f \prime . An equivalent
form for f \prime is Df [1, sect. 4.8], [5, p. 128]. This amounts to specifying a derivation
function D : (\BbbR \rightarrow \BbbR ) \rightarrow (\BbbR \rightarrow \BbbR ) such that, for any f : \BbbR \rightarrow \BbbR , Df is also a function
in \BbbR \rightarrow \BbbR with domain and values as stated in the definition. Recall that Dfx stands
for (Df)(x), not for D(f(x)). By composition, the nth derivative of f is Dnf .

(ii) As defined, the operator d
dx maps an expression f(x) to an expression d

dx (f(x))

such that d
dx (f(x)) = Dfx. For instance, letting f(x) = x2 yields d

dxx
2 = Dfx = 2x.

Since the parentheses in ``f(x)"" serve no purpose and can even be irksome, as in
``g(f(x)),"" we gradually omit them. In any case, we can ``disassemble"" d

dx by defining

d(f(x)) = d(fx) = (Df)x \cdot dx for all x in the domain of Df .(4.1)

As an aside, by the standards [16], a product of numbers may be written ab, a b, a \cdot b,
or a \times b. The dot is often convenient for emphasis, to elucidate the structure of an
expression.

Equation (4.1) allows many interpretations [2], infinitesimal and finite. One finite
interpretation is that dx and dy are (new) variables and (4.1) describes the line tangent
to f at x in a coordinate system with origin at (x, y), as in Figure 1(i).
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(i) The d-operator (ii) The chain rule with the d-operator

Fig. 1 Geometric interpretations.

Note that one can properly write d
dx (f(x)) or d

dx (fx) or d(fx)
dx . By contrast, df

dx

is meaningless since d, just like d
dx in [5], is defined only for (number) expressions. A

function f is not even associated with any particular variable name such as x. For

instance, d sin
dx is nonsense, whereas d(sin x)

dx = cosx and d(sin y)
dy = cos y are correct.

Equation (4.1) allows for fluently switching between styles during calculations and
using the normal rules for arithmetic, as shown next for the chain rule.

(i) In terms of numbers, the chain rule can be formulated as

(g \circ f)\prime x = g\prime (fx) \cdot f \prime x, also written D(g \circ f)x = Dg (fx) \cdot Dfx,(4.2)

for all x in \scrD f such that both g\prime (fx) and f \prime (x) exist [1, p. 176], [5, p. 134].
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858 RAYMOND BOUTE

(ii) In terms of functions, most textbooks [1, p. 175] express the chain rule as
(g \circ f)\prime = (g\prime \circ f) \cdot f \prime . This does not correctly capture the existence conditions. A
counterexample is \sanss \sansq \sansa \circ \sansa \sansb \sanss , where \sansa \sansb \sanss : \BbbR \rightarrow \BbbR \geq 0 with \sansa \sansb \sanss x = | x| and \sanss \sansq \sansa : \BbbR \rightarrow \BbbR \geq 0

with \sanss \sansq \sansa x = x2. For x = 0, clearly (\sanss \sansq \sansa \circ \sansa \sansb \sanss )\prime x is defined but \sansa \sansb \sanss \prime x is not. The
correct expression is

(g \circ f)\prime \supseteq (g\prime \circ f) \cdot f \prime , also written D(g \circ f) \supseteq (D g \circ f) \cdot Df ,(4.3)

where a function product h\cdot k is specified by \scrD (h\cdot k) = \scrD h\cap \scrD k and (h\cdot k)x = hx\cdot k x.
(iii) Although formulations with functions only are most elegant, in practice one

often calculates with expressions and variables, so substitution [8] becomes central.
Letting z := g(y) and y := f(x) yields z = g(y) = g(fx). Using (4.1), dz =

d(g y) = g\prime y \cdot dy = g\prime (fx) \cdot d(fx) = g\prime (fx) \cdot f \prime x \cdot dx and hence the familiar expression

dz

dx
=

dz

dy
\cdot dy
dx

.(4.4)

This is consistent with (4.2). Figure 1(ii) illustrates the geometry.
This digression into ordinary derivatives was meant to illustrate three styles:

(i) numbers, (ii) functions, and (iii) number expressions. In practice, all have their
uses.

One last word about the improper form df
dx , which gives students the impres-

sion that, in mathematics, anything goes. In physics and engineering this form is
less widespread, perhaps because differential equations are usually stated in terms of
expressions for physical quantities. This brings us to the following crucial topic.

5. Dimensional Analysis and Derivatives. Dimensional analysis has a direct
impact on literally ``everything"" related to physical quantities and can be extended
to ``pure"" real or complex numbers and vectors. It is a powerful technique for sanity
checking in symbolic calculations, just like the proof by nine for numeric calculations.

In brief, the proof by nine checks integer multiplication M \cdot m = p by verifying
M9 \cdot m9 = p9. Here n9 stands for n modulo 9 and is calculated mentally by adding
decimal digits, as in 3749 = (3+7+4)9 = (1+4)9 = 5 (shortcuts are evident). Division
of D by d yielding quotient q and remainder r is checked using D9 = d9 \cdot q9 + r9.

For dimensional analysis, a complete theory is presented in [10], but here we
use an elementary approach. By standard convention [16], the value of a quantity
is written as a numerical value followed by one or more symbols expressing a unit.
Examples are \ell = 30mm, v = 8m/s, and E = 3V/m. The dimension of a quantity is
expressed by symbols such as \sansM (mass), \sansL (length), \sansT (time), \sansI (electric current), and
symbolic products of powers, such as \sansL \sansT  - 1 for velocity. The dimension of a quantity q
is written dim q, as in dim v = \sansV = \sansL \sansT  - 1 and dimE = \sansU \sansL  - 1, where \sansU := \sansM \sansL 2\sansT  - 3\sansI  - 1.

For instance, in the usual equation for the mass-damper-spring system

m

\biggl( 
d

dt

\biggr) 2

x+ b
d

dt
x+ kx = F ,(5.1)

dimm = \sansM , dimx = \sansL , and dim t = \sansT , and hence dim(m( d
dt )

2x) = \sansM \sansL \sansT  - 2 = dimF =

\sansF . For consistency, dim(bdxdt ) = dim(kx) = \sansF , hence dim b = \sansF \sansL  - 1\sansT and dim k = \sansF \sansL  - 1.
This information can be used for sanity checking in all calculations, starting with
solving the characteristic equation and ending with verifying that all elements in the
solution (amplitude, frequency, decay exponent) have the right dimension (exercise).
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Because of the advantages, it is recommended [16] that formulas be written as
equations between quantities rather than between numerical values. In a coherent
unit system, the equations look identical, which may explain (but not justify!) why
equations from physics are often treated a priori as numerical in mathematics courses.

Whatever the cause, dimensional analysis is seriously underexploited in mathe-
matics. Arguably the technique should be introduced at an early stage in high school
algebra to assist with formula manipulation. This can be done gradually and in pass-
ing, for instance, in quadratic equations and by writing the equation for a circle as
x2 + y2 = r2 rather than x2 + y2 = 1. If it is true that, around the time of Vi\`ete,
quantities were more common in mathematics than pure numbers, something has been
lost.

For derivatives, the expression style directly supports dimensional analysis, as
shown for (5.1). Even so, we have found it convenient to extend the standard notation
for dimensions to types for quantities whose values may be real or complex numbers
or vectors. This is done by simple juxtaposition, so 8m/s \in \BbbR \sansL \sansT  - 1.

In this manner, functions between dimensioned quantities fall within the frame-
work of section 3. An electric field is then a function F : (\BbbR \sansL )3\times \BbbR \sansT \rightarrow (\BbbR \sansU \sansL  - 1)3 or,
with ``genuine"" vectors (not their component representation), F : \BbbV \sansL \times \BbbR \sansT \rightarrow \BbbV \sansU \sansL  - 1.
Given f : \BbbR D \rightarrow \BbbR D\prime , where D and D\prime are any dimensions, then the derivative Df is
a function in \BbbR D \rightarrow \BbbR D\prime D - 1, in view of the quotient used for defining (Df)x.

The use of three different D's (derivative D, dimension D, domain \scrD ) is unfortu-
nate, but an alphabet of 26 letters is, like symbols in general, a scarce resource.

Anyway, D is now a polymorphic function since its domain consists of functions of
various types depending on the dimensions. There exists a general-purpose ``function
toolkit"" to properly handle this symbolically, but that is beyond the topic of this note.

Therefore the multivariable chain rule is explained for pure numbers, and its
extension to dimensioned quantities in each case is immediate, as illustrated later.

6. Reliable Formulations of the Multivariable Chain Rule. In what follows, let
f : \BbbR n \rightarrow \BbbR . A running example is \sansf : \BbbR 2 \rightarrow \BbbR with \sansf (x, y) = 1

2ax
2 + bxy + 1

2cy
2. We

start from the definition in [5, p. 351], where x stands for any n-tuple in \BbbR n and e
for a natural basis for \BbbR n, for instance, if n = 3, then e = (1, 0, 0), (0, 1, 0), (0, 0, 1).
Tuple arithmetic is elementwise: (x + tej)i = xi + teji. We remark that in [5], xi is
written xi, which demonstrates that using a boldface x is a waste of fonts (a scarce
resource), but we leave it unchanged momentarily for easy comparison.

Definition [5, p. 351]. Let f : \BbbR n \rightarrow \BbbR . Then f has a partial derivative at x with
respect to the jth coordinate iff 0 is an interior point of the set \{ t : \BbbR | x+ tej \in \scrD f\} 
and limt\rightarrow 0

f(\bfx +t\bfe j) - f(\bfx )
t exists. This value is written Djfx or \partial xj

(f(x)).
As before, this introduces two operators: Dj for functions and \partial xj for expressions.
(i) Dj maps every function f : \BbbR n \rightarrow \BbbR to the function Djf whose domain is the

set of all x in \scrD f where f has partial derivative with respect to the jth coordinate,
and Djf x, which stands for (Djf)x, is then the value of the stated limit. For instance,
D0\sansf and D1\sansf are functions from \BbbR 2 to \BbbR such that D0\sansf (x, y) = ax+by and D1\sansf (x, y) =
bx+ cy (here x is x, y). In a general context, indexing from 0 has many advantages,
but since it does not matter in this note we use a ``neutral"" index set In which can
be \{ i : \BbbZ | 0 \leq i < n\} or \{ i : \BbbZ | 0 < i \leq n\} as the reader prefers.

(ii) \partial xj
maps the expression f(x) to \partial xj

(f(x)), where \partial xj
(f(x)) = (Djf)x. For

instance, \partial x(\sansf (x, y)) = ax+ by and \partial y(\sansf (x, y)) = bx+ cy.
The principle for designing a precise and reliable multivariable chain rule lies in

expressing the interdependence between the variables completely yet succinctly.
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As before, we consider various styles, initially using f : \BbbR 2 \rightarrow \BbbR , g : \BbbR 3 \rightarrow \BbbR ,
and h : \BbbR 3 \rightarrow \BbbR together with u := f(x, y), x := g(r, s, t), and y = h(r, s, t) for
illustration. We want to make explicit all interdependencies in equations of the form
\partial u
\partial v = \partial u

\partial x
\partial x
\partial v + \partial u

\partial y
\partial y
\partial v or \partial vu = \partial xu\partial vx + \partial yu\partial vy (without ``false ratios""). In these

equations, v may be r, s, or t, and for other choices \partial vu = \partial vx = \partial vy = 0.
(i) For expressions, we use a convention from [8] whereby e[vd denotes the result of

substituting the expression d for every occurrence of the variable v in the expression e.
Similarly, e[v,wd,q for tuples. Note that (x/y)[x,yy,x = y/x, but (x/y)[xy [

y
x = (y/y)[yx = x/x.

Now \partial vu = \partial xu\partial vx+ \partial yu\partial vy can be rewritten with all terms disambiguated:

\partial vf(g(r, s, t), h(r, s, t)) = (\partial xf(x, y))[
x,y
g(r,s,t),h(r,s,t)\partial vg(r, s, t)(6.1)

+ (\partial yf(x, y))[
x,y
g(r,s,t),h(r,s,t)\partial vh(r, s, t) .

This is complete but not succinct. The solution is a balanced use of \partial v and Dj .
We introduce the parameter list p := g(r, s, t), h(r, s, t), so \partial vf(g(r, s, t), h(r, s, t)) be-
comes \partial v(fp). Similarly \partial vg(r, s, t) = \partial vp0 and \partial vh(r, s, t) = \partial vp1. More interestingly,
(\partial xf(x, y))[

x,y
g(r,s,t),h(r,s,t)= (D0f)p and (\partial yf(x, y))[

x,y
g(r,s,t),h(r,s,t)= (D1f)p, which effec-

tively eliminates the troublesome variables x and y. Equation (6.1) then becomes

\partial v(fp) = D0fp \cdot \partial vp0 +D1fp \cdot \partial vp1 .(6.2)

Thus the general form for f : \BbbR n \rightarrow \BbbR and any expression p with values in \BbbR n is

\partial v(fp) =
\sum 
j:In

Djfp \cdot \partial v pj or, mnemonically, (fp)v =
\sum 
j

fjp \cdot (pj)v .(6.3)

Depending on the reader's preference,
\sum 

j:In
can stand for either

\sum n - 1
j=0 or

\sum n
j=1.

Equation (6.3) contains no number variables other than those appearing in p and
hence no ambiguities. It gives students a clear, safe rule that eliminates all possible
confusion, second guessing, and surprises. Moreover, since the intermediary variables
(x and y in the example) do not appear in the formula, even reusing them is evident.
For instance, the running example \sansf with p := (x,mx+ ny) and v := x yields

\partial x(\sansf p) = \partial x(\sansf (x,mx+ ny)) = \partial x(
1
2ax

2 + bx(mx+ ny) + 1
2c(mx+ ny)2 ,

(D0\sansf )p \cdot \partial v p0 = (D0\sansf )(x,mx+ ny) \cdot 1 = (ax+ b(mx+ ny)) \cdot 1 ,
(D1\sansf )p \cdot \partial v p1 = (D1\sansf )(x,mx+ ny) \cdot m = (bx+ c(mx+ ny)) \cdot m .

(ii) Variants with only functions avoid the issues with variables seen in section 2.
We derive such variants from (6.3), exploiting the unifying power of functions to cover
tuples and matrices and treating all variables (including indices) equally. For any set
S, note that Sn = In \rightarrow S and hence (Sn)m = Im \rightarrow In \rightarrow S (m\times n matrices).

In the configuration with f : \BbbR n \rightarrow \BbbR as in Figure 2(a) we let p := g q, where
g : \BbbR k \rightarrow \BbbR n and q is a list of k variables. The idea is enabling the later removal of q
so that only functions remain, yielding the configuration of Figure 2(b). For v := qi,
we can prepare the subexpressions in \partial v(fp) =

\sum 
j:In

Djfp \cdot \partial v pj for q-removal using

\bullet \partial v(fp) = \partial qi(f(g q)) = \partial qi((f \circ g) q) = Di(f \circ g) q,
\bullet Djf p = Djf (g q) = (Djf \circ g) q,
\bullet \partial vpj = \partial qi(g q)j = \partial qi(g

\sansT 
j q) = (Di g

\sansT 
j ) q, where g

\sansT 
j is explained next.

The operator \sansT is defined such that, for any sets X, Y , Z and any F : X \rightarrow Y \rightarrow Z,
the transpose F\sansT is in Y \rightarrow X \rightarrow Z and F\sansT y x = Fx y. Hence g \in \BbbR k \rightarrow \BbbR n implies
g\sansT \in (\BbbR k \rightarrow \BbbR )n and (g q)j = (g\sansT )jq. By convention, g\sansT j is shorthand for (g\sansT )j .
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(a) For (6.3) (b) For (6.4) (c) For (6.5)

Fig. 2 Typical configurations for the multivariable chain rule.

Hence Di(f \circ g) q =
\sum 

j:In
(Djf \circ g) q \cdot (Di g

\sansT 
j ) q and, with \cdot extended to functions,

Di(f \circ g) \supseteq 
\sum 

j:In
(Djf \circ g) \cdot Di g

\sansT 
j for all i in Ik.(6.4)

Finally, in the configuration with f : \BbbR n \rightarrow \BbbR m as in Figure 2(c), for each \ell : Im
we have \sansf \sansT \ell \in \BbbR n \rightarrow \BbbR , so Di(f

\sansT 
\ell \circ g) q =

\sum 
j:In

(Djf
\sansT 
\ell \circ g) q \cdot (Di g

\sansT 
j ) q. To prepare all

variables i, \ell , q, j for later removal we specify D such that, for any f : \BbbR n \rightarrow \BbbR m,
we have Df \in \BbbR n \rightarrow (\BbbR n)m with Dfp \ell j = Djf

\sansT 
\ell p and the domain of Df consists of

those p : \BbbR n for which all Djf
\sansT 
\ell p exist. The matrix Dfp is the Jacobian for f at p.

After proving that f\sansT \ell \circ g = (f \circ g)\sansT \ell and (Djf
\sansT 
\ell \circ g) q = (Df \circ g) q \ell j (exercises),

we find D(f \circ g) q \ell i =
\sum 

j:In
(Df \circ g) q \ell j \cdot D g q j i or, with matrix multiplication,

D(f \circ g) q = (Df \circ g) q \times D g q. Extending \times to functions as we did for \cdot yields

D(f \circ g) \supseteq (Df \circ g)\times D g .(6.5)

We take D to be polymorphic in n and m, but also for dimensioned quantities.
The detailed examples that follow illustrate the mechanism of (6.3) and reveal

that it is more than a chain rule, but is also quite versatile for changing variables.
A useful technique is the following. If p is a tuple of variables, \partial pj

(fp) = (Djf)p
allows decoupling the argument p in fp from the variable pj in \partial pj

. By pushing out
p in every term of an equation, all these terms take the form (Djf)p and p can be
uniformly replaced throughout the equation by any other tuple of expressions.

7. A Simple Example: Solving the Transport Equation. The transport equa-
tion [18, p. 20] is the simplest nontrivial example illustrating basic calculation tech-
niques. Intuitively, it simply describes the observation, in one-dimensional space and
in time, of an immutable one-dimensional ``shape"" moving at constant speed c.

Some students may benefit from Tisdell's YouTube lecture about this topic via
the link in [18, p. 132]. Looking up the principles of slit photography is also edifying.

The transport equation for a quantity u = f(x, t) (not u = u(x, t)) can be written

c \partial xu+ \partial tu = g(x, t) with boundary condition f(x, 0) = h(x) ,(7.1)

where c is a velocity independent of x and t, whereas g and h are given functions.
The term ``quantity"" recalls that all expressions are dimensioned. In (7.1), dimu =

U (application-dependent), dimx = \sansL , dim t = \sansT , dim c = \sansL \sansT  - 1, and, formally,
dim \partial x = \sansL  - 1 and dim \partial t = \sansT  - 1. The functions can be declared as f : \BbbR \sansL \times \BbbR \sansT \rightarrow \BbbR U,
g : \BbbR \sansL \times \BbbR \sansT \rightarrow \BbbR U\sansT  - 1, and h : \BbbR \sansL \rightarrow \BbbR U.

Using \partial pj (fp) = (Djf)p with p = (x, t) and fp = u, (7.1) becomes

c(D0f)(x, t) + (D1f)(x, t) = g(x, t)

for any x, t in the domain of both D0f and D1f (normally such qualifications are
tacitly understood). Hence, for any p,

c(D0f)p+ (D1f)p = g p .(7.2)
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If p = (x+ ct, t), rule (6.3) yields \partial t(fp) = c(D0f)p+ (D1f)p and (7.2) becomes

\partial t(fp) = g p .

The optional parentheses in (Djf)p were left in place to illustrate how p was factored
out of \partial t(fp), but henceforth we will often omit them.

Expanding p and integrating both sides with respect to t (in any order) yields

f(x+ cs, s)| s=t
s=0 = f(x+ ct, t) - f(x, 0) =

\int t

0

g(x+ cs, s) ds .

Since f(x, 0) = h(x), substituting x - ct for x yields the solution to (7.1):

u = f(x, t) = h(x - ct) +

\int t

0

g(x+ c(s - t), s) ds .(7.3)

To verify that (7.3) is indeed a solution for (7.1) one can use the following result.

8. Partial Derivatives of a Definite Integral. In view of the polymorphism ex-
plained earlier, we omit dimensions here. Consider

f(x, t) =

\int b(t)

a(t)

g(s, t, x) ds ,(8.1)

where g : \BbbR 3 \rightarrow \BbbR , a : \BbbR \rightarrow \BbbR , and b : \BbbR \rightarrow \BbbR are known functions.
This example represents a fairly general form where the integrand and the inte-

gration boundaries depend on other variables.
Letting F (r, t, x) =

\int r

0
g(s, t, x) ds, clearly f(x, t) = F (b(t), t, x)  - F (a(t), t, x).

The interesting derivative is \partial t(f(x, t)). Equation (6.3) yields (since \partial t x = 0)

\partial t(F (a(t), t, x)) = (D0F )(a(t), t, x) \cdot \partial t(a(t)) + (D1F )(a(t), t, x) \cdot \partial t t
= (D0F )(a(t), t, x) \cdot D a t+ (D1F )(a(t), t, x)

and similarly for \partial t(F (b(t), t, x)). From F (r, t, x) =
\int r

0
g(s, t, x) ds it follows that

(D0F )(r, t, x) = g(r, t, x) and (D1F )(r, t, x) =
\int r

0
\partial t(g(s, t, x)) ds. The result, some-

times called Leibniz's rule [17, sect. 1.5], is

\partial t

\Biggl( \int b(t)

a(t)

g(s, t, x) ds

\Biggr) 
= g(b(t), t, x) \cdot D b t - g(a(t), t, x) \cdot D a t+

\int b(t)

a(t)

\partial t(g(s, t, x)) ds .

9. An Example from Practice: The Distortionless Transmission Line. The
telegrapher's equations for voltage and current in a transmission line [12, p. 50] yield
\partial 2z v(z, t) = LC\partial 2t v(z, t) + (RC + GL)\partial t v(z, t) + GRv(z, t) for the voltage v(z, t) at
position z and time t along a transmission line. Here L, C, R, G are ratios of series
inductance, shunt capacitance, series resistance, and shunt conductance to length.

When calculations get messy, dimensional analysis can help. With dim v = \sansU ,
dim(LC) = \sansT 2\sansL  - 2, dim(RC) = \sansT \sansL  - 2, dim(GR) = \sansL  - 2, and, formally, dim \partial x = \sansL  - 1,
dim \partial t = \sansT  - 1, one can verify that each term in the equation has dimension \sansU \sansL  - 2.

If the Heaviside condition R/L = G/C is satisfied, the equation can be simplified
to \partial 2zv(z, t) = LC(\partial t +R/L)2v(z, t) or, with c = 1/

\surd 
LC and \alpha = R

\sqrt{} 
C/L,

\partial 2zv(z, t) =

\biggl( 
1

c
\partial t + \alpha 

\biggr) 2

v(z, t) .(9.1)

Products of operators stand for composition, so ( 1c\partial t + \alpha )2 = ( 1c\partial t + \alpha ) \circ ( 1c\partial t + \alpha ).
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To solve (9.1), we write it as (\partial z  - 1
c\partial t  - \alpha )(\partial z +

1
c\partial t +\alpha )v(z, t) = 0. Introducing

f(z, t) = (\partial z +
1
c\partial t + \alpha )v(z, t) transforms this into\biggl( 

\partial z  - 
1

c
\partial t  - \alpha 

\biggr) 
(f(z, t)) = 0 or

\biggl( 
D0f  - 1

c
D1f  - \alpha f

\biggr) 
(z, t) = 0 .(9.2)

Unlike the leftmost form, the rightmost form allows substituting any pair for z, t. Let
p = (z, t - z

c ). By (6.3), \partial z(fp) = D0fp - 1
cD1fp, so (9.2) becomes \partial z(fp) - \alpha fp = 0.

The solution (as an ODE in z) is fp = e\alpha z g t (with an arbitrary function g) or
f(z, t - z

c ) = e\alpha z g t. Replacing t by t+ z
c yields f(z, t) = e\alpha z g(t+ z

c ).
The second step is solving

(9.3)

\biggl( 
\partial z +

1

c
\partial t + \alpha 

\biggr) 
v(z, t) = f(z, t) = e\alpha z g

\Bigl( 
t+

z

c

\Bigr) 
or\biggl( 

D0v +
1

c
D1v + \alpha v

\biggr) 
(z, t) = e\alpha zg

\Bigl( 
t+

z

c

\Bigr) 
.

Let p = (z, t+ z
c ). By (6.3), \partial z(vp) = D0v p+

1
cD1v p, so (9.3) becomes \partial z(vp)+\alpha vp =

e\alpha zg(t+ 2z
c ). The solution (as an ODE in z) is

vp = e - \alpha z \varphi t+ e - \alpha z

\int z

0

e2\alpha xg

\biggl( 
t+

2x

c

\biggr) 
dx (with an arbitrary function \varphi ) .

Symmetry suggests
\int z

0
e2\alpha xg(t+ 2x

c )dx = e2\alpha z\psi (t+ 2z
c ) for suitable \psi . By differentia-

tion, e2\alpha zg(t+ 2z
c ) =

2
c e

2\alpha z\psi \prime (t+ 2z
c )+2\alpha e2\alpha z\psi (t+ 2z

c ) and hence g t = 2
c\psi 

\prime t+2\alpha \psi t.
Thus one finds g for given \psi or, conversely, \psi for given g. Finally,

v
\Bigl( 
z, t+

z

c

\Bigr) 
= e - \alpha z\varphi (t) + e\alpha z\psi 

\biggl( 
t+

2z

c

\biggr) 
or, replacing t by t - z

c
,

v(z, t) = e - \alpha z\varphi 
\Bigl( 
t - z

c

\Bigr) 
+ e\alpha z\psi 

\Bigl( 
t+

z

c

\Bigr) 
,

(9.4)

which solves (9.1). For \alpha = 0 this yields d'Alembert's solution [18, p. 40].
Equation (9.4) describes two waves moving in opposite directions with just delay

( - z/c) and attenuation (e - \alpha z), so the line is distortionless [12, p. 80]. This requires
satisfying the Heaviside condition (in practice by inserting coils, since G is small).

10. Conclusion. The stated objective of making the chain rule precise and reli-
able has been met by combining derivation operators for functions and for expressions
in a balanced manner, as in (6.3). Examples demonstrate how this rule facilitates
changing variables without errors and how it conveys structure to the calculations.

Since students may encounter both kinds of operators in various forms in courses,
on the web, and in their later work, learning how to use them properly with clear, safe
calculation rules eliminates confusion and enhances understanding. Also, exploiting
the functional style offers many opportunities [3] in other areas of mathematics.

This note is also an object lesson in the rewards of adhering to good practices.
Much can be said about this, but some thoughts are summarized in Appendix A.

An additional reason for being meticulous is that, for many decades, notational
conventions are increasingly being ``cast in concrete"" through mathematical software.
It would be unfortunate if poor design decisions were perpetuated in this manner.

The teaching suggestions from section 1 can be adapted by an instructor to the
specific scenario for their course and students. If a two-hour lecture is preferable, a
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good place for a break would be between items (i) and (ii) in section 6, since the
conclusion of (i) wraps back around to the issues in section 2 and (ii) initiates the
part with applications, some of which may also require some extra outlining of the
context.

Appendix A. On Teaching Good Mathematical Practices. For (2.1) Humpty
Dumpty might well say, ``Every term means just what I choose it to mean,"" but if
students during an exam invented a formula where, for ``succinctness,"" every term
required its own interpretation, they would be dismissed on the spot. Yet such is the
power of tradition that students are supposed to accept such practices from people in
authority. This double standard is very damaging in education.

Adhering to better practices than in the textbook can be problematic for in-
structors. However, even when some flawed notation is considered ``common,"" it is
in the best interest of the students to provide a better alternative. To prepare for
other conventions and possible flaws, a simple warning suffices: students are bound
to remember.

Acknowledgment. The author wishes to thank the referees and the editors for
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