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Abstract

A full understanding of the non-linear mechanical response of the polymer
is essential for fibre-reinforced polymer composite design because an explicit
definition of constitutive material models for the constituents (fibres, matrix,
and interface) are prerequisite in micromechanical simulations. Unlike ductile
metals, the material behaviour of polymer matrix is characterised by plasticity
theories influenced by a combination of distortional and spherical energy dissipa-
tion. In this respect, an elastoplastic thermodynamic continuum model derivation
is proposed using the paraboloidal yield criterion under isothermal conditions.
A non-iterative scheme is developed for the numerical computation of the plastic
strain increment multiplier. Both associated and non-associated flow rules are in-
vestigated following classical plasticity loading-unloading conditions. It thereby,
evades conventional computationally demanding iterative process by replacing
it with an exact determination of plastic strain increment. This novel approach
highly improves the computational efficiency algorithmically. The real-sized
numerical models are investigated and the comparison between simulated and
experimental results shows the reliability and unprecedented accuracy of the pro-
posed elastoplastic mathematical model.
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Nomenclature

Operators

Δ increment operator
¤ time-rate change operator
> transpose operator
′ deviatoric operator
𝐾 hydrostatic operator
𝑒 elastic part denotation
𝑝 plastic part denotation
𝑡 tensile denotation
𝑐 compressive denotation
𝑡𝑟 predicted or trail state
ℎ𝑜𝑚𝑜𝑔 homogenised state
𝑖𝑛𝑠𝑡 instantaneous

Symbols and Variables

𝜈 Poisson’s ratio
𝜈𝑝 plastic Poisson’s ratio
Ψ Helmholtz’s energy function
𝜙 yield function
𝑔 potential function
𝛼0 pressure-dependent coefficient
𝜺 2nd order strain tensor matrix
𝝈 2nd order stress tensor matrix
C 4th order tangent modulus tensor
𝐸 Young’s elastic modulus
𝜇 shear modulus
𝜅 sulk modulus
ℎ linear hardening modulus
𝛽 stress due to hardening
𝛼 strain-like parameter
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𝜖 𝑝 equivalent plastic strain
𝐼1 1st invariant of the stress tensor
𝜎 equivalent stress
𝜎𝑡 yield stress in tension
𝜎𝑐 yield stress in compression
N projected gradient of flow tensor
𝑛̂ scalar quantity (Frobenius norm) of the projected flow tensor
𝜼 flow normal
Δ𝛾 plastic strain increment
D𝑖𝑛𝑡 reduced internal dissipation
I 2nd identity tensor
I𝑠𝑦𝑚 4th symmetric identity tensor
Ī 4th hydrostatic operator tensor
P 4th projection tensor
𝑉 volume
ℓ𝑒𝑙𝑒𝑚 element length
𝑑𝑡 time increment

Keywords: Continuum mechanics, computational methods, finite element,
flow-rule, paraboloidal yield criterion, pressure-dependent elastoplasticity, poly-
mer matrix

1. Introduction

Many efforts are being made to improve the mechanical performance of
fibre-reinforced polymer composites, and multiscale analysis based on finite
element modelling is nowadays a very popular approach [34]. At the lower scales,
this approach relies on micromechanical models using representative volume
elements (RVE) combined with homogenisation techniques to provide a detailed
expression of the mechanical response. Apart from the application-oriented
designs by means of the optimized usage of fibres, the mechanical behaviour of
polymer matrices is still a key point in the overall composite performance. Due
to the difference in the transverse mechanical responses of fibres and matrix to
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the mechanical loading, the matrix is usually under triaxial stress state inhibiting
its plasticity and strength [18]. Unreinforced resin at microstructural level is
brittle in tension while exhibits considerable plasticity in compression and pure
shear [28]. This demands appropriate plastic models with realistic yield criterion
and robust computational procedure to deal with a highly non-linear material
response accurately and efficiently. So also, the plastic initiation and further
flow are highly sensitive of strain-rate and temperature. This work presents an
efficient and accurate algorithmic scheme to compute the rate and temperature
independent elastoplastic evolution of the polymer matrix without resorting to
computationally expensive iterative processes.

Based on the elastic shear strain energy theory, von Mises plasticity projects a
cylindrical surface in the triaxial principal stress coordinates rendering it suitable
for ductile materials, like metals. Due to the incompressibility at plastic yielding
allowing permanent volumetric deformation as an effect of the equal yield strength
under tension and compression, Du Bois et al. [5] particularly suggests the
preclusion of von Mises plasticity for polymers. In an extensive research on
the several types of plasticity models that have been proposed for the polymers,
Ghorbel [21] emphasises on the importance of the hydrostatic pressure on polymer
plastic yielding. It therefore renders yield models independent of pressure like
von Mises and Tresca inadequate.

It is established that the polymer plasticity depends on the spherical and dis-
tortional strain energies, wherein Mascarenhas et al. [31] recommends to use
conic or parabolic design criteria for polymer yielding. Besides Wronski and
Pick [59] also suggests the yield criteria of conical, paraboloidal or pyramidal
types as the best correlation for tension-compression asymmetry. The spherical
component results from the hydrostatic or pressure-dependent part, while the
distortional component is caused by the deviatoric or octahedral shear part of the
stress state. The phenomonological model to express rate-dependent viscoplas-
ticity developed by Boyce et al. [1, 7] has also been extensively adopted in various
modifications by numerous researchers, like Canal et al. [9], Hara and Shizawa
[24], Johnsen et al. [27], Kriari and Doghri [30], Poulain et al. [39], Van der
Giessen and team [38, 44, 48, 60, 61] and many more. The exponential model
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of shear strength evolution based on the constant molecular chain movement and
entanglement during deformation accurately describes the tension and compres-
sion behaviour accurately but overestimate the shear strength when compared to
experimental findings [21]. It also requires definition of many fitting parameters
for the prediction and fails to determine yield points.

Common standard pressure-dependent yield criteria to describe polymer plas-
ticity are the Drucker-Prager theory used by Du Bois et al. [5], Duncan et al.
[17], Seltzer et al. [45], Pulungan et al. [40] and de Sousa Junior et al. [14]
which is primarily based on soil mechanics and soil plasticity analysis [16]. The
Mohr-Coulomb plasticity yield theory employed by Bowden and Jukes [6], Totry
et al. [51, 52], and Gonzáleza and LLorca [22] is also extensively based on
soil mechanics and has been classically used for modelling the plastic flow of
geomaterials and other cohesive frictional materials, like concrete [13]. The
modified von Mises yield criterion used by Ongchin and Sternstein [36], Donato
and Bianchi[15] and pressure-modified Tresca used by Parks et al. [37] incor-
porating tension-compression asymmetry and pressure stresses are insufficient
to express plasticity in polymeric materials due to their linear functionality like
Drucker-Prager and Mohr-Coulomb. These yield criteria are supported on the
consideration of distinctly larger yield stresses for pure compression than for
pure tension and they project conical yield surface in the triaxial principal stress
coordinates. The paraboloidal yield criterion propounded by Tschoegl [53] rep-
resenting a paraboloid in the triaxial principal stress coordinates system can also
be adopted to describe pressure-dependent plasticity.

These yield criteria meet the requirement for convexity in pure tensile and an
open surface in pure compressive octants since the yielding does not ordinarily
occur under hydrostatic compression at reasonably similar pressures as it occurs
in tension [53]. Besides, the paraboloidal yield surface also avoids angular apex
in the pure tensile octant. The hydrostatic tensile stress in the polymer matrix
combined with strain energy density and paraboloidal yield criterion led to the
initial failure where von Mises criterion was unsuitable was inferred by Fiedler
et al. [19]. Besides being mathematically stable, the model aptly describes
void nucleation and void cavitation due to hydrostatic stress while deviatoric
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stress is responsible for plastic deformation [43]. Therefore, the paraboloidal
yield criterion as a quadratic non-homogenous polynomial yield stress function
with tension-compression asymmetry becomes more suitable for describing the
pressure-dependent plasticity of polymers.

The paraboloidal yield criteria was primarily used by Raghava et al. in their
series of journal publications [8, 41, 42] for describing polymer plasticity based
on constitutive model for uni-dimensional extension. Singh et. al. [47] employs
paraboloidal yield criterion for the reduced order multiscale modelling of FRP
composites with the tangent modulus computed by the perturbation scheme. The
elastoplastic computational implementation of the paraboloidal yielding model
for epoxy matrices developed by Melro et al. [32] has been extensively employed
to model the matrix plasticity for RVEs of various composite models recurringly
in [2, 3, 20, 25, 33–35, 50, 54–56]. The implementation computes plastic strain
increment using a computationally demanding approximation technique based on
Newton-Raphsons iterative method that does not always succeed under very large
deformations. Several authors [10, 46, 49, 57] have proposed modifications and
improvements to the Newton-Raphson method, which are capable of improving
the convergence behaviour experienced in the finite element iteration.

To the best of the authors’ knowledge, the commercial and non-commercial
FEM/FEA software are typically devoid of an elastoplastic model for incorporat-
ing the paraboloidal yield criterion. Therefore, it becomes imperative to contrive
an efficient computational technique for implementing the constitutive elastoplas-
tic model using the continuum approach to feed the software as a user-defined
material model.

This research aims at developing an efficient and exact implementation of
the rate and temperature-independent elastoplastic constitutive model with the
paraboloidal plasticity theory. With this novel implementation, the plastic strain
increment multiplier (Δ𝛾) for both associated and non-associated flow rules are
unambiguously calculated using a non-iterative scheme with unprecedented ac-
curacy. The paper also aims at reviewing the differences in the simulation results
carried out on the commercial FEM software.

For verification, the proposed implementation is numerically investigated in
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three levels of benchmark examples: (i) a single-element test to observe its func-
tionality in comparison to the experimental results and to verify its applicability
in real-size specimens for (ii) compression test of cylinder and (iii) tension test
using dog-bone. The proposed procedure to evaluate the plastic increment dimin-
ishes the computational time and avoids the risk of aggregating approximation
errors that lead to convergence solver issues.

2. Continuum mechanics

The continuum approach to determine the constitutive relationship of elasto-
plastic behaviour of the polymer material is employed. The Claussius-Dunhems
entropy inequality for isothermal process is given by

𝝈 : ¤𝜺 − ¤Ψ > 0, (1)

where 𝝈 is the 2nd order stress tensor and ¤𝜺 is the time rate change of 2nd order
strain tensor 𝜺. ¤Ψ is the time rate change of Helmholtz energy function Ψ which
considers the total energy in elastoplasticity with isotropic hardening ℎ and it can
be written as

Ψ (𝜺𝑒, 𝛼) = 𝜇‖𝜺′‖2 + 1
2𝜅 (𝜺 : I)2︸                   ︷︷                   ︸

Ψ𝑒 (𝜺𝑒)

+ 1
2ℎ𝛼

2︸︷︷︸
Ψ𝑝 (𝛼)

, (2)

where superscripts “𝑒” and “𝑝” account for elastic and plastic parts, respectively
and I is termed as identity matrix. The material parameters 𝜇 and 𝜅 are the shear
and the bulk moduli of elasticity, respectively. The coefficient 𝛼 is the strain-like
parameter, the increment of which is related to equivalent plastic strain increment
Δ𝜖 𝑝 defined as the scalar transformation of deviatoric plastic strain tensor

Δ𝛼 = Δ𝜖 𝑝 =

√
2
3
Δ𝜺𝑝′ :Δ𝜺𝑝′, (3)

where Δ𝜺𝑝′ is isochoric (deviatoric) increment of plastic strain.
In view of its importance for mechanics, an arbitrary 2nd tensor T can be

7

Please cite this article as:
V. Laheri, P. Hao, F.A. Gilabert. 
"Efficient non-iterative modelling of pressure-dependent plasticity using paraboloidal yield criterion".
International Journal of Mechanical Sciences (2021), DOI: https://doi.org/10.1016/j.ijmecsci.2021.106988  
Received: 18 Jul 2021, Revised: 25 Oct 2021, Accepted: 5 Dec 2021.



deccomposed into the spherical or hydrostatic T𝐾 and deviatoric or volume
preserving or shape changing T′ parts as follows

T𝐾 =
1
3
(T : I) I, T′ = T − T𝐾 . (4)

The “ : ” operator stands for the scalar product of 2nd order tensors, also referred
to as the double contraction or double inner product and it is given by

A : B = 𝐴𝑖 𝑗 𝐵𝑖 𝑗 ,

where A and B are two generic 2nd order tensors with indices 𝑖 and 𝑗 along the
Cartesian coordinate axes.

2.1. Yield Criterion

The paraboloidal yield criterion as a function of stress tensor is mathemati-
cally represented by

𝜙(𝝈) = 𝜎2 − (𝜎𝑡 − 𝜎𝑐) 𝐼1 − 𝜎𝑡 𝜎𝑐, (5)

where 𝜎 =
√

3
2 𝝈
′ : 𝝈′ =

√
3𝐽2 is the equivalent (von Mises) stress derived

from the second invariant 𝐽2 of deviatoric stress. The component of pressure-
dependent term 𝐼1 = 𝝈 : I = −3𝑝 is the first invariant of stress tensor, where 𝑝 is
the hydrostatic pressure. The material parameters 𝜎𝑡 and 𝜎𝑐 are the yield stresses
in tension and compression, respectively.

2.2. Constitutive modelling

The plastic flow theory describes the additive decomposition of the material
deformation (multiplicative decomposition when expressed in terms of deforma-
tion gradient) into its elastic and plastic components

𝜺 = 𝜺𝑒 + 𝜺𝑝 . (6)

Owing to the associative split of strain, the entropy inequality (1) can be
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expressed in the form of material-time derivative as follows

𝝈 : ( ¤𝜺𝑒 + ¤𝜺𝑝) −
(
𝜕Ψ𝑒

𝜕𝜺𝑒
: ¤𝜺𝑒 + 𝜕Ψ

𝑝

𝜕𝛼
¤𝛼
)
> 0. (7)

From the statement of Coleman-Noll [12], the relation for the available free
process variable ¤𝜺𝑒 must be fulfilled. Hence, the constitutive modelling is carried
out with the consideration of linear elastic initiation given by

𝝈 =
𝜕Ψ𝑒

𝜕𝜺𝑒
= 2𝜇 𝜺𝑒′ + 𝜅(𝜺𝑒 : I) I. (8)

The stress can be further additively decomposed into its devaitoric 𝝈′ = 2𝜇𝜺𝑒′

and hydrostatic 𝝈𝐾 = 3𝜅𝜺𝑒𝐾 components.
The elastic tangent modulus, C𝑒 is a 4th order tensor derivative of elastic

stress with respect to elastic strain given by

C𝑒 =
𝜕2Ψ𝑒

𝜕𝜺𝑒 𝜕𝜺𝑒
=
𝜕𝝈𝑒

𝜕𝜺𝑒
= 2𝜇 P + 𝜅Ī, (9)

where Ī is referred to as the hydrostatic operator, and P is the projection tensor
referred to as the deviatoric operator in 4th order each. The definitions for these
4th order tensors related to the 2nd order identity matrix are as follows

I𝑠𝑦𝑚 =
1
2

(I ⊗ I)
23
> +

(
(I ⊗ I)

23
>
)24
> , (10)

Ī = I ⊗ I, (11)

and P = I𝑠𝑦𝑚 − 1
3
Ī, (12)

where “>” is the transpose operator and the numbers overhead it represents the
indices being transposed. I𝑠𝑦𝑚 is a symmetric 4th order identity tensor.

The reduced internal dissipation, which is still unfulfilled in the inequality
(7) can be written as

D𝑖𝑛𝑡 B 𝝈 : ¤𝜺𝑝 − 𝛽 ¤𝛼 > 0, (13)
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where 𝛽 = 𝜕Ψ𝑝/𝜕𝛼 = ℎ𝛼 is the conjugate internal variable associated to stress
due to hardening.

The paraboloidal yield criterion for isotropic hardening can be rewritten as

𝜙(𝝈, 𝛽) = 𝜎2 − (𝜎𝑡 − 𝜎𝑐)𝐼1 − (𝜎𝑡 + 𝛽) (𝜎𝑐 + 𝛽). (14)

The reduced internal dissipation inequality (13) can be reformulated in an
optimisation problem, tending to stationarity as follows

L(𝝈, 𝛽,Δ𝛾) = −D𝑖𝑛𝑡 +
Δ𝛾
Δ𝑡
𝜙(𝝈, 𝛽) → 𝑠𝑡𝑎𝑡., (15)

with the Lagrange multiplier Δ𝛾 as the increment of plastic strain.
The flow rule for the evolution of the plastic strain can thus, be computed as

𝜕L
𝜕𝝈

= 0 ⇒ Δ𝜺𝑝 = Δ𝛾
𝜕𝜙

𝜕𝝈
= Δ𝛾 𝜼, (16)

where 𝜼 = 𝜕𝜙
𝜕𝝈 is the yield surface normal.

The evolution of internal strain-like variable can be computed as

𝜕L
𝜕𝛽

= 0 ⇒ Δ𝛼 = Δ𝛾
𝜕𝜙

𝜕𝛽
. (17)

The Kuhn-Tucker’s loading-unloading consistency conditions demands

𝜕L
𝜕Δ𝛾

= 0 ⇒ Δ𝛾 > 0; 𝜙 6 0; Δ𝛾 𝜙 = 0. (18)

The plastic strain increment and material flow direction tensor at yield is gov-
erned by the gradient of the plastic flow potential resulting from the equation (16).
Mathematically, constitutive relationship for elastoplasticity can be established
using both associated as well as non-associated flow rule.

2.3. Associated flow rule

Associated flow rule implies that the plastic flow develops along the normal
to the predicted yield surface. The projected flow tensor as the gradient of yield
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surface as inferred from the plastic strain evolution relation (16) is expressed as

N =
𝜕𝜙𝑡𝑟

𝜕𝝈𝑡𝑟 = 3𝝈𝑡𝑟 ′ − (𝜎𝑡 − 𝜎𝑐) I
, (19)

where the superscript “𝑡𝑟” stands for trial stress based on the prediction of total
strain comprising elastic part. The surface normal is typically, a dimensionless
direction tensor along which the predicted stress is mapped on the yield surface.
Therefore, the relation deduced in equation (19), is required to be normalised by
an effective scalar quantity 𝑛̂, given by

𝑛̂ = ‖N‖ =
√

6𝜎𝑡𝑟2 + 3 (𝜎𝑡 − 𝜎𝑐)2, (20)

for the formulation of yield surface normal

𝜼 =
N
𝑛̂
=

3𝝈𝑡𝑟 ′ − (𝜎𝑡 − 𝜎𝑐) I
𝑛̂

. (21)

Associatively splitting the expression for flow normal (21) results in the
deviatoric 𝜼′ = (3/𝑛̂) 𝝈𝑡𝑟 ′ and the hydrostatic 𝜼𝐾 = − [(𝜎𝑡 − 𝜎𝑐) /𝑛̂] I parts.

Plastic strain increment
From the stress update using radial return mapping algorithm (exhaustively

documented in the algorithm 1) to determine the plastic strain increment, we
arrive at

𝝈𝑛+1 = 𝝈𝑡𝑟𝑛+1 − C
𝑒 : Δ𝜺𝑝 (22)

= 𝝈𝑡𝑟𝑛+1 −
(
2𝜇P + 𝜅Ī

)
: (Δ𝛾𝜼)

= 𝝈𝑡𝑟𝑛+1 − Δ𝛾
(
2𝜇𝜼′ + 3𝜅𝜼𝐾

)
𝝈𝑛+1 = 𝝈𝑡𝑟𝑛+1 − Δ𝛾

[
2𝜇

3
𝑛̂
𝝈𝑡𝑟
′ − 3𝜅

(𝜎𝑡 − 𝜎𝑐)
𝑛̂

I
]
, (23)

where the subscript “𝑛 + 1” represents the history count. For brevity, the latest
counter is dropped.

The above mapping stress relation can be further decomposed into its devi-
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atoric and volumetric components. Subsequently, both the components can be
further devised to represent the associatively split terms of yield criterion

𝝈′ = 𝝈𝑡𝑟
′ − Δ𝛾 6𝜇

𝑛̂
𝝈𝑡𝑟
′

3
2
𝝈′ : 𝝈′ =

(
1 − 6𝜇

𝑛̂
Δ𝛾

)2 3
2
𝝈𝑡𝑟
′ : 𝝈𝑡𝑟 ′

𝜎2 =

(
1 − 6𝜇

𝑛̂
Δ𝛾

)2
𝜎𝑡𝑟

2

𝜎2 =

(
1 − 12𝜇

𝑛̂
Δ𝛾 + 36𝜇2

𝑛̂2 Δ𝛾2
)
𝜎𝑡𝑟

2 (24)

and

𝝈𝐾 = 𝝈𝑡𝑟
𝐾 + Δ𝛾 3𝜅

(𝜎𝑡 − 𝜎𝑐)
𝑛̂

I

𝝈 : I = 𝝈𝑡𝑟 : I + 9𝜅
(𝜎𝑡 − 𝜎𝑐)

𝑛̂
Δ𝛾

(𝜎𝑡 − 𝜎𝑐) 𝐼1 = (𝜎𝑡 − 𝜎𝑐) 𝐼 𝑡𝑟1 + 9𝜅
(𝜎𝑡 − 𝜎𝑐)2

𝑛̂
Δ𝛾. (25)

Upon rearranging the above relations of stress invariants (24) and (25) in
order to represent the yield function on the left hand-side of the equation, we get

𝜎2 − (𝜎𝑡 − 𝜎𝑐) 𝐼1 − 𝜎𝑡 𝜎𝑐 =
(
1 − 12𝜇

𝑛̂
Δ𝛾 + 36𝜇2

𝑛̂2 Δ𝛾2
)
𝜎𝑡𝑟

2

− (𝜎𝑡 − 𝜎𝑐) 𝐼 𝑡𝑟1 − 9𝜅
(𝜎𝑡 − 𝜎𝑐)2

𝑛̂
Δ𝛾 − (𝜎𝑡 + ℎΔ𝜖 𝑝) (𝜎𝑐 + ℎΔ𝜖 𝑝) .

(26)

Substituting the deviatoric part of the flow normal from equation (21) in the
plastic strain evolution relation (16), the equivalent plastic strain relation (3) can
be further simplified to

Δ𝜖 𝑝 =

√
Δ𝛾2

(
2
3𝜼
′ : 𝜼′

)
= 2

𝜎𝑡𝑟

𝑛̂
Δ𝛾. (27)
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Substituting relation (27) in (26) yields,

𝜙(Δ𝛾) = 𝜙𝑡𝑟 + 4𝜎𝑡𝑟2

𝑛̂2

(
9𝜇2 − ℎ2

)
Δ𝛾2

− 12𝜇𝜎𝑡𝑟2 + 9𝜅 (𝜎𝑡 − 𝜎𝑐)2 + 2ℎ (𝜎𝑡 + 𝜎𝑐) 𝜎𝑡𝑟
𝑛̂

Δ𝛾.

(28)

The return mapping of the plastic strain on the yield surface allows the
elimination of the corresponding amount of plastic stress, thereby causing to
fulfil the equation (28), i.e., 𝜙(Δ𝛾) = 0

4𝜎𝑡𝑟2

𝑛̂2

(
9𝜇2 − ℎ2

)
Δ𝛾2 − 12𝜇𝜎𝑡𝑟2 + 9𝜅 (𝜎𝑡 − 𝜎𝑐)2 + 2ℎ (𝜎𝑡 + 𝜎𝑐) 𝜎𝑡𝑟

𝑛̂
Δ𝛾 + 𝜙𝑡𝑟 = 0

(29)

Interestingly, the equation (29) above is a quadratic equation of the variable
Δ𝛾, the absolute solution of which is readily given by,

Δ𝛾1,2 =
−𝑏 ±

√
𝑏2 − 4𝑎𝑐
2𝑎

, (30)

where the coefficients, 𝑎, 𝑏, and 𝑐 of the variable Δ𝛾 from the equation (29) are

𝑎 =
4𝜎𝑡𝑟2

𝑛̂2

(
9𝜇2 − ℎ2

)
(31)

𝑏 = −12𝜇𝜎𝑡𝑟2 + 9𝜅 (𝜎𝑡 − 𝜎𝑐)2 + 2ℎ (𝜎𝑡 + 𝜎𝑐) 𝜎𝑡𝑟
𝑛̂

(32)

𝑐 = 𝜙𝑡𝑟 = 𝜎𝑡𝑟2 − (𝜎𝑡 − 𝜎𝑐) 𝐼 𝑡𝑟1 − 𝜎𝑡 𝜎𝑐 . (33)

Care must be taken for obtaining real solutions of the increment of plastic
strain multiplier from equation (30). In case of multiple solutions, selection of
an optimised value can be achieved by implementation of the classical loading-
unloading conditions (18). The optimisation process is further elucidated in the
subsection 3.1.
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Consistent elastoplastic tangent modulus
The consistent elastoplastic tangent modulus is the tensorial differentiation of

updated stress (equation (22)) from the radial return mapping derived as follows

C𝑒𝑝 =
𝜕𝝈

𝜕𝜺𝑒
=
𝜕𝝈𝑡𝑟

𝜕𝜺𝑡𝑟,𝑒
− {C𝑒 : 𝜼} ⊗ 𝜕Δ𝛾

𝜕𝜺𝑒,𝑡𝑟
− Δ𝛾 𝜕 {C

𝑒 : 𝜼}
𝜕𝜺𝑒,𝑡𝑟

= C𝑒 − {C𝑒 : 𝜼} ⊗ 𝜕Δ𝛾
𝜕𝜺𝑒,𝑡𝑟

− Δ𝛾 𝜕 {C
𝑒 : 𝜼}

𝜕𝜺𝑒,𝑡𝑟
(34)

where “⊗” operator is a dyadic product operator.
The partial differentiations of the terms in elastoplastic tangent operator (34)

is derived as

𝜕 {C𝑒 : 𝜼}
𝜕𝜺𝑒,𝑡𝑟

=
12𝜇2

𝑛̂
(P − 𝜼′ ⊗ 𝜼′) − 3

𝑛̂

(
2𝜇𝜼′ ⊗ 3𝜅𝜼𝐾

)
(35)

and
𝜕Δ𝛾
𝜕𝜺𝑒,𝑡𝑟

=
1
2𝑎

{
𝑏,𝜺 ±

𝑏 (𝑏,𝜺 ) − 2 [(𝑎,𝜺 ) 𝑐 + 𝑎 (𝑐,𝜺 )]√
𝑏2 − 4𝑎𝑐

}
− Δ𝛾
𝑎
𝑎,𝜺 . (36)

The differentials of the coefficients can be expanded as

𝑎,𝜺 =
𝜕𝑎

𝜕𝜺𝑒,𝑡𝑟
=

72𝜇
𝑛̂2

(
9𝜇2 − ℎ2

)
(𝜎𝑡 − 𝜎𝑐)2 𝝈𝑡𝑟 ′ (37)

𝑏,𝜺 =
𝜕𝑏

𝜕𝜺𝑒,𝑡𝑟
= −6𝜇

𝑛̂

[
12𝜇 + ℎ (𝜎𝑡 + 𝜎𝑐)

𝜎𝑡𝑟
+ 3

𝑏

𝑛̂

]
𝝈𝑡𝑟
′ (38)

𝑐,𝜺 =
𝜕𝑐

𝜕𝜺𝑒,𝑡𝑟
= 6𝜇𝝈𝑡𝑟 ′ − 3𝜅(𝜎𝑡 − 𝜎𝑐)I, (39)

where the differentials of invariants with respect to the strain tensor is generally
expressed as,

𝜕 𝜎

𝜕𝜺
=
𝜕

[ 3
2 (2𝜇𝜺′ : 2𝜇𝜺′)

]1/2

𝜕𝜺
=

3𝜇
𝜎

𝝈′ (40)

𝜕 𝐼1
𝜕𝜺

=
𝜕 [3𝜅(𝜺 : I)]

𝜕𝜺
= 3𝜅I. (41)
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2.4. Non-associated flow rule

In a non-associated flow, the direction tensor of the plastic strain rate follows
the tangent of an alternative flow potential function instead of the yield surface.
Following the deductions of Kolling et. al. [29], the general non-associated flow
potential is proposed as

𝑔 = 𝜎2 + 𝛼0

9
𝐼21 , (42)

where the coefficient 𝛼0 is associated to the volumetric part of plastic flow and is
dependent upon the plastic Poisson’s ratio 𝜈𝑝. Conceptualised by Charalambides
and Dean [11], 𝜈𝑝 varies with plastic hardening progression. Duncan et. al.
[17] showed that the value of 𝜈𝑝 ranges from 0.3 to 0.5 as an indicator to the
volume increase during plastic yielding. The pressure-dependent coefficient 𝛼0

as a function of 𝜈𝑝 is defined as

𝛼0 (𝜈𝑝) =
9
2

(
1 − 2𝜈𝑝

1 + 𝜈𝑝

)
. (43)

Using the flow potential function (42), the plasticity flow rule for determina-
tion of the plastic strain increment is given by

Δ𝜺𝑝 = Δ𝛾
𝜕𝑔

𝜕𝝈
. (44)

The flow normal is redefined as the tangent to the predicted flow potential
N = 𝜕𝑔𝑡𝑟/𝜕𝝈𝑡𝑟 as follows

N =
𝜕𝑔𝑡𝑟

𝜕𝝈𝑡𝑟 = 3𝝈𝑡𝑟 ′ + 2
9𝛼0 𝐼

𝑡𝑟
1 I.

(45)

Applying the normalisation treatment with its effective scalar quantity 𝑛̂ =√
6𝜎𝑡𝑟2 + 3

(
2
9𝛼0𝐼

𝑡𝑟
1

)2
, the flow normal can be reformulated with its deviatoric

and hydrostatic split as

𝜼 = 𝜼′ + 𝜼𝐾 =
3𝝈𝑡𝑟 ′ + 2

9𝛼0 𝐼
𝑡𝑟
1 I

𝑛̂
. (46)

15

Please cite this article as:
V. Laheri, P. Hao, F.A. Gilabert. 
"Efficient non-iterative modelling of pressure-dependent plasticity using paraboloidal yield criterion".
International Journal of Mechanical Sciences (2021), DOI: https://doi.org/10.1016/j.ijmecsci.2021.106988  
Received: 18 Jul 2021, Revised: 25 Oct 2021, Accepted: 5 Dec 2021.



Plastic strain increment
The stress update using radial return mapping algorithm to determine the

plastic strain increment, we get

𝝈𝑛+1 = 𝝈𝑡𝑟𝑛+1 − C
𝑒 :Δ𝜺𝑝

𝝈𝑛+1 = 𝝈𝑡𝑟𝑛+1 − Δ𝛾
(
2𝜇

3
𝑛̂
𝝈𝑡𝑟
′ + 3𝜅

2
9
𝛼0

𝑛̂
𝐼 𝑡𝑟1 I

)
. (47)

Decomposing the above stress tensor again into its deviatoric and volumetric
components and formulating them in terms of yield criterion, we get a similar
relation of equivalent stress like in associated flow rule but a dissimilar relation
for the 1st stress invariant

𝜎2 =

(
1 − 12𝜇

𝑛̂
Δ𝛾 + 36𝜇2

𝑛̂2 Δ𝛾

)
𝜎𝑡𝑟

2
, from (24)

and

𝝈𝐾 = 𝝈𝑡𝑟
𝐾 − Δ𝛾 2

3
𝜅 𝛼0

𝑛̂
𝐼1 I

(𝜎𝑡 − 𝜎𝑐) 𝐼1 = (𝜎𝑡 − 𝜎𝑐) 𝐼 𝑡𝑟1 − 2
𝜅 𝛼0

𝑛̂
(𝜎𝑡 − 𝜎𝑐) 𝐼 𝑡𝑟1 Δ𝛾. (48)

Similar rearranging technique to represent the yield function on the left hand-
side of the equation can be reapplied to the obtained relations of invariants in
(24) and (48), where it yields

𝜎2− (𝜎𝑡 − 𝜎𝑐) 𝐼1 − 𝜎𝑡 𝜎𝑐 =
(
1 − 12𝜇

𝑛̂
Δ𝛾 + 36𝜇2

𝑛̂2 Δ𝛾

)
𝜎𝑡𝑟

2

− (𝜎𝑡 − 𝜎𝑐) 𝐼 𝑡𝑟1 + 2
𝜅 𝛼0

𝑛̂
(𝜎𝑡 − 𝜎𝑐) 𝐼 𝑡𝑟1 Δ𝛾 − (𝜎𝑡 + ℎΔ𝜖 𝑝) (𝜎𝑐 + ℎΔ𝜖 𝑝) .

(49)
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Reusing the relation (27) for equivalent plastic strain in (49), we get

𝜙(Δ𝛾) = 𝜙𝑡𝑟 + 4𝜎𝑡𝑟2

𝑛̂2

(
9𝜇2 − ℎ2

)
Δ𝛾2 −

12𝜇𝜎𝑡𝑟2 − 2𝜅 𝛼0 (𝜎𝑡 − 𝜎𝑐) 𝐼 𝑡𝑟1 + 2ℎ (𝜎𝑡 + 𝜎𝑐) 𝜎𝑡𝑟

𝑛̂
Δ𝛾.

(50)

For return mapping of the plastic strain on the yield surface, fulfilment of
the equation (50) results in another quadratic equation of plastic strain increment
variable Δ𝛾, as follows

4𝜎𝑡𝑟2

𝑛̂2

(
9𝜇2 − ℎ2

)
Δ𝛾2 −

12𝜇𝜎𝑡𝑟2 − 2𝜅 𝛼0 (𝜎𝑡 − 𝜎𝑐) 𝐼 𝑡𝑟1 + 2ℎ (𝜎𝑡 + 𝜎𝑐) 𝜎𝑡𝑟

𝑛̂
Δ𝛾 + 𝜙𝑡𝑟 = 0.

(51)

The absolute solution once more relies on the roots of quadratic equation
Δ𝛾 as the variable. It is given by the same quadratic roots as in (30) with the
same coefficient 𝑐 as in (33). The coefficient 𝑎 is apparently similar but has a
different 𝑛̂ in denominator as compared to (31) in the associated flow. Besides, the
coefficients 𝑏 also differs from (32) because of the incorporation of an additional
pressure-dependent term as follows

𝑏 = −
12𝜇𝜎𝑡𝑟2 − 2𝜅 𝛼0 (𝜎𝑡 − 𝜎𝑐) 𝐼 𝑡𝑟1 + 2ℎ (𝜎𝑡 + 𝜎𝑐) 𝜎𝑡𝑟

𝑛̂
. (52)

Consistent elastoplastic tangent modulus
The consistent elastoplastic tangent modulus is also expressed similarly as in

(34)

C𝑒𝑝 = C𝑒 − {C𝑒 : 𝜼} ⊗ 𝜕Δ𝛾
𝜕𝜺𝑒,𝑡𝑟

− Δ𝛾 𝜕 {C
𝑒 : 𝜼}

𝜕𝜺𝑒,𝑡𝑟
. from (34)

The partial differentiation of Δ𝛾 and the coefficient 𝑐 in elastoplastic tangent
operator remains unchanged as expressed in equations (36) and (39), respectively.
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Owing to the the different denominator 𝑛̂, its partial differentiation is deduced as

𝑎,𝜺 =
𝜕𝑎

𝜕𝜺𝑒,𝑡𝑟
=

32
9
𝛼2

0

𝑛̂4 𝐼
𝑡𝑟
1

(
9𝜇2 − ℎ2

) (
𝜇 𝐼 𝑡𝑟1 𝝈𝑡𝑟

′ − 𝜅 𝜎𝑡𝑟2 I
)

(53)

The term C𝑒 : 𝜼 and the coefficient 𝑏 (52) contains an additional pressure-
dependent part and its partial derivative with respect to the predicted elastic strain
tensor 𝜺𝑒,𝑡𝑟 can be expanded as

𝜕 {C𝑒 : 𝜼}
𝜕𝜺𝑒,𝑡𝑟

=

𝜕

{
6𝜇
𝑛̂
𝝈𝑡𝑟 ′ + 2

3
𝜅𝛼0

𝑛̂
𝐼1 I

}
𝜕𝜺𝑒,𝑡𝑟

=
1
𝑛̂

{
12𝜇2 (P − 𝜼′ ⊗ 𝜼′) − 3

(
3𝜅 𝜼𝐾 ⊗ 2𝜇 𝜼′

)
+2

9
𝛼0

[
(3𝜅)2Ī − 3

(
2𝜇 𝜼′ ⊗ 3𝜅 𝜼𝐾

)
− 3

(
3𝜅 𝜼𝐾 ⊗ 3𝜅 𝜼𝐾

)]}
(54)

and

𝑏,𝜺 =
𝜕𝑏

𝜕𝜺𝑒,𝑡𝑟
= −6𝜇

𝑛̂

[
12𝜇 + ℎ (𝜎𝑡 + 𝜎𝑐)

𝜎𝑡𝑟
+ 3

𝑏

𝑛̂

]
𝝈𝑡𝑟
′ − 2𝜅

𝛼0

𝑛̂

[
𝑏𝜼𝐾 − 3𝜅(𝜎𝑡 − 𝜎𝑐)I

]
.

(55)

3. Numerical implementation

The implicit elastic predictor method is a conventional approach to map the
excessively predicted stress along the normal to the yield surface. In principle,
the algorithm is manoeuvred to determine and eliminate the strain increment
due to plastic yielding from the total strain increment, resulting in the overall
elastic effect. Its implementation is featured in algorithm 1 for the finite element
computation, provided the state variables of the evolution are recorded.

The following subsection 3.1 is dedicated to explain and draw a comparison
of the computational schemes for the evolution of plastic strain, Δ𝛾 stated in
step 7 of the algorithm 1 using the proposed mathematical model and the one
postulated by Melro [32].
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Algorithm 1: Implicit elastic predictor method (radial return mapping
algorithm) implementation.
I Get stress state and strain increment tensors @ 𝑡𝑛:

1 𝝈𝑛 ← stress
2 Δ𝜺 ← dstran
I Elastic predictor:

3 C𝑒 = 2𝜇P + 𝜅Ī
4 𝝈𝑡𝑟𝑛+1 = 𝝈𝑛 + C𝑒 :Δ𝜺 = 𝝈𝑛 + 2𝜇Δ𝜺′ + 3𝜅 Δ𝜺𝐾
I Determine if actively yielding:

5 if
(
𝜙𝑡𝑟 (𝝈𝑡𝑟) > 𝜖𝑡𝑜𝑙

)
then

6 ⊲ Compute: 𝜼 =
𝜕 𝜙𝑡𝑟

𝜕 𝝈𝑡𝑟
7 ⊲ Compute: Δ𝛾
8 ⊲ Compute: Δ𝜺𝑝 = Δ𝛾𝜼

⊲ Result:
9 𝝈𝑛+1 ← 𝝈𝑡𝑟𝑛+1 − C

𝑒 :Δ𝜺𝑝

10 C𝑛+1 ← C𝑒𝑝
11 else

⊲ Result:
12 𝝈𝑛+1 ← 𝝈𝑡𝑟𝑛+1
13 C𝑛+1 ← C𝑒

14 return

3.1. Computational scheme

The elastic predictor approach ensuing radial return algorithm is an empiri-
cally heuristic method for numerical modelling of elastoplasticity. However, the
computation of the parameters of elastoplastic equations varies by the mathemat-
ics developed.

A school of thought [2, 3, 20, 33–35, 50, 54–56] following the works of
Melro [32] employs Newton-Raphson’s iterative numerical scheme to solve the
non-linear system of equations and determine Δ𝛾 for paraboloidal yielding under
non-associated plastic flow computed using the algorithm 2. The variables ℎ𝑐
and ℎ𝑡 in the statements 10 and 11 of the algorithm 2 refer to the hardening in
compression and tension, respectively. Hardening is considered to be a function
of equivalent plastic strain and provided piecewise [34].
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The convergence rate of the iterative scheme for the approximation of Δ𝛾 is
quadratic but inexact, thus adding to a cumulative error in the computation of
stress and consistent tangent modulus. Sepasdar and Shakiba [46] determined
that the cohesive zone models also suffer from convergence difficulty due to the
iterative scheme and proposed methods to modify the starting point and overcome
it. The numerical scheme functions on the definition of an initial guess of plastic
strain increment multiplier Δ𝛾0 (refer 1). Volmer et al. [57] identified the
convergence problem inherent with the constitutive model dependent on iterative
and perturbation schemes and discusses the techniques to improve initial guess
of the Newton-Raphson scheme. Order of magnitude of Δ𝛾0 plays a pivotal role
in the rate at which the convergent solution of the yield function is determined.
The scheme also relies on the exact definition of the associated residual function
𝜕𝜙/𝜕 Δ𝛾, the iterative computation of which renders it a tedious endeavour.

Additionally, if the iterative scheme does not yield a value within the tolerance,
i.e., if |Δ𝛾 (𝑖+1) − Δ𝛾 (𝑖) | > 𝜖𝑡𝑜𝑙 in an arbitrarily limited number of iterations
𝑛𝑖𝑡𝑒𝑟 , the computation process demands improving Δ𝛾 (0) . It further repeats the
iterative scheme until it churns out a value deterministic of plastic strain increment
multiplier Δ𝛾. The section of this algorithm emphasising the improvement of
Δ𝛾 (0) is, therefore, an iterative process within itself, whereby the iterative steps
geometrically progress to 𝑛𝑖𝑡𝑒𝑟 × 𝑛 𝑓 𝑎𝑖𝑙 . Moreover, might the improvement faculty
of the algorithm fails within a stipulated number of failed attempts, 𝑛 𝑓 𝑎𝑖𝑙 , the
algorithm necessitates restarting the entire computation process with a new initial
guess, Δ𝛾 (0) which shall be smaller than the previously initialised value. It causes
the process to run unconditionally infinite times.

With the mathematical model proposed in this paper, the plastic multiplier for
determining plastic strain increment follows a direct computation as the root of a
quadratic equation (refer equation (30)). Further processing of two roots employs
the classical Kuhn-Tucker’s loading-unloading conditions (refer equation (18)) as
described in the algorithm 3.

The proposed algorithm qualifies to eliminate the iterative scheme, making
the process computationally frugal. The robustness of the proposed model is
higher as the solution of the non-linear equation for determining the plastic strain
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Algorithm 2: Plastic strain increment multiplier, Δ𝛾 computation used
in [32].
1 ⊲ Set initial guess: Δ𝛾 (0) = 10−8

2 ⊲ Initialise fail counter: 𝑖 𝑓 𝑎𝑖𝑙 = 0
I Newton-Raphson iterative scheme:

3 ⊲ Initialise iteration counter: 𝑖 = 0
4 while (𝑖 6 𝑛𝑖𝑡𝑒𝑟) do

⊲ Compute:
5 𝜁𝑠 = 1 + 6𝜇Δ𝛾 (𝑖) /* FLOPS = 3 */

6 𝜁𝑝 = 1 + 2𝜅 𝛼0 Δ𝛾 (𝑖) /* FLOPS = 4 */

7 𝐴 =
18
𝜁2
𝑠

𝐽𝑡𝑟2 +
4𝛼2

0

27𝜁2
𝑝

(
𝐼 𝑡𝑟1

)2
/* FLOPS =11 */

⊲ Increment of equivalent plastic strain:

8 Δ𝜖 𝑝 =

√
𝐴

1 + 2 (𝜈𝑝)2
Δ𝛾 (𝑖) /* FLOPS = 6 */

⊲ Hardening variables:

9
𝜕 Δ𝜖 𝑝

𝜕 Δ𝛾
=

√
1

1 + 2 (𝜈𝑝)2

[
√
𝐴 − Δ𝛾

2
√
𝐴

(
216𝜇
𝜁3
𝑠

𝐽𝑡𝑟2 +
16𝜅 𝛼0

27𝜁3
𝑝

𝐼 𝑡𝑟1

)]
/* FLOPS =23 */

10
𝜕 𝜎𝑐 (Δ𝜖 𝑝)
𝜕 Δ𝛾

= ℎ𝑐
𝜕 Δ𝜖 𝑝

𝜕 Δ𝛾
/* FLOPS = 2 */

11
𝜕 𝜎𝑡 (Δ𝜖 𝑝)
𝜕 Δ𝛾

= ℎ𝑡
𝜕 Δ𝜖 𝑝

𝜕 Δ𝛾
/* FLOPS = 2 */

⊲ Residual derivative:
12

𝜕𝜙

𝜕 Δ𝛾
=

2
𝜁𝑝
𝐼 𝑡𝑟1

(
𝜕𝜎𝑐
𝜕 Δ𝛾

− 𝜕𝜎𝑡
𝜕 Δ𝛾

)
+ 4𝜅 𝛼0

𝜁2
𝑝

𝐼 𝑡𝑟1 (𝜎𝑡 − 𝜎𝑐) −
72𝜇
𝜁3
𝑠

𝐽𝑡𝑟2 −

2
(
𝜎𝑐

𝜕𝜎𝑡
𝜕 Δ𝛾

+ 𝜎𝑡
𝜕𝜎𝑐
𝜕 Δ𝛾

)
/* FLOPS =22 */

⊲ New estimate:
13 Δ𝛾 (𝑖+1) = Δ𝛾 (𝑖) − 𝜙

𝜕𝜙 / 𝜕 Δ𝛾 /* FLOPS = 2 */
⊲ Check for convergence:

14 if
(
𝜙(Δ𝛾 (𝑖+1)) 6 𝜖𝑡𝑜𝑙

)
then /* FLOPS = 1 */

15 return: Δ𝛾𝑛+1 = Δ𝛾 (𝑖+1)

16 ⊲ Increment iteration counter: 𝑖 = 𝑖 + 1
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I Improve initial guess:
17 if (𝑖 > 𝑛𝑖𝑡𝑒𝑟) then /* FLOPS = 1 */
18 ⊲ 𝑖 𝑓 𝑎𝑖𝑙 = 𝑖 𝑓 𝑎𝑖𝑙 + 1 ; /* FLOPS = 1 */
19 ⊲ 𝑓 𝑎𝑐𝑡𝑜𝑟 = 10
20 if

(
𝑖 𝑓 𝑎𝑖𝑙 6 𝑛 𝑓 𝑎𝑖𝑙

)
then /* FLOPS = 1 */

21 ⊲ Δ𝛾 (0) = Δ𝛾 (0) × ( 𝑓 𝑎𝑐𝑡𝑜𝑟) (𝑖 𝑓 𝑎𝑖𝑙) ; /* FLOPS = 2 */
22 else
23 ⊲ Reset initial guess: Δ𝛾 (0) = (< Δ𝛾 (0) at 1) ; /* FLOPS = 1 */
24 ⊲ GOTO 3.

increment multiplier is absolute and algorithmically efficient with no iterative
looping. The approach straightforwardly relies on classical loading-unloading
conditions to determine a unique value of plastic strain increment and is thus,
highly accurate.

There could be no valid measure for ascertaining the robustness of a math-
ematical model to be employed in a finite element analysis than methodically
examining the residual errors by scrutinizing the number of steps and cutbacks
the simulation necessitates to complete its processing. The implicit analysis
method, by virtue, inherently mandates that the converged solution is reached at
every time step. In the case of non-convergence, the residual errors grow more
significant than the approved tolerance. The solver system attempts to optimise
the solution by further shortening the time increment 𝑑𝑡 until convergence is
reached. The solver gradually catches up with the preordained maximum time
increment 𝑑𝑡𝑚𝑎𝑥 in further progressions.

Besides, the algorithms 2 and 3 also presents the number of floating-point
operations (FLOPS) a particular step involves for the computation of a variable.
The number of FLOPS provides an overview of the computational effort of an
algorithm since the intermittent computation is often required to be stored in the
temporary memory of the system for easy accessibility. The number of FLOPS
for calculation of the coefficients 𝑎, 𝑏 and 𝑐 of quadratic equation (51) in the
mathematical model for non-associated plasticity proposed in this paper are 9, 15
and 6, respectively. These are unaccounted in the algorithm 3 to avoid repetition.

22

Please cite this article as:
V. Laheri, P. Hao, F.A. Gilabert. 
"Efficient non-iterative modelling of pressure-dependent plasticity using paraboloidal yield criterion".
International Journal of Mechanical Sciences (2021), DOI: https://doi.org/10.1016/j.ijmecsci.2021.106988  
Received: 18 Jul 2021, Revised: 25 Oct 2021, Accepted: 5 Dec 2021.



Algorithm 3: Plastic strain increment multiplier, Δ𝛾 computation using
proposed model.
1 ⊲ Get Δ𝛾𝑛 ← state variable
2 ⊲ Initialise: Δ𝛾𝑛+1 ← Δ𝛾𝑛 // back-up value

3 ⊲ Discriminant: 4 = 𝑏2 − 4𝑎𝑐 /* FLOPS = 4 */
I Determine if 4 is positive, for real roots:

4 if (4 > 0) then /* FLOPS = 1 */

5 ⊲ Compute roots: Δ𝛾1,2 =
−𝑏 ±

√
4

2𝑎
/* FLOPS = 8 */

6 ⊲ Compute function values: 𝜙1,2 = 𝑎 Δ𝛾2
1,2 + 𝑏 Δ𝛾1,2 + 𝜙𝑡𝑟 /* FLOPS

=10 */

I Determine the root following Kuhn-Tucker’s loading-unloading
conditions:

7 if (Δ𝛾1 > 0 and 𝜙1 6 0 and Δ𝛾1𝜙1 = 0) then /* FLOPS = 4
*/

Result: Δ𝛾𝑛+1 ← Δ𝛾1

8 else if (Δ𝛾2 > 0 and 𝜙2 6 0 and Δ𝛾2𝜙2 = 0) then /* FLOPS
= 4 */

Result: Δ𝛾𝑛+1 ← Δ𝛾2

9 return: Δ𝛾𝑛+1

In totality, the number of FLOPS in algorithm 3 is lesser than that in 2. On top of
that, the iterative scheme augments the computational efforts multifold; at least
𝑛𝑖𝑡𝑒𝑟 times, considering the best-case scenario.

For a convergent solution, the FEM solver attempts to verify if the tangent
modulus provided to it is in equilibrium to the growth of stress as a function of
strain using the unconditionally stable implicit method. It accentuates the neces-
sity of accurate formulation of the tangent modulus. The consistent elastoplastic
tangent operator expressed in [32] is

C𝑒𝑝 = 𝑣 I𝑠𝑦𝑚 +
(
𝑤 − 𝑣

3

)
Ī − 𝑥 𝝈′ ⊗ I − 𝑦 𝝈′ ⊗ 𝝈′ − 𝑧 I ⊗ 𝝈′. (56)
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The constants 𝑣, 𝑤, 𝑥, 𝑦, and 𝑧 are given by

𝑣 =
2𝜇
𝜁𝑠
, 𝑤 =

𝜅

𝜁𝑝
− 4𝜅2𝛼0

𝜂𝜁3
𝑝

𝐼 𝑡𝑟1 (𝜎𝑐 − 𝜎𝑡) ,

𝑥 =
36𝜇𝜅
𝜂𝜁2

𝑠 𝜁𝑝
(𝜎𝑐 − 𝜎𝑡) , 𝑦 =

72𝜇2

𝜂𝜁4
𝑠

, 𝑧 =
8𝜇𝜅𝛼0

𝜂𝜁2
𝑝𝜁𝑠

𝐼 𝑡𝑟1 ,

(57)

where 𝜂 = − 𝜕𝜙
𝜕 Δ𝛾 . The above relations (57) along with the recomputation of

the constants 𝜁𝑠, 𝜁𝑝, and the residual derivative, 𝜕𝜙
𝜕 Δ𝛾 are based on the Δ𝛾 value

approximated through the iterative scheme. The constants 𝜁𝑠, 𝜁𝑝, and the residual
derivative can be referred from statements 5, 6, and 12, respectively of algorithm
2. It not only involve additional computational operations through increased
FLOPS but also accrue to the approximation error while determining the slope.
Contrarily, the consistent elastoplastic tangent modulus postulated in the paper is
also based on the exactly computed Δ𝛾.

A detailed discussion will be presented in the next section while discussing
numerical simulations for different geometrical models.

4. Numerical investigations

For numerical validation of the proposed non-iterative mathematical scheme
of elastoplastic response using paraboloidal yielding, the representative radial
return mapping algorithm 1 is implemented in the user material subroutine of
the FEA/FEM software. The material subroutines incorporate the plastic strain
multiplier computational algorithms 2 and 3. The results of the two mathematical
models are analysed comparatively. As the paper focuses on simulating the
elastoplastic response of epoxy polymers, the reference material parameters of a
typical thermosetting plastic are used.

4.1. Data preparation

Table 3 encapsulates the typical elastoplastic material properties for epoxy
resin used in the numerical simulations. Guild et. al. [23] predicted a constant
value of 𝜈𝑝 = 0.32 as the best fit for numerical analysis of epoxy polymer.
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Table 3: Material properties for epoxy resin.

Material Values Units
parameters

Elastic:
𝐸 3760 MPa
𝜈 0.39 ∼

Plastic:
𝜈𝑝 0.32 ∼
𝜎𝑡 29 MPa
𝜎𝑐 67 MPa

Experimental [18]:
𝐸𝑡 3900 MPa
𝐸𝑐 3600 MPa

It is also essential to recognise the yielding properties beforehand for the
hardening moduli, ℎ𝑡 and ℎ𝑐 in tension and compression, respectively, to be
computed following the evolution of yield stress (𝜎𝑦) for the corresponding
plastic strain (𝜖 𝑝). The yield stresses, 𝜎𝑡 and 𝜎𝑐 in tension and compression,
respectively, at the onset of plasticity enlisted in the table 3 are also adapted from
Fiedler et al. [18]. The experimentally determined elasticity modulus by Fiedler
et al. [18], 𝐸𝑡 and 𝐸𝑐 are the accompanying individual values in tension and
compression, respectively.

The plastic strains corresponding to yield stresses are extracted by the additive
decomposition of strain relation

𝜖
𝑝
{𝜆} = 𝜖 −

𝜎

𝐸{𝜆}
∀{𝜆} =

{
𝑡 : tension
𝑐 : compression

(58)

where 𝜎 is the stress after yielding for the corresponding strain, 𝜖 and the sub-
script “{𝜆}” indicates the loading mode – “𝑡”, tension or “𝑐”, compression. This
computation is carried out on the stress equating to the linearly spaced strain data
by performing the least squares polynomial fitting using the Pythonr’s inherent
numpy.polyfit() function on the stress-strain data from Fiedler et al. [18].
This exercise helps to produce equally spaced data of plastic strain correspond-
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ing to yield stress for piecewise linear hardening modulus computation. This
computation process is algorithmically demonstrated in the appendix 18.

The graphs for tension and compression in figure 1 show a high degree
of conformance between the data computed from experimental values and the
polynomially fitted values in small strain. Composite yielding is favoured by
the size of test coupon [18] since increasing the dimension while retaining the
shape causes ductile-brittle transition [4]. The experiments on size effects of
polymer composites also conclude decreasing strength with increasing specimen
size [58] because the bulk growth incorporates severe defects and voids. There-
fore, the experimental compressive test data for a small cube sample is used
for numerical simulation as the specimen is reasonably pristine and homoge-
neous throughout [18]. The curve, however, flows into the non-linearly following
hyper-elastoplastic hardening after certain linearity in hardening. The data in this
domain is extrapolated so that the current plasticity model with linear isotropic
hardening can be employed. Therefore, the pseudo-plastic extrapolated data plot
is used, generated by adding instantaneous stiffness values to Young’s modulus
in compression for each data point after reaching the linear asymptote. Figure 2
illustrates the instantaneous stiffness calculation procedure. Adapting from the
equation (58), extrapolated plastic strain data in compression is computed as

𝜖
𝑝
𝑐 = 𝜖 − 𝜎

𝐸𝑐 + 𝐸𝑖𝑛𝑠𝑡
. (59)

The tabulated array of 𝜖 𝑝 and𝜎𝑦 in tension and compression is ultimately supplied
as user-defined plastic evolution data for isotropic strain hardening computation
in their respective loading mode.

For comparing and demarcating computational efforts of the algorithms, the
specifications of the machine used for running the simulations shall be standard-
ised. For the presented work, only 1 CPU from the multi-core (Intel core i7)
processor with 16 Gb RAM was used.

4.2. Single element test

A single element test is a simple means to computationally conduct a prelim-
inary verification of the functioning and reliability of the mathematical formula-
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tions for a material model. Therefore, a three-dimensional single element model
is used to numerically verify with the experimental results obtained by Feidler
et al. [18] under tensile, compressive, and shear loading conditions employing
both the flow rules. Besides, a comparison of the iterative computational scheme
(algorithm 2) and the proposed non-iterative mathematical model (algorithm 3)
is also made for non-associated flow rule.

Figure 3 depicts a cube element of length 1 mm with an instance of tensile load
applied on the reference point (RP). The mathematical representation of boundary
conditions to be applied differently for tension/compression and simple shear
loadings is tabulated below. The concentrated load applied at RP is distributed on
the top surface (Stop) via the equation linking the two in the 𝑥 and 𝑦-directions for
simple shear and tension or compression, respectively. The boundary conditions
are achieved by fixing the bottom surface (Sbot) of the cube in 𝑦-direction and
the edges “Ex” and “Ez” along 𝑥 and 𝑧-directions, respectively, to avoid rigid
body motion under the application of tensile or compressive loading on Stop. On
the other hand, for simple shear loading along x-direction, Stop is fixed along
𝑦-direction and Sbot is fixed along 𝑥 and 𝑦-directions to avoid rigid body motion.

The graphs in figure 4 for both the flow rules conform to the elastoplastic
experimental curves subjected to the three loading modes under small strain
conditions. In compression mode at large strain under the provision of pseudo-
plastic hardening, the numerical result for the associated flow rule shows a higher
degree of conformance with the experiment compared to the non-associated flow
rule. This deviation can be attributed to the hydrostatic sensitivity owing to the
presence of a term (𝛼0/9) 𝐼21 for pressure correction applied in the non-associated
flow potential function, 𝑔 (equation (42)). Numerical modelling in shear uses the
same constitutive model relying predominantly on the tensile and compressive
yield stress and is indifferent to the yielding properties in shear. Therefore, the
numerical results in graph show aberration from the experiment under large strain
in shear.

The simulation results using the non-associated plasticity model based on
the iterative scheme plotted alongside the results for non-iterative model match
closely under small strain conditions. The compression and shear loading results
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show fairly good concurrence until about 15% strain, but drifts on additional
loading. The compression curve (figure 4b) of the mathematical model based
on iterative scheme shows a discontinuity in yielding at strain above 30%. The
inconsistency due to perturbations in the computations using iterative scheme in
compression can be explained by studying the plots in figures 5 and 6.

Figure 5 shows plots comparing the devolution of time increment 𝑑𝑡 over the
simulation time 𝑡 to achieve convergence at each time-step between the imple-
mentations of iterative and non-iterative numerical schemes. Figure 6, on the
other hand, represents iteration counter with the strain growth graphically. The
equivalent plastic strain evolution is plotted alongside all loading modes to verify
the activity in the iteration counter with the inception of plasticity. The time in-
crement 𝑑𝑡 vs time 𝑡 curves for tension (figure 5a) and shear (figure 5c) under both
the numerical implementations show no sign of decrease and remain coincidental.
So also, the iteration count depletes gradually over the strain growth in tension
(figure 6a) and compression (figure 6c) plots. Contrastingly for compression, a
downward spike is noticeable in the time increment 𝑑𝑡 plot (figure 5b) along with
a gradual surge of iteration counts in plot (figure 6b). This is the region of the
graph where pseudo-plasticity is applied and a distinctive perturbation is apparent
for the discontinuous stress-strain region. The perturbation can be summarised
as the solver’s attempt to achieve localised convergence using implicit solution
for the computed plastic strain increment and consistent elastoplastic tangent op-
erator at a particular step which is inconsistent to the overall evolution of plastic
strain.

Table 4: CPU time for single element test simulations.

Load
CPU time [s]

Ref. [32] Proposed
Tension 2.0 2.3
Compression 2.5 3.0
Shear 2.5 2.6

Table 4 enlists the CPU time used by the implicit solver to complete the
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simulation under three loading cases over the same time steps and initial con-
ditions for a single element test. The algorithmic implementation employing
iterative computational technique tends to consume more time as compared to
the proposed non-iterative technique. With this overview, it can be concluded
that the overall computational time will increase multifold with increased mesh
in complex geometries.

4.3. Cylinder compression test

Compression tests of a cylinder specimen are computationally performed to
test the functionality of the proposed mathematical model using realistic lab-sized
geometry.

Taking advantage of the specimen’s symmetry, an eighth
(1/8) geometry

is modelled as shown in the left image of figure 7 and simulated for varying
element sizes to conduct the mesh convergence test. The boundary conditions are
applied on the exposed planes, “PlaneA” and “PlaneB” along 𝑧 and 𝑥-directions,
respectively. The bottom surface, “Sbot” is constrained along the 𝑦-direction.
A reference point, “RP” on which the load is applied is connected to the top
surface, “Stop” via an equation in 𝑦-direction only such that the load is uniformly
distributed on Stop. The dimensions shown on a meshed instance of the geometry
with element size, ℓ𝑒𝑙𝑒𝑚 = 1 mm in the right image of figure 7 are 𝐻 = 6 mm and
𝑅 = 6 mm.

Figure 8 shows the comparison between the simulated and experimental
results. The volume-averaged stress and strain for the model are defined using 1st

order homogenisation, approximated as

𝜎ℎ𝑜𝑚𝑔 =
1
𝑉

∫
𝜎 𝑑𝑉 ≈

𝑛𝑒𝑙𝑒𝑚∑
𝑖=1

𝜎𝑖 𝑉𝑖

𝑛𝑒𝑙𝑒𝑚∑
𝑖=1

𝑉𝑖

(60)

𝜀ℎ𝑜𝑚𝑔 =
1
𝑉

∫
𝜀 𝑑𝑉 ≈

𝑛𝑒𝑙𝑒𝑚∑
𝑖=1

𝜀𝑖 𝑉𝑖

𝑛𝑒𝑙𝑒𝑚∑
𝑖=1

𝑉𝑖

(61)
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where 𝑛𝑒𝑙𝑒𝑚 refers to the number of elements of the meshed model, and 𝜎𝑖 and
𝑉𝑖 represents the stress and volume, respectively, of the considered element. The
computed homogenised stress is the “true” measure of the stress.

The results of cylinder compression in figure 8 are highly concurrent to the
single element test in compression. The non-conformity to the experimental
results at large strain in non-associated plasticity persists. Convergent results for
the mesh geometries of different element size ℓ𝑒𝑙𝑒𝑚 affirms mesh independence
of the proposed constitutive mathematical model. The equivalent plastic strain
contour in figure 9 for a uniformly compressing cylindrical geometry shows even
plastic deformation throughout the meshed body for all ℓ𝑒𝑙𝑒𝑚.

In a way to verify the robustness of the proposed constitutive model, the time
incrementation graph plotted in figure 10a proves helpful. The time increment 𝑑𝑡
remains relatively consistent to the specified maximum time increment 𝑑𝑡𝑚𝑎𝑥 =
0.0133 s through the course of simulation as observed from the flat graph for
the meshes irrespective of ℓ𝑒𝑙𝑒𝑚 under significant strain of 40 %. The continuity
of the incrementation process exhibited by the proposed non-iterative scheme is
solid testimony to its robustness. Evenly-spaced yielding data provided as input
also acts as a factor for the solver to process the simulations smoothly.

The figure 10b illustrates the time required due to computational effort on the
solver. Computational costs increase with an increase in the number of elements
owing to mesh refinement. Nevertheless, both plastic flow rules yield convergent
results with relative ease, attributable to the non-iterative computation process.

4.4. Dog-bone tension test
In another attempt to establish the functionality of the proposed non-iterative

scheme for a realistic geometry, a dog-bone specimen, as shown in figure 11
is numerically simulated for tension test. The specimen has an overall length
𝐿𝑥 = 100 mm, width of the narrow portion 𝐿𝑦 = 40 mm and thickness 𝐿𝑧 = 4 mm.
The effective length (gauge length) at the dog-bone’s central narrow portion is
𝐷𝑥 = 40 mm which gradually broadens at either ends of the gauge length into the
gripping section radially has the curvature radius 𝑅𝑐 = 30 mm.

Applying symmetrical dissections along 𝑥𝑦 and 𝑥𝑧-planes generate a one-
fourth model of the dog-bone specimen depicted in solid outlines on the left
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of the assembly 11. The resultant symmetrical part geometry of the model is
illustrated with boundary and load conditions in the centre of the assembly figure.
An instance of the mesh generated for element size ℓ𝑒𝑙𝑒𝑚 = 1 mm is shown on
the right side of the figure. A constant smaller mesh size ℓ𝑒𝑙𝑒𝑚 = 0.5 mm is
maintained through the thickness, causing to increase in the number of elements
that ensures a correct resolution of stresses and strains.

The specimen is tested under tension for strain 𝜀 = 23 % which is compara-
tively large than the epoxy polymer can withstand, since epoxy resins typically
fail sooner [26]. However, no fracture model is deliberately assumed so as
to concentrate on evaluating the mathematical implementations for constitutive
elastoplastic models under large strains.

Figure 12a shows the homogenised (see equations (60) and (61)) true stress-
strain curve, whereas figure 12b depicts the graph of homogenised true stress
plotted against the engineering strain. The engineering strain is computed as the
ratio of the applied displacement at RP to the specimen length. The curves in
figure 12 are accurately convergent for both the flow rules, irrespective of element
size ℓ𝑒𝑙𝑒𝑚.

The maximum principal stress contour on the specimen after complete loading
is consistently similar for both the flow rules plotted in the figure 13 with a
homogeneous distribution of stress across the gauge section. The concurrence of
the two flow rules is also verifiable by lateral contraction in uniaxial displacement
contour plot 14 (top), where𝑈𝑧𝑧 is obtained along by the thickness in 𝑥𝑧-plane of
the specimen. Since both plastic flow rules yield similar results, the associated
flow rule can effectively replace the non-associated flow rule. The substitution
will reduce the labours of extracting an additional parameter 𝜈𝑝 through elaborate
experimental set-ups.

As shown in the figure 15a, the plot for time increment 𝑑𝑡 through simulation
time 𝑡 exhibits an asymptotic continuity at the limiting value of 𝑑𝑡 = 0.0023s
for all flow rules and mesh sizes. It adds to prove the higher convergence of
computational approach and the inherent robustness of the proposed algorithm
that discourages iterative computation of plasticity measures throughout the sim-
ulation process. Figure 15b demonstrates increased computational effort with
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increased mesh refinement and the relative adeptness of mathematical implemen-
tation for non-associated plasticity for yielding convergent results than associated
plasticity.

A comparison of the iterative and non-iterative numerical implementations
of the mathematical models postulated in [32] and that proposed in this paper,
respectively is also conducted. For an in-depth analysis, the dog-bone specimen
with ℓ𝑒𝑙𝑒𝑚 = 0.5 mm producing a finer mesh is simulated for tension test under
small strain 𝜀 = 2.5 %.

Table 5: CPU time for dog-bone tension test simulations

Load CPU time [s]
Ref. [32] Proposed

Tension 7648.60 119.10

The homogenised true stress-strain plot in figure 16a and the maximum
principal stress contour plot at the end of simulation in figure 17 obtained using
the two mathematical models are coincidental to a great extent. However, the
model based on iterative scheme is computationally expensive as can be noted
from the table 5, the CPU time it takes to complete the simulation is almost 17
times greater than non-iterative algorithm. The time incrementation plot (refer
figure 16b) over the course of simulation also depicts that the iterative scheme
requires lower than the prescribed maximum time increment, 𝑑𝑡𝑚𝑎𝑥 thereby,
increasing the number of incrementation steps to achieve convergence. The non-
iterative scheme on the other hand, reaches convergence while maintaining an
asymptotic 𝑑𝑡𝑚𝑎𝑥 thorugh 𝑡.

5. Concluding remarks

An extensive literature survey establishes that the paraboloidal yield crite-
rion is an excellent plasticity measure for the pressure dependent but rate and
temperature-independent polymer description. The paper introduces an elasto-
plastic constitutive model using continuum approach employing this yield crite-
rion with mathematical derivation for both associated and non-associated flow
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rules. A novel numerical implementation of the non-iterative stress integration
scheme is proposed and investigated in this paper. The constitutive relationship
utilising the consistent elastoplastic tangent moduli derived for both flow rules im-
portantly captures the pressure-dependent and shear non-linearity characteristics
of epoxy matrix while ensuring convergence.

An exact computation of plastic strain is achieved by solving the derived
quadratic function and parsing the roots to fulfil the classical consistency condi-
tions. This analytical deduction of plasticity in comparison to the conventional
implementation is devoid of numerical scheme using iterative methods. The
floating-point operations (FLOPS) for the iterative algorithm becomes uncertain
and computationally expensive for no definite knowledge of the iterations to
obtain converged results. By eliminating the approximation loops from the sub-
routine, the proposed model improves computational performance and accuracy
significantly.

The numerical simulations using proposed mathematical model for both the
flow rules were performed on single-element and two coupon-sized models:
cylinder and dog-bone geometries under various load conditions for generic
epoxy polymer. An extrapolation method for the evolution of yield stress with
plastic strain in the hyper-elastoplastic regime under compression was conceived
for linearly piecewise isotropic hardening. The results validated with experiment
confirm the functionality of the proposed model under finite strain conditions
and are a concrete testimony of its robustness. The difference in computational
time of the proposed non-iterative scheme is sparingly shorter than the iterative
scheme for the SE analyses. However, this time difference amplifies for the
real-sized dog-bone model while the simulation process made several attempts
to attain global convergence for the approximated solution.

The compression tests for the associated plasticity yielded a high degree of
conformance to the experimental data than the non-associated plasticity model
which was initially conformal but diverged under hyper-elastoplastic conditions.
Simulation results of the tension test on the dog-bone specimen demonstrated
remarkably coincidental results for both the flow rules with uniform stress field
along the gauge length.
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Comparing the results of the proposed and conventional computational im-
plementations showed that both the models can be interchangeably used for
non-associated plasticity analysis. However, it is established that the proposed
non-iterative model is computationally frugal and speedier with unprecedented
accuracy. Although the epoxy materials at macroscale are observed to fail at a
low strain range, this implementation will undoubtedly uphold the computational
mechanism unto failure with improved computational efficiency. It becomes
requisite at microscale level where much larger strains are expected [26].

The study of the proposed implementation for pressure-dependent elasto-
plastic model coupled with the damage processes can ideally define mechanical
response of the polymer material. It can be effectively used for multiscale and
micromechanical analyses of composite materials where different local stress
states are expected.
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(a) Tension

(b) Compression

Figure 1: Evolution of yield stress 𝜎𝑦 concerning plastic strain 𝜖 𝑝 extracted from the
experimental data of Fiedler et al. [18] though polynomial-fitting for tension and com-
pression tests. The 𝜎𝑦 − 𝜖 𝑝 evolution plot in compression also depicts an additional
extrapolated curve.
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Figure 2: Instantaneous stiffness calculation for extrapolated 𝜎𝑦 − 𝜖 𝑝 computation in
compression.
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Figure 3: Right: A cubic body representing a single element with demarcated surfaces,
edges and the reference loading point. Left: Boundary conditions and load of the single
element test tabulated for the different loading conditions.
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Figure 4: Stress-strain relationship of single element test for the three loading conditions.
The tension curves for both the flow rules are convergent to the experiment, while the
compression curve for associated plasticity yields results in agreement to experiment than
non-associated plasticity. The deviations from the experimental curve in shear mode is
because the yield function is independent of the yielding in shear.
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Figure 5: Time incrementation status of single element test showing even time increment
for tension and shear loading modes concerning both mathematical implementations. The
compression mode witnesses consistent incrementation with the proposed non-iterative
scheme while is crinkly for the iterative numerical scheme.
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Figure 6: Iterations counter with respect to the plastic strain evolution using iterative
scheme of [32]. The number of iterations is invariable and significantly large for ob-
taining convergence for the non-linear evolution plastic strain increment. The number of
iterations decays as the plastic strain increment attains linearity.

Figure 7: Cylinder compression test specimen and boundary conditions. (Left): Sym-
metrical model set-up. (Right): Finite element mesh and geometrical dimensions.
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Figure 8: Stress-strain relationship for cylinder compression test resembling the results
of single element test and establishing mesh convergence.
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Figure 9: Equivalent plastic strain contour plot for cylinder specimen establishing mesh
convergence for the associated and non-associated flow rules.
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Figure 10: Comparison of the flow rules for the cylinder compression test through time
incrementation and computational time consumption of the simulations are shown. Both
the flow rules yield convergent results with relative computational ease for different mesh
refinements.
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Figure 11: (Left): Geometrical illustration, (Centre): Part geometry with boundary
conditions, and (Right): Structured mesh instance of dog-bone tension test specimen.
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Figure 12: Stress-strain relationship for the tensile test of dog-bone specimen showing
mesh convergence for the associated and non-associated flow rules. The results of both
flow rules are also concurrent with each other, therefore ascertaining their interchange-
ability.
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Figure 13: Max principal stress contour plot at the end of tension test on the dog-bone
specimen showing similar stress dispersement for the two flow rules. The stress contour
is also homogeneous in the gauge section of the specimen.
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Figure 14: Displacement (𝑈𝑧𝑧) measure in the thickness of dog-bone specimen at the
end of tension test showing similar displacement distribution.

53

Please cite this article as:
V. Laheri, P. Hao, F.A. Gilabert. 
"Efficient non-iterative modelling of pressure-dependent plasticity using paraboloidal yield criterion".
International Journal of Mechanical Sciences (2021), DOI: https://doi.org/10.1016/j.ijmecsci.2021.106988  
Received: 18 Jul 2021, Revised: 25 Oct 2021, Accepted: 5 Dec 2021.



Associated Non-Associated

FEA

1.00

0.50

0.25

[mm]

2.00

10
�5

10
�4

10
�3

10
�2

0 1.2 2.4 3.6 4.8

T
im

e 
In

cr
em

en
t,
d
t

[s
]

Time, t [s]

(a) Time incrementation status

 0

 2000

 4000

 6000

 0.5  1  1.5  2

n
elem

=56000

n
elem

=14400

n
elem

=3264

n
elem

=816

C
P

U
 t

im
e
 [

s]

l
elem

 [mm]

Associated
Non−Associated

(b) CPU time versus element length

Figure 15: Simulation comparison for the dog-bone tension tests employing the two flow
rules show similar computational effort through 𝑑𝑡− 𝑡 graph, while ascertain the speedier
convergence of non-associated flow rule through CPU time vs ℓ𝑒𝑙𝑒𝑚 plot.
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Figure 16: Simulation comparison of mathematical implementations for the dog-bone
tension test. The 𝜎 − 𝜀 curves agree well, while the 𝑑𝑡 − 𝑡 plot shows that the iterative
numerical scheme is computationally demanding. It assures the computational compati-
bility of the proposed non-iterative scheme for speedier convergent results.
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Figure 17: Max principal stress contour plot on the dog-bone specimen showing uni-
formly similar distribution of stress for classical iterative and proposed non-iterative
numerical schemes.
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Figure 18: Piecewise linear hardening modulus computation algorithm.
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