
A space-time discretization for an electromagnetic problem with moving
non-magnetic conductor

Van Chien Le, Marián Slodička, Karel Van Bockstal∗
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Abstract

This paper deals with a space-time discretization scheme for an eddy current problem in a multi-component domain
with a moving non-magnetic conductor. We incorporate the Coulomb gauge to the formulation, then propose a fully-
discrete finite element scheme combined with backward Euler’s method to find an approximation of the solution to the
variational system. The convergence of the scheme is proved, and the error estimates for the first-order Lagrangian
finite elements are established. Under appropriate assumptions on the weak solution and the given initial data, we
show the optimal convergence rate for the space discretization and the suboptimal rate for time discretization. Some
numerical experiments are performed to support the obtained theoretical results.
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1. Introduction

The electrodynamics of moving bodies plays a central role in many industrial and engineering processes such
as induction heating, induction hardening, electromagnetic deforming and magneto-hydrodynamics. The system is
originated by a source current that generates electromagnetic field in the surrounding space, which afterwards induces
electric currents in the conductors. For a slowly varying system, the eddy current model is a common approach to
describe the process, which simplifies Maxwell’s equations by neglecting the dielectric displacement currents. In
spite of many studies that deal with the electromagnetism of continuous media, e.g. [1, 2], there are just a few papers
dealing with the analysis of numerical methods for the eddy current problem on a multi-media system with moving
conductors.

A couple of excellent works were devoted by A. Bermúdez et al. (cf. [3, 4]), wherein the authors studied the
mathematical and numerical analysis of a transient eddy current problem on a moving domain. The authors restricted
their attention to a cylindrical symmetric domain that allowed them to state the eddy current equations in terms of
the azimuthal component defined on a two-dimensional meridian section. Moreover, in the context of a non-magnetic
system, the constant of vacuum was considered as an approximation of the magnetic permeability in the whole domain.

The article [3] provides the well-posedness of the variational system in this context. In [4], the authors proposed
a finite element method in space combined with a backward Euler time scheme for the numerical analysis of the
problem. In Theorem 9, optimal error estimates (for the magnetic induction) were obtained by assuming additional
regularity on the solution than what had been proved in the previous work. However, from a mathematical point of
view, the additional assumption about H2-regularity of the solution in time is a strong assumption.

In order to release the continuity assumption on the magnetic permeability, in the paper [5], we investigated an
electromagnetic contact problem with moving conductor wherein the material coefficients were allowed to have jumps
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at the interfaces. A time-discrete scheme was proposed based on backward Euler’s (Rothe’s) method and analyzed by
aid of the Reynolds transport theorem. This is up to now the first work proving the well-posedness of the variational
system for the setting of a jumping permeability. However, establishing error estimates still remains an open problem.
In the next work [6], we provided an enhancement of the previous paper by considering an electromagnetic multi-
media problem with moving non-magnetic conductor (i.e. constant magnetic permeability). A new time-discrete
scheme by means of the saddle-point formulation was proposed to solve numerically the corresponding variational
system. The convergence of the numerical scheme to a unique weak solution was proved. Moreover, we derived the
error estimates on the solution (associated with the time-discretization) under appropriate assumptions on the given
data, but without additional assumptions on the solution.

The present paper introduces a space-time finite element scheme combined with backward Euler’s method for the
electromagnetic problem with a moving non-magnetic conductor considered in [6]. To the best of our knowledge,
there is still a challenge to deal with finite element analysis of the saddle-point approach of the eddy current problem
with moving conductor. In order to overcome the difficulties raised by a discrete saddle-point problem, we relax the
divergence-free condition by incorporating the Coulomb gauge in the formulation. The time derivative acting on the
moving conductors leads us to a degenerate parabolic problem, and handling the terms on moving subdomains in the
sense of a space-time discretization scheme are the highlights of this contribution.

This paper is organized as follows. In the next section, we start with explaining the mathematical formulation
of the model. The well-posedness of the variational system is shown in Section 3. Then in Section 4, we propose a
space-time finite element method for solving numerically the variational problems. We prove the convergence of the
scheme to the weak solution by deriving the error estimates of this full discretization as functions of the time step τ and
the error of the orthogonal projections. Some appropriate assumptions on the given initial data and also on the weak
solution are made to obtain the error estimates for the first-order Lagrangian finite element spaces, see Theorems 4.2
and 4.3. The convergence rate of the proposed scheme is optimal for the space discretization and suboptimal with
respect to time. Some numerical results are presented in Section 5 to access the performance of the proposed scheme
as well as to support the theoretical analysis.

2. Mathematical model

We consider an electromagnetic process that takes place in an open, simply-connected bounded Lipschitz and
convex domain Ω ⊂ R3. This space is occupied by a static conductive coil Π, a moving workpiece Σ and the
surrounding air, see Figure 1. The subdomains Π and Σ both are supposed to be open, connected Lipschitz domains,
and are separate from each other during the whole time frame [0,T ]. For the reason of convenience for the finite
element analysis, the domain Ω and the fixed coil Π are also supposed to be polyhedrons. The following notations
will be frequently used throughout the paper: n denotes the outward unit normal vector, Θ := Σ ∪ Π is the union of
the conductors, Ξ := Ω \ Θ is the air subdomain and Γ := Γin ∪ Γout are the intersection of the boundaries ∂Ω and ∂Π

supposed that |Γin| > 0 and |Γout| > 0.
Let us describe the movement of the workpiece in the manner of a motion of the body Σ(0), which is a smooth

function
Φ : Σ(0) × [0,T ]→ R3

with Φt := Φ(·, t), for each fixed t ∈ [0,T ], a bijective, smooth mapping (a deformation) of Σ(0), i.e.

x 7→ Φ(x, t); Σ̃ :=
⋃

t∈[0,T ]

Σ(t) ⊂ Ω; det∇Φ(x, t) > 0, ∀(x, t) ∈ Σ(0) × [0,T ]. (1)

Here, we refer to
Σ(t) = Φ(Σ(0), t)

as the region of space occupied by Σ(0) at time t, or in other words, the place of the workpiece at time t. In order
to work with spatial description rather than material description of fields associated to the motion, we introduce the
trajectory

T := {(x, t) : x ∈ Σ(t), t ∈ [0,T ]} ,
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Figure 1: The domain Ω of the problem consisting of the workpiece Σ, the coil Π with the interfaces Γin and Γout, and the
surrounding air.

and the reference mapping
ρ : T→ Σ(0) : (x, t) 7→ Φ−1

t (x).

The spatial description of the velocity of the workpiece is defined as v(x, t) := Φ̇(ρ(x, t), t). Since the surrounding air
moves also, we can extend the velocity vector v defined on the trajectory T to the whole space-time domain Ω× [0,T ]
with the assumptions that v = 0 on the coil Π and v ∈ C1(Ω × [0,T ]). This means that the workpiece Σ is allowed to
deform, but Σ has to stay a Lipschitz domain during the movement.

In this work, we restrict our attention to non-magnetic materials occupying the subdomains, e.g. an aluminum
workpiece and a copper coil surrounded by air. In such a situation, the constant of vacuum µ0 > 0 can be considered
as a good approximation of the magnetic permeability of the materials, i.e.

µ = µ0 in Ω.

The electrical conductivity σ vanishes on the air, otherwise it is assumed to be a strictly positive constant on each
conductor, i.e.

σ(t) =


σΠ in Π

σΣ in Σ(t)
0 in Ω \ Θ(t).

The electromagnetic process can be described by the eddy current equations (the so-called magneto-quasistatic
system), which originate from Maxwell’s equations by neglecting the electric displacement D, i.e.

∇ · B = 0, (2a)
∇ × E = −∂t B, (2b)
∇ × H = J. (2c)

At the interfaces of the different materials, the electromagnetic fields may behave in different ways. The following
interface conditions constitute a perfect contact electromagnetic process

~B · n�∂Θ\Γ = 0, ~H × n�∂Θ\Γ = 0,

where ~·� denotes the jump of the field passing through the interfaces. Moreover, we impose a boundary condition on
the magnetic induction B: the homogeneous normal component, i.e.

B · n = 0 on ∂Ω.
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Since the convex-polyhedron domain Ω is open, simply-connected and bounded, the solenoidal magnetic induction
B has a unique divergence-free vector potential A ∈ H1(Ω) satisfying A × n = 0 on ∂Ω, i.e. B = ∇ × A, see [7,
Theorem 3.6 on p. 48]. Substituting this statement into Faraday’s law (2b) gives us a unique function φ ∈ H1(Ω) (up
to a constant) such that (cf. [7, Theorem 2.9])

E + ∂t A = −∇φ.

Hence, we are able to investigate the electromagnetic problem in the A − φ formulation. In the case of a moving
conductor, Ohm’s law states the relation between the current density J and the electromagnetic fields as follow

J = σ(E + v × B).

Therefore, the total current density J can be split into two parts: the source current J s = −σ∇φ and the eddy current
Je = −σ∂t A +σv × (∇× A). In the coil Π, the source current results from an external current density imposed on the
interface Γin in the direction of the normal. We denote  = J s · n and formulate the source current in the coil Π by the
following boundary value problem

∇ · (−σ∇φ) = 0 in Π × (0,T ),
−σ∇φ · n = 0 on (∂Π \ Γ) × (0,T ),
−σ∇φ · n = −  on Γin × (0,T ) ,
−σ∇φ · n =  on Γout × (0,T ) .

(3)

In order to guarantee the solvability of this problem, we require the following additional compatibility condition∫
Γ

j(s, t) ds = 0 ∀t ∈ [0,T ], (4)

where

j =

−  on Γin,

 on Γout.

In what follows, we append a characteristic function χΠ to the source current −σ∇φ to indicate the fact that the source
current exists only in the coil Π. For the extension of φ on the whole domain Ω, we refer to the model presented in
[5]. Ampère’s law (2c) together with all considerations above lead us to the following equation

σ∂t A + µ−1
0 ∇ × ∇ × A + χΠσ∇φ − σv × (∇ × A) = 0. (5)

Now, we deal with the divergence-free condition of the vector potential A. A possible approach is reformulating the
variational system of A in the sense of a saddle-point problem (see [6] for more details). Another common treatment
is incorporating the Coulomb gauge in the formulation (cf. [8, 9]), which is done by appending the following penalty
term to the left-hand side (LHS) of the relation (5)

−α∇(∇ · A),

where α > 0 plays the role of a penalty coefficient. Please note that this technique is an approximation approach,
and the value of α depends on how much stress is put on the divergence-free condition. Moreover, we impose a
homogeneous Dirichlet boundary condition on ∂Ω, which makes sense thanks to the consideration that the boundary
∂Ω is sufficiently far from the conductors. Finally, together with an initial condition at time t = 0, we derive the
following initial-boundary value problem for the vector potential A

σ∂t A + µ−1
0 ∇ × ∇ × A − α∇(∇ · A) + χΠσ∇φ − σv × (∇ × A) = 0 in Ω × (0,T ),

A = 0 on ∂Ω × (0,T ),
A(·, 0) = A0 in Θ(0).

(6)

In the next sections, we will discuss the well-posedness and the full-discretization of the problem (3)-(4)-(6).
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Remark 2.1 (Extension of A0 on the whole domain Ω). The system (6) forms a degenerate parabolic problem because
the electrical conductivity σ vanishes outside of the trajectory T. Therefore, the initial guest A0 is only given on the
conductors Θ(0), where σ is strictly positive. Throughout this paper, we assume that A0 ∈ H1(Θ(0)) satisfies A0 = 0
on Γ. Given f ∈ H−1(Ξ(0)), by solving the following boundary value problem in the air subdomain

∆u = f in Ξ(0),
u = A0 on ∂Θ(0) \ Γ,

u = 0 on ∂Ω \ Γ,

we are able to extend A0 to Ã0 defined on the whole domain Ω such that Ã0 ∈ H1
0(Ω). From now on, we identify A0

as a H1
0(Ω)-function in the sense of its extension Ã0.

3. Well-posedness

First of all, some standard functional settings are introduced for scalar fields. The corresponding bold symbols are
defined for vector or tensor fields in the same way. The Lebesgue space L2(Ω) of square-integrable fields is associated
with the inner product (·, ·)Ω and its induced norm ‖·‖L2(Ω). The Sobolev spaces H1(Ω),H1

0(Ω) and H2(Ω) are equipped
with the following norms

‖ψ‖H1(Ω) = ‖ψ‖L2(Ω) + ‖∇ψ‖L2(Ω) ,

‖ψ‖H1
0(Ω) = ‖∇ψ‖L2(Ω) ,

‖ψ‖H2(Ω) =
∑
|α|≤2

∥∥∥Dαψ
∥∥∥

L2(Ω) .

The following identity which holds true for any vector field ϕ ∈ H1
0(Ω) will be useful for further analysis

‖∇ϕ‖2L2(Ω) = ‖∇ × ϕ‖2L2(Ω) + ‖∇ · ϕ‖2L2(Ω) . (7)

We consider the following subspace of H1(Π)

Z =
{
ψ ∈ H1(Π) : (ψ, 1)Π = 0

}
,

which inherits the norm of H1(Π). The well-known Poincaré-Wirtinger inequality gives the existence of a constant
C > 0 such that ∥∥∥ψ − cψ

∥∥∥
H1(Π) ≤ C ‖∇ψ‖L2(Π) ∀ψ ∈ H1(Π), (8)

where
cψ =

1
|Π|

∫
Π

ψ(x) dx. (9)

Therefore, Z is a Hilbert space with the induced norm ‖∇ψ‖L2(Π).
Now, let us recall some Banach spaces for abstract functions. Given X be an arbitrary Banach space equipped with

the norm ‖·‖X. The spaces C([0,T ],X) and Lip([0,T ],X) consist of all continuous and Lipschitz continuous functions
u : [0,T ]→ X provided the usual norm

‖u‖C([0,T ],X) = max
0≤t≤T

‖u(t)‖X .

The Bochner spaces L2((0,T ),X) and L∞((0,T ),X) are the Banach spaces of all measurable abstract functions u :
(0,T )→ X such that

‖u‖L2((0,T ),X) :=


T∫

0

‖u(t)‖2X dt


1/2

< +∞, ‖u‖L∞((0,T ),X) := ess sup
t∈(0,T )

‖u(t)‖X < +∞.
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The Sobolev-Bochner space H1((0,T ),X) is defined as

H1((0,T ),X) =
{
u ∈ L2((0,T ),X) : ∂tu ∈ L2((0,T ),X)

}
,

with the norm
‖u‖H1((0,T ),X) = ‖u‖L2((0,T ),X) + ‖∂tu‖L2((0,T ),X) .

Please note that H1((0,T ),X) ↪→ C([0,T ],X), see [10, Lemma 7.3].
We use a . b (a & b, resp.) instead of a ≤ Cb (a ≥ Cb, resp.), where C > 0 is an arbitrary constant depending

only on the given data. The positive number ε expresses an arbitrary small constant, while Cε is an arbitrary large
constant, depending on ε.

Before going to the variational formulations, we mention a useful tool for the analysis of PDEs with time-
dependent domains. Let ω(t) be a Lipschitz moving domain which is associated with a velocity vector v being of
class C1 and f a scalar abstract function satisfying f (t) ∈ W1,1(ω(t)) and ∂t f (t) ∈ L1(ω(t)) for all t ∈ (0,T ). Then the
Reynolds transport theorem (cf. [11, p. 78]) together with a density argument implies that

d
dt

∫
ω(t)

f dx =

∫
ω(t)

∂t f dx +

∫
∂ω(t)

f v · n ds. (10)

We present also some auxiliary results for handling time-dependent boundary terms, which will be used frequently in
further analysis. Let f , g ∈ H1(ω(t)), then the Divergence theorem allows us to estimate that∫

∂ω(t)

f g(v · n) ds =

∫
ω(t)

g∇ f · v dx +

∫
ω(t)

f∇g · v dx +

∫
ω(t)

f g(∇ · v) dx

.
∫
ω(t)

|g| |∇ f | dx +

∫
ω(t)

| f | |∇g| dx +

∫
ω(t)

| f | |g| dx (11)

≤ ε ‖∇ f ‖2L2(ω(t)) + ε ‖∇g‖2L2(ω(t)) + Cε ‖ f ‖2L2(ω(t)) + Cε ‖g‖2L2(ω(t)) . (12)

When f = g, we get a Nečas-like inequality∫
∂ω(t)

f 2(v · n) ds ≤ ε ‖∇ f ‖2L2(ω(t)) + Cε ‖ f ‖2L2(ω(t)) . (13)

Please note that all constants do not depend on the time variable, and the inequalities (11-13) are still valid for vector
fields in H1(ω(t)).

For ease of reference, we list down here all assumptions used throughout the paper.

1. (AS1): the domain Ω is an open, simply-connected bounded Lipschitz and convex polyhedron; the workpiece
Σ and the polyhedral coil Π are open, connected Lipschitz subdomains and are separate from each other (see
Section 2 for more details);

2. (AS2): the magnetic permeability µ is a constant in the whole domain Ω; the electrical conductivity σ vanishes
on the air, otherwise it is a positive constant on each conductor (see Section 2 for more details);

3. (AS3): A0 ∈ H1
0(Ω) in the sense of the extension described in Remark 2.1;

4. (AS4): j ∈ Lip([0,T ],H−1/2(Γ)) and v ∈ C1(Ω × [0,T ]).

Now, we introduce the variational system corresponding to the problems (3), (4) and (6): find φ(t) ∈ Z and
A(t) ∈ H1

0(Ω) with ∂t A(t) ∈ L2(Θ(t)) such that the following identities are satisfied for any ψ ∈ Z and ϕ ∈ H1
0(Ω) and

for a.a. t ∈ (0,T )

σΠ (∇φ(t),∇ψ)Π + ( j(t), ψ)Γ = 0, (14)

6



(σ(t)∂t A(t),ϕ)Θ(t) + µ−1
0 (∇ × A(t),∇ × ϕ)Ω + α (∇ · A(t),∇ · ϕ)Ω

+ σΠ (∇φ(t),ϕ)Π − σΣ (v(t) × (∇ × A(t)),ϕ)Σ(t) = 0. (15)

Here, the duality pairing 〈 j(t), ψ〉 on H−1/2(Γ) × H1/2(Γ) can be viewed as the continuous extension of L2(Γ)-inner
product. In the next theorem, the well-posedness of the variational system (14-15) is provided, which can be achieved
by performing similar arguments presented in [5, 6].

Theorem 3.1 (Well-posedness). Let the assumptions (AS1-AS4) be fulfilled. Then the variational system (14-15) ad-
mits exactly one solution (φ, A) satisfying φ ∈ Lip([0,T ],Z) and A ∈ L∞((0,T ),H1

0(Ω)) with σ∂t A ∈ L2((0,T ),L2(Ω))
and

∥∥∥√σA
∥∥∥

L2(Θ) ∈ C([0,T ]).

The following higher interior regularity of the solution A can be obtained by following the same lines of the proof
of [12, Theorem 8.8], which involves the elliptic operator µ−1

0 ∇ × ∇ × A − α∇(∇ · A).

Corollary 3.1 (Interior regularity). Let the assumptions (AS1-AS4) be fulfilled. Then A ∈ L2((0,T ),H2(Σ′)) for any
subdomain Σ′ ⊂⊂ Ω (i.e. Σ′ ⊂ Ω).

By means of the saddle-point approach (cf. [13]), we are able to reformulate (14) in an equivalent formulation by
which the variational system reads as: find φ(t) ∈ H1(Π), β(t) ∈ R and A(t) ∈ H1

0(Ω) with ∂t A(t) ∈ L2(Θ(t)) such that
the following identities are satisfied for any ψ ∈ H1(Π), λ ∈ R and ϕ ∈ H1

0(Ω) and for a.a. t ∈ (0,T )

σΠ (∇φ(t),∇ψ)Π + ( j(t), ψ)Γ + (β(t), ψ)Π = 0, (16)
(φ(t), λ)Π = 0, (17)

(σ(t)∂t A(t),ϕ)Θ(t) + µ−1
0 (∇ × A(t),∇ × ϕ)Ω + α (∇ · A(t),∇ · ϕ)Ω

+ σΠ (∇φ(t),ϕ)Π − σΣ (v(t) × (∇ × A(t)),ϕ)Σ(t) = 0. (18)

The following satisfaction of the inf-sup condition guarantees the solvability of the saddle-point formulation (16-17),
which implies the equivalence of the equation (14) and the mixed problem (16-17).

Lemma 3.1 (Inf-sup condition). The operator d : H1(Π) × R→ R defined by

d(ψ, λ) = (ψ, λ)Π

satisfies the Ladyzhenskaya-Babuška-Brezzi condition (or the so-called inf-sup condition), i.e. there exists a constant
C > 0 such that

sup
ψ∈H1(Π), ψ,0

d(ψ, λ)
‖ψ‖H1(Π)

≥ C |λ| ∀λ ∈ R. (19)

Proof. Obviously, the inequality (19) holds true for λ = 0. For any λ ∈ R \ {0}, we set ψ = λ to have that

d(λ, λ)
‖λ‖H1(Π)

=
‖λ‖2L2(Π)

‖λ‖H1(Π)
=

√
|Π| |λ| .

Remark 3.1. The problem (3-4) admits a unique weak solution in the space Z. An equivalent variational formulation
using the Lagrangian multiplier method is represented by (16) and (17). There are also other possibilities. Let us just
mention the following one. The classical variational formulation of (3-4) reads as (14), i.e.

σΠ (∇φ(t),∇ψ)Π = − ( j(t), ψ)Γ ∀ψ ∈ H1(Π),
(1, φ(t))Π = 0.

The last formulation can be “stabilized” as follows (incorporating the term (1, φ(t))Π into the formulation)

β(u, ψ) := σΠ (∇u,∇ψ)Π + (1, u)Π (1, ψ)Π = − ( j(t), ψ)Γ ∀ψ ∈ H1(Π).
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Subtracting the last two relations from each other and setting ψ = u − φ(t), we get that

0 = σΠ ‖∇u − ∇φ(t)‖2L2(Π) +
(
(1, u − φ(t))Π

)2
+ (1, φ(t))Π (1, u − φ(t))Π = σΠ ‖∇u − ∇φ(t)‖2L2(Π) +

(
(1, u − φ(t))Π

)2 ,

which means that ∇u = ∇φ(t) and (1, u)Π = (1, φ(t))Π = 0. Invoking the Poincaré-Wirtinger inequality (8), we have
that u = φ(t) in Z. Please note that the bilinear form β is invertible. In fact, the relation

β(u, u) = σΠ ‖∇u‖2L2(Π) + ((1, u)Π)2 = 0

implies from the first term that u is a constant and the second term gives that the constant is equal to zero.

4. Space-time discretization

In this section, we propose a fully-discrete finite element scheme combined with backward Euler’s method to find
an approximation of the solution to the variational system. First of all, the coil Π and the domain Ω are subdivided
into finite sets of distinct tetrahedrons TΠ and TΩ, respectively, such that any face of a tetrahedron is either a face of
another tetrahedron or a portion of the boundary, and

Π =
⋃

K∈TΠ

K, Ω =
⋃

K∈TΩ

K, TΠ ⊂ TΩ.

These partitions are possible because the coil Π and the domain Ω are assumed to be Lipschitz polyhedrons (cf. [14]).
From now on, we denote by T the mesh of the domain Ω, which contains the triangulation of Π, and suppose that
there is a regular family of meshes {T h : h > 0}, where h denotes the mesh size. We note that the mesh of the domain
Ω does not necessarily fit the moving workpiece. This allows us to use a fixed mesh during the whole time range,
which saves the cost of a re-meshing process. In the numerical experiments, we ignore the calculation errors caused
by this ill-fitting and keep in touch with the moving workpiece by using a characteristic function, i.e.

χΣ(x) =

1 if x ∈ Σ,

0 otherwise.

Furthermore, we consider two finite element subspaces Vh of H1(Π) and Vh
0 of H1

0(Ω) such that

lim
h→0

inf
ψh∈Vh

∥∥∥ψ − ψh
∥∥∥

H1(Π) = 0, (20)

lim
h→0

inf
ϕh∈Vh

0

∥∥∥ϕ − ϕh
∥∥∥

H1
0(Ω) = 0, (21)

for any ψ ∈ H1(Π) and any ϕ ∈ H1
0(Ω). Let Ph : H1(Π) → Vh and Ph : H1

0(Ω) → Vh
0 be orthogonal projection

operators, which are associated with bilinear bounded and H1(Π)-elliptic and H1
0(Ω)-elliptic forms, respectively. For

instance, we can introduce the orthogonal projection operators Ph and Ph such that, for each φ ∈ H1(Π) and A ∈ H1
0(Ω)(

φ, ψh
)
Π

+
(
∇φ,∇ψh

)
Π

=
(
Ph φ, ψh

)
Π

+
(
∇Ph φ,∇ψh

)
Π
, (22)

µ−1
0

(
∇ × A,∇ × ϕh

)
Ω

+ α
(
∇ · A,∇ · ϕh

)
Ω

= µ−1
0

(
∇ × Ph A,∇ × ϕh

)
Ω

+ α
(
∇ · Ph A,∇ · ϕh

)
Ω

(23)

are valid for any ψh ∈ Vh and any ϕh ∈ Vh
0. Céa’s lemma [15, Theorem 2.4.1] gives us the existence of a positive

constant C such that ∥∥∥ψ − Ph ψ
∥∥∥

H1(Π) ≤ C inf
ψh∈Vh

∥∥∥ψ − ψh
∥∥∥

H1(Π) , (24)∥∥∥ϕ − Ph ϕ
∥∥∥

H1
0(Ω) ≤ C inf

ϕh∈Vh
0

∥∥∥ϕ − ϕh
∥∥∥

H1
0(Ω) . (25)
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The time interval [0,T ] is partitioned into n ∈ N equidistant subintervals with the time step τ = T
n . We denote by

{φh
i , β

h
i , Ah

i } the fully-discrete approximation of {φ, β, A} at the time-point ti = iτ, where Ah
0 is defined as the orthogonal

projection of A0 ∈ H1
0(Ω) into Vh

0, i.e.
Ah

0 = Ph A0 ∈ Vh
0 .

The following notations are introduced for any function z and any time-dependent domain ω

zi = z(ti), δzi =
zi − zi−1

τ
, ωi = ω(ti).

After time and space discretization, a fully-discrete scheme is ready to be defined. For any i = 1, 2, . . . , n, the following
problems are solved: find φh

i ∈ Vh, βh
i ∈ R and Ah

i ∈ Vh
0 such that the identities

σΠ

(
∇φh

i ,∇ψ
h
)
Π

+
(

ji, ψh
)
Γ

+
(
βh

i , ψ
h
)
Π

= 0, (26)(
φh

i , λ
h
)
Π

= 0, (27)(
σiδAh

i ,ϕ
h
)
Θi

+ µ−1
0

(
∇ × Ah

i ,∇ × ϕ
h
)
Ω

+ α
(
∇ · Ah

i ,∇ · ϕ
h
)
Ω

+ σΠ

(
∇φh

i ,ϕ
h
)
Π
− σΣ

(
vi × (∇ × Ah

i ),ϕh
)
Σi

= 0 (28)

are satisfied for any ψh ∈ Vh, λh ∈ R and ϕh ∈ Vh
0. We first solve the saddle-point problem (26-27) for any i =

0, 1, . . . , n, then we use their solution and the given Ah
i−1 to solve (28) for any i = 1, 2, . . . , n.

Remark 4.1 (Discrete inf-sup condition). If R ⊂ Vh, then we can follow the proof of Lemma 3.1 to show that the
discrete inf-sup condition is satisfied, i.e. there exists a positive constant C such that

sup
ψh∈Vh,ψh,0

d(ψh, λh)∥∥∥ψh
∥∥∥

H1(Π)

≥ C
∣∣∣λh

∣∣∣ ∀λh ∈ R. (29)

Moreover, we can set ψh = 1 ∈ Vh in (22) to get that(
φ − Ph φ, 1

)
Π

= 0 ∀φ ∈ Z,

which means that Ph φ ∈ Z∩Vh for any φ ∈ Z.

The following lemma shows the solvability of the fully-discrete variational system (26-28).

Lemma 4.1 (Solvability). Let the assumptions (AS1-AS4) be fulfilled. Moreover, assume that R ⊂ Vh. Then, there
exist a unique couple (φh

0, β
h
0) ∈ (Z∩Vh) × R and a positive constant τ0 such that for any i = 1, 2, . . . , n and any

τ < τ0, the variational system (26-28) admits a unique solution triplet
(
φh

i , β
h
i , Ah

i

)
∈ (Z∩Vh) × R × Vh

0.

Proof. Let us rewrite the variational problems (26-28) in the following forms

a(φh
i , ψ

h) + d(ψh, βh
i ) = −( ji, ψh)Γ,

d(φh
i , λ

h) = 0,

bi(Ah
i ,ϕ

h) =
1
τ

(
σi Ah

i−1,ϕ
h
)
Θi
− σΠ

(
∇φh

i ,ϕ
h
)
Π
,

where d is as in Lemma 3.1, the bilinear forms a : Vh ×Vh → R and bi : Vh
0 ×Vh

0 → R are defined by

a(φh, ψh) = σΠ

(
∇φh,∇ψh

)
Π
,

bi(Ah,ϕh) =
1
τ

(
σi Ah,ϕh

)
Θi

+ µ−1
0

(
∇ × Ah,∇ × ϕh

)
Ω

+ α
(
∇ · Ah,∇ · ϕh

)
Ω
− σΣ

(
vi × (∇ × Ah),ϕh

)
Σi
.

It is easy to see that the bilinear forms a and d are bounded. Moreover, the form a is also (Z∩Vh)-coercive
thanks to the Poincaré-Wirtinger inequality (8), and d satisfies the discrete inf-sup condition (29). We follow the

9



Brezzi theorem [13, Corollary 1.1] to get the existence of a unique solution (φh
i , β

h
i ) ∈ (Z∩Vh) ×R to (26-27) for any

i = 0, 1, . . . , n.
Regarding the bilinear form bi, we can easily show that the following inequalities hold true for any Ah,ϕh ∈ Vh

0∣∣∣bi(Ah,ϕh)
∣∣∣ . (

1
τ

+ 1
) ∥∥∥∇Ah

∥∥∥
L2(Ω)

∥∥∥∇ϕh
∥∥∥

L2(Ω) ,

bi(Ah, Ah) ≥
(

1
τ
−Cε

) ∥∥∥Ah
∥∥∥2

L2(Θi)
+ (1 − ε)

∥∥∥∇Ah
∥∥∥2

L2(Ω) .

Fixing a sufficiently small ε > 0, and then choosing τ < τ0 show that bi is a bounded and H1
0(Ω)-elliptic bilinear

form. Therefore, the Lax-Milgram lemma [16, Theorem 18.E] gives us the unique solution Ah
i to problem (28) for

any i = 1, 2, . . . , n, which concludes the proof.

Now, we perform some basic stability estimates for fully-discrete solutions.

Lemma 4.2 (Stability estimates for φh
i and βh

i ). Let the assumptions (AS1-AS4) be fulfilled. Moreover, assume that
R ⊂ Vh. Then there exists a constant C > 0 such that

(i) max
1≤l≤n

∥∥∥∇δφh
l

∥∥∥
L2(Π) + max

1≤l≤n

∣∣∣δβh
l

∣∣∣ ≤ C, (30)

(ii) max
0≤l≤n

∥∥∥∇φh
l

∥∥∥
L2(Π) + max

0≤l≤n

∣∣∣βh
l

∣∣∣ ≤ C. (31)

Proof. (i) Subtracting (26) and (27) for i = i − 1 from themselves, then setting ψh = δφh
i , λ

h = δβh
i gives that

σΠ

∥∥∥∇δφh
i

∥∥∥2
L2(Π) τ = −

(
ji − ji−1, δφ

h
i

)
Γ
.

We use the Cauchy-Schwarz and ε-Young inequalities to estimate the right-hand side (RHS) as follows∣∣∣∣( ji − ji−1, δφ
h
i

)
Γ

∣∣∣∣ (4)
=

∣∣∣∣( ji − ji−1, δφ
h
i + cδφh

i

)
Γ

∣∣∣∣
. ‖ ji − ji−1‖H−1/2(Γ)

∥∥∥∥δφh
i + cδφh

i

∥∥∥∥
H1/2(Γ)

.
∥∥∥∥δφh

i + cδφh
i

∥∥∥∥
H1(Π)

τ

(8)
. ε

∥∥∥∇δφh
i

∥∥∥2
L2(Π) τ + Cετ,

where cδφh
i

is defined as (9) when replacing ψ by δφh
i . Fixing a sufficiently small ε > 0, we get that∥∥∥∇δφh

i

∥∥∥
L2(Π) . 1.

In addition, by means of the discrete inf-sup condition (29), we are able to deduce that

∣∣∣δβh
i

∣∣∣ (29)
. sup

ψh∈Vh, ψh,0

d(ψh, δβh
i )∥∥∥ψh

∥∥∥
H1(Π)

= sup
ψh∈Vh, ψh,0

−σΠ

(
∇δφh

i ,∇ψ
h
)
Π
−

(
δ ji, ψh

)
Γ∥∥∥ψh

∥∥∥
H1(Π)

.
∥∥∥∇δφh

i

∥∥∥
L2(Π) + ‖δ ji‖H−1/2(Γ) . 1.

(ii) The desired estimate can be derived as a result of the relation (30), which completes the proof.

The stability estimate for Ah
i can be achieved by following the lines in the proof of [6, Lemma 4.3(i)].

Lemma 4.3 (Stability estimate for Ah
i ). Let the assumptions (AS1-AS4) be fulfilled. Moreover, assume that R ⊂ Vh.

Then, there exist positive constants C and τ0 such that for any τ < τ0, there holds

n∑
i=1

∥∥∥δAh
i

∥∥∥2
L2(Θi)

τ + max
1≤l≤n

∥∥∥∇Ah
l

∥∥∥2
L2(Ω) +

n∑
i=1

∥∥∥∇Ah
i − ∇Ah

i−1

∥∥∥2
L2(Ω) ≤ C. (32)
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Now, we are in the position to investigate the convergence and the error estimates for the proposed space-time
discretization. Let us introduce the following piecewise-constant and piecewise-affine in time (Rothe’s) fields and
subdomains

φ
h
n(t) = φh

i , β
h
n(t) = βh

i for t ∈ (ti−1, ti] ,

A
h
n(t) = Ah

i , Ah
n(t) = Ah

i−1, Ah
n(t) = Ah

i−1 + (t − ti−1) δAh
i for t ∈ (ti−1, ti] ,

jn(t) = ji, σn(t) = σi, vn(t) = vi, Σn(t) = Σi, Θn(t) = Θi for t ∈ (ti−1, ti]

for every i = 1, 2, . . . , n, with the initial data

φ
h
n(0) = φh

0, β
h
n(0) = βh

0, A
h
n(0) = Ah

n(0) = Ah
n(0) = Ah

0,

jn(0) = j0, σn(0) = σ0, vn(0) = v0, Σn(0) = Σ0, Θn(0) = Θ0.

The following differences between Rothe’s functions are derived from the stability estimate (32)

∥∥∥∥A
h
n − Ah

n

∥∥∥∥2

L2((0,T ),H1
0(Ω))

=

n∑
i=1

ti∫
ti−1

∥∥∥Ah
i − Ah

i−1

∥∥∥2
H1

0(Ω) dt =

n∑
i=1

∥∥∥∇Ah
i − ∇Ah

i−1

∥∥∥2
L2(Ω) τ

(32)
. τ, (33)

∥∥∥∥A
h
n − Ah

n

∥∥∥∥2

L2((0,T ),H1
0(Ω))

=

n∑
i=1

ti∫
ti−1

(ti − t)2

τ2

∥∥∥Ah
i − Ah

i−1

∥∥∥2
H1

0(Ω) dt ≤
n∑

i=1

∥∥∥∇Ah
i − ∇Ah

i−1

∥∥∥2
L2(Ω) τ

(32)
. τ. (34)

Using Rothe’s functions and domains, we rewrite the fully-discrete problems (26-28) in the continuous sense: for
any ψh ∈ Vh, λh ∈ R and ϕh ∈ Vh

0 and for all t ∈ (0,T ], it holds that

σΠ

(
∇φ

h
n(t),∇ψh

)
Π

+
(

jn(t), ψh
)
Γ

+

(
β

h
n(t), ψh

)
Π

= 0, (35)(
φ

h
n(t), λh

)
Π

= 0, (36)(
σn(t)∂t Ah

n(t),ϕh
)
Θn(t)

+ µ−1
0

(
∇ × A

h
n(t),∇ × ϕh

)
Ω

+ α
(
∇ · A

h
n(t),∇ · ϕh

)
Ω

+ σΠ

(
∇φ

h
n(t),ϕh

)
Π
− σΣ

(
vn(t) × (∇ × A

h
n(t)),ϕh

)
Σn(t)

= 0. (37)

The next two lemmas show crucial results about the stability of the proposed scheme.

Lemma 4.4. Let the assumptions (AS1-AS4) be fulfilled. Moreover, assume that R ⊂ Vh. Then there exists a positive
constant C such that for all t ∈ [0,T ], it holds that∥∥∥∥∇φh

n(t) − ∇φ(t)
∥∥∥∥2

L2(Π)
≤ C

(
τ2 +

∥∥∥∇φ(t) − ∇ Ph φ(t)
∥∥∥2

L2(Π)

)
. (38)

Proof. Subtracting (14) from (35) with ψ = ψh = φ
h
n(t) − Ph φ(t) ∈ Z∩Vh gives that

σΠ

(
∇φ

h
n(t) − ∇φ(t),∇φ

h
n(t) − ∇ Ph φ(t)

)
Π

+

(
jn(t) − j(t), φ

h
n(t) − Ph φ(t)

)
Γ

= 0.

The first term can be rearranged and estimated as(
∇φ

h
n(t) − ∇φ(t),∇φ

h
n(t) − ∇ Ph φ(t)

)
Π

=
∥∥∥∥∇φh

n(t) − ∇φ(t)
∥∥∥∥2

L2(Π)
+

(
∇φ

h
n(t) − ∇φ(t),∇φ(t) − ∇ Ph φ(t)

)
Π

≥ (1 − ε)
∥∥∥∥∇φh

n(t) − ∇φ(t)
∥∥∥∥2

L2(Π)
−Cε

∥∥∥∇φ(t) − ∇ Ph φ(t)
∥∥∥2

L2(Π) .
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Invoking the Lipschitz continuity of j, we handle the second term as follows∣∣∣∣∣( jn(t) − j(t), φ
h
n(t) − Ph φ(t)

)
Γ

∣∣∣∣∣ (4)
=

∣∣∣∣∣( jn(t) − j(t), φ
h
n(t) − Ph φ(t) + cφ

)
Γ

∣∣∣∣∣
.

∥∥∥ jn(t) − j(t)
∥∥∥

H−1/2(Γ)

∥∥∥∥φh
n(t) − Ph φ(t) + cφ

∥∥∥∥
H1/2(Γ)

.
∥∥∥∥φh

n(t) − Ph φ(t) + cφ
∥∥∥∥

H1(Π)
τ

(8)
. ε

∥∥∥∥∇φh
n(t) − ∇ Ph φ(t)

∥∥∥∥2

L2(Π)
+ Cετ

2

≤ ε
∥∥∥∥∇φh

n(t) − ∇φ(t)
∥∥∥∥2

L2(Π)
+ ε

∥∥∥∇φ(t) − ∇ Ph φ(t)
∥∥∥2

L2(Π) + Cετ
2,

where cφ is defined as (9) when considering φ
h
n(t) − Ph φ(t) instead of ψ. Therefore, fixing a sufficiently small ε > 0,

we can conclude the proof.

Lemma 4.5. Let the assumptions (AS1-AS4) be satisfied. Moreover, assume that R ⊂ Vh.

(i) There exist positive constants C and τ0 such that for any τ < τ0, the following relation holds true for all
ξ ∈ [0,T ]

∥∥∥Ah
n(ξ) − A(ξ)

∥∥∥2
L2(Θ(ξ)) +

ξ∫
0

∥∥∥∇Ah
n(t) − ∇A(t)

∥∥∥2
L2(Ω) dt ≤ C

τ +

ξ∫
0

∥∥∥∇φ(t) − ∇ Ph φ(t)
∥∥∥2

L2(Π) dt

+
∥∥∥A0 − Ph A0

∥∥∥2
L2(Ω) +

√√√√√√ ξ∫
0

∥∥∥A(t) − Ph A(t)
∥∥∥2

L2(Ω) dt +

ξ∫
0

∥∥∥∇A(t) − ∇Ph A(t)
∥∥∥2

L2(Ω) dt

 . (39)

(ii) If A ∈ H1((0,T ),H1
0(Ω)) then there exist positive constants C and τ0 such that for any τ < τ0, the following

relation holds true for all ξ ∈ [0,T ]

∥∥∥Ah
n(ξ) − A(ξ)

∥∥∥2
L2(Θ(ξ)) +

ξ∫
0

∥∥∥∇Ah
n(t) − ∇A(t)

∥∥∥2
L2(Ω) dt

≤ C

τ +

ξ∫
0

∥∥∥∇φ(t) − ∇ Ph φ(t)
∥∥∥2

L2(Π) dt +
∥∥∥A(ξ) − Ph A(ξ)

∥∥∥2
L2(Ω) +

∥∥∥A0 − Ph A0
∥∥∥2

L2(Ω)

+

ξ∫
0

∥∥∥∇A(t) − ∇Ph A(t)
∥∥∥2

L2(Ω) dt +

ξ∫
0

∥∥∥∂t A(t) − Ph ∂t A(t)
∥∥∥2

L2(Ω) dt

 . (40)

Proof. First of all, we summarize some auxiliary results which will be useful for further calculations. We denote the
lowest upper discrete time-point of t with respect to the time step τ by tn. It holds that∣∣∣∣∣∣∣∣∣

ξ∫
0

∥∥∥∂t Ah
n(t)

∥∥∥2
L2(Θn(t)) dt −

ξ∫
0

∥∥∥∂t Ah
n(t)

∥∥∥2
L2(Θ(t)) dt

∣∣∣∣∣∣∣∣∣ (10)
=

∣∣∣∣∣∣∣∣∣
ξ∫

0

tn∫
t

∫
∂Θ(η)

∣∣∣∂t Ah
n(t)

∣∣∣2 (v · n)(η) ds dη dt

∣∣∣∣∣∣∣∣∣
(11)
. τ

ξ∫
0

∥∥∥∂t Ah
n(t)

∥∥∥2
H1

0(Ω) dt
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≤

n∑
i=1

∥∥∥∇Ah
i − ∇Ah

i−1

∥∥∥2
L2(Ω)

(32)
. 1,

which implies that
ξ∫

0

∥∥∥∂t Ah
n(t)

∥∥∥2
L2(Θ(t)) dt .

ξ∫
0

∥∥∥∂t Ah
n(t)

∥∥∥2
L2(Θn(t)) dt + 1

(32)
. 1. (41)

In addition, for t ∈ (0,T ), we have that

∥∥∥Ah
n(t) − Ph A(t)

∥∥∥2
L2(Σn(t)) −

∥∥∥Ah
n(t) − Ph A(t)

∥∥∥2
L2(Σ(t))

(10)
=

tn∫
t

∫
∂Σ(η)

∣∣∣Ah
n(t) − Ph A(t)

∣∣∣2 (v · n)(η) ds dη

(11)
.

∥∥∥∇Ah
n(t) − ∇Ph A(t)

∥∥∥2
L2(Ω) τ,

which allows us to arrive at∥∥∥Ah
n(t) − Ph A(t)

∥∥∥2
L2(Σn(t)) .

∥∥∥Ah
n(t) − Ph A(t)

∥∥∥2
L2(Σ(t)) +

∥∥∥∇Ah
n(t) − ∇Ph A(t)

∥∥∥2
L2(Ω) τ. (42)

(i) We subtract (18) for ϕ = ϕh from (37), then we set ϕh = Ah
n(t) − Ph A(t) and integrate the result over the time

interval (0, ξ) ⊂ (0,T ) to get that

ξ∫
0

((
σn(t)∂t Ah

n(t), Ah
n(t) − Ph A(t)

)
Θn(t)
−

(
σ(t)∂t A(t), Ah

n(t) − Ph A(t)
)
Θ(t)

)
dt

+ µ−1
0

ξ∫
0

(
∇ × A

h
n(t) − ∇ × A(t),∇ × Ah

n(t) − ∇ × Ph A(t)
)
Ω

dt

+ α

ξ∫
0

(
∇ · A

h
n(t) − ∇ · A(t),∇ · Ah

n(t) − ∇ · Ph A(t)
)
Ω

dt + σΠ

ξ∫
0

(
∇φ

h
n(t) − ∇φ(t), Ah

n(t) − Ph A(t)
)
Π

dt

− σΣ

ξ∫
0

((
vn(t) × (∇ × A

h
n(t)), Ah

n(t) − Ph A(t)
)
Σn(t)
−

(
v(t) × (∇ × A(t)), Ah

n(t) − Ph A(t)
)
Σ(t)

)
dt = 0. (43)

We rearrange the relation (43) in the following form

ξ∫
0

(
σ(t)∂t(Ah

n(t) − A(t)), Ah
n(t) − A(t)

)
Θ(t)

dt

+ µ−1
0

ξ∫
0

∥∥∥∇ × Ah
n(t) − ∇ × A(t)

∥∥∥2
L2(Ω) dt + α

ξ∫
0

∥∥∥∇ · Ah
n(t) − ∇ · A(t)

∥∥∥2
L2(Ω) dt

= −

ξ∫
0

((
σn(t)∂t Ah

n(t), Ah
n(t) − Ph A(t)

)
Θn(t)
−

(
σ(t)∂t Ah

n(t), Ah
n(t) − Ph A(t)

)
Θ(t)

)
dt

−

ξ∫
0

(
σ(t)∂t(Ah

n(t) − A(t)), A(t) − Ph A(t)
)
Θ(t)

dt − σΠ

ξ∫
0

(
∇φ

h
n(t) − ∇φ(t), Ah

n(t) − Ph A(t)
)
Π

dt

13



− µ−1
0

ξ∫
0

(
∇ × A

h
n(t) − ∇ × Ah

n(t),∇ × Ah
n(t) − ∇ × Ph A(t)

)
Ω

dt

− µ−1
0

ξ∫
0

(
∇ × Ah

n(t) − ∇ × A(t),∇ × A(t) − ∇ × Ph A(t)
)
Ω

dt

− α

ξ∫
0

(
∇ · A

h
n(t) − ∇ · Ah

n(t),∇ · Ah
n(t) − ∇ · Ph A(t)

)
Ω

dt − α

ξ∫
0

(
∇ · Ah

n(t) − ∇ · A(t),∇ · A(t) − ∇ · Ph A(t)
)
Ω

dt

+ σΣ

ξ∫
0

((
vn(t) − v(t)

)
× (∇ × A

h
n(t)), Ah

n(t) − Ph A(t)
)
Σn(t)

dt

+ σΣ

ξ∫
0

((
v(t) × (∇ × A(t)), Ah

n(t) − Ph A(t)
)
Σn(t)
−

(
v(t) × (∇ × A(t)), Ah

n(t) − Ph A(t)
)
Σ(t)

)
dt

+ σΣ

ξ∫
0

(
v(t) × (∇ × A

h
n(t) − ∇ × A(t)), Ah

n(t) − Ph A(t)
)
Σn(t)

dt =:
10∑
i=1

S i.

The first term on the LHS can be estimated using the Reynolds transport theorem as follows

ξ∫
0

(
σ(t)∂t(Ah

n(t) − A(t)), Ah
n(t) − A(t)

)
Θ(t)

dt

(10)
=

1
2

ξ∫
0

d
dt

∫
Θ(t)

σ(t)
∣∣∣Ah

n(t) − A(t)
∣∣∣2 dx dt −

1
2

ξ∫
0

∫
∂Θ(t)

σ(t)
∣∣∣Ah

n(t) − A(t)
∣∣∣2 (v · n)(t) ds dt

(13)
&

∥∥∥Ah
n(ξ) − A(ξ)

∥∥∥2
L2(Θ(ξ)) −C

∥∥∥A0 − Ph A0
∥∥∥2

L2(Ω) − ε

ξ∫
0

∥∥∥∇Ah
n(t) − ∇A(t)

∥∥∥2
L2(Ω) dt −Cε

ξ∫
0

∥∥∥Ah
n(t) − A(t)

∥∥∥2
L2(Θ(t)) dt.

Invoking the identity (7) gives that

µ−1
0

ξ∫
0

∥∥∥∇ × Ah
n(t) − ∇ × A(t)

∥∥∥2
L2(Ω) dt+α

ξ∫
0

∥∥∥∇ · Ah
n(t) − ∇ · A(t)

∥∥∥2
L2(Ω) dt ≥ min(µ−1

0 , α)

ξ∫
0

∥∥∥∇Ah
n(t) − ∇A(t)

∥∥∥2
L2(Ω) dt.

We handle the term S 1 as follows

|S 1|
(10)
=

∣∣∣∣∣∣∣∣∣
ξ∫

0

tn∫
t

∫
∂Θ(η)

σ(η)∂t Ah
n(t) · (Ah

n(t) − Ph A(t))(v · n)(η) ds dη dt

∣∣∣∣∣∣∣∣∣
(11)
. τ

ξ∫
0

∥∥∥∂t Ah
n(t)

∥∥∥
H1(Ω)

∥∥∥Ah
n(t) − Ph A(t)

∥∥∥
H1(Ω) dt

≤ Cε

ξ∫
0

∥∥∥∥A
h
n(t) − Ah

n(t)
∥∥∥∥2

H1
0(Ω)

dt + ε

ξ∫
0

∥∥∥Ah
n(t) − Ph A(t)

∥∥∥2
H1

0(Ω) dt
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(33)
≤ Cετ + ε

ξ∫
0

∥∥∥∇Ah
n(t) − ∇A(t)

∥∥∥2
L2(Ω) dt + ε

ξ∫
0

∥∥∥∇A(t) − ∇Ph A(t)
∥∥∥2

L2(Ω) dt.

It holds that

|S 2| .

√√√√√√ ξ∫
0

∥∥∥∂t Ah
n(t) − ∂t A(t)

∥∥∥2
L2(Θ(t)) dt

√√√√√√ ξ∫
0

∥∥∥A(t) − Ph A(t)
∥∥∥2

L2(Θ(t)) dt
(41)
.

√√√√√√ ξ∫
0

∥∥∥A(t) − Ph A(t)
∥∥∥2

L2(Ω) dt.

By adding ±A(t), applying Lemma 4.4 and the Friedrichs inequality, we have the bound for the term S 3 as follows

|S 3| ≤ Cε

ξ∫
0

∥∥∥∥∇φh
n(t) − ∇φ(t)

∥∥∥∥2

L2(Π)
dt + ε

ξ∫
0

∥∥∥Ah
n(t) − Ph A(t)

∥∥∥2
L2(Π) dt

(38)
≤ Cετ

2 + Cε

ξ∫
0

∥∥∥∇φ(t) − ∇ Ph φ(t)
∥∥∥2

L2(Π) dt + ε

ξ∫
0

∥∥∥∇Ah
n(t) − ∇A(t)

∥∥∥2
L2(Ω) dt + ε

ξ∫
0

∥∥∥∇A(t) − ∇Ph A(t)
∥∥∥2

L2(Ω) dt.

The same addition trick is applied to the terms S 4 and S 6 to obtain that

|S 4| + |S 6|
(34)
≤ Cετ + ε

ξ∫
0

∥∥∥∇Ah
n(t) − ∇A(t)

∥∥∥2
L2(Ω) dt + ε

ξ∫
0

∥∥∥∇A(t) − ∇Ph A(t)
∥∥∥2

L2(Ω) dt.

Moreover, we get that

|S 5| + |S 7| ≤ ε

ξ∫
0

∥∥∥∇Ah
n(t) − ∇A(t)

∥∥∥2
L2(Ω) dt + Cε

ξ∫
0

∥∥∥∇A(t) − ∇Ph A(t)
∥∥∥2

L2(Ω) dt.

Using the Lipschitz continuity of v, the term S 8 can be estimated by the Cauchy-Schwarz and ε-Young inequalities as

|S 8| . τ

ξ∫
0

∥∥∥∥∇ × A
h
n(t)

∥∥∥∥
L2(Ω)

∥∥∥Ah
n(t) − Ph A(t)

∥∥∥
L2(Ω) dt

≤ Cετ
2

ξ∫
0

∥∥∥∥∇A
h
n(t)

∥∥∥∥2

L2(Ω)
dt + ε

ξ∫
0

∥∥∥∇Ah
n(t) − ∇Ph A(t)

∥∥∥2
L2(Ω) dt

(32)
≤ Cετ

2 + ε

ξ∫
0

∥∥∥∇Ah
n(t) − ∇A(t)

∥∥∥2
L2(Ω) dt + ε

ξ∫
0

∥∥∥∇A(t) − ∇Ph A(t)
∥∥∥2

L2(Ω) dt.

The Reynolds transport theorem is used for the term S 9 to get that

|S 9| = σΣ

∣∣∣∣∣∣∣∣∣
ξ∫

0

tn∫
t

d
dη

∫
Σ(η)

(v(t) × (∇ × A(t))) · (Ah
n(t) − Ph A(t)) dx dη dt

∣∣∣∣∣∣∣∣∣
(10)
= σΣ

∣∣∣∣∣∣∣∣∣
ξ∫

0

tn∫
t

∫
∂Σ(η)

(v(t) × (∇ × A(t))) · (Ah
n(t) − Ph A(t))(v · n)(η) ds dη dt

∣∣∣∣∣∣∣∣∣
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(11)
.

ξ∫
0

tn∫
t

‖∇ × A(t)‖H1(Σ(η))

∥∥∥Ah
n(t) − Ph A(t)

∥∥∥
H1

0(Ω) dη dt

. Cε

ξ∫
0


tn∫

t

‖∇ × A(t)‖H1(Σ̃) dη


2

dt + ε

ξ∫
0

∥∥∥∇Ah
n(t) − ∇Ph A(t)

∥∥∥2
L2(Ω) dt

≤ Cετ
2 + ε

ξ∫
0

∥∥∥∇Ah
n(t) − ∇A(t)

∥∥∥2
L2(Ω) dt + ε

ξ∫
0

∥∥∥∇A(t) − ∇Ph A(t)
∥∥∥2

L2(Ω) dt.

We recall that the subdomain Σ̃ is defined in (1). Moreover, note that in the last step we used Corollary 3.1 and that
‖∇ × A(t)‖H1(Σ̃) is independent of η in order to obtain Cετ

2. For S 10, we have the following estimate

|S 10| ≤ ε

ξ∫
0

∥∥∥∥∇A
h
n(t) − ∇A(t)

∥∥∥∥2

L2(Ω)
dt + Cε

ξ∫
0

∥∥∥Ah
n(t) − Ph A(t)

∥∥∥2
L2(Σn(t)) dt

(42)
. ε

ξ∫
0

∥∥∥∥∇A
h
n(t) − ∇A(t)

∥∥∥∥2

L2(Ω)
dt + Cε

ξ∫
0

∥∥∥Ah
n(t) − Ph A(t)

∥∥∥2
L2(Σ(t)) dt + Cετ

ξ∫
0

∥∥∥∇Ah
n(t) − ∇Ph A(t)

∥∥∥2
L2(Ω) dt

(34)
. ετ + (ε + Cετ)

ξ∫
0

∥∥∥∇Ah
n(t) − ∇A(t)

∥∥∥2
L2(Ω) dt

+ Cε

ξ∫
0

∥∥∥Ah
n(t) − A(t)

∥∥∥2
L2(Θ(t)) dt + Cε(τ + 1)

ξ∫
0

∥∥∥∇A(t) − ∇Ph A(t)
∥∥∥2

L2(Ω) dt.

Fixing a sufficiently small positive ε, then choosing a sufficient small τ, and applying a Grönwall argument, we obtain
the desired result.
(ii) The difference in comparison to (i) lies in a different handling of the term S 2, which is allowed due to the
additional assumption that ∂t A ∈ L2((0,T ),H1

0(Ω)). First, we rewrite this term by using the Reynolds transport
theorem as follows

|S 2| =

∣∣∣∣∣∣∣∣∣
ξ∫

0

∫
Θ(t)

∂t

(
σ(t)(Ah

n(t) − A(t)) · (A(t) − Ph A(t))
)

dx dt −

ξ∫
0

∫
Θ(t)

σ(t)(Ah
n(t) − A(t)) · ∂t

(
A(t) − Ph A(t)

)
dx dt

∣∣∣∣∣∣∣∣∣
(10)
=

∣∣∣∣∣∣∣∣∣
ξ∫

0

d
dt

∫
Θ(t)

σ(t)(Ah
n(t) − A(t)) · (A(t) − Ph A(t)) dx dt

−

ξ∫
0

∫
∂Θ(t)

σ(t)(Ah
n(t) − A(t)) · (A(t) − Ph A(t))(v · n)(t) ds dt

−

ξ∫
0

∫
Θ(t)

σ(t)(Ah
n(t) − A(t)) · ∂t

(
A(t) − Ph A(t)

)
dx dt

∣∣∣∣∣∣∣∣∣ .
Then, we can get the following estimate

|S 2|
(12)
. ε

∥∥∥Ah
n(ξ) − A(ξ)

∥∥∥2
L2(Θ(ξ)) + Cε

∥∥∥A(ξ) − Ph A(ξ)
∥∥∥2

L2(Ω) +
∥∥∥A0 − Ph A0

∥∥∥2
L2(Ω) + ε

ξ∫
0

∥∥∥∇Ah
n(t) − ∇A(t)

∥∥∥2
L2(Ω) dt
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+

ξ∫
0

∥∥∥Ah
n(t) − A(t)

∥∥∥2
L2(Θ(t)) dt + Cε

ξ∫
0

∥∥∥∇A(t) − ∇Ph A(t)
∥∥∥2

L2(Ω) dt +

ξ∫
0

∥∥∥∂t A(t) − Ph ∂t A(t)
∥∥∥2

L2(Ω) dt.

The rest of proof follows the same lines as in part (i).

The next theorem shows the convergence of the space-time discretization scheme. It is an immediate consequence
of the limit transitions (20-21), Céa’s lemma (24-25), Lemma 4.4 and Lemma 4.5(i).

Theorem 4.1 (Convergence). Let the assumptions (AS1-AS4) be fulfilled. Moreover, assume that R ⊂ Vh. Then the
following convergences hold true

φ
h
n → φ in L2((0,T ),Z),

Ah
n → A, A

h
n → A in L2((0,T ),H1

0(Ω)).

For an instance, now we consider the lowest order of Lagrangian family finite elements to show explicitly the
convergence rate of our proposed scheme. The finite element spaces are now given by

Vh =
{
ψh ∈ C(Π) : ψh

∣∣∣
K ∈ P1 for all K ∈ T h

Π

}
,

Vh
0 =

{
ϕh ∈ C(Ω) : ϕh

∣∣∣
∂Ω

= 0, ϕh
∣∣∣
K ∈ (P1)3 for all K ∈ T h

}
,

where P1 is the space of all first-order polynomials. Please note that R ⊂ Vh. Let vi (1 ≤ i ≤ 4) be the vertices of a
tetrahedron K and ψ ∈ C(Π),ϕ ∈ C(Ω), then the vertex degrees of freedom on K are respectively determined by

Mv(ψ) = {ψ(vi), 1 ≤ i ≤ 4} , Mv(ϕ) =
{
ϕ j(vi), 1 ≤ i ≤ 4, 1 ≤ j ≤ 3

}
.

One can easily see that those finite element spaces are unisolvent, H1(Π) and H1
0(Ω) conforming, respectively. On the

other hand, the famous Sobolev embedding theorem in R3 (cf. [17, Theorem 3.5]) states that Hs+1(Ω) ↪→ C(Ω) if
s > 1

2 . Therefore, for any ψ ∈ Hs+1(Π) and ϕ ∈ Hp+1(Ω) (s, p > 1
2 ), we are able to define interpolation operators πh

and πh by requiring that
Mv(ψ − πhψ) = Mv(ϕ − πhϕ) = {0} .

Then, [17, Theorem 5.48] gives the existence of constants C > 0 independent of h, ψ and ϕ such that

‖ψ − πhψ‖H1(Π) ≤ Chs ‖ψ‖Hs+1(Π) , (44)

‖ϕ − πhϕ‖H1
0(Ω) ≤ Chp ‖ϕ‖Hp+1(Ω) , (45)

for any ψ ∈ Hs+1(Π),ϕ ∈ Hp+1(Ω) with 1
2 < s, p ≤ 1. Combining Céa’s lemma (24-25), Lemmas 4.4 and 4.5, and the

relations (44-45) together, we obtain the following error estimates for the first-order Lagrangian finite elements.

Theorem 4.2 (Error estimate on φ). Let s ∈
(

1
2 , 1

]
and the assumptions (AS1-AS4) be satisfied. In addition, we

assume that φ ∈ Lip([0,T ],Z) ∩ C([0,T ],Hs+1(Π)). Then there exists a constant C > 0 such that for any t ∈ [0,T ],
the following error estimate holds true ∥∥∥∥∇φh

n(t) − ∇φ(t)
∥∥∥∥2

L2(Π)
≤ C

(
τ2 + h2s

)
. (46)

Theorem 4.3 (Error estimates on A). Let p ∈
(

1
2 , 1

]
, q ∈

(
1
2 , 1

]
and the assumptions of Theorem 4.2 be fulfilled.

(i) Suppose that A0 ∈ H1
0(Ω) ∩ Hq+1(Ω) and the weak solution A ∈ L2((0,T ),H1

0(Ω) ∩ Hp+1(Ω)), then there exist
positive constants C and τ0 such that for any τ < τ0 and for all ξ ∈ [0,T ], it holds that

∥∥∥Ah
n(ξ) − A(ξ)

∥∥∥2
L2(Θ(ξ)) +

ξ∫
0

∥∥∥∇Ah
n(t) − ∇A(t)

∥∥∥2
L2(Ω) dt ≤ C(τ + hp). (47)
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(ii) Suppose that A0 ∈ H1
0(Ω) ∩ Hq+1(Ω) and the weak solution A ∈ H1((0,T ),H1

0(Ω) ∩ Hp+1(Ω)), then there exist
positive constants C and τ0 such that for any τ < τ0 and for all ξ ∈ [0,T ], it holds that

∥∥∥Ah
n(ξ) − A(ξ)

∥∥∥2
L2(Θ(ξ)) +

ξ∫
0

∥∥∥∇Ah
n(t) − ∇A(t)

∥∥∥2
L2(Ω) dt ≤ C(τ + hmin{2s,2p,2q}). (48)

Please note that in the special case that p = q = s = 1, we get the convergence rate O(
√
τ + h) of the proposed

space-time discretization scheme.

5. Numerical results

In this section, we perform some numerical experiments with the penalty coefficient α = µ−1
0 to evaluate the error of

the proposed space-time discretization scheme when h decreases. In all experiments, the domain Ω is considered as a
unit cube, which contains a cylindrical aluminum workpiece Σ with radius r = 0.08 and height h = 0.3. In Section 5.1,
we neglect the coil Π and the source current j, and we consider two experiments with an exact solution A. Afterwards,
in Section 5.2, we perform a numerical simulation, where a copper coil Π is included in the setting. The constant
permeability of vacuum is µ0 = 4πE-07, whilst the electrical conductivity σΣ = 3.5E7 (see [18]) and σΠ = 5.96E7 (see
[19]). In addition, the following assumptions are made: the final time T = 0.5, and the movement of the workpiece is
defined by the velocity vector v = [0, 0, 1]T along the z-axis. The numerical scheme is implemented in the software
package FreeFEM [20] using the first-order Lagrangian finite elements.

5.1. Experiments with exact solution
In order to focus on the error of the moving-related quantity A, we simplify our investigated model by neglecting

the coil Π and the source current j. The exact solutions for the vector potential A are given by

Aex1 = (1 + t2)

y2 − z2

z2 − x2

x2 − y2

 , Aex2 = exp(2t)

exp(y) sin(z)
exp(z) sin(x)
exp(x) sin(y)

 .
An appropriate function f , an initial guest A0 and a non-homogeneous Dirichlet boundary condition (derived from the
exact solution) are added to the initial-boundary value problem (6). We use the norm in the space L2((0,T ),H1

0(Ω)) to

calculate the error between the fully-discrete solution A
h
n and the exact solution A, i.e.

EA =

T∫
0

∥∥∥∥∇A
h
n(t) − ∇A(t)

∥∥∥∥2

L2(Ω)
dt.

In order to validate the convergence rate of the numerical scheme, we fix a time step τ = 2−8 to calculate the error
with respect to the mesh size h. The errors shown in Figure 2 are corresponding to different uniform meshes when
dividing each edge of the domain Ω into N equidistant intervals, where N = 5, 10, 15, 20, 25, 30, 35 and 40.

We note that two exact solutions are smooth in the time and space variables. Therefore, a convergence rate EA =

O(h2) should be obtained as a consequence of Theorem 4.3 and the relation (34). Indeed, the obtained convergence
rates (the slope of the corresponding linear regression lines) are in accordance with the predicted order of convergence.

5.2. Numerical simulation
Now, we simulate an industrial electromagnetic process based on numerical simulations performed in [21, 6]. A

demonstration of the mesh of the domain is depicted in Figure 3, where an external current density  = 5E-6 is pushed
into the coil Π through the interface Γin. At time t = 0, we initiate the value of the vector potential A0 = 0.

We calculate a reference solution in order to evaluate the convergence rate of the proposed scheme without know-
ing the exact solution. The domain Ω is partitioned into 649286 tetrahedrons by choosing N = 20 equidistant intervals
on each edge and the time step is τ = 2−8. The reference current density ∇φre f and the reference magnetic induction
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(b) Second experiment

Figure 2: Convergence rate with respect to h for the experiments on a logarithmic scale.

Figure 3: The mesh of the domain Ω at t = 0.
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(a) Current density ∇φre f (b) Magnetic induction Bre f at t = 0.25 (c) Magnetic induction Bre f at t = 0.5

Figure 4: Reference solution for the numerical simulation at different time points.

Bre f at two different time points are visualized by the software package MEDIT [22] on Figure 4. Then, we involve
some discretizations of the domain with N = 3, 4, 5, 6, 7, 8, 9, 10 to assess the error corresponding to h. The following
relative errors are used for this setting to calculate the errors between the fully-discrete solution and the reference one

Ẽφ =

∣∣∣∣∣∥∥∥∥∇φh
n

∥∥∥∥
L2(Π)

−
∥∥∥∇φre f

∥∥∥
L2(Π)

∣∣∣∣∣∥∥∥∇φre f

∥∥∥
L2(Π)

, ẼA =

∣∣∣∣∣∥∥∥∥∇A
h
n

∥∥∥∥
L2((0,T ),L2(Ω))

−
∥∥∥∇Are f

∥∥∥
L2((0,T ),L2(Ω))

∣∣∣∣∣∥∥∥∇Are f

∥∥∥
L2((0,T ),L2(Ω))

.

Please note that the convergence rate O(h) should be obtained for both relative errors. However, since these
meshes are not uniform, the relative errors on φ and A shown in Figure 5 are with respect to N, and the corresponding
regression lines present the convergence rate O(N−2). This result again confirms the convergence of the proposed
scheme with respect to the space discretization.

6. Conclusion

In this paper, we have proposed a fully-discrete finite element scheme combined with the backward Euler method
for a multi-component electromagnetic problem with moving non-magnetic workpiece. The workpiece is kept at a safe
distance from the coil and the external boundary of the domain Ω. The convergence of the numerical scheme has been
proved in the sense of the error of orthogonal interpolation operators and the time step. We have established the error
of the proposed scheme for the first-order Lagrangian finite elements, and we have also performed some numerical
experiments. These experiments confirm the convergence of the scheme with respect to the space discretization.

In the future, we would like to deal with a finite element analysis of the saddle-point formulation for this elec-
tromagnetic problem with a moving non-magnetic conductor. Another research question is whether the suboptimal
convergence order in time can be improved.
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