
A first-principles reassessment of the Fe-N phase diagram
in the low-nitrogen limit

Sam De Waelea,b,∗, Kurt Lejaegherea, Elke Leunisc, Lode Duprezc, Stefaan
Cotteniera,b,∗∗

aCenter for Molecular Modeling, Ghent University. Technologiepark 903, 9052 Zwijnaarde,
Belgium

bDepartment of Electrical Energy, Metals, Mechanical Constructions and Systems, Ghent
University. Technologiepark 913, 9052 Zwijnaarde, Belgium
cOCAS NV. Technologiepark 935, 9052 Zwijnaarde, Belgium

Abstract

Nitriding of steels has been widely used for almost a century. However, insight
in two important precipitating phases for low concentration through-thickness
nitriding is still lacking, hindering further development of the process. Due to
their metastable nature, manufacturing large homogeneous samples of Fe4N and
Fe16N2 is very challenging. Consequently, measuring thermodynamic properties,
such as heat capacity and free energy, has proven difficult at best. In this work,
we have calculated those thermodynamic properties using density-functional
theory (DFT) for Fe4N, Fe16N2 and ferrite with nitrogen in solid solution. This
information is a necessary prerequisite to improve the accuracy of larger-scale
modeling approaches of iron nitrides. We used the free energies to construct
the temperature/concentration phase diagram for low nitrogen concentrations
from 0K to 865K. Both the range of metastability for Fe16N2 and the nitrogen
solvus confirm the experimental data. On the other hand, it was concluded
that the experimental Curie temperature for Fe16N2 is severely underestimated
because of the thermodynamic instability above 400K.
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1. Introduction

Nitrogen is present in all steels as a residual element. In some cases, nitrogen
is even added intentionally as an alloying element. Nitriding is a gaseous ther-
mochemical treatment that is widely used to improve the surface properties of
parts and components made in forging and tool steel.[1, 2, 3, 4] Indeed, during
nitriding, a compound layer at the surface and a diffusion zone underneath are
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formed. In contrast, through-thickness nitriding for improvement of bulk prop-
erties is rarely considered. By selecting the appropriate nitriding conditions,
the formation of a compound layer at the surface can be avoided and, for pure
α−Fe or for ferritic steels with no nitride forming elements present, the absorbed
nitrogen will be in solid solution during nitriding. If the cooling is fast enough,
the nitrogen will stay in solid solution up to room temperature, resulting in a
solid solution strengthening of 50 MPa per 0.01wt% of added nitrogen.[5] For
low nitrogen concentrations, slow cooling can produce the bulk precipitation of
Fe4N or Fe16N2.[6]

The knowledge of the thermodynamic stability and nucleation rate of precip-
itates or phases is essential to fully understand the thermal and mechanical
properties of the manufactured steel. With respect to these aspects, the Fe-C
system is relatively well studied, but such information is not generally available
for the Fe-N system, due to the metastability of the Fe-N phases or the un-
availability of the phases in pure form.[7] Because experimental data on phase
equilibria in the Fe-N system are often limited to narrow temperature ranges, a
computational approach offers a complementary alternative.

Thermodynamic properties such as the heat capacity and the thermal expan-
sion are essential to describe the iron nitrides in large-scale approaches, such as
phase field models,[8] but they require the knowledge of free energies for each
phase. Previous derivations of the free energy for Fe4N were based on solvus
lines in the phase diagram[9] or the cluster variation method (CVM) combined
with the Debye-Grüneisen model.[10] In contrast to such (semi-)empirical, using
density-functional theory (DFT) provides a non-empirical approach for model-
ing the iron nitrides.[11, 12] This avoids the process of extrapolating phase
stability from narrow temperature ranges and provides insight into the relative
stability of Fe with N in solid solution (Fe[N]), Fe4N and Fe16N2 from 1000K
down to 0K. On the other hand, the complexity and size of crystal structures
that are feasible to tackle with DFT calculations are limited. Consequently,
this work is restricted to the line compounds Fe4N and Fe16N2 and does not
take into account the disorder associated with possible off stoichiometries that
are experimentally observed.[13, 14] To capture said off-stoichiometric disorder,
a dedicated approach, such as the Gorsky-Bragg-Williams method,[? ] as em-
ployed by Kooi et al.,[15] the cluster variation method used by Pekelharing et
al.,[16][17] the use of semi quasi random structures[18] or the cluster expansion
model[19] would be necessary.

To obtain the free energies for Fe and iron nitrides, all relevant contributions
should be taken into account: electronic, vibrational, magnetic and configu-
rational. The electronic free energy is obtained using finite-electron temper-
ature DFT,[20] the quasiharmonic approximation is used to compute the vi-
brational free energy and a rescaled Monte Carlo approach is applied for the
magnetic excitations.[21, 22] The free energies can subsequently be used to eval-
uate the phase equilibria between the various phases, yielding the tempera-
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ture/composition phase diagram of Fe4N, Fe16N2 and bcc Fe[N] for N concen-
trations below 1 at.%.

2. Methodology

The free energy is determined for bcc iron (Fe), iron with N in solid solution
(Fe[N]), Fe4N and Fe16N2. The iron nitride Fe16N2 is ferromagnetially ordered
and has the space group I4/mmm.[23] The nitrogen atoms occupy the regular
octahedral interstitial positions (0.0, 0.0, 0.0) and (0.5, 0.5, 0.5) in a distorted
bcc iron lattice [Fig. 1a], which is the 1b Wyckoff position. This regular order-
ing of the nitrogen atoms causes a macroscopic tetragonal distortion. Fe4N is
a ferromagnetic material as well, but in contrast to Fe16N2 it has a cubic crys-
tallography with space group Pm 3m.[24] The iron atoms form a face-centered
cubic sublattice, with the nitrogen atom occupying the (0.5, 0.5, 0.5) 1b Wyckoff
position [Fig. 1b].

(a) The crystallo-
graphic unit cell of
Fe16N2.

(b) The crystallo-
graphic unit cell of
Fe4N.

(c) A nitrogen impurity in
a bcc iron lattice. It occu-
pies an octahedral interstitial
position. The two nearest
iron neighbors and the nitro-
gen atom are aligned, which
causes a local tetragonal dis-
tortion.

Figure 1: Crystallography of the three considered Fe-N phases with the Fe atoms shown in
red and the N atoms in green.

To completely describe the equilibria between these phases, the defect free en-
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ergy of nitrogen in solid solution is needed as well. As an impurity in body-
centered iron, nitrogen forms an interstitial defect in an octahedral configuration
[Fig. 1c].[25] In this position, the nitrogen impurity aligns with its nearest iron
neighbors. This causes a local tetragonal distortion, where especially the aligned
iron atoms undergo a large displacement from their original bcc position. For
every Fe host atom, there are 3 interstitial octahedral sites.

To determine the volume-and temperature-dependent Helmholtz free energy F
for every phase, the electronic, vibrational and magnetic excitations are deter-
mined. For bcc Fe with N in solid solution, the configurational contribution as
a function of the N concentration c must be taken into account as well. The
common assumption is that these contributions are all adiabatically decoupled,
i.e. F (V, T, c) can be written as:[26]

F (V, T, c) =Fel(V, T ) + Fvib(V, T )

+Fmag(V, T ) + Fconf (T, c),
(1)

where Fel, Fvib, Fmag and Fconf are the electronic, vibrational, magnetic and
configurational contributions, respectively. For the Fe[N]/Fe4N and Fe[N]/Fe16N2

phase equilibria, the nitrogen concentrations in iron are below 1 at.%.[27] Con-
sequently, Fconf can be calculated from the configurational entropy for a dilute
solution:[28]

Fconf (T, c) = −Tkb [c− c ln(c) + c ln(g)] , (2)

where kb is the Boltzman constant, c is the nitrogen concentration and g = 3 the
number of interstitial sites per host atom. Including all contributions eventually
allows the derivation of the equilibrium volume V0(T )at a given pressure P and
temperature T :

∂F (V, T )

∂V
= −P, (3)

which ultimately yields the free energy under (P, T ) conditions.

2.1. Electronic Free Energy
The electronic contribution Fel(V, T ) is obtained from a set of DFT calculations
at different volumes and electron temperatures.[20] After an initial optimization
of the atomic positions and volume, the total energy is calculated for volumes
ranging from 94 % to 106 % of the initial equilibrium volume and for elec-
tron temperatures between 2K to 1000K. Following the approach proposed by
Grabowski et al.,[29] the electronic free energy is separated into two contribu-
tions:

Fel(V, T ) = E0(V ) + F̃el(V, T ). (4)
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The different contributions to Fel(V, T ) are subsequently parametrized into an
analytical form, which facilitates the derivation of entropy and heat capacity.
The energies for the different volumes at the lowest temperature (T = 2K) are
used to fit the 0K volume-dependent behavior E0(V ) to a Birch-Murnaghan
equation of state.[30] This determines the equilibrium volume, internal energy,
bulk modulus and the derivative of the bulk modulus with respect to the pres-
sure. For the temperature dependence one uses

F̃el(V, T ) =
1

2
Tkb

{
3∑
i=1

(αi + V βi)T
i

}

×
∫
dε
[
f(T, ε) ln f(T, ε)

+ (1 − f(T, ε)) ln(1 − f(T, ε))
]
,

(5)

which is based on the general electronic entropy [31]

F̃el(V, T ) ≈ −1

2
TSel(V, T ) (6)

and

Sel(V, T ) = −kb
∫
dε Nel(V, T, ε)[f(T, ε) ln f(T, ε)

+ (1 − f(T, ε)) ln(1 − f(T, ε))]

(7)

The function f is the level occupation described by the Fermi-Dirac distribu-
tion. The electronic density of states Nel is replaced by the energy-independent
average

Nel(V, T ) =

3∑
i=1

(αi + V βi)T
i. (8)

Here, αi and βi are six fitting parameters that fully describe the temperature-
dependent part of Fel and the temperature-induced volume dependence. The
linear parametrization in volume combined with the third-order polynomial
parametrization in temperature produces a maximum residual error of well be-
low 0.1 meV/atom.

All calculations of Fel were performed with the Vienna Ab Initio Simulation
Package (VASP), [31, 32] using VASP 5.4 recommended PAW potentials.[33, 34]
For the Fe atoms, the PAW potential with 8 valence electrons was used ([Ar]
3d6 4s2), while for N the potential with 5 valence electrons was used ([He] 2p3

2s2). These potentials were recently shown to provide a similar precision as
all-electron calculations. [35] The Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional was used in most cases,[36] but the local density approx-
imation (LDA) as parametrized by Perdew and Zunger[37] was, where useful,
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evaluated as well. The Brillouin zone integration grid always contained at least
27 648/Natoms ~k-points, withNatoms the number of atoms in the unit cell. Fermi
smearing, with the smearing parameter σ determined by the required temper-
ature, was used for the electronic self-consistent field cycle with a convergence
criterion of 10−9 eV. A conjugate-gradient algorithm was used for the geometric
optimization with a convergence criterion of 10−8 eV. An energy cutoff of 500 eV
was used for the plane wave basis sets, with the grid for fast Fourier transform
able to capture reciprocal vectors twice as large as the vectors included in the
basis set. The input files for all the calculations used in this work can be found
in the supplementary information.

2.2. Vibrational free energy of Fe[N], Fe4N and Fe16N2

The lattice vibrations are included using the quasiharmonic approximation. To
account for thermal expansion, phonon spectra are computed for volumes rele-
vant to the thermal expansion; i.e. ranging from 99 % to 106 % of the equilib-
rium volume. The volume-dependent frequencies ωi(V ) thus obtained are used
to calculate the vibrational free energy:[26]

Fvib(V, T ) =
1

3N

3N∑
i=1

{
1

2
h̄ωi(V )

+ kBT ln
[
1 − e−h̄ωi(V )/kBT

]}
.

(9)

Here, N is the number of sampled points in reciprocal space multiplied by the
number of atoms in the unit cell.

The phonon spectra were constructed using the direct force constant method.[38]
Various supercells with atomic displacements of 0.01 Å were set up using the
phonopy software package.[39] The forces in response to the displacements were
calculated with DFT using VASP. Compared to the calculations of Fel an addi-
tional support grid was used for the augmentation charges. Moreover, instead
of Fermi smearing, first-order Methfessel-Paxton smearing with σ = 0.2 eV was
used for electronic convergence.[40] The simulated supercells were made large
enough so that the minimum distance between periodic images was at least
11 Å. The diagonalization of the dynamical matrix was performed with the
phonopy software again, after which each frequency from the different phonon
spectra was fitted to a quadratic function of volume. This use of a second-order
polynomial is sufficient to limit the maximum residual error to 0.01 THz for all
frequencies. Even for the smallest frequencies, this results in an error below 1 %
for the vibrational free energy.
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2.3. Magnetic contribution
Directly calculating magnetic free energies with DFT is not yet possible. In-
stead, utilizing an atom-centered model has proven to be a successful approxi-
mation for iron and its alloys. More specifically, the Heisenberg model will be
used as magnetic Hamiltonian:[41, 42, 43, 44, 45, 46, 47, 22]

H = −1

2

∑
i 6=j

Jij ~Mi · ~Mj (10)

The sum in Eq. 10 is taken for all atom pairs in the solid, with Mi the lo-
cal magnetic moments and Jij the Heisenberg exchange coupling parameters.
The former are easily obtained from DFT calculations, but the latter require a
somewhat more involved derivation. There are multiple ways of obtaining the
coupling parameters. In this work, a DFT calculation based on the Korringa-
Kohn-Rostoker Green’s function method[48, 49] was performed using the SPR-
KKR software.[50, 51] This allows direct access to the Jij using the formulation
of Liechtenstein et al.[52]

To determine Fmag(T ) from Eq. 10, classical Metropolis Monte Carlo (cMC)
calculations were performed with the ALPS software.[53, 54, 55] To do this, the
sum in equation 10 is truncated at a threshold for the Jij . This truncation
was determined by evaluating the mean-field Curie temperature as a function
of the threshold value. The mean-field Curie temperature is equal to the largest
eigenvalue of the coupling parameters matrix J with[56]

Jα,β =
∑
βi

Jα,βi
~Mα · ~Mβi

(11)

Here, α and β are atoms in the crystallographic unit cell and βi are all the
periodic images of the atom β for which a Jij has been calculated.

The use of cMC, in which the magnetizations in Eq. 10 are not quantized,
only approximates the correct quantum mechanical result. However, perform-
ing Quantum Monte Carlo (QMC)[57] for frustrated systems is generally in-
feasible because of the negative sign problem.[58] To approximate the correct
heat capacity, the value derived from the cMC calculations via the fluctuation-
dissipation theorem[59, 60] was transformed according to the scaling proposed
by Körmann et al.:[21]

CV,QMC(t, S)

CV,cMC(t, S)
≈
(

2ts/t

exp(ts/t) − exp(−ts/t)

)
. (12)

Here, t is the normalized temperature T/TC,cMC , where the cMC Curie tem-
perature is determined by the peak in the heat capacity CV,cMC , and

1/ts ≈ 0.54S + 0.54, (13)
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where S is the localized spin. For a system with more than one atom in its unit
cell, the average S is used. Finally, the rescaled heat capacity was numerically
integrated to obtain the entropy and free energy. The latter was fitted to a
function of the form

Fmag(T ) = A exp(B/T) + CT 4, (14)

where A,B and C are fitting parameters. This ensures interpolation errors
smaller than 0.1 meV/atom. Fmag is 0 at 0K because the energy of the ferro-
magnetic ordering is contained in the DFT calculations.

The most significant contributions to Fmag are found around the Curie temper-
ature, where there is a peak in heat capacity. To minimize the error at these
conditions, the Jij are therefore recalculated at the volume associated with TC ,
obtained from Eq. 3. This was done in an iterative way, until a self-consistent
TC was reached (Fig 2). For numerical stability, the derivative of Fmag with
respect to volume was not included in the optimization.

Figure 2: Flowchart indicating the different calculations performed to obtain the free energy.
Green indicates a DFT calculation, red an ALPS simulation, blue indicates use of the phonopy
software and purple is for standard post-processing.

Magnetic coupling parameters were obtained with spin-polarized scalar-relativistic
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DFT calculations in SPR-KKR 6.3 using the PBE functional. The atomic-
sphere approximation was applied. The number of E-mesh points was 40 for all
calculations with a minimum E-value of −0.2 Ry. The Brillouin zone integration
was performed on a 57 × 57 × 57 grid for bulk Fe, a 36 × 36 × 36 grid for Fe4N
and 25 × 25 × 25 grid for Fe16N2 . The structure constants Rmax and Gmax
were set to 2.9 a.u. and 3.3 a.u.−1 respectively. The electronic self-consistent
field cycle had a convergence criterion of 10−5 Ry.

The ALPS classical Monte Carlo calculations were performed with cluster up-
dates for temperatures ranging from 2K to 1000K or higher, with the maximum
temperature always exceeding TC by at least 10 % to accurately determine the
maximum in the magnetic heat capacity. Periodic boundary conditions were
used with a unit cell size of 1000 atoms for Fe, 2560 for Fe4N and 2250 for
Fe16N2. The N atoms were never accounted for in the Heisenberg Hamilto-
nian, because their magnetic moments, and hence the coupling parameters with
neighbors, were negligible. For initial thermalization, 30 000 MC steps were
needed. The production phases contained 1 500 000 MC steps for all materials.
The input files for all the calculations used in this work can be found in the
supplementary information.

The methodology described in this section does not take into account explicit an-
harmonic contributions or electron-phonon coupling. These were deemed to be
of negligible magnitude, because our temperature range of interest lies below half
of the melting temperature for the materials that were researched.(grabowski,hickel)
The magnon-phonon coupling contributions were not taken into account either.
Based on the phonon mode softening for iron at 773 K, their size was estimated
to be 1 − 2 meVatom at the most for our temperature range of interest.

3. Results and Discussion

Because of their limited temperature range of stability and the inability to man-
ufacture isolated specimens, there is very little thermodynamic data available
for the Fe4N and Fe16N2 compounds, especially for the latter. Apart from free
energies and heat capacities (Sec. 3.1), we have therefore also calculated struc-
tural properties, thermal expansion (Sec.3.2) and bulk moduli (Sec. 3.3), which
we have validated with the limited available experimental data where possi-
ble. The magnetic contribution to the heat capacity is evaluated separately in
Sec. 3.4 and the defect free energy of the N interstitial is discussed in Sec. 3.5.
Finally, all the calculated free energies are combined into the phase diagram
(Sec. 3.6)

3.1. Free energies and heat capacities
The calculated free energies and heat capacities are shown in Fig. 3 for all three
bulk phases at their equilibrium volume at zero pressure. The vibrational, elec-
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(a) Free energy of Fe (b) Free energy of Fe4N (c) Free energy Fe16N2

(d) Heat capacity of Fe (e) Heat capacity of Fe4N (f) Heat capacity of Fe16N2

Figure 3: (Color online) The free energies F [top row, (a)-(c)] and isobaric heat capacities
CP [bottom row, (d)-(f)] of the bulk phases Fe, Fe4N and Fe16N2 from 0 to 1000K. The
vibrational contributions within the quasiharmonic approximation (QHA), the electronic con-
tributions (elec) and the magnetic contributions (magn) are shown incrementally. For iron,
the free energy is compared to the one experimentally derived by Chen et al.[62] and the heat
capacity is compared to the one recommended by Desai.[63] Inset in a: The difference between
the total calculated free energy and the experimentally derived free energy.

tronic and magnetic contributions are plotted separately to indicate their size.
The equilibrium volumes at zero pressure are obtained from minimizing the
free energy for the entire temperature range of 0 − 1000K. This temperature
interval was chosen because it is the most relevant for nitiding ferritic steels. [61]

For bulk Fe, ample experimental data are available over its entire range of stabil-
ity for the isobaric heat capacity CP . To assess the accuracy of the DFT-derived
free energy, it is compared to the data derived from experimental phase equilib-
ria and thermochemical properties.[62] These experimental and our DFT free
energies are set equal at room temperature (298K). The accuracy of the DFT
prediction is very good, with a difference of less than 0.1 meV/atom up to 750K.
This confirms the correctness of the methodology, which was previously used
to obtain the various contributions to the free energy for Fe and Fe3C.[21, 22]
The excellenct accuracy is also the main argument for utilizing the same ap-
proach for Fe4N and Fe16N2. As can be seen in Fig. 3a, for the free energy of
ferrite a somewhat more significant discrepancy starts to occur beyond 850K,
leading to a difference in F of 6 meV/atom between theory and experiment at
1000K. This is because the quasiharmonic approximation often overestimates
anharmonic contributions to the free energy, which typically become important
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Figure 4: (Color online) DFT-calculated volumetric thermal expansion coefficients of Fe
(red), Fe4N (blue) and Fe16N2 (green). For iron, the experimental data from Nix and MacNair
enable a comparison for almost the entire temperature interval.[65]. For Fe4N, there is only an
average expansion coefficient between 293 and 773K available. At all temperatures, however,
the DFT-derived expansion coefficient for Fe4N constitutes a severe underestimation.

at about half of the melting temperature.[64] For the phase equilibria with Fe4N
and Fe16N2, temperatures above 850K are not relevant, and the overestimation
of the anharmonic contributions poses no problem. In case of the heat capac-
ity of Fe, comparing experimental data[63] with calculated results shows a very
good correspondence up to 800K (Fig. 3d). For higher temperatures, towards
the Curie temperature TC, where the transition between the ferromagnetic and
the paramagnetic state occurs, the heat capacity is somewhat underestimated.

For all three phases, the contribution of the electronic entropy to the free en-
ergy is the smallest. For Fe, it amounts to a contribution of 4 meV/atom at
750K, which is nevertheless much larger than the inaccuracy of 0.1 meV/atom
at that temperature. This shows the importance of taking all three excitations
into account for all materials. For Fe4N the magnetic contribution to the heat
capacity and free energy are larger than for bulk Fe. In contrast, Fe16N2 has
a smaller magnetic heat capacity because this material is predicted to have the
highest Curie temperature.

3.2. Thermal expansion
The (volumetric) thermal expansion coefficient is defined as

αV =
1

V

(
∂V

∂T

)
P

. (15)

It can be calculated from the derived equilibrium volumes over sufficiently small
temperature intervals (10K), using finite differences. In Fig. 4 this calculated
coefficient is shown for Fe, Fe4N and Fe16N2 as a function of temperature.

The DFT expansion coefficient of bulk Fe compares very well with experimen-
tal data, certainly considering the typical error of 0.7×10−5 K−1 for expansion
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coefficients derived with QHA.[66] The slight bump in the experimental coeffi-
cient that is not accounted for in the DFT result, is considered to stem from the
volume dependence of the magnetic heat capacity,[65] which is not taken into
account in the calculations. In the case of Fe4N, an average expansion coefficient
was derived experimentally from XRD measurements on powder samples.[14] It
is seen that the DFT-obtained expansion severely underestimates that experi-
mental one. The argument made for bulk Fe, that the volume dependence of the
magnetic heat capacity is not accounted for in the QHA method as employed in
this work, can be made for Fe4N as well. This might be even more pronounced
since it has a lower Curie temperature; TC = 750K compared to 1044K for
iron.[67] However, the error with respect to the experiment is so large that it
cannot be solely explained by such a minor magnetic effect, which are usually
secondary to lattice vibrational effects.

If the deviation cannot be attributed to the thermodynamic approach, it must
be rooted in the calculated energies and forces. For DFT calculations, the
exchange-correlation functional is the main source of deviations from experi-
ment. In this case, the main cause of the large deviation of the PBE functional
in predicting the thermal expansion of Fe4N is most likely the material’s unique
magneto-volume behavior. A large increase in magnetization occurs close to the
equilibrium volume, which PBE is unable to describe well.[68], This volume-
dependent magnetic effect can be explained by the covalent nature of the Fe-N
bond. As the bond length shortens, the overlap of the 2p orbitals of the N
atom with the 4s orbitals of the nearest-neighbor Fe atoms increases, causing
more electron transfer to the N atom.[69] This in turn reduces the screening
effect of the 4s shell on the 3d Fe electrons, causing electron transfer from the
3d orbitals of the second nearest-neighbor Fe atoms to those of the Fe atoms
nearest to the N atom. Ultimately, compression thus results in a lower magnetic
moment on the nearest-neighbor Fe atoms that bond with the N atom.[70] It
moreover causes the Fe4N to be very rigid in the direction of the Fe-N bond,
i.e. the < 100 > direction.[71]

In an effort to verify that the functional is indeed the source of the discrep-
ancy of the Fe4N thermal expansion coefficient with respect to experiment, the
PBE exchange-correlation functional was swapped for the LDA one. The latter
functional differs from PBE in that it positions the LDA equilibrium volume of
Fe4N in the low-magnetization regime rather than at the crossing between low
and high magnetization.[68] As can be seen in Fig. 5, the LDA functional does
produce a much larger thermal expansion compared to the PBE functional. As
expected, the experimental value lies between the LDA and PBE predictions,
although the difference between them is much larger than for metals without
any covalent character.[72] Possibly, inaccuracies might be present in the exper-
imental measurement because it was taken on a powder sample created from a
deposited layer, whereas the calculated expansion is valid for an infinitely large
bulk. Regardless, the large impact of the exchange-correlation functional on
the calculated expansion coefficient remains a methodological problem. At this
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Figure 5: (Color online) A comparison between LDA (dotted lines) and PBE (solid lines)
for the calculation of the bulk moduli B (red) and volumetric thermal expansion coefficients
α (blue). For the bulk modulus, a large range of experimental values exists (dashed red
bar).[73, 74] For the thermal expansion, the value determined by Somers et al. is an average
for the temperature range 293 to 773K.[14]

point, it is not clear whether there is another functional or another (feasible)
level of theory that can provide a better description of both the covalent nature
of the Fe-N bond, the unique magnetic behavior of Fe4N and the Fe16N2 and
bulk Fe phases.

3.3. Bulk modulus
The temperature-dependent bulk modulus, or inverse of the compressibility,

B(T ) = V0

(
∂2F

∂V 2

)
T

∣∣∣∣∣
V=V0

(16)

can be directly obtained from the above results and the derivatives of the ana-
lytic expressions for the various contributions to the free energy (Eqs. 5-9). In
Fig 6 the bulk modulus is shown for all three phases. As far as Fe is concerned,
the calculated bulk modulus at 0K is too high by about 15 GPa compared
to experimental data. This is in contrast to the typical trend for PBE, which
usually underestimates bulk moduli by about 5%.[75] On the other hand, it is
typical for magnetic materials to buck this trend, as a generalized-gradient ap-
proximation (GGA) such as PBE tends to overestimate the magnetic energy.[76]
The slope of the Fe bulk modulus is reproduced quite well, with the experimen-
tal one being overall slightly less steep compared to the DFT result. Much
fewer data are available on bulk moduli for Fe4N and Fe16N2, because these
phases usually only exist as precipitates or as a deposited layer. In fact, there
are no experimental data for Fe16N2 whatsoever and the experimentally deter-
mined bulk moduli that are available for Fe4N have a large spread (Fig. 6). A
possible reason for these large experimental deviations, is the difference in mea-
surement methodology. It varies from nanoindentation to high-pressure X-ray
diffraction (XRD) measurements, both on powdered samples and on bulk-like
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Figure 6: DFT-calculated (line) and experimental (symbol) bulk moduli B for Fe, Fe4N and
Fe16N2. For Fe, a combination of data from different authors is made to cover the temperature
range from 0 to 1000K.[78, 79, 80, 81] A wide range of experimental data are available for
Fe4N, all at room temperature (red symbols).[73, 74, 77]

samples.[74, 73, 77] The combination with the difficulty of obtaining pure sam-
ples makes it very cumbersome to compare different experimental procedures.
The calculated Fe4N bulk modulus falls in the range of the experimental values.
The strong dependence on temperature moreover confirms the volume-sensitive
behavior of Fe4N compared to the other two materials. Just as was the case for
the thermal expansion (Sec. 3.2), this volume-sensitive behavior causes a large
discrepancy between the LDA and PBE functionals (Fig. 5).

3.4. Magnetic properties of the bulk phases
The magnetic contribution to the free energy is significant, even at tempera-
tures well below the Curie temperature (Fig. 3), and thus requires a high degree
of accuracy. It was found that this high accuracy can be reached through the
rescaling procedure of Körmann et al., provided the Curie temperature is pre-
dicted accurately.[21] For this reason, effective nearest-neighbor magnetic ex-
change coefficients Jij are sometimes fit to the experimental Curie temperature
to obtain the magnetic heat capacity.[22, 18] This work, however, aims to use
a methodology also able to predict the Curie temperature. Therefore, the Jij
were determined from first principles and the Curie temperature was identified
as the temperature at which the resulting heat capacity reaches its peak.[82]
The quality of the predicted Curie temperature is then a measure for the accu-
racy of the magnetic free energy.

For Fe and Fe4N, the DFT-derived Curie temperature (Fig 7) corresponds very
well with the experimental one. It is also evident that the disappearance of the
magnetization is a poor measure to determine the transition to the paramagnetic
state; this is an experimental issue as well.[83] The finite size of the simulation
cells is responsible for some remanant magnetization above the critical temper-
ature. For Fe16N2 the experimental Curie temperature is much lower than the
one derived from the simulations. The experimental magnetization goes to zero
when 800K is reached, but with the exchange coefficients and magnetization de-
rived from DFT, a critical temperature of about 1300K is found. In an extensive
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evaluation of different methods to obtain the Curie temperature for Fe16N2, Ke
et al. concluded that the experimental value is most likely significantly too low.
[84] Instead, it is proposed that Fe16N2 has a higher Curie temperature than
the one experimentally derived and also higher than the one found for Fe. For
this reason, unfilled symbols are used to show the experimental results for the
magnetization of Fe16N2 in Fig. 7.
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(a) Fe

(b) Fe4N

(c) Fe16N2

Figure 7: (Color online) Calculated magnetization (M/M0) and magnetic contribution Cmagn
to the heat capacity for Fe, Fe4N and Fe16N2. Experimentally measured magnetizations and
subsequently derived Curie temperatures are included for all three phases (black).[85, 67,
86] The experimental data for the magnetization of Fe16N2 are shown in unfilled circles to
emphasize their problematic nature (see text). To compare the experimental magnetizations
with those derived from the classical Monte Carlo (cMC) simulations, both are normalized to
their respective magnetizations at 0K. For the heat capacity, both the direct result from the
cMC simulations (blue) and the rescaled result (rMC),(red) are presented, the latter serving
as approximation for the quantum Monte Carlo result.
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3.5. Interstitial nitrogen defect
The defect free energy of interstitial nitrogen is obtained using the supercell
method. In this approach, the crystallographic unit cell of the bulk material
is multiplied and a defect is inserted. In the case of the nitrogen interstitial,
a N atom is inserted in the bulk Fe supercell on an octahedral position (see
Fig. 1c). The local distortion caused by the defect is captured by optimizing all
atomic positions. It is debatable whether the volume and shape of the defect
supercell should be optimized as well. On the one hand, maintaining the bulk
geometry helps to isolate the defect from its periodic images, as it cuts out long-
range elastic interactions. However, this imposes a stress on the supercell which
depends on the N concentration. On the other hand, if one wishes to remove
those stresses by allowing full optimization of the shape and size of the unit cell,
a larger computational investment might be necessary. Both approaches were
evaluated for different supercell sizes. The energy of solution Usol is obtained
by subtracting the DFT-obtained total energy of the defect-free supercell and
the isolated N2 molecule from the total energy of the supercell with the defect.
In Fig. 8 the dependence of Usol on the used supercell size is shown. It shows
that the constant-pressure (stress-free) and constant-volume approach converge
towards a common limit, ultimately yielding the same defect energy as supercell
size is increased. Using a 250-atom supercell for either method a precision of
the calculation of about 10 meV/defect can be achieved for Usol. The 250-atom
Usol = 0.133 eV of the constant-volume approach was used in the remainder of
this work, because that approach converges somewhat more rapidly.

Insight in the phase equilibrium between Fe4N, Fe16N2 and Fe[N] (sec. 3.6)
requires accounting for the entropy of the defect as well. In Fig. 9 the con-
figurational contribution is shown to be largest, but both the vibrational and
the electronic free energy have to be taken into account as well. The electronic
part can be obtained in a similar way as for bulk materials. For the vibrational
contribution, full phonon spectra are calculated for the supercells containing the
defect and QHA is used. Because the presence of the N atom in the Fe matrix
breaks most of the symmetry, a large number of force calculations is then nec-
essary to obtain the phonon spectra. Alternatively, the less expensive partial
Hessian method can be used, which only requires the frequencies of the N atom
in a fixed Fe matrix. The three frequencies obtained can be used to apply a
simplified form of Eq. 9. From Fig. 9 it can be seen the differences between
feasible supercell sizes are still quite large. An uncertainty of 0.2 eV/defect re-
mains for a 54-atom cell, which is as large as for the partial Hessian method
that is also not sufficiently precise. This large uncertainty is not surprising; it
is the same order of magnitude as for Usol (see Fig. 8). Ultimately, by using
a highly converged Usol 250-atom and the vibrational and electronic entropies
from a 128-atom supercell, one expects a remaining uncertainty of 10 meV/atom
for the vibrational contribution. Combined with the uncertainty for 10K (Usol),
this results in a total uncertainty of 20to30 meV/atom.
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Figure 8: (Color online) Convergence of the N interstitial defect energy at 0K as a function
of inverse supercell size. The absolute value of the defect energy is with reference to the N2

gaseous state: Fesolid + 1
2
N2 → Fe[N],solid. Inset: The convergence for the larger supercells in

more detail. A residual uncertainty of 10 meV/defect remains (blue rectangle).

Figure 9: (Color online) A comparison of the different methods to obtain the finite-
temperature energetic contributions for N in solid solution in Fe. The configurational part,
shown here for a typical concentration of 0.1 at.% is always the largest, but both the electronic
and vibrational free energies cannot be neglected. In comparison with the 128-atom super-
cell, the simple partial Hessian approach (see text) yields frequencies that are overestimated,
whereas a 54-atom supercell underestimates the frequencies.
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3.6. Phase equilibria
With the free energies of Fe, Fe4N, Fe16N2 and Fe[N], all information is available
to predict their phase equilibria, resolving the experimental uncertainties that
have hindered insight and further development of the Fe-N system. The question
of the (meta)stability of Fe16N2, for example, is still a contemporary topic.[87]
The driving force ∆F for the formation of Fe16N2 from Fe4N and Fe[N] is

∆F (T ) = FFe16N2
(T ) − 2 − 18clim

1 − 5clim
FFe4N(T ) − 8

1 − 5clim
FFe(T ), (17)

if one supposes the transformation takes place in the bulk of a large environment
of Fe with interstitial N present in equilibrium concentration clim (see further).
The free energy difference can be obtained from the calculated free energies at
equilibrium volumes V0 in this work and is presented in Fig. 10. We find that
Fe16N2 is stable at low temperatures (∆F < 0) and decomposition becomes
energetically favorable above 400K (∆F > 0). This is consistent with the ex-
perimental finding that decomposition starts between 470K and 520K. The
experimentally higher decomposition temperature is explained by the required
activation energy for N diffusion.[88, 84] In experiment too, there is an indica-
tion that Fe16N2 becomes thermodynamically unstable between 400−450K, i.e.
before decomposition occurs. The temperature-dependent change in c/a-ratio,
measured very precisely by Widenmeyer et al.,[88] shows a sharp rise starting
from 400 − 450K (Fig. 10). Widenmeyer et al. proposed that this stems from
a loss of order of the N atoms on the interstitial sublattice of Fe16N2, thus
suggesting a transition to a disordered Fe8N phase. It is possible to obtain
a temperature-dependent c/a−ratio from our DFT results via the calculated
volume-dependent c/a−ratio and the temperature-dependent equilibrium vol-
ume derived with QHA. As shown in Fig. 10, the QHA c/a−ratio is practically
invariant with temperature, which strengthens the argument that the experi-
mentally observed variation is caused by loss of N ordering, as the N-atoms were
kept ordered on their sublattice in the calculations. It also sheds a new light
on the experimentally derived Curie temperature for Fe16N2.[89] The measured
drop in magnetization becomes more pronounced from 400K onward (Fig. 7),
the point where Fe16N2 becomes thermally unstable according to the DFT re-
sult. Consequently, the magnetizations measured above 400K, and the derived
Curie temperature, should be associated with the disordered Fe8N structure.

To complete the phase diagram for Fe[N], Fe4N and Fe16N2, the concentration
limit of solubility clim(T ) can be derived from the defect free energy of the N
interstitial Fdef , the free energy of Fe, the free energy of Fe4N and the free
energy of Fe16N2:

4FFe(T ) + Fdef (T, clim(T )) = FFe4N(T ). (18)

16FFe(T ) + 2Fdef (T, clim(T )) = FFe16N2
(T ). (19)
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Figure 10: (Color online) Left axis (blue): from the DFT calculations, it can be concluded
that Fe16N2 becomes thermodynamically unstable with respect to dissociation into Fe4N
and bulk Fe (solid line) above 400K. Right axis (red): a comparison of the experimental
c/a ratio of Fe16N2 (circles)[88] with the one derived via the quasiharmonic approximation
(dashed line). The sharp increase starting at 400-450Kmeasured in experiment is not observed
computationally (see text for interpretation).

The final phase diagram, with all three phase equilibria, is presented in Fig. 11.
The computationally derived solubility limit of N in bulk Fe is compared to
the experimental data assembled by Wriedt et al.[27]. In the case of the solvus,
good correspondence with experimental data is achieved by using the defect free
energy from the 128-atom supercell. The large discrepancy with the 54-atom
thus shows the importance of using this larger supercell. For the phase bound-
ary between Fe16N2 and its dissociation in Fe4N and bulk Fe, no experimental
data are available, but the accuracy is expected to be very high. As discussed in
Sec. 3.1, the free energy for Fe is very accurate below half of its melting temper-
ature. Because of the similarity of Fe4N and Fe16N2 and the correct calculation
of the Curie temperatures, the same is expected for these bulk phases.

Fe16N2

Fe4N

Fe
[N]

Figure 11: (Color online) The DFT-obtained phase diagram of Fe[N], Fe4N and Fe16N2.
Experimental data for the limit of solubility of N in Fe are included for comparison (circles).[27]
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4. Conclusion

Despite the industrial importance of nitriding for the post-treatment of steel,
there is still a lack of understanding with respect to the properties of the gov-
erning Fe-N phases. In this work, we established the thermodynamic behavior
of Fe16N2, Fe4N and Fe with N in solid solution and used it to elucidate the
Fe-N phase diagram in the low-nitrogen limit (see Fig. 10). Phase equilibria
were determined using density-functional theory, which avoids the need for any
experimental input. This is particularly useful for Fe4N and Fe16N, for which
large homogeneous samples are not experimentally available. Vibrational contri-
butions to the free energy were derived with the quasiharmonic approximation,
while the magnetic free energy was calculated using Monte Carlo simulations
based on a Heisenberg model. Several potential sources of numerical errors were
identified in the process, leading in most cases to limited errors. The largest
error bar originates from the supercell size used to model the free energy of
interstitial nitrogen; this error is about 14 − 20 meV/defect at 0K using a 128-
atom supercell.

Using our calculations, we were able to determine the free energy, heat capacity,
thermal expansion and bulk modulus of Fe, Fe4N and Fe16N2 as a function of
temperature. While experimental data are available for Fe which allowed us to
check the validity of our first-principles approach, these quantities are mostly
not available for the Fe4N and Fe16N2 phases, as these materials are experimen-
tally hard to manufacture in bulk. Only for the thermal expansion coefficient of
Fe4N, a strong underestimation of the experimental result was found. A com-
parison of the LDA and PBE exchange-correlation functional revealed that the
unique coupling between magnetism and crystal volume exacerbates the impact
of functional inadequacies. A better description of the volume dependence of
Fe4N therefore requires the development of improved exchange-correlation func-
tionals, which are able to capture both the covalent and magnetic characteristics
correctly. This is in linen with the conclusion from Blancá et al.[68] Further-
more, both the calculation of phonon-magnon coupling contributions for Fe4N
and Fe16N2 and explicit anharmonicity for the nitrogen defect could be valuable
additions to the calculated free energies.

Based on DFT-calculated free energies, the phase diagram of Fe[N],Fe4N and
Fe16N2 was constructed, yielding an accurate representation of the nitrogen
solvus and providing a closer view on the stability of Fe16N2. We find Fe16N2 to
be thermodynamically stable at low temperatures and to decompose into Fe4N
and Fe around 400K. Experimental dissociation happens above 470K, with
the difference attributed to the required activation energy for nitrogen mobility.
In addition, we note that the experimentally established Curie temperature for
Fe16N2 cannot be attributed to the pure Fe16N2 phase, but is affected by the
experimentally observed loss of nitrogen order between 400 and 450K. This
is also supported by a comparison between experimental measurements of the
c/a-ratio as a function of temperature and our quasiharmonic DFT results.
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Our results fill in a long-standing gap in the knowledge on the Fe-N system. The
predicted free energies, heat capacities, equilibrium volumes and bulk moduli
can now be used in larger-scale approaches, such as phase field models.[8] These
approaches can aid in describing precipitation and transformation in the Fe-N
system from a more macroscopic point of view. This is essential to increase
the applicability of nitriding and lays the foundations to understand ternary
nitrogen-containing compounds.

Acknowledgments

Sam De Waele and Stefaan Cottenier acknowledge financial support from OCAS
NV by an OCAS–endowed PhD position and by an OCAS–endowed chair at
Ghent University, respectively. This work moreover benefited from the Research
Foundation Flanders (FWO) through the personal postdoctoral fellowship of
Kurt Lejaeghere and [project Nr. G0E0116N]. The computational resources and
services used in this work were provided by the VSC (Flemish Supercomputer
Center), funded by the Research Foundation Flanders (FWO) and the Flemish
Government – department EWI.

[1] G. Miyamoto, Y. Tomio, H. Aota, K. Oh-ishi, K. Hono, and T. Furuhara,
Materials Science and Technology 27, 742 (2011).

[2] M. Somers (Chennai, India, 2013).

[3] O. Singh, H. K. Malik, R. P. Dahiya, and P. K. Kulriya, Journal of Alloys
and Compounds 710, 253 (2017).

[4] W. Dal’Maz Silva, J. Dulcy, J. Ghanbaja, A. Redjaïmia, G. Michel,
S. Thibault, and T. Belmonte, Materials Science and Engineering: A 693,
225 (2017).

[5] X. C. Xiong, Élaboration et genèse des microstructures dans les "aciers"
fer-azote (Vandoeuvre-les-Nancy, INPL, 2008).

[6] L. C. Gontijo, R. Machado, E. J. Miola, L. C. Casteletti, and P. A. P.
Nascente, Surface and Coatings Technology 183, 10 (2004).

[7] H. Göhring, A. Leineweber, and E. J. Mittemeijer, Metallurgical and Ma-
terials Transactions A 46, 3612 (2015).

[8] H. Liu, Y. Gao, J. Z. Liu, Y. M. Zhu, Y. Wang, and J. F. Nie, Acta
Materialia 61, 453 (2013).

[9] H. Göhring, O. Fabrichnaya, A. Leineweber, and E. J. Mittemeijer, Met-
allurgical and Materials Transactions A 47, 6173 (2016).

[10] S. Shang and A. J. Böttger, Acta Materialia 53, 255 (2005).

22

http://dx.doi.org/ 10.1179/1743284710Y.0000000014
http://dx.doi.org/10.1016/j.jallcom.2017.03.097
http://dx.doi.org/10.1016/j.jallcom.2017.03.097
http://dx.doi.org/ 10.1016/j.msea.2017.03.077
http://dx.doi.org/ 10.1016/j.msea.2017.03.077
http://www.theses.fr/2008INPL079N
http://www.theses.fr/2008INPL079N
http://dx.doi.org/10.1016/j.surfcoat.2003.06.026
http://dx.doi.org/10.1007/s11661-015-2982-5
http://dx.doi.org/10.1007/s11661-015-2982-5
http://dx.doi.org/10.1016/j.actamat.2012.09.044
http://dx.doi.org/10.1016/j.actamat.2012.09.044
http://dx.doi.org/10.1007/s11661-016-3731-0
http://dx.doi.org/10.1007/s11661-016-3731-0
http://dx.doi.org/10.1016/j.actamat.2004.09.009


[11] P. Hohenberg and W. Kohn, Physical Review 136, B864 (1964).

[12] W. Kohn and L. Sham, Physical Review 140, 1133 (1965).

[13] H. Grabke, Berichte der Bunsengesellschaft für physikalische Chemie 73,
596 (1969).

[14] M. a. J. Somers, N. M. v. d. Pers, D. Schalkoord, and E. J. Mittemeijer,
Metallurgical Transactions A 20, 1533 (1989).

[15] B. J. Kooi, M. A. J. Somers, and E. J. Mittemeijer, Metallurgical and
Materials Transactions A 27, 1063 (1996).

[16] M. I. Pekelharing, A. J. Böttger, and E. J. Mittemeijer, Philosophical
Magazine 83, 1775 (2003).

[17] M. I. Pekelharing and A. J. Böttger, Computational Materials Science 45,
561 (2009).

[18] F. Körmann, Y. Ikeda, B. Grabowski, and M. H. F. Sluiter, npj Compu-
tational Materials 3, 36 (2017).

[19] G. Bonny, N. Castin, C. Domain, P. Olsson, B. Verreyken, M. I. Pascuet,
and D. Terentyev, Philosophical Magazine 0, 1 (2016).

[20] N. D. Mermin, Physical Review 137, A1441 (1965).

[21] F. Körmann, A. Dick, T. Hickel, and J. Neugebauer, Physical Review B
81, 134425 (2010).

[22] A. Dick, F. Körmann, T. Hickel, and J. Neugebauer, Physical Review B
84, 125101 (2011).

[23] K. H. Jack, Journal of Alloys and Compounds 222, 160 (1995).

[24] K. H. Jack, Acta Crystallographica 3, 392 (1950).

[25] C. Domain, C. S. Becquart, and J. Foct, Physical Review B 69, 144112
(2004).

[26] D. C. Wallace, Thermodynamics of Crystals (Courier Corporation, 1998).

[27] H. A. Wriedt, N. A. Gokcen, and R. H. Nafziger, Bulletin of Alloy Phase
Diagrams 8, 355 (1987).

[28] H. V. Keer, Principles of the Solid State (New Age International, 1993).

[29] B. Grabowski, P. Söderlind, T. Hickel, and J. Neugebauer, Physical Review
B 84, 214107 (2011).

[30] F. Birch, Physical Review 71, 809 (1947).

23

http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1002/bbpc.19690730617
http://dx.doi.org/10.1002/bbpc.19690730617
http://dx.doi.org/10.1007/BF02665509
http://dx.doi.org/10.1007/BF02649775
http://dx.doi.org/10.1007/BF02649775
http://dx.doi.org/10.1080/1478643031000097115
http://dx.doi.org/10.1080/1478643031000097115
http://dx.doi.org/10.1016/j.commatsci.2008.11.014
http://dx.doi.org/10.1016/j.commatsci.2008.11.014
http://dx.doi.org/10.1038/s41524-017-0037-8
http://dx.doi.org/10.1038/s41524-017-0037-8
http://dx.doi.org/ 10.1080/14786435.2016.1258123
http://dx.doi.org/10.1103/PhysRev.137.A1441
http://dx.doi.org/ 10.1103/PhysRevB.81.134425
http://dx.doi.org/ 10.1103/PhysRevB.81.134425
http://dx.doi.org/ 10.1103/PhysRevB.84.125101
http://dx.doi.org/ 10.1103/PhysRevB.84.125101
http://dx.doi.org/10.1016/0925-8388(94)04901-7
http://dx.doi.org/10.1107/S0365110X50001075
http://dx.doi.org/10.1103/PhysRevB.69.144112
http://dx.doi.org/10.1103/PhysRevB.69.144112
http://dx.doi.org/10.1007/BF02869273
http://dx.doi.org/10.1007/BF02869273
http://dx.doi.org/10.1103/PhysRevB.84.214107
http://dx.doi.org/10.1103/PhysRevB.84.214107
http://dx.doi.org/10.1103/PhysRev.71.809


[31] G. Kresse and J. Furthmüller, Computational Materials Science 6, 15
(1996).

[32] G. Kresse and J. Furthmüller, Physical Review B 54, 11169 (1996).

[33] G. Kresse and D. Joubert, Physical Review B 59, 1758 (1999).

[34] G. Kresse, M. Marsman, and J. Furthmüller, “VASP the GUIDE,” (2015).

[35] K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum,
D. Caliste, I. E. Castelli, S. J. Clark, A. D. Corso, S. d. Gironcoli,
T. Deutsch, J. K. Dewhurst, I. D. Marco, C. Draxl, M. Dułak, O. Eriks-
son, J. A. Flores-Livas, K. F. Garrity, L. Genovese, P. Giannozzi, M. Gi-
antomassi, S. Goedecker, X. Gonze, O. Grånäs, E. K. U. Gross, A. Gulans,
F. Gygi, D. R. Hamann, P. J. Hasnip, N. a. W. Holzwarth, D. Iuşan,
D. B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçük-
benli, Y. O. Kvashnin, I. L. M. Locht, S. Lubeck, M. Marsman, N. Marzari,
U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C. J. Pickard, W. Poel-
mans, M. I. J. Probert, K. Refson, M. Richter, G.-M. Rignanese, S. Saha,
M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström,
A. Tkatchenko, M. Torrent, D. Vanderbilt, M. J. v. Setten, V. V. Spey-
broeck, J. M. Wills, J. R. Yates, G.-X. Zhang, and S. Cottenier, Science
351, aad3000 (2016).

[36] J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters 77,
3865 (1996).

[37] J. P. Perdew and A. Zunger, Physical Review B 23, 5048 (1981).

[38] K. Kunc and R. M. Martin, Physical Review Letters 48, 406 (1982).

[39] A. Togo and I. Tanaka, Scripta Materialia 108, 1 (2015).

[40] M. Methfessel and A. T. Paxton, Physical Review B 40, 3616 (1989).

[41] N. M. Rosengaard and B. Johansson, Physical Review B 55, 14975 (1997).

[42] M. Pajda, J. Kudrnovský, I. Turek, V. Drchal, and P. Bruno, Physical
Review B 64, 174402 (2001).

[43] M. Ležaić, P. Mavropoulos, and S. Blügel, Applied Physics Letters 90,
082504 (2007).

[44] A. V. Ruban, S. Khmelevskyi, P. Mohn, and B. Johansson, Physical Re-
view B 75, 054402 (2007).

[45] G. Y. Gao, K. L. Yao, E. Şaşıoğlu, L. M. Sandratskii, Z. L. Liu, and J. L.
Jiang, Physical Review B 75, 174442 (2007).

[46] F. Körmann, A. Dick, B. Grabowski, B. Hallstedt, T. Hickel, and J. Neuge-
bauer, Physical Review B 78, 033102 (2008).

24

http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html
http://dx.doi.org/10.1126/science.aad3000
http://dx.doi.org/10.1126/science.aad3000
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevLett.48.406
http://dx.doi.org/10.1103/PhysRevB.40.3616
http://dx.doi.org/10.1103/PhysRevB.55.14975
http://dx.doi.org/ 10.1103/PhysRevB.64.174402
http://dx.doi.org/ 10.1103/PhysRevB.64.174402
http://dx.doi.org/10.1063/1.2710181
http://dx.doi.org/10.1063/1.2710181
http://dx.doi.org/ 10.1103/PhysRevB.75.054402
http://dx.doi.org/ 10.1103/PhysRevB.75.054402
http://dx.doi.org/ 10.1103/PhysRevB.75.174442
http://dx.doi.org/ 10.1103/PhysRevB.78.033102


[47] F. Körmann, A. Dick, T. Hickel, and J. Neugebauer, Physical Review B
83, 165114 (2011).

[48] J. Korringa, Physica 13, 392 (1947).

[49] W. Kohn and N. Rostoker, Physical Review 94, 1111 (1954).

[50] H. Ebert et al., “The Munich SPR-KKR package,” .

[51] H. Ebert, D. Ködderitzsch, and J. Minár, Reports on Progress in Physics
74, 096501 (2011).

[52] A. I. Liechtenstein, M. I. Katsnelson, and V. A. Gubanov, Journal of
Physics F: Metal Physics 14, L125 (1984).

[53] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, The Journal of Chemical Physics 21, 1087 (1953).

[54] A. F. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs,
L. Gamper, E. Gull, S. Gürtler, A. Honecker, R. Igarashi, M. Körner,
A. Kozhevnikov, A. Läuchli, S. R. Manmana, M. Matsumoto, I. P. Mc-
Culloch, F. Michel, R. M. Noack, G. Pawłowski, L. Pollet, T. Pruschke,
U. Schollwöck, S. Todo, S. Trebst, M. Troyer, P. Werner, and S. Wessel,
Journal of Magnetism and Magnetic Materials 310, 1187 (2007).

[55] B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gam-
per, J. Gukelberger, E. Gull, S. Guertler, A Hehn, R. Igarashi, S. V. Isakov,
D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawłowski, J. D.
Picon, L Pollet, E. Santos, V. W. Scarola, U. Schollwöck, C. Silva, B. Surer,
S. Todo, S. Trebst, M. Troyer, M. L. Wall, P Werner, and S. Wessel, Jour-
nal of Statistical Mechanics: Theory and Experiment 2011, P05001 (2011).

[56] P. W. Anderson, Solid State Physics 14, 99 (1963).

[57] A. W. Sandvik and J. Kurkijärvi, Physical Review B 43, 5950 (1991).

[58] P. Henelius and A. W. Sandvik, Physical Review B 62, 1102 (2000).

[59] H. Nyquist, Physical Review 32, 110 (1928).

[60] H. B. Callen and T. A. Welton, Physical Review 83, 34 (1951).

[61] Mittemeijer, “Fundamentals of Nitriding and Nitrocarburizing - Heat Treat-
ing Society,” .

[62] Q. Chen and Z. Jin, Metallurgical and Materials Transactions A 26, 417
(1995).

[63] P. D. Desai, Journal of Physical and Chemical Reference Data 15, 967
(1986).

25

http://dx.doi.org/ 10.1103/PhysRevB.83.165114
http://dx.doi.org/ 10.1103/PhysRevB.83.165114
http://dx.doi.org/10.1016/0031-8914(47)90013-X
http://dx.doi.org/10.1103/PhysRev.94.1111
http://ebert.cup.uni-muenchen.de/SPRKKR
http://dx.doi.org/10.1088/0034-4885/74/9/096501
http://dx.doi.org/10.1088/0034-4885/74/9/096501
http://dx.doi.org/10.1088/0305-4608/14/7/007
http://dx.doi.org/10.1088/0305-4608/14/7/007
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/ 10.1016/j.jmmm.2006.10.304
http://dx.doi.org/ 10.1088/1742-5468/2011/05/P05001
http://dx.doi.org/ 10.1088/1742-5468/2011/05/P05001
http://dx.doi.org/10.1016/S0081-1947(08)60260-X
http://dx.doi.org/10.1103/PhysRevB.43.5950
http://dx.doi.org/10.1103/PhysRevB.62.1102
http://dx.doi.org/10.1103/PhysRev.32.110
http://dx.doi.org/10.1103/PhysRev.83.34
http://www.asminternational.org/web/hts/home/-/journal_content/56/10192/16267888/PUBLICATION
http://www.asminternational.org/web/hts/home/-/journal_content/56/10192/16267888/PUBLICATION
http://dx.doi.org/10.1007/BF02664678
http://dx.doi.org/10.1007/BF02664678
http://dx.doi.org/10.1063/1.555761
http://dx.doi.org/10.1063/1.555761


[64] A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer, Physical Review
Letters 114, 195901 (2015).

[65] F. C. Nix and D. MacNair, Physical Review 60, 597 (1941).

[66] K. Lejaeghere, J. Jaeken, V. Van Speybroeck, and S. Cottenier, Physical
Review B 89, 014304 (2014).

[67] K. Tagawa, E. Kita, and A. Tasaki, Japanese Journal of Applied Physics
21, 1596 (1982).

[68] E. L. P. y. Blancá, J. Desimoni, N. E. Christensen, H. Emmerich, and
S. Cottenier, Physica Status Solidi (B) 246, 909 (2009).

[69] W. Zhou, L.-j. Qu, Q.-m. Zhang, and D.-s. Wang, Physical Review B 40,
6393 (1989).

[70] D. Li, J. W. Roh, K. J. Jeon, Y. S. Gu, and W. Lee, Physica Status Solidi
(B) 245, 2581 (2008).

[71] T. Gressmann, M. Wohlschlögel, S. Shang, U. Welzel, A. Leineweber, E. J.
Mittemeijer, and Z. K. Liu, Acta Materialia 55, 5833 (2007).

[72] B. Grabowski, T. Hickel, and J. Neugebauer, Physical Review B 76, 024309
(2007).

[73] J. F. Adler and Q. Williams, Journal of Geophysical Research: Solid Earth
110, B01203 (2005).

[74] C. L. Yang, M. M. Abd-Elmeguid, H. Micklitz, G. Michels, J. W. Otto,
Y. Kong, D. S. Xue, and F. S. Li, Journal of Magnetism and Magnetic
Materials 151, L19 (1995).

[75] K. Lejaeghere, V. Van Speybroeck, G. Van Oost, and S. Cottenier, Critical
Reviews in Solid State and Materials Sciences 39, 1 (2013).

[76] D. J. Singh and J. Ashkenazi, Physical Review B 46, 11570 (1992).

[77] T. Takahashi, J. Burghaus, D. Music, R. Dronskowski, and J. M. Schneider,
Acta Materialia 60, 2054 (2012).

[78] J. A. Rayne and B. S. Chandrasekhar, Physical Review 122, 1714 (1961).

[79] J. J. Adams, D. S. Agosta, R. G. Leisure, and H. Ledbetter, Journal of
Applied Physics 100, 113530 (2006).

[80] J. Leese and A. E. Lord, Journal of Applied Physics 39, 3986 (1968).

[81] D. Dever, Journal of Applied Physics 43, 3293 (1972).

[82] J. Weber, Physical Review 101, 1620 (1956).

26

http://dx.doi.org/ 10.1103/PhysRevLett.114.195901
http://dx.doi.org/ 10.1103/PhysRevLett.114.195901
http://dx.doi.org/10.1103/PhysRev.60.597
http://dx.doi.org/10.1103/PhysRevB.89.014304
http://dx.doi.org/10.1103/PhysRevB.89.014304
http://dx.doi.org/10.1143/JJAP.21.1596
http://dx.doi.org/10.1143/JJAP.21.1596
http://dx.doi.org/10.1002/pssb.200844401
http://dx.doi.org/10.1103/PhysRevB.40.6393
http://dx.doi.org/10.1103/PhysRevB.40.6393
http://dx.doi.org/ 10.1002/pssb.200844090
http://dx.doi.org/ 10.1002/pssb.200844090
http://dx.doi.org/ 10.1016/j.actamat.2007.07.001
http://dx.doi.org/10.1103/PhysRevB.76.024309
http://dx.doi.org/10.1103/PhysRevB.76.024309
http://dx.doi.org/10.1029/2004JB003103
http://dx.doi.org/10.1029/2004JB003103
http://dx.doi.org/ 10.1016/0304-8853(95)00530-7
http://dx.doi.org/ 10.1016/0304-8853(95)00530-7
http://dx.doi.org/10.1080/10408436.2013.772503
http://dx.doi.org/10.1080/10408436.2013.772503
http://dx.doi.org/10.1103/PhysRevB.46.11570
http://dx.doi.org/ 10.1016/j.actamat.2011.12.051
http://dx.doi.org/10.1103/PhysRev.122.1714
http://dx.doi.org/10.1063/1.2365714
http://dx.doi.org/10.1063/1.2365714
http://dx.doi.org/10.1063/1.1656884
http://dx.doi.org/10.1063/1.1661710
http://dx.doi.org/10.1103/PhysRev.101.1620


[83] R. G. Harrison, Journal of Applied Physics 115, 033901 (2014).

[84] L. Ke, K. D. Belashchenko, M. van Schilfgaarde, T. Kotani, and V. P.
Antropov, Physical Review B 88, 024404 (2013).

[85] J. Crangle and G. M. Goodman, Proceedings of the Royal Society of London
A 321, 477 (1971).

[86] Y. Sugita, H. Takahashi, M. Komuro, K. Mitsuoka, and A. Sakuma, Jour-
nal of Applied Physics 76, 6637 (1994).

[87] S. Yamamoto, R. Gallage, Y. Ogata, Y. Kusano, N. Kobayashi, T. Ogawa,
N. Hayashi, K. Kohara, M. Takahashi, and M. Takano, Chemical Commu-
nications 49, 7708 (2013).

[88] M. Widenmeyer, T. C. Hansen, and R. Niewa, Zeitschrift für anorganische
und allgemeine Chemie 639, 2851 (2013).

[89] Y. Sugita, Journal of Applied Physics 70, 5977 (1991).

27

http://dx.doi.org/10.1063/1.4861869
http://dx.doi.org/10.1103/PhysRevB.88.024404
http://dx.doi.org/10.1098/rspa.1971.0044
http://dx.doi.org/10.1098/rspa.1971.0044
http://dx.doi.org/ 10.1063/1.358157
http://dx.doi.org/ 10.1063/1.358157
http://dx.doi.org/10.1039/C3CC43590C
http://dx.doi.org/10.1039/C3CC43590C
http://dx.doi.org/10.1002/zaac.201300379
http://dx.doi.org/10.1002/zaac.201300379
http://dx.doi.org/10.1063/1.350067

	Introduction
	Methodology
	Electronic Free Energy
	Vibrational free energy of Fe[N], Fe4N and  Fe16N2 
	Magnetic contribution

	Results and Discussion
	Free energies and heat capacities
	Thermal expansion
	Bulk modulus
	Magnetic properties of the bulk phases
	Interstitial nitrogen defect
	Phase equilibria

	Conclusion

