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Abstract— A low-power IEEE 802.15.4z high-rate PHY (HRP)
compatible coherent transmitter is described. The proposed
transmitter uses a digital polar architecture with fixed amplitude
steps in the power amplifier and asynchronous time-discrete
pulse shaping. The pulse-shaping unit consists of a finite-impulse
response (FIR) filter using current-starved inverter-based delay
taps that can be calibrated on-chip. An injection-locked ring
oscillator (ILRO)-based frequency synthesis enables wideband
operation from 3- to 10-GHz frequency bands. The ILRO also
allows for duty-cycled coherent mode operation with 2–4-ns phase
locking time and binary phase modulation is applied directly
on the oscillator. The on-chip digital front end enables duty
cycling (DC) of analog front-end modules with a granularity
of 2 ns. Implemented in 28-nm CMOS process, this chip is
measured to consume 4.9-mW power in nominal mode with IEEE
802.15.4z high pulse repetition frequency (HPRF) compatible
data rate of 6.81 Mb/s compliant with major spectrum mask
regulations for channels 5 and 9. With DC of the oscillator
enabled in the energy-efficient mode, a power consumption
of 430 µW is achieved for packets compatible with legacy pulse-
position-modulated IEEE 802.15.4a standard with a data rate
of 27.2 Mb/s.

Index Terms— Digital transmitter, IEEE 802154a, IEEE
802154z, impulse radio, localization, polar transmitter, transver-
sal filter, ultra-wideband (UWB).

I. INTRODUCTION

ULTRA-WIDEBAND impulse radios have seen resurgence
in popularity due to increased demand for applications

requiring spatial awareness, such as secure access, indoor
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Fig. 1. Channels defined in 802.15.4z standard with bandwidths of 500,
1100, and 1310 MHz.

localization, asset tracking, augmented reality (AR)/virtual
reality (VR), and gaming. Impulse-radio ultra-wideband (IR-
UWB) employing time-of-flight-based ranging is a promising
solution for accurate localization [1].

The recently released IR-UWB IEEE 802.15.4z standard
mandates coherent mode operation for high-rate PHY (HRP)
and enhances the secure ranging operation with a dedicated
scrambled timestamp sequence (STS) field in the packet [2].
The use of coherent transceiver improves the link bud-
get of the IR-UWB radio at the cost of additional power
dissipation as low-power non-coherent architectures cannot
be employed [9]. Furthermore, other low-power IR-UWB
transmitter architectures presented in the literature cannot
support the coherent modulation requirements of 802.15.4z
standard [10], [11]. The IEEE 802.15.4z standard also pro-
poses two new high pulse repetition frequency (HPRF) modes
of 124.8 and 249.6 MHz with higher pulse density compared
to the legacy standard. The IEEE 802.15.4a/z standards spec-
ify channels from 3.5 to 10 GHz (Fig. 1). Transmission in
these frequency channels is subject to regional spectral masks
regulations [3].

Conventional IR-UWB transmitters use a baseband pulse-
shaping filter whose output is upconverted to RF with an IQ
mixer and transmitted using a linear power amplifier (PA),
as shown in Fig. 2(a). The power dissipation in such transmit-
ters to meet the spectrum mask requirements is high [4], [5].
This limits battery lifetime and, consequently, the applications
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Fig. 2. (a) IQ-upconversion transmitter. (b) Polar transmitter using the LO clock for synchronization. (c) Proposed asynchronous transmitter architecture.

Fig. 3. High-level architecture of the asynchronous polar UWB transmitter IC consisting of a memory-based digital baseband, DC engine, ILRO, pulse
shaper, and DPA.

in which IR-UWB can be applied. An alternative solution is
to perform the pulse shaping in digital domain and use a polar
transmitter by performing a Cartesian to polar transformation.
A polar transmitter can employ a non-linear PA leading to
high efficiency. However, the Cartesian to polar transformation
results in bandwidth expansion, which can result in a clock
rate of digital PA (DPA) that is 4–10 times higher than the
chip rate resulting in large power dissipation for the overall
system. An alternate polar architecture has been proposed in
the past where the RF carrier frequency is used as the clock for
discretizing the envelope [7]. This is shown in Fig. 2(b) where
the digitally controlled oscillator (DCO) output frequency is
used as the digital up-sampling clock. The drawback of this
approach is that the pulse shape highly depends on the center
frequency of the channel.

In this work, we propose an asynchronous polar transmitter
employing a pulse shaper that consists of a finite-impulse
response (FIR) filter employing current-starved inverter-based
delay taps resulting in good power performance tradeoff
[see Fig. 2(c)]. The use of an injection-locked ring
oscillator (ILRO) for RF carrier generation allows duty
cycling (DC) of the DCO and further reduction in power
dissipation. The proposed transmitter is compatible with IEEE
802.15.4z standard supporting coherent operation with the
lowest power dissipation in the literature known to us. The
output spectrum is also compliant with most of regional spec-
tral mask regulations applicable for specific UWB channels.

This article is organized as follows. Section II describes
the high-level architecture of the transmitter chip, including

an overview of the features of the on-chip digital baseband
(DBB). Section III examines the choice of pulse shape and
the associated tradeoffs for a power-efficient implementation.
Section IV details the key building blocks of the chip. The sili-
con measurements are discussed in Section V and conclusions
provided in Section VI.

II. ASYNCHRONOUS POLAR

TRANSMITTER ARCHITECTURE

The architecture of the proposed asynchronous polar trans-
mitter integrated circuit (IC) is shown in Fig. 3. An on-chip
DBB generates phase and amplitude signals clocked at
499.2 MHz feeding the analog transmitter chain. The analog
transmit chain consists of a bandwidth controller, which tunes
the pulsewidth of the incoming pulse (nominally 2 ns). This is
followed by a pulse shaper, which feeds an 8-bit one-hot signal
to the DPA. An injection-locked ring oscillator generates the
RF carrier and locks to an externally generated 499.2-MHz
base clock frequency. The chip includes knobs to support
software-based calibration of the ring oscillator frequency as
well as the delay taps used in the pulse-shaper block. The chip
can be controlled and observed by an external microcontroller
over SPI interface.

A. Digital Baseband (DBB)

The DBB consists of a playback memory unit that can
store complete IEEE 802.15.4z/4a compatible packets in a
compressed format in an on-chip memory. During a packet
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Fig. 4. Timing diagram of preamble and payload parts of 802.15.4z packet with PRF of 124.8 MHz. The DBB outputs phase and amplitude signals along
with the enable signals for ILRO and LO buffer on a 2-ns timing grid to control the analog front end.

transmission, the DBB outputs a 2-bit code at 499.2 MHz
representing amplitude and phase of the chips needed for
binary phase shift keying (BPSK) coded signals. Fig. 4 shows
the phase and amplitude signals for a preamble and payload
for IEEE 802.15.4z HPRF mode with a 124.8-MHz pulse
repetition frequency (PRF). In this mode, each payload bursts
consists of alternate chips with a zero and non-zero amplitude.
It should also be noted that as shown in Section III, the RF
pulse at the output of the transmitter during the payload burst
must be longer than 2 ns to meet the spectrum requirements.
This is achieved in the analog front end in pulse-shaper block.
For correct operation, the phase must not change, while a pulse
is being transmitted. Therefore, the phase bit set during a chip
with non-zero amplitude is held constant in the subsequent
chip if this subsequent chip has a zero amplitude (Fig. 4).

Along with the amplitude and phase data bits, the DBB also
outputs synchronized enable signals for the ILRO, buffers,
and PA, which can each be independently controlled with
a resolution of 2 ns. This allows DC of each analog block
to optimize the overall power dissipation. An example of
this shown in Fig. 4, where the ring oscillator is enabled
with ENA_ILRO signal eight clock cycles (16 ns) before the
beginning of the burst to allow the frequency to settle, while
the buffer is enabled just one clock cycle before the burst.

B. Analog Front End

This transmitter IC supports 500 MHz as well as higher
bandwidth channels specified in IEEE 802.15.4z HRP. The
support for channels wider than nominal 500-MHz bandwidth
is enabled by bandwidth-controller block shown in Fig. 5. The
incoming 2-ns square pulse is shrunk to 1 ns or less and
a rectangular output pulse is fed to the pulse-shaper block.
Higher transmitter bandwidth in the transmitter can enable
improved ranging performance [10].

The pulse-shaper block consists of an FIR filter with eight
delay taps. A bus of eight output signals from the pulse
shaper is fed to the DPA. The sum of this bus represents the
envelope of the output RF signal. The ILRO block generates
the RF carrier by locking the phase of a digitally controlled
ring oscillator (DCRO) to a reference 499.2-MHz clock. This
reference clock is supplied externally with an on-chip clock
buffer.

Fig. 5. Conceptual diagram of the bandwidth-controller block.

This pulse-shaper output signals are mixed with the RF
carrier in the switched-capacitor-based DPA block. The
switched-capacitor implementation allows for summation of
pulse-shaper output bus in charge domain to create the desired
envelope of the output RF signal to the antenna.

C. On-Chip Pulse-Shaper Calibration

To avoid the possibility of incorrect harmonic locking of the
ILRO, the open-loop frequency of DCRO must theoretically
be within 25% of the reference clock frequency to the target
carrier frequency [13], [14]. Moreover, for the reference spurs
due to injection locking to be lower than −40 dBc, the open-
loop DCO frequency must be within 5 MHz of the target
frequency [15]. Therefore, an on-chip frequency-estimation
circuit is employed to calibrate the DCRO frequency.

The pulse shaper, which consists of several delay taps,
suffers from variations in process, temperature, or other envi-
ronmental conditions. An on-chip calibration technique is
proposed for the delay chain in the pulse-shaper block to
calibrate the delays to be within the desired range (detailed
in Section IV-B).

III. PULSE SHAPE ANALYSIS

The shape of the pulse in an IR-UWB radio is crucial
for ranging as well as for the frequency spectrum of the
output to meet the regulatory masks. It can be noted that
channels 5 and 9, centered at 6489.6 and 7987.2 MHz can
be used in many regions worldwide. However, the regulatory
masks pose strict requirements of approximately −29-dBc
suppression of any sidelobes close to the main lobe. The use
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Fig. 6. (a) Triangular and rectangular pulse shapes in time domain.
(b) Normalized close-in frequency spectrum of the corresponding pulse shapes
centered with respect to channel 5 (6489.6 MHz) plotted with a normalized
ETSI spectrum mask.

Fig. 7. Conceptual block diagram of the pulse shaping using tunable analog
delay cells and switched capacitor PA cells for summation of the delay cell
outputs.

of an analog delay line in the FIR filter-based pulse-shaping
block allows a power-efficient design while keeping the circuit
complexity low.

A. Pulse Shape

The rectangular pulse shape from the DBB does not have
good spectral properties as the sidelobes violate most of the
regulatory masks (Fig. 6). A study of pulse shapes with certain
constraints has been discussed in [16]. These include trian-
gular, trapezoidal, and other window-shaped pulses. In this
analysis, we narrow down the search space to a trapezoidal
pulse shape as it allows an energy-efficient design while
meeting the regulatory masks for most regions. An major
advantage of using trapezoidal pulses is that the desired pulse
shape can be generated by a simple summation of outputs of

Fig. 8. Frequency spectrum of the pulse with a different number of taps in
pulse-shaper delay line.

all the delay taps. The circuit implementation consists of delay
taps and switched-capacitor PA cells that summate the output
of the filter in charge domain to create the pulse (Fig. 7).

B. Pulse Quantization

A higher number of delay taps result in lower quantization
noise and cleaner frequency spectrum at the expense of higher
power dissipation.

Fig. 8 shows the simulated output spectrum as a function
of number of delay taps. Although 16 taps result in cleaner
spectrum far out from the main lobe, eight taps are sufficient
to meet most of the regional spectrum mask regulations for
channel 9. The sidelobes at frequencies lower than 4 GHz can
easily be filtered by the antenna without requiring additional
components, as discussed in Section V.

In this design, we use eight delay taps each connected to
a PA cell that is a good tradeoff between spectral purity and
design complexity. Each delay tap shifts the incoming pulse
by an equal amount of time.

C. Sensitivity to Variation

A potential drawback to the proposed approach using asyn-
chronous pulse-shaping approach is the variation in analog
delay cells causing the pulse shape and consequently the
output to degrade. Fig. 9 shows a plot with sensitivity analysis
with 10% random normal variation in the delay of cells in
the pulse-shaper block. It should be noted that the close-in
sidelobes are not degraded significantly by mismatch. The
variation in far-out sidelobes can be intuitively understood as
the delay cells changes have a direct impact on the frequency
of the aliases of the spectrum far from the center frequency.
The 10% variation simulated in the delay taps implies that
there is sufficient margin in the proposed design with eight
delay taps to meet the regulatory spectrum mask requirements.

IV. TRANSMITTER CIRCUIT DESIGN

A. Injection Locked Ring Oscillator

Fig. 10 shows the ILRO featuring a pseudo differential
DCRO with a frequency operation range of 3–10 GHz.
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Fig. 9. Output spectrum variations due to random mismatch with standard
deviation of 10% between the eight delay cells.

Fig. 10. ILRO circuit with BPSK implemented by reversing the polarity of
injection.

The low quality factor of a DCRO allows for fast startup.
The DCRO consists of four current-starved inverters and its
frequency is tuned by the means of a digitally controlled
current digital-to-analog converter (DAC). Before injection
locking, the free-running frequency of the DCRO is checked
to be calibrated to within 5 MHz of the target frequency
using the frequency estimation. If the DCRO is not within this
range, a calibration is performed with a software-controlled
frequency-locked loop (FLL) using an on-chip frequency-
estimation unit. This frequency-estimation unit consists of a
counter that measures the number of LO edges in a pre-defined
measurement period. The FLL enabled when first using the
chip and it is subsequently only needed in case of large
frequency drift due to, for instance, temperature drift. A single-
frequency estimation takes <1 μs and is a power-efficient way
to indicate when frequency drifts greater than the desired limits
and an FLL-based calibration is needed.

In the injection-locking mode, the phase of RF carrier
in the DCRO is periodically realigned with a clean refer-
ence clock edge to suppress the long-term noise from the

DCRO as the noise of the DCRO is effectively high-pass-
filtered [17], [18]. This feedforward phase-locking technique
allows instantaneous phase locking with frequency locked to
the intended integer multiple of 499.2-MHz reference clock.
The instantaneous phase injection property is exploited for
BPSK modulation by direct injection of opposite polarity to
the injection nodes of the ILRO, as shown in Fig. 10 [19].
The instantaneous phase locking also enables DC of the ILRO
while maintaining coherent mode operation. In this transmitter
IC, an option to duty cycle the ILRO and other analog blocks
with granularity of a single chip period (2 ns) is implemented.
The ILRO and the LO buffer can be enabled/disabled with
independent scheduling to optimize power dissipation for any
packet configuration. Phase lock of the ILRO can be achieved
within 16 ns, including the frequency settling time of the
DCRO. Therefore, the ILRO is enabled eight clock cycles
before the pulse or burst (Fig. 4).

B. Pulse-Shaping Circuits

The implementation of asynchronous pulse shaper and its
interface with the PA is detailed in Fig. 11. The width of the
rectangular amplitude pulse is tuned in the bandwidth con-
troller and fed into a seven-tap delay-line-based pulse shaper.
Unlike the prior-art synchronous polar techniques [6]–[9], this
approach does not rely on the timing grid of the RF carrier.
The delay elements of the pulse shaper are implemented using
current-starved buffers whose unit delay τ is programmable
by a 4-bit bias current control. This approach lends itself to
a compact physical layout of the pulse shaper and PA where
the pulse-shaper units can fit close to the PA cells.

An on-chip calibration is scheduled when the transmitter is
inactive to account for voltage or temperature variations in the
pulse shaper. In this calibration mode, the output of the delay
line is fed back to its input converting through a multiplexer
converting it into a ring oscillator. A frequency measurement
unit is used to measure and calibrate the unit delay τ by
optimizing the pulse-shaper current bias setting. The ability to
calibrate the delay taps enables optimization of pulse shape for
spectral purity independent of the LO frequency and enables
the transmitter to operate in high-bandwidth modes (>1 GHz).

C. Power Amplifier

The eight output signals of the pulse shaper are used to
enable respective switched-capacitor PA cells (Fig. 11). Each
of these cells consists of four unit cells configurable with
2 bits of output power control to meet the power spectral
density (PSD) requirement of −41.3 dBm/MHz for different
PRFs.

The use of switched-capacitor class-D PA unit cells allows
for summation of the pulse-shaper outputs in charge domain.
However, this structure has a disadvantage in an impulse
radio that the common-mode voltage at the output of this PA
cell also follows the output pulses, resulting in larger than
permitted frequency content at low frequencies close to dc.
Adding a tristate mode to the class-D PA cell when no pulse
is being transmitted and pre-biasing the output node to the
desired common-mode level using a high-bandwidth amplifier
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Fig. 11. Pulse-shaping chain includes a bandwidth control block that is used to tune the pulsewidth followed by eight-step pulse-shaping block feeding
dual-capacitively coupled PA cells with 2-bit power control.

Fig. 12. (a) Balanced dual capacitively coupled PA cell. (b) Dynamic PA
unit cell when enabled. (c) Built-in pull-up logic when disabled for A type
unit cell. (d) Built-in pull-down logic when disabled for B type unit cell.

was proposed by de Streel et al. [7]. An alternate approach
proposed in [9] is to use a dual-capacitively coupled PA where
two PAs cells with tri-state mode are coupled together. When
the PA is not transmitting a pulse, the outputs of the two PAs
are pulled toward supply and ground with respective switches.
The combined output common mode of the overall PA remains
close to mid-rail independent of the modulation. This approach
is shown to improve the spectrum at low frequencies (close
to dc). However, this circuit requires large transistor switches
to set the common mode, which must be turned on and off
periodically.

In this work, we propose a different approach of imple-
menting the dual-capacitively coupled PA architecture with
each PA cell consisting of two units AP and BP with opposite
common-mode polarity when disabled (Fig. 12). This results
in the output of PA cell being centered around mid-rail similar
to [9] without need for large switches to set the common mode
of the PA cell. A unit-capacitor size of 160 fF is used in this PA
design, which results in small charge/discharge time relative
to a pulse duration.

Fig. 13. Chip micrograph of the UWB transmitter IC with an active area of
AFE of 0.11 mm2.

V. MEASUREMENT RESULTS

The chip is implemented in 28-nm CMOS with an active
analog front-end area of 0.154 mm2 (Fig. 13) and measured
with a supply voltage of 0.9 V. The chip is tested in two
different modes: 1) a nominal mode that is compatible with
802.15.4z packets without DC of the ILRO and 2) an effi-
cient mode where the ILRO is duty-cycled while still being
compatible with the 802.15.4a standard.

Fig. 14 shows the time-domain plots of 802.15.4z preamble
and payload in nominal mode. The 802.15.4z payload shown
here has a PRF of 124.8 MHz. The individual pulses are of
approximately 4-ns duration for both preamble and payload
pulses. In this mode during payload, a chip with zero ampli-
tude between active chips allows the pulses to return-to-zero
during phase transition.

We demonstrate an efficient mode operation with DC
of DCRO while maintaining coherence. Fig. 15 shows the
demodulated amplitude and phase for part of preamble
of 802.15.4a with. In this mode, the pulses in the preamble
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Fig. 14. Time-domain waveforms showing the pulses in 802.15.4z preamble and payload mode. It should be noted that the time divisions in the plots for
preamble are smaller than payload section.

TABLE I

PERFORMANCE SUMMARY AND COMPARISON

symbol are spread by 128 ns and the ILRO is enabled only
16 ns before the pulse, which is sufficient for frequency
settling and injection locking of the phase. LO buffer and PA
are enabled only 2 ns before the pulse is transmitted to further
optimize the power dissipation. The demodulated phase plot
shows correctly demodulated BPSK code. This underlines the

benefit of injection locking for DC of the DCRO for use in a
coherent receiver.

The on-chip calibration of pulse shape is done by converting
the delay line into a ring oscillator and measuring its fre-
quency. The resulting delay as measured with on-chip digital
circuitry is shown in Fig. 16(a) as a function of 4-bit control.
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Fig. 15. Demodulated amplitude and phase with DC of the ILRO enabled
16 ns before the beginning of the pulse with BPSK with injection.

Fig. 16. (a) Measured unit delay of delay taps in the pulse shaper as a
function of 4-bit code. (b) Result of calibration.

Fig. 16(b) shows the resulting spectrum with calibrated and
un-calibrated settings of the pulse shape. The delay line can
be calibrated as discussed in Section IV-C and allows the first
sidelobe close to the main lobe to be lowered by 8.3 dB.
The on-chip calibration proposed in this work does not need
measurement of the spectrum to calibrate the pulse shape.

Channels 1, 5, 9, and 14 are 500-MHz bandwidth with
pulse-shaper calibration, as shown in Fig. 16. The bandwidth
controller and pulse-shaper blocks are set in high-bandwidth

Fig. 17. (a) Dual-band quarter-mode cavity-backed AFSIW antenna. (b) Mea-
sured radiation pattern and SFF for channels 5 and 9 in the XZ plane.
(c) Antenna gain as a function of frequency.

Fig. 18. Measured output spectrum of the transmitter set to channel 9 with
wired connection and with antenna.

mode for measurement of channels 4, 7, and 11. The frequency
spectrum measurements show compliance with FCC mask,
except for some artifacts measured between 1 and 2 GHz,
which can easily be filtered by an antenna or an off-chip filter.

To exploit the compactness and power efficiency of
the IR-UWB transmitter, a quarter-mode cavity-backed slot
antenna is implemented in air-filled substrate-integrated-
waveguide (AFSIW) technology [Fig. 17(a)]. The AFSIW
technology allows a very high radiation efficiency over a wide
bandwidth while remaining compatible with standard printed
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Fig. 19. Measured output spectrum for selected 500-MHz channels—channels 1, 5, 9 and 14—and high-bandwidth channels—channels 4, 7, and 11—along
with FCC regulatory mask. The measurements are done with a spectrum analyzer setup as specified by FCC regulations.

circuit board (PCB) technology [20]. Quarter-mode miniatur-
ization is then leveraged to reduce the footprint by a factor
four [21]. The proposed antenna covers both channels 5 and 9
with a radiation efficiency over 90% in each channel, within
a footprint of 18 mm × 18 mm. Moreover, through rigorous
optimization in the frequency domain and on a system level,
a large half-power beamwidth (HPBW) in both channels is
obtained in which pulse distortion is minimized by maximizing
the system fidelity factor (SFF) [22]. Fig. 17(b) shows the
measured radiation pattern at the center frequency of both
channels, along with the measured SFF. An HPBW of 110◦
is obtained in both channels, with a peak gain of 4.8 dBi
in channel 5 and 3.9 dBi in channel 9. An SFF larger than
95 % is achieved indicating minimal pulse distortion. Finally,
Fig. 17(c) shows the broadside gain of the antenna as a func-
tion of frequency, demonstrating stable antenna gain within
channels 5 and 9, and a 20-dB attenuation at frequencies
below 4 GHz filtering the transmitter output spectrum at low
frequencies.

UWB transmission in channel 9, centered at 7.9872 GHz,
is allowed by most spectrum regulations worldwide. The EIRP
generally permitted for this channel is −41.3 dBm/MHz. The
transmitter described in this article can transmit a continuous
wave (CW) tone at a peak output power of −2.5 dBm (and
−0.7 dBm) at the UWB channel 9 (and channel 5). When
transmitting over a 500-MHz-wide channel, this peak output
power translates to a PSD of −29.3 dBm/MHz. The HPRF
mode of 124.8 MHz specified in 802.15.4z standard is four
times lower than the chip rate of 499.2 MHz. The maximum
PSD supported by this chip in 124.8-MHz PRF mode is
−33.8 and −35.6 dBm/MHz for channels 5 and 9, respectively.
The PA output power can be tuned in steps of ∼3 dB to
meet the spectrum regulations. In addition, the PRFs of 62.4,
15.6, and 3.9 MHz are also supported by the transmitter with
maximum PSD proportionally lower with respect to the 124.8-
MHz PRF mode.

The measured spectrum of the transmitter IC for channel 9
centered at 8 GHz is shown in Fig. 18 with wired and wireless
connection. The measured spectrum with wired connection
shows some of the artifacts violating some regulatory masks
below 4 GHz. However, as discussed earlier, these are filtered

Fig. 20. (a) Current consumed during packet transmission with and without
DC. (b) Power distribution in various blocks of the transmitter with duty-cycle
disabled.

by the antenna without need for other external components
and the measurement with antenna is compliant with all
major regulatory masks. Fig. 19 shows the overlayed measured
results for selected UWB channels between 3 and 10 GHz as
specified in [2]. This shows compliance with FCC mask for
all the channels except for the clock spurs of the 125-MHz on-
chip digital clock. These low-frequency artifacts can be filtered
by an off-chip filter or by the antenna. Fig. 20 shows the
power dissipation breakdown of the transmitter. In the nominal
mode, the majority of the power is consumed by the PA. The
performance of this work in nominal and efficient transmitter
mode is summarized and compared with the state of the art
in Table I.

VI. CONCLUSION

This article presents an asynchronous polar transmitter
compatible with IEEE 802.15.4z standard supporting coherent
channels 5 and 9. The IC fabricated in TSMC 28-nm CMOS
technology occupies an active area of 0.154 mm2. With asyn-
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chronous pulse-shaping and fine-grained DC, this chip demon-
strates the lowest power 802.15.4z compatible transmitter and
with minimal power overhead compared to previously reported
802.15.4a transmitters.
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