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Chemical engineers rely on models for design, research, and daily decision-making, often with potentially
large financial and safety implications. Previous efforts a few decades ago to combine artificial intelli-
gence and chemical engineering for modeling were unable to fulfill the expectations. In the last five years,
the increasing availability of data and computational resources has led to a resurgence in machine
learning-based research. Many recent efforts have facilitated the roll-out of machine learning techniques
in the research field by developing large databases, benchmarks, and representations for chemical appli-
cations and new machine learning frameworks. Machine learning has significant advantages over tradi-
tional modeling techniques, including flexibility, accuracy, and execution speed. These strengths also
come with weaknesses, such as the lack of interpretability of these black-box models. The greatest oppor-
tunities involve using machine learning in time-limited applications such as real-time optimization and
planning that require high accuracy and that can build on models with a self-learning ability to recognize
patterns, learn from data, and become more intelligent over time. The greatest threat in artificial intelli-
gence research today is inappropriate use because most chemical engineers have had limited training in
computer science and data analysis. Nevertheless, machine learning will definitely become a trustworthy
element in the modeling toolbox of chemical engineers.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In 130 years of chemical engineering, mathematical modeling
has been invaluable to engineers for understanding and designing
chemical processes. Octave Levenspiel even stated that modeling
stands out as the primary development in chemical engineering
[1]. Today, in a fast-moving world, there are more challenges than
ever. The ability to predict the outcomes of certain events is neces-
sary, regardless of whether such events are related to the discovery
and synthesis of active pharmaceutical ingredients for new dis-
eases or to improvements in process efficiencies to meet stricter
environmental legislation. These events range from the reaction
rate of a surface reaction or the selectivity of a reaction in a reactor,
to the control of the heat supply to that reactor. Predictions can be
made using theoretical models, which have been constructed for
centuries. The Navier–Stokes equations [2,3], which describe vis-
cous fluid behavior, are one example of such a theoretical model.
However, many of these models cannot be solved analytically for
realistic systems and require a considerable amount of computa-
tional power to solve numerically. This drawback has ensured that
most engineers first use simple models to describe reality. An
important historical—yet still relevant—example is Prandtl’s
boundary layer model [4]. In computational chemistry, scientists
and engineers are willing to give up some accuracy in favor of time.
This willingness explains the popularity of density functional the-
ory, in comparison with higher-level-of-theory models. However,
in many situations, higher accuracy is desired.

Decades of modeling, simulations, and experiments have pro-
vided the chemical engineering community with a massive
amount of data, which adds the option of making predictions from
experience as an extra modeling toolkit. Machine learning models
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are statistical and mathematical models that can ‘‘learn” from
experience and discover patterns in data without the need for
explicit, rule-based programming. As a field of study, machine
learning is a subset of artificial intelligence (AI). AI is the ability
of machines to perform tasks that are generally linked to the
behavior of intelligent beings, such as humans. As shown in
Fig. 1, this field is not particularly new. The term ‘‘artificial intelli-
gence” was coined at Dartmouth College, USA in 1956, at a summer
workshop for mathematicians who aimed at developing more cog-
nizant machines. From that point on, it took more than a decade
before the first attempts were made to apply AI in chemical engi-
neering [5]. In the 1980s, greater efforts were made in the field
with the use of rule-based expert systems, which are considered
to be the simplest forms of AI. By that time, the field of machine
learning had started to grow, but in the chemical engineering
community, with some exceptions, a lag of about 10 years was
experienced in the growth of machine learning. A sudden rise in
publications on AI applications in chemical engineering in the
1990s can be observed, with the adoption of clustering algorithms,
genetic algorithms, and—most successfully—artificial neural networks
(ANNs). Nevertheless, the trend did not persist. Venkatasubramanian
[6] names the lack of powerful computing and the difficult task
of creating the algorithms as possible causes for this loss in
interest.

The past decade marked a breakthrough in deep learning, a sub-
set of machine learning that constructs ANNs to mimic the human
brain. As mentioned above, ANNs gained popularity among chem-
ical engineers in the 1990s; however, the difference of the deep
learning era is that deep learning provides the computational
means to train neural networks with multiple layers—the so-
called deep neural networks. These new developments triggered
chemical engineers, as reflected by an exponential rise in publica-
tions on the topic. In the past, AI techniques could never become a
standard tool in chemical engineering; thus, it can be asked
whether this is finally the moment. In this perspective article, we
will first give an overview of the three major links in machine
learning today, applied to chemical engineering. In what follows,
Fig. 1. Timeline of artificial intelligence, machine learning, and deep learning. The evoluti
is followed by a phase of disinterest. Currently, AI in chemical engineering is once again
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the growing potential of machine learning in chemical engineering
will be critically discussed; we will examine the pros and cons and
list possible reasons for why machine learning in chemical engi-
neering with remain ‘‘hot” or end up as a ‘‘not.”

2. Machine learning ABCs

2.1. The ‘‘A” in machine learning ABCs: Data

Amachine learning approach consists of three important links, as
illustrated in Fig. 2: data, representations, andmodels. The first link
in a machine learning approach is the data that is used to train the
model. As will be discussed later, the data used also proves to be
theweakest link in themachine learningprocess. Virtually anydata-
set containing results from experiments, first-principles calcula-
tions, or complex simulation models can be used to train a model.
However, because it is expensive to gather large amountsof accurate
data, it is customary to make use of ‘‘big data” approaches—using
large databases from various existing sources. Due to the cost of real
experiments, these large quantities of data are usually obtained via
fast simulations or text mining from patents and published work.
The increased digitalization of research provides the scientific com-
munity with a plethora of open-source and commercial databases.
Examples of commonly used sources of chemical information are
Reaxys [7], SciFinder [8], and ChemSpace [9] for reaction chemistry
and properties; GDB-17 [10] for small drug-like molecules; and
National Institute of Standards and Technology (NIST) [11] and
International Union of Pure and Applied Chemistry (IUPAC) [12]
for molecular properties such as solubility. In addition, several
benchmarking datasets have been created to enable comparison
between different machine learning models. Examples of these
benchmarks are QM9 and Alchemy, for quantum chemical proper-
ties [13]; and ESOL [14] and FreeSolv [15], for solubilities. Before
using any dataset for machine learning-based modeling, several
steps should be undertaken to ensure that the used data is of high
enough quality. The general aspect of ensuring data quality—from
its generation to its storage—is known as data curation.More details
on of publications about AI in chemical engineering shows that a rise in publications
in a ‘‘hot” phase, and it is unclear whether or not the curve will soon flatten out.



Fig. 2. The three major links in machine learning for chemical engineering; every part has an impact on the eventual prediction performance and should be handled carefully.
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about the necessity and consequences of data curation are discussed
further on.

Several differences concerning data usage exist between
machine learning—and, more specifically, deep learning meth-
ods—and traditional modeling. First, ANNs learn from data and
train themselves, although doing so requires large amounts of data.
Therefore, training datasets generally contain tens to hundreds of
thousands of data points. Second, the dataset is split into three
instead of two sets: a training, validation, and test set. Both the
training and validation sets are used in the training phase, while
only the data in the training set is used for fitting. The validation
set is an independent dataset that provides an unbiased evaluation
of the model fit during the training phase. The test set evaluates
the final model fit with unseen data and is generally the main indi-
cator of the model quality.

2.2. The ‘‘B” in machine learning ABCs: Representation

A second important link in a machine learning method is how
the data is represented in the model. Even when the data is already
in numerical format, the selection of the variables or features that
will make up the model input can have a significant impact on the
model performance. This process is known as feature selection and
has been the topic of several studies [16–19]. Limiting the number
of selected features may reduce the computational cost of both
training and executing the model, while improving the overall
accuracy. This feature-selection process is of lesser importance in
so-called deep learning methods, which are assumed to internally
select those features that are considered to be important [20].
Then, an input layer that consists of basic process parameters
(e.g., pressure, temperature, residence time), feed characterizations
(e.g., distillation curves, feed compositions), or catalyst properties
(e.g., surface area, calcination time) is often sufficient [21–27].
However, the task of representing the data becomes far more chal-
lenging in the case of non-numerical data, such as molecules and
reactions.

Chemical engineering tasks often involve molecules and/or
chemical reactions. Creating suitable numerical representations
of these data types is a developing field in itself. In computer appli-
cations, the molecular constitution is typically represented by a
line-based identifier, such as the simplified molecular-input line-
entry system (SMILES) [28] or the (IUPAC) international chemical
1203
identifiers (InChIs) [29], or as three-dimensional (3D) coordinates.
Recently, self-referencing embedded strings (SELFIES) [30] have
been developed as a molecular string representation designed for
machine learning applications. The molecular information is trans-
lated into a feature vector or tensor that is used as input for a deep
neural network or another machine learning model. The first way
to represent a molecule is by using a (set of) well-chosen molecular
descriptor(s), such as the molecular weight, dipole moment, or
dielectric constant [31–33]. Another way to generate a molecular
feature vector is by starting from the 3D geometry. Coulombmatri-
ces [34], bags of bonds [35], and histograms of distances, angles,
and dihedrals [36] are a few examples of geometry-based repre-
sentations. However, 3D coordinates or calculated properties are
generally unavailable in many applications. In such cases, the rep-
resentation can be created starting from a molecular graph, result-
ing in so-called topology-based representations.

In topology-based representations, only a line-based identifier
is available. Encoders exist that directly translate the line-based
identifier into a representation with techniques from natural lan-
guage processing [37–41], but usually the line-based identifier is
transformed into a feature vector in a similar fashion to
geometry-based representations [42–60]. This is done by adding
simple atom and bond features to the molecular graph and then
transmitting the information iteratively between atoms and bonds.
Circular fingerprints [42–46] based on the Morgan algorithm [61],
such as the extended-connectivity fingerprint [62], were among
the first molecular representations for machine learning applica-
tions. These fingerprints are so-called fixed molecular representa-
tions because they do not change during the training of the
machine learning model. They remain popular in drug design for
rapidly predicting the physical, chemical, and biological properties
of candidate drugs [63]. Because a fixed representation vector rep-
resents a molecule by the same vector in every prediction task, this
type of input layer seems to conflict with the definition of a deep
neural network, which is assumed to learn the important features
[64]. There is a growing tendency to focus on learning how to rep-
resent a molecule [47,52] instead of on human-engineering the
feature vector, as it is assumed that better capturing of the features
will lead to higher accuracy, with less data and at a lower compu-
tational cost [53,58].

Learned molecular representations are created as part of the
prediction model. Starting from several initial molecular



Fig. 3. Overview of unsupervised and supervised machine learning algorithms; a
non-exhaustive list of useful algorithms is included. GMM: gaussian mixture
modeling; LSTM: long short-term memory; t-SNE: t-distributed stochastic neighbor
embedding.
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features—such as the heavy atoms, bond types, and ring features—a
molecular representation is created that is updated during train-
ing. This choice also indicates that a molecule has different repre-
sentations depending on the prediction task. An extensive variety
of learned topology-based representations [47–58] can be
described using the message-passing neural network framework
reviewed by Gilmer et al. [59]. The weighted transfer of atom
and bond information throughout the molecular graph is charac-
teristic of message-passing neural networks. Many different repre-
sentations exist, ranging in complexity, but it is important to note
that a single representation that works for all kind of molecular
properties has not (yet) been developed [65]. For a more detailed
overview of the state of the art in representing molecules, readers
are referred to the review by David et al. [60].

Chemical reactions are more complex data types than mole-
cules. Similar to line-based molecular identifiers, reactions can be
identified by reaction SMILES [66] and reaction InChI (RInChI)
[67], whereas SMIRKS [66] identify reaction mechanisms. As for
molecules, chemical reactions should also be vectorized in order
to be useful in machine learning models. The most straightforward
method is to start from the molecular descriptors (e.g., finger-
prints) of the reagents and sum [68], subtract [50,69], or concate-
nate [70–72] them. Another approach is to learn a reaction
representation based on the atoms and bonds that take actively
part in the reaction [73]. Reactions can also be kept as text (typi-
cally InChI) and, with a neural machine translation, the organic
reaction product is then considered to be a translation of the reac-
tion products [58,74–78].

2.3. The ‘‘C” in machine learning ABCs: Model

The final prerequisite for a machine learning method is a mod-
eling strategy. There is a wide variety of machine learning models
to choose from. Models can be categorized in different ways, either
by purpose (classification or regression) or by learning methodol-
ogy (unsupervised, supervised, active, or transfer learning). Gener-
ally speaking, the term ‘‘machine learning” can be applied to any
method in which correlations within datasets are implicitly mod-
eled [79,80]. Therefore, many techniques that are currently
referred to as machine learning methods were in use long before
they were termed machine learning. Two such examples are
Gaussian mixture modeling and principal component analysis
(PCA), which originated in, respectively, the late 1800s [81] and
the early 1900s [82,83]. Both examples are now regarded as unsu-
pervised machine learning algorithms. Other similar unsupervised
clustering methods are t-distributed stochastic neighbor embed-
ding (t-SNE) [84] and density-based spatial clustering of applica-
tions with noise (DBSCAN) [85]. Fig. 3 shows the difference
between unsupervised and supervised learning techniques, with
a non-exhaustive list of useful algorithms for a specific task. In
unsupervised learning, the algorithm does not need any ‘‘solu-
tions” or labels to learn; it will discover patterns by itself. Unsuper-
vised learning techniques have been used for various purposes in
chemical engineering. Palkovits R and Palkovits S [86] used the
k-means algorithm [87] for clustering catalysts based on their fea-
tures and t-SNE for the visualization of high-dimensional catalyst
representations. Not only used for catalysis, t-SNE is the preferred
method for visualizing high-dimensional data; it has also been
used in the context of fault diagnosis in chemical processes
[88,89] and for predicting reaction conditions [69,90]. PCA is
another algorithm for reducing dimensionality and has been used
multiple times by chemical engineers for determining the features
that account for the most variance in the training set [91–97]. In
addition, PCA is used for outlier detection [93,98]. Other algorithms
used to detect anomalies include DBSCAN and long short-term
memory (LSTM) [99,100]. Interested readers are referred to Géron’s
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book [101] for a further introduction to machine learning
algorithms.

When the dataset is labeled—that is, when the correct classifica-
tion of each data point is known—supervised classification meth-
ods such as decision trees (and, by extension, random forests)
can be used [102,103]. Support vector machines are another possi-
ble supervised classification method [104]. Although support vec-
tor machines are commonly used for classification purposes,
extensions have been made to allow regression via support vector
machines as well. Regression problems require supervised or
active learning methods, although, in principle, any supervised
learning method can be incorporated into an active learning
approach. ANNs and all their possible variations [105–113], are
the method that is most commonly associated with machine learn-
ing. Depending on the application, one might choose feed-forward
ANNs (for feature-based classification or regression), convolutional
neural networks (for image processing), or recurrent neural net-
works (for anomaly detection). A chemical engineer might encoun-
ter convolutional neural networks used for representing molecules
(see Section 2.2) [42–60] and ANNs [32,33,47,91,114–117], support
vector machines [32], or kernel ridge regression [36,118] for pre-
dicting the properties of the representations. ANNs have been
applied as a black-box modeling tool for numerous applications
in catalysis [23], chemical process control [119], and chemical pro-
cess optimization [120]. A popular algorithm for classifying data
points when the labels are known is k-nearest neighbors, which
has been used, for example, for chemical process monitoring
[121,122] and clustering of catalysts [86,123,124].
3. Strengths

In this and the following sections, we give a detailed overview
of the strengths, weaknesses, opportunities, and threats in the
use of machine learning for chemical engineers. Fig. 4 summarizes
what is described in the next sections.

Machine learning techniques have gained popularity in chem-
istry and chemical engineering for revealing patterns in data that
human scientists are unable to discover. In contrast to physical
models, which rely explicitly on physical equations (resulting from
discovered patterns), machine learning models are not specifically
programmed to solve a certain problem. For classification prob-
lems, this implies that not a single explicitly defined decision



Fig. 4. Strengths, weaknesses, opportunities, and threats in using machine learning as a modeling tool in chemical engineering.
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function must be programmed. For regression problems, this
implies that no detailed model equations must be derived or para-
metrized [80]. These advantages allow efficient upscaling to large
systems and datasets without the need for extensive computa-
tional resources. An example is the current boom in predicting
quantum chemical properties using machine learning [32,33,35–
37,39,40,47,49,50,52,55,65,68,71,73,115]. The usual ab initio
methods often require hours or days to calculate the properties
of a single molecule. Well-trained machine learning models can
make accurate predictions in a fraction of a second. Of course,
other fast techniques that can predict accurately have already been
developed, but they are limited in application range compared
with machine learning models [125]. The inability to extrapolate
is the major weakness of machine learning, but the application
range can be extended quite easily by simply adding new data
points. Active learning [126,127] makes it possible to expand the
range with a minimal amount of new data, which is ideal for cases
in which labeling is expensive (i.e., finding the true values of data
points), such as quantum chemical calculations [116] or chemical
experiments [72,128,129]. Furthermore, existing machine learning
models, such as ChemProp [47] and SchNet [130,131], are ready to
use and do not require experience. Machine learning in general has
become very accessible with packages such as scikit-learn [132]
and TensorFlow [133], and frameworks like Keras [134] (now part
of TensorFlow [133]) or PyTorch [135], which restrict the training
of a deep learning model to just a few lines of code. Such packages
and frameworks give scientists the opportunity to shift their focus
to the physical meaning of their research instead of spending
precious time on developing high-level computer models.

4. Weaknesses

One of the main weaknesses of machine learning approaches is
their black-box nature. Given a certain input, the approaches pro-
vide an output. This situation is illustrated by Fig. 5. Based on the
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statistical performance of the model on a test dataset, certain
statements can be made about the accuracy and reliability of the
generated output. Detailed analysis of the model hyperparameters
(e.g., the number of nodes in an ANN) can be tedious, but can pro-
vide some insight into the correlations that have been learned by
the model. However, extracting physically meaningful explana-
tions for certain behaviors is infeasible. Hence, regardless of their
speed and accuracy, machine learning models are a poor modeling
choice for explanatory studies.

This lack of interpretability contributes to the difficulty of
designing a proper machine learning model. As in any model, a
machine learning model can overfit or underfit the data, with the
proper model being situated somewhere in between. The risk of
overfitting is typically much greater than the risk of underfitting
for machine learning models, and depends on the quality and
quantity of the training data, and on the complexity of the model.
Overfitting is an intrinsic property of the model structure and does
not depend on the actual values of the hyperparameters—it can be
compared to fitting a (noisy) linear dataset with a polynomial of
very high order. In deep learning, overfitting usually manifests
itself in the form of overtraining, which arises when the model is
shown the same data too many times. This results in the model
memorizing noise instead of capturing general patterns. Overtrain-
ing can be identified by comparing the model performance on the
training data with its performance on the validation and test data-
sets. If the training performance is much better than the validation
performance, the model may be overtrained. Finding the number
of training epochs is often a difficult exercise. In order to avoid
overfitting, a machine learning model requires a stopping criterion,
such as in other optimization problems. In traditional modeling,
where models typically involve at least some form of simplification
with respect to reality, this stopping criterion is typically based on
the change in performance on the training dataset, as achieving a
high accuracy of the training data is the main challenge due to
the simplifications. Achieving accuracy on the training dataset is



Fig. 5. Unraveling the results from black-box models. A poor result is typically related to the training set used. When testing outside of the application range, a warning signal
should be raised. Good results require validation to understand what the model learns.
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typically not the issue for machine learning models; rather, the
challenge mainly lies in achieving high accuracy on data the model
was not directly trained on. Therefore, the stopping criterion
should be based on the performance of the model on ‘‘unseen”
data—the so-called validation dataset. For rigorously testing the
optimized dataset, a completely independent dataset—the test
dataset—is required, as is also common practice in traditional mod-
eling approaches.

A final—but often critical—weakness in machine learning
approaches is the data itself that was used. If there are too many
systematic errors in the dataset, the network will make systematic
errors itself, in what is known as the ‘‘garbage in–garbage out”
(GIGO) principle [136]. Some forms or sources of error can be iden-
tified relatively easily, while others—once made—are much harder
to find. As in every statistical method, outliers may be present. A
model trained on a small dataset is more affected by some outliers
than a large dataset. This is why not only quality, but also quantity
matters in machine learning. One possible solution to systematic
errors is to manually remove these points from the dataset; it is
also possible to use algorithms for anomaly detection, such as
PCA [69,92], t-SNE [137,138], DBSCAN [139,140], or recurrent
neural networks (LSTM networks) [111,141,142]. Recently, self-
learning unsupervised neural network-based methods for anomaly
detection [143] have been developed [144–146]. Next to simple
outliers, there is always the possibility that the data points are
actually wrong. Such data points might be one sample from an
experiment in which a measurement error was made, or from a
whole set of experiments that were conducted incorrectly. An
example could be the results from a chemical analysis in which
the apparatus was not calibrated. Training on a set of systemati-
cally false data is especially dangerous since the model will per-
ceive the false trend as truth. Identifying such cases is possible
through diligent scrutiny of the published data. This example illus-
trates the importance of data curation, which ensures that the data
used is accurate, reliable, and reproducible.

Obviously, data can only be curated when it is available.
Although decades of modeling, simulating, and experimenting
have provided the chemical engineering community with a mas-
sive amount of data, this data is often stored in research laborato-
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ries or companies, and is hence not readily available. Even in a case
where data is accessible, such as from an in-house database, the
available data might not be completely useful for machine learn-
ing. The same applies to data extracted from research papers or
patents using text-mining techniques [147]. The reason such data
might not be useful is because, in general, only successful experi-
ments are reported, while failed experiments remain unpublished
[148]. Furthermore, experiments or operation conditions that seem
to be nonsense to a human chemical engineer are not performed,
because the engineer has insight and scientific knowledge.
Machine learning algorithms, however, do not know these bound-
aries and not including such ‘‘trivial” data might lead to bad
predictions.
5. Opportunities

The many strengths of machine learning methods present vari-
ous application opportunities, and recent developments have pro-
vided ways to mitigate some of the most important criticisms. The
exceptionally high execution speeds of almost any trained machine
learning method makes such methods well-suited for applications
in which accuracy and speed within predefined system boundaries
are important. Examples of such applications include feed-forward
process control and high-frequency real-time optimization [149–
151]. While empirical models often lack the accuracy for these
applications, detailed fundamental models are rarely fast enough
to avoid computational delays. Machine learning models, trained
on a fundamental model, can provide similar accuracy, yet at the
computational cost of an empirical model. In this case, a model is
trained on high-level data and tries to predict the difference
between the empirical outcome and the true value [152,153].
Unsupervised algorithms can be used in process control applica-
tions for discovering outliers in real-time data [93]. The combina-
tion of more accurate, rapid prediction and reliable industrial data
offers opportunities for the creation of digital twins and better con-
trol, leading to more efficient chemical processes.

A similar observation can be made in multiscale modeling
approaches, where phenomena at a variety of different scales are
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modeled, resulting in a complex and strongly coupled set of equa-
tions. The potential of machine learning in such applications
strongly depends on the aim of the multiscale approach. If the
aim is to gain fundamental insights into the lower scale phenom-
ena, then machine learning is not advisable, due to its black-box
nature. However, if the smaller scales are incorporated into the
approach in order to obtain a more accurate model for larger scale
phenomena, then machine learning could be used to replace the
slow fundamental models for the smaller scales, without impact-
ing the interpretability of the larger scale phenomena.

A final opportunity lies in providing an answer to one of the
main flaws of machine learning: its non-interpretability. The issue
of interpretable machine learning systems is not unique to
chemical engineering problems—it is encountered in nearly any
decision-making system [154–157]. An attempt has been made
in the field of catalysis to rationalize what exactly machine models
learn [158]. This attempt, however, still does not provide any level
of direct interpretation of the model outcomes. Fig. 5 shows a
workflow for explaining why a certain result is obtained. When
the model outputs a good result, such as a chemical reaction pre-
dictor giving the correct product, the model should only be trusted
after examining what the prediction is based on. A first step toward
interpretation of the model results is to quantify the individual
prediction uncertainties [159,160], as this gives an idea of the
confidence the model has in its own decisions [115,161–164].
One relatively straightforward way of doing so is via ensemble
modeling. This methodology has been used for decades in weather
forecasting and can be used in combination with nearly any model
type [165–167]. Several algorithms have also been created to
determine how much certain input features influence the output
[168], or to see which training points the model uses for a certain
output [169,170]. When the results seem chemically or physically
unreasonable, the model should be falsified instead of validated, by
finding adversarial examples [159]. Furthermore, the reason is usu-
ally found in the dataset, with erroneous data or bias being present
in the dataset [171,172].

Another way of making machine learning models more inter-
pretable is to include chemically relevant and well-founded infor-
mation in the models themselves. Interpretation will still require a
considerable amount of postprocessing, but—if human-readable
inputs are used and model architectures are not too complex—it
remains a feasible task. Very complex recurrent neural networks
using molecular fingerprints as input are nearly impossible to
interpret, as the model input is already difficult for a human to
decipher. In risk management, the ‘‘as low as reasonably practica-
ble” (ALARP) principle is often applied [173]. Analogously, one
could suggest an ‘‘as simple as reasonably possible” principle in
order for machine learning models to be as interpretive as possible.
6. Threats

The accessibility of machine learning models is both a major
strength and a major threat in research. While machine learning
can be used by anyone with basic programming skills, it can also
be misused due to a lack of algorithmic knowledge. Today, a
plethora of machine learning algorithms are available, and a
tremendous number of combinations of parameters and hyper-
parameters is possible. Even for experienced users, machine learn-
ing remains a reasoned trial-and-error method. Since researchers
are often unable to explain why one algorithm works while
another does not, some see machine learning as a type of modern
alchemy [174]. Moreover, the majority of published articles do not
provide source code, or only a pseudocode, which makes it impos-
sible to reproduce the work [175,176]. Although chemistry and
chemical engineering do not face a reproducibility crisis as much
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as the social sciences do [177], skepticism might grow in the com-
munity due to the increasing irreproducible use of machine learn-
ing in the field. In Gartner’s hype cycle [178], machine learning and
deep learning are beyond the peak of inflated expectations [179],
and there is a risk of entering a period of disillusionment where
interest is nearly gone. Next to irresponsible use of algorithms—
and possibly more dangerous—is misinterpretation of the results.
The black-box nature of the algorithms makes it difficult, and often
nearly impossible, to understand why a certain result is obtained.
In addition, a model might give the correct outcome for the wrong
reasons [159]. Therefore, researchers should bear in mind an
important rule from statistics when using machine learning: It is
about the correlations, not the causations.

Another kind of unreasonable use of machine learning occurs
when the model leaves the application range it is created for.
The application range is determined by the training dataset and
is finite. When testing unknown data points, the researcher should
check whether or not these points are within the application range.
When the points are outside of the range, it should be seen a warn-
ing signal for the user that the model will perform poorly [92]. The
lower part of Fig. 5 depicts how the reason for obtaining a poor
result is generally found by looking at the training set. Open-
source applications using clustering algorithms are available for
evaluating the data accuracy and its application range [180].

A last threat to applying machine learning in chemical engi-
neering research is the growing educational gap when it comes
to machine learning techniques. When applying computer and
data science to chemistry and chemical engineering, it is important
to understand not only the tool that is used, but also the process it
is applied to. Therefore, simple training on how to use machine
learning algorithms might become insufficient in the near future.
Instead, a good education on AI and statistical methods will
become vital in chemical engineering undergraduate programs.
On the other hand, there is a need for more collaboration between
computer scientists and experts on the studied topic. Whereas
undertrained researchers risk a wrong use of the computational
tools, computer and data scientists might obtain suboptimal
results when they are not fully familiar with the topic being stud-
ied. More interdisciplinary research and a symbiosis between
machine learning experts and chemical experts might be a way
to avoid a phase of disillusionment.
7. Conclusions and perspectives

In the past decade, machine learning has become a new tool in
the chemical engineer’s toolkit. Indeed, driven by its execution
speed, flexibility, and user-friendly applications, there is a strong,
growing interest in machine learning among chemical engineers.
On the flip side of this popularity is the risk of misusing machine
learning or misinterpreting black-box results, which can poten-
tially lead to a distrust of machine learning within the chemical
engineering community. The following three recommendations
can help to improve the credibility of machine learning models
and turn them into an even more valuable and reliable modeling
method.

First, it is important to maintain easy and open access to data
and models within the community. High-quality data and open-
source models encourage researchers to use machine learning as
a tool and grant them the ability to focus on their topic rather than
on programming and gathering data. Second, but related to the
first point, is the creation of interpretable models. Since machine
learning is already established in other research areas, new models
for chemical applications are often inspired by existing algorithms.
Therefore, the field will benefit most from studying why a
certain output is generated from a given input, rather than from
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maintaining black boxes. The last recommendation is to invest in a
profound algorithmic education. Although chemical engineers
typically have very strong mathematical and modeling skills,
understanding the computer science behind the graphical interface
is a prerequisite for any modeler. This should also make it possible
to define the application range of the model, which is crucial for an
understanding of when the model is interpolating and when it is
extrapolating. This last point is definitely the most crucial:
Machine learning models should be credible models, which can
only be achieved by being vigilant for times when the model is
being used outside of its training set.
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