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Abstract 

Benchmarking farms, in order to advise farmers to cure inefficiency, may be biased in case 

heterogeneity is not accounted for. Heterogeneity influences investment motives and production 

strategies, but is not always clear-cut, for example gradation in external inputs use. The paper 

explores gradual heterogeneity in efficiency analysis, aiming at identifying peers/reference farms 

while reflecting on their significance for benchmarking. The gradual differentiation between low 

and high input dairy farms in Flanders is used as a case, based on a five-year balanced panel data 

for 58 farms. DEA meta-frontier approach is used to account for heterogeneity. The study 

concludes that low and high input dairy farming in Flanders are different strategies. However, 

neither of the strategies is superior to the other even though LI farms on average have higher 

technical efficiency levels  than the HI farms.  
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1. Introduction 

Although, productive efficiency analysis, based on constructing a frontier to observed production 

data, is a valuable technique for farm advisors to obtain information on benchmarks, efficiency 

and improvement potential, the method usually assumes homogeneity of the production function 

(Coelli et al., 2005; Van Meensel et al., 2012). This assumes that all farms are engaged in the same 

production process, have comparable measures of efficiency as defined by input and output 

combinations and are operating under similar conditions (Haas and Murphy, 2003). Heterogeneity 

in dairy farming, however, exists and has been recognized as a key issue in efficiency analysis. As 

a result, various approaches to take it into account have been used such as meta-frontier analysis 

(Battese et al., 2004; Espinoza et al., 2018; Jiang and Sharp, 2015; O’Donnell et al., 2008), 

threshold estimation techniques (Almanidis, 2013; Almanidis et al., 2019), stochastic frontier 

latent class models (Bahta et al., 2018; Chang and Tovar, 2017; Pino and Tovar, 2019), Markov 

Chain Monte Carlo technique (Areal et al., 2012; Olalotiti-Lawal and Datta-Gupta, 2018; Turner 

et al., 2015) and cost dominance models (Boussemart et al., 2016).  

The paper’s objectives are i) to examine whether the tool box for the efficiency analysts, adapted 

for technological heterogeneity provides sufficient anchor points for a strategy-dependent 

differentiated benchmarking in case of gradual differentiation in technology and ii) to determine 

whether low input (LI) and high input (HI) strategies are equally efficient. The hypothesis is that 

HI and LI strategies are different production technologies and LI strategy is superior to HI. As 

such, the paper contributes to estimating a meta-frontier with a non-parametric technique to 

account for strategy dependent heterogeneity in dairy farming. To the best of our knowledge, this 

is the first study to combine peer information with efficiency scores to determine the strategy 

superiority. 
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The paper starts by explaining the relevance of accounting for heterogeneity followed by materials 

and methods in section 3, results in section 4,  discussion of results focused on the added value of 

heterogeneity exploration for differentiation in diagnosis and improvement potential in section 5 

and finally the conclusions in section 6.  

2. Relevance of heterogeneity in production frontier analysis  

Production frontier analysis usually assumes that all firms under investigation use similar 

technology and operate under similar conditions (Kumbhakar et al., 2015). This is due to the 

difficulty in accounting for differences between firms, though some of these differences must be 

accounted for, if reliable results are to be generated (Battese et al., 2004; Huang, 2004). The need 

for a differentiated analysis stems from both corporate and public concerns. At the firm level, 

differentiated insights will contribute to both fixing the direction and estimating the potential for 

improvement. At public level, differentiation facilitates policies which address specific issues 

among the targeted category of the affected population (Baráth and Fertő, 2015).  

Additionally, homogeneity assumption, overestimates inefficiency since researchers are likely to 

label firms using outdated/inferior technology as inefficient even when they are fully utilizing their 

technology (Almanidis, 2013; Hockmann et al., 2007). This may lead to erroneous efficiency 

ranking of firms and making wrong conclusions about the measure of returns to scale. To address 

these concerns, accounting for technological heterogeneity in productivity analysis is vital.  

 

3. Materials and methods 

A five year (2011-2015) balanced panel dataset of 58 specialized dairy farms consolidated from 

Flemish Farm Accountancy Data Network (FADN) was used to perform detailed analysis. LI, 

Medium input (MI) and HI farms were distinguished based on the ratio of external input costs 

(EIC) divided by the number of dairy cows (Dcow). EIC were a sum of the fertilizers, pesticides, 

energy, contract services and other variable costs used for on-farm roughage production plus the 

value of the concentrates and energy used by the dairy cows. The computation of EIC differed 

from that of other studies which used the grazing livestock units as the denominator instead of 

Dcow (Bijttebier et al., 2017). 

Quartiles for the EIC/Dcow were calculated and all farms that had a value less than the first quartile 

(546.84 Euros per cow per year) plus two other farms which had the lowest values in the second 

quartile were classified as LI, farms that had a value greater than the third quartile (826.85 Euros) 

as HI and the rest as MI. The classification resulted in 17, 15 and 26 LI, HI and MI farms 

respectively. Descriptive statistics were generated and differences among the farms identified, 

factors influencing milk productivity per cow between LI and HI farms determined after which 

their efficiency levels were determined. DEA meta-frontier analysis was conducted using DEAP  

software where group specific frontiers and a meta-frontier were estimated.  

 

3.1.Meta Frontier analysis  

Meta-frontier analysis calculates comparable technical efficiencies and technology gaps for firms 

operating under different technologies relative to the best practice frontier (Battese et al., 2004). 

Meta-frontier concept is illustrated in an isoquant representation (input oriented DEA-model) in 

Figure 1. The method estimates the technical efficiency based on the estimation of the group-
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specific frontiers T1, T2 and T3 and the meta-frontier M. Technology gaps are calculated from the 

ratio of the observed output of a group-specific frontier relative to the potential output defined by 

the meta-frontier function, given all the observed data. These technology gaps reflect the 

improvement potential for the different groups (Li and Lin, 2015). The technology gap can be 

calculated to show how far the group-specific frontier is from the meta-frontier. Whereas OB/OB’’ 

is the efficiency score with respect to the own strategy-dependent frontier T1 also known as the 

intra-technology efficiency (IA), OB/OB’ is the efficiency score with respect to the meta-frontier 

M or the inter-technology efficiency (IE). The technology gap is then given by the ratio of  

OB/OB’’ to  OB/OB’.  Therefore,  technology gap = OB’/OB’’.  

 
 

 

The same applies for farms C and D. This makes it only meaningful to compare efficiency levels 

within own group frontiers and the meta-frontier, but not across the group-specific frontiers. For 

instance in Figure 1, we cannot compare the efficiency scores generated from T2 with those 

generated from T1 but all the efficiency levels can be compared with those estimated by meta-

frontier M.  There is also a challenge of farms that are in between, not clearly defined whether they 

belong to T1 or T3, such as farm F. Moreover, in our case the two distinct strategies stem from a 

gradual normally distributed variable and majority of points would have the more “middle-of-the-

road” situation similar to that of  farm F.  Additionally, from the illustration, it is impossible to 

say that T1 is superior to T2 because both contribute to the estimation of the meta-frontier. 

However, if some firms were using strategy T0, one would easily conclude that T0 is inferior to T1, 

T2 and T3 since it does not contribute in the estimation of the meta-frontier.  

 

3.2.Empirical method 

DEA was used because it does not assume any functional form and is more appropriate for advisory 

support since it works with real farms as benchmarks. The technique also reveals the peers against 

which the performance comparison is done to generate the relative efficiency scores. This is critical 

Figure 1: Graphical representation of the Meta-frontier and the group-specific frontiers groups  
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information for  farmers and farm advisors. Three group specific models and a meta-frontier were 

estimated using one output (Total farm revenues) and four inputs namely intermediate, land, 

capital rent and labour costs by employing an input-oriented model. These inputs were selected 

because they are assumed to account  for all the production costs involved in dairy farming hence 

accurate estimation of the production frontier. The four inputs are also suitable for the DEA model 

given the number of observations in the LI, MI, HI and pooled samples i.e. 17,15,26 and 58 

respectively. These are in line with Banker et al. (1989) who recommends that the number of 

decision making units (DMUs) should at least be three times the number of factors to fit a good 

DEA model.  

 

3.2.1. Group-specific frontiers and Meta-frontier  

Even though the DMUs considered in this study come under the broader category of specialized 

dairy farms, the production technology used varies due to differences in EIC. Therefore, measuring 

technical efficiency of individual farms using a common frontier for all DMUs as the benchmark 

may not provide a complete picture (Vipin and Bhandari, 2016). Rather, a group frontier for each 

of its constituting sub-categories may be formed using the DMUs within that particular group. A 

meta-frontier is then created using all the DMUs belonging to the broader category of specialized 

dairy farms to envelope the group-specific frontiers. A particular DMU can thus be evaluated 

against these two frontiers, i.e. the group-specific and meta frontiers. 

To construct group-specific frontiers, categorization of  the DMUs into different groups is done 

based on the ratio of EIC/Dcow. Suppose N DMUs are observed, J = 1, 2, …, N and these DMUs 

are classified into H number of distinct groups, where gth group containing Ng number of DMUs, 

such that:𝑵 = ∑ 𝑵𝒈
𝑯
𝒈=𝟏                      Equation 1 

We then partition DMUs into non-overlapping subsets given as: Jg = [j: DMU j belongs to group 

g;(g =1,2,…H)]. In this study, H= 3 and j= number of farms in each group. Therefore, the 

production possibility set for group g will be: 

𝑇𝑔 = (𝑥, 𝑦): 𝑥 ≥ ∑ 𝜆𝑔𝑗𝑥𝑔
𝑗

𝑗∈𝐽𝑔
; 𝑦 ≤ ∑ 𝜆

𝑔𝑗𝑦𝑔
𝑗 ; ∑ 𝜆𝑔𝑗𝑗=𝐽𝑔𝑗∈𝐽𝑔

= 1; 𝜆𝑔𝑗 ≥ 0                 Equation 2 

The set Tg  in Equation 2 is the free disposal convex hull of the observed input-output bundles of 

DMUs from group g and (xj, yj) are the observed input-output bundle of an individual DMU j in a 

sample of Ng DMUs in the data. Therefore, a measure of within-group technical efficiency (TEg) 

of DMU k belonging to group g can be given as: 𝑇𝐸𝑔
𝑘 = 𝜃𝑔

𝑘           Equation 3 

Where 𝜃𝑔
𝑘 solves the linear program in equation 4: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐸𝑔
𝑘 = 𝜃𝑔

𝑘                                                  Equation 4 

Subject to:  ∑ 𝜆
𝑔𝑗𝑥𝑔

𝑗𝑗𝜖𝐽𝑔 ≤ 𝜃𝑔
𝑘𝑥𝑔

𝑘 ∑ 𝜆
𝑔𝑗𝑦𝑔

𝑗𝑗𝜖𝐽𝑔 ≥ 𝑦𝑔𝜆𝑔𝑗

𝑘 ≥ 0        Equation 5 

The linear programming problem in equation 5 is then solved for each DMU in every group and 

an extra convexity constraint added  since we assume the Variable returns to scale              
∑ 𝜆𝑔𝑗𝑗𝜖𝐽𝑔

= 1                       Equation 6      

 

3.2.2. Technology gap ratio (TGR) 
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TGR is given as the ratio of the technical efficiency of the DMU on the meta-frontier to the 

technical efficiency of the same DMU as estimated by the group specific frontier. For  group g, 

this can be given by:𝑻𝑬𝒈(𝒈) =  (∏ 𝑻𝑬𝒈
𝒌𝑵𝒈

𝑲=𝟏
) 𝟏

𝑵⁄
𝒈

                      Equation 7 

Similarly, the average TE of group g, measured from the meta-frontier, will be: 

𝑻𝑬𝑮(𝒈) = (∏ 𝑻𝑬𝑮
𝒌𝑵𝒈

𝒌=𝟏
) 𝟏

𝑵𝒈
⁄                                                           Equation 8 

For group g, technology gap ratio (TGR), given by:  𝑻𝑮𝑹 (𝒈) =
𝑻𝑬𝑮 (𝒈)

𝑻𝑬𝒈 (𝒈)
                  Equation 9 

4. Results 

4.2.  Characteristics of specialized dairy farms in Flanders 

The average annual amount of milk produced per cow is lowest among the LI farms (5664.14L) 

as compared to the HI farms (Table 1). There is also a huge difference in the Fat Protein Corrected 

Milk (FPCM) produced per cow between the LI and HI farms. Similarly, FPCM/MILK ratio is 

significantly different between the LI and HI farms. This means that HI farms produce better 

quality milk with high fat and protein content. Despite the significant difference in the amount and 

quality of milk produced by the HI farms, there is no significant difference between the milk sales 

both quantity and value for the HI and LI farms. MI input farms have the highest milk sales and 

revenues and this significantly differs from that of the LI farms but not from the HI farms. The 

number of cows and utilizable agricultural area available are not significantly different which 

makes their stocking rates not to differ significantly. To meet the dietary requirements of the dairy 

cows, HI farms spend significantly more on concentrate per milking cow as compared to the LI 

farms. Averagely milk sales contribute 64% and 69% to the total farm revenues for LI and HI 

farms respectively, which is a significant contribution. However, this ratio and the profitability 

ratio do not significantly differ between the HI and LI farms.  

Table 1:Statistical differences between LI, MI and HI farms 

Name of the variable LI MI HI 

Fertilizer per cow (EUR) 87.66a 106.36b 112.39b 

Pesticides per cow (EUR) 28.08a 31.08a,b 32.35b 

Contract service per cow (EUR) 157.26a 161.66a 165.85a 

Other variable costs per cow (EUR) 24.85a 47.32b 43.66b 

Energy per cow(Eur) 22.24a 26.25a,b 30.36b 

Concentrates per cow (EUR) 236.32a 481.34b 651.35c 

Milk per cow (L) 5664.14a 7878.94b 8302.83c 

Number of cows 65.19a 79.86b 73.63a,b 

Stocking rate (Cows/ha) 1.48a 1.54a 1.63a 

FPCM/cow (L) 5896.03a 8304.64b 8789.46c 

FPCM/Tot MILK 1.04a 1.05b 1.06b 

Total costs 214427.14a 339774.90b 338595.94a,b 

Farm revenues 181392.86a 298928.10b 287808.70a,b 

Milk sales: Farm revenue 0.64a 0.69a 0.67a 

Farm revenues - Total costs -95976.36a -132920.92a -132400.32a 

Profitability ratio 0.61a 0.73a 0.55a 

Milk sales (€) 118450.78a 206853.98b 206195.62a,b 
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Milk sales ( Liters) 360901.79a 609175.17b 604862.60a,b 

Total Labour ( Hours ) 3899.19a 5282.04a 4740.61a 

Calving interval 412.51a 416.30a 415.79a 

Utilizable Agriculture Area (ha) 44.90a 53.21b 46.55a,b 
A,b,c are significant at  P<0.01 and P<0.05 

4.3.  Significance of technological heterogeneity in determining factors that influence milk 

productivity per cow  

Determinants of milk productivity per cow were predicted using four separate models. These 

included a model with all specialized dairy farms, followed by LI model, then MI model and lastly 

the model with only the HI farms. The determinants are different across the models (Table 2). The 

difference in these could be due to differences in the farm priorities, goals and resources use by 

the different farm strategies. In addition, the variables in the predicted model explain 56.3% 

variability in milk productivity per cow in the general model, 60.1% for LI, 51.7 % for the HI 

farms and only 22.4% for the MI farms. In all the four predicted models, the value of concentrates 

per cow is a significant determinant for milk productivity per cow.  

 

Some variable coefficients show different signs depending on the farm strategy. For instance, the 

average number of dairy cows negatively and significantly influences milk productivity per cow 

for the LI farms. On the contrary, this positively and significantly increases milk productivity per 

cow on HI farms. This could be attributed to the low input levels on the LI farms hence an increase 

in the number of dairy cows would reduce the amount of input allocated per cow which results in 

reduced milk productivity. On the other hand, the input levels on the HI farms are high thus 

increasing the number of dairy cows might lead to appropriate distribution of inputs per cow hence 

increased output. Furthermore, while an increase in labour costs significantly reduces milk 

productivity per cow for LI, increased labour costs increase milk productivity per cow among the 

HI farms.  

 

Table 2: Factors that influence milk productivity per cow 

Name of the variable Model1(all farms) Model 2 (LI) Model 3 (MI) Model 4 (HI) 

 Coef (SE) Coef (SE)  Coef (SE) Coef (SE) 

Concentrates per cow (Euros) 0.555(0.396)*** 0.514 (1.424)*** 0.353(0.753)*** 0.154(0.693)*** 

Average number of dairy cows -0.013 (2.23) -0.617(9.960)*** 0.061(2.959) 0.528(2.379)*** 

Fixed costs per cow (Euros) 0.210(0.179)*** 0.500(0.392)*** 0.015(0.217) -0.184(0.239) 

Cows per ha (Stocking rate) -0.015(165.5) 0.325(384.580)*** -0.237(206.113)** -0.512(202.947)*** 

Roughage per cow (Kg) 0.019 (0.020) 0.033(0.034) 0.026(0.027) -0.172(0.028)* 

Labour per cow (Euros) -0.076(0.274) -0.276(0.760)* -0.001(0.380) 0.218(0.361)* 

Veterinary per cow (Euros) -0.008(1.441) 0.066(4.257) -0.054(2.004) -0.198(1.455)* 

Insemination per cow (Euros) 0.237(2.689)*** 0.030(6.995) 0.164(3.126) 0.610(3.201)*** 

R2 0.563 0.601 0.224 0.517 

*=significant at 10%, **= significant at 5%, ***= significant at 1% and () standard error, SE = standard error, coef = coefficient 

4.3.  Technical efficiency and returns to scale for  LI and HI farms 

LI farms have the highest mean technical efficiency (MTE), both in the pooled sample (Meta-

frontier) and the group specific models. The MTE for LI and HI farms are 0.925 and 0.920 

respectively using pooled sample; 0.973 and 0.965 for group specific models. The group specific 

frontiers reveal that 27 farms are experiencing increasing returns to scale, 13 of which are LI farms 

and only 4 are HI farms. This means that these farms can increase their output through increasing 
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their current input levels hence still have potential for improvement even without changing their 

current production technology. On the other hand, 12 farms are experiencing decreasing returns to 

scale, none of which is LI farm and 3 are HI farms. Such farms would need to reduce their input 

levels per cow to operate efficiently. Twenty farms are operating under constant returns to scale 

meaning that a unit increase in the input results in only a unit increase in output. Most of these 

farms are HI farms.  

In Table 3, results from the group-specific models are always condensed in the same column to 

ensure that both the meta-frontier and the group-specific models are comparing results generated 

from the same farm. Comparison with the meta-frontier reveals the improvement potentials for 

farms using  different strategies as shown by the TGR. Farms with TGR of 1 mean that they do 

not have any improvement potential since no technological gap exists for such farms. The smaller 

this ratio is for a particular farm, the more the farm needs to improve to produce efficiently. For 

instance, farms 46 and 52 have their TGR as 0.77 and 0.82 respectively which are the lowest thus 

require to improve greatly to be efficient.  

4.4. Heterogeneity and efficient peers  

Farms 24, 27 and 48 are peers to the largest number of  farms while using the pooled sample. Farm 

24 is a peer to 14 farms, farm 27 to 14 farms and farm 48 to 18 farms. Farm 27 and 48 are MI 

farms while farm 24 is a LI farm. However, farm 48 is a peer to 5 HI, 7 LI and only 6 MI farms in 

the pooled model. On the other hand, farm 24 which is a LI farm is a peer to 5 HI, 4 LI and 5 MI 

farms. Farm 27  is a peer to 10 MI, LI and 3 HI farms. This illustrates the possibility to have peers 

both within and across the strategies depending on what needs to be done to trigger efficient 

production. This possibility could be due to the nature of the classification of the strategies (based 

on gradual separation). Therefore, although the farms under different strategies tend to differ in 

some characteristics, they also share some similarities in the way they combine their inputs to 

produce a certain level of output.  

While using the group-specific model, farm 24 is a peer to 5 farms, farm 27 to 9 farms, 41 which 

is a HI farm to 5 farms and farm 48  to 6 farms. Therefore, in the pooled model, farms 24, 27 and 

48 are the most influential in determining the DEA results while in the group-specific models,  

farm 24 is most influential for the LI-DEA model, 27 and 48 for MI-DEA model and 41 for the 

HI-DEA model.    

4.5. Significance of  peers and references  in bench marking 

Farm 1 refers to farms 33,  41, 47 and 34 as peers. This means that for this farm to work towards 

being efficient, it has to mimic the input-output combinations of these reference farms. There are 

22 efficient farms on the meta-frontier. On the group frontiers, there are  9 farms on the HI-farm 

frontier, 11 farms are on the LI-farm frontier and 13 farms on the MI-farm frontier. However, from 

such a result one cannot know which of the efficient farms are the best but looking at the number 

of references, we can easily identify farms 48 and 27 on the meta-frontier and group specific 

frontiers respectively as the best farms. This is because these farms are used as references for the 

biggest number of farms in the sample. This could be because they have attractive input-output 

combinations. Farms 9,10,18 and 43 are not performing as good as the other efficient farms 

because they are not referred to by any of the farms in the sample. This means that none of the 

existing farms find  their input-output combination attractive as regards improving their efficiency. 
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Table 3:Comparison of efficiency scores and peers from the model assuming homogeneity and  the separate models that 

assume heterogeneity in production technology 

Farm 

No 

TE 

_MTF 

TE_GFs TGR= TE_MTF/ 

TE_GFs 

SE_ MTF SE_GFs Farm 

type 

Peer for the MTF No of references 

for the MTF 

Peers GFs  No. of references 

for GFs 

1 0.977   0.995   0.98 0.926 irs 0.940 irs LI 33   41   47   34 0 24,35,47 0 

2 0.773   0.773   1.00 0.992 irs 0.992 irs LI 34   24 0 34,24 0 

3 0.853   0.892   0.96 0.936 drs 0.923 drs MI 14   27   29 0 31,27,5 0 

4 0.865   1.000   0.87 0.955 drs 0.949 drs HI 7   21   31   24 0 4 0 

5 0.993   1.000   0.993 0.871 drs 0.950 drs MI 27   29   14 0 5 2 

6 0.946   1.000   0.95 1.000 crs 1.000 crs LI 48   27   16 0 6 0 

7 1.000   1.000   1.00 0.970 drs 1.000 crs MI 7 6 7 4 

8 0.873   0.926   0.94 0.979 irs 0.976 irs HI 41   24   35   33   48 0 39,41 0 

9 1.000   1.000   1.00 0.728 irs 0.733 irs LI 9 0 9 1 

10 1.000   1.000   1.00 0.986 irs 1.000 crs  HI 10 0 10 0 

11 0.956   0.979   0.98 0.943 irs 0.930 irs LI 33   35   48   47 0 35,38,9,24 0 

12 0.864   0.918   0.94 0.997 irs 0.983 irs MI 27   41   24   35 0 7, 43,33 0 

13 0.874   0.880   0.99 0.953 drs 0.948 drs MI 27   29   31 0 27,5,31 0 

14 1.000   1.000   1.00 1.000 crs  1.000 crs  HI 14 2 14 2 

15 0.819   0.894   0.92 0.961 irs 0.920 irs MI 16   27   48 0 27,18 0 

16 1.000   1.000   1.00 1.000 crs 1.000 crs HI 16 4 16 1 

17 0.805   0.814   0.99 0.943 irs 0.950 irs MI 52   27   16   48 0 48,27,18 0 

18 1.000   1.000   1.00 0.730 irs 0.804 irs MI 18 0 18 2 

19 0.985   1.000   0.99 0.926 drs 0.961 drs MI 21   29   41 0 19 0 

20 0.785   0.851   0.92 0.931 irs 0.894 irs LI 24   48   34 0 35,38,6,24 0 

21 1.000   1.000   1.00 1.000 crs 1.000 crs  MI 21 7 21 2 

22 0.864   0.957   0.90 0.868 irs 0.800 irs LI 47   48   24   34 0 35,56,24,47 0 

23 0.998   1.000   1.00 0.906 drs 0.904 drs MI 7   29   21 0 23 0 

24 1.000   1.000   1.00 1.000 crs 1.000 crs LI 24 14 24 5 

25 0.723   0.819   0.88 0.987 drs 0.972 drs HI 7   41   24   21 0 14,41,4,16 0 

26 0.936   1.000   0.94 0.938 irs 0.936 irs LI 39   35   48   47 0 26 0 

27 1.000   1.000   1.00 1.000 crs 1.000 crs  MI 27 10 27 8 

28 0.929   0.985   0.94 0.969 drs 0.995 irs MI 7   24 0 7,33 0 

29 1.000   1.000   1.00 0.919 drs 1.000 crs HI 29 7 29 1 

30 0.857   0.919   0.93 0.976 irs 0.999 drs MI  35   33   24   48 0 48,27,7 0 
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31 1.000   1.000   1.00 0.933 drs 0.976 drs MI 31 4 31 2 

32 0.784   0.893   0.88 0.990 irs 0.996 irs HI 24   34   48 0 39,41 0 

33 1.000   1.000   1.00 0.938 irs 0.980 irs MI 33 4 33 3 

34 1.000   1.000   1.00 0.929 irs 0.929 irs LI 34 5 34 1 

35 1.000   1.000   1.00 1.000 crs  1.000 crs  LI 35 5 35 5 

36 0.969   1.000   0.97 0.992 irs 1.000 crs LI 24   41   57   21 0 36 0 

37 0.910   0.994   0.92 0.873 irs 0.838 irs MI 27   48   41   39 0 27,33,48 0 

38 1.000   1.000   1.00 0.743 irs 0.745 irs LI 38 1 38 2 

39 1.000   1.000   1.00 1.000 crs  1.000 crs HI 39 4 39 3 

40 0.772   0.877   0.88 0.966 irs 0.990 irs HI 27   24   48 0 16,39,41 0 

41 1.000   1.000   1.00 1.000 crs 1.000 crs HI 41 9 41 5 

42 0.915   1.000   0.92 0.719 drs 0.666 drs MI 7   29   31 0 42 0 

43 1.000   1.000   1.00 0.967 irs 1.000 crs MI 43 0 43 1 

44 0.879   0.974   0.90 0.993 drs 0.969 drs HI 14   29   27 0 4,29,14 0 

45 0.782   0.794   0.98 0.922 irs 0.949 irs MI 48   38   16 0 18,48 0 

46 0.764   0.992   0.77 0.884 irs 0.733 irs LI 57   48 0 51,56,35,47 0 

47 1.000   1.000   1.00 0.756 irs 0.780 irs LI 47 4 47 3 

48 1.000   1.000   1.00 0.951 irs 1.000 crs  MI 48 18 48 6 

49 0.658   0.660   1.00 0.969 irs 1.000 crs MI 27   24   48 0 7,27,48 0 

50 0.838   0.860   0.97 0.964 irs 0.987 irs MI 57   21   41 0 27,21,57 0 

51 0.818   1.000   0.82 0.905 irs 0.862 irs LI 57   41 0 51 1 

52 1.000   1.000   1.00 0.893 irs 1.000 crs  HI 52 1 52 1 

53 0.945   0.991   0.95 0.870 irs 0.955 irs HI 48   39   41   27 0 39,58,41,52 0 

54 0.965   0.981   0.98 0.953 drs 0.998 drs MI 7   21   27   31   24 0 48,27,7 0 

55 0.966   0.973   0.99 0.923 irs 0.917 irs MI 41   21   57 0 21,57 0 

56 0.933   1.000   0.93 0.864 irs 0.923 irs LI 57   48 0 56 2 

57 1.000   1.000   1.00 0.983 irs 1.000 crs MI 57 5 57 2 

58 0.945   1.000   0.95 0.893 irs 1.000 crs  HI 48   41   27   39 0 58 1 
Irs= Increasing returns to scale, drs= Decreasing returns to scale,  crs = Constant returns to scale, TE=technical efficiency, MTF= Meta-frontier, GF= Group 

specific frontier, TGR=Technological Gap Ratio, SE= Scale efficiency, diff_eff = difference between the technical efficiency from the meta-frontier and 

technical efficiency from the group specific frontiers 
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5. Discussion 

There is  a significant difference in concentrate use between LI and HI strategy of technology, the 

quality and quantity of milk production per cow and the way certain production factors influence 

milk productivity. Whereas in the MI group correlation with the inputs was less significant, the 

correlation is more expressed in the LI and HI farms with different signs of the estimated 

parameters. The difference in their determinants for milk productivity per cow among the farms 

using these strategies confirms that these technologies are dissimilar. This means that agricultural 

advice and policies targeted towards increasing productivity among dairy farmers should always 

take these differences into consideration, if they are to have milk  productivity increased. The 

results show that HI farms may need to increase levels of certain inputs to increase their 

productivity while LI inputs will need to reduce the levels of those similar inputs to have their milk 

productivity increased. This is in agreement with Baráth and Fertő (2015) who recommended that 

extension programs should stop using “one size fits all “ or “ blanket” solutions but rather allow 

farmers to choose different measures based on the production technology used. These observations 

are consistent with some of the efficiency analysis outcomes in particular those of economies of 

scale. Indeed, all LI farms are experiencing increasing returns to scale, while HI farms are 

experiencing decreasing and constant returns to scale.  

Observed differences in the characteristics of both LI and HI strategies do not  allow to conclude 

on the profitability and efficiencies of the strategies.  LI farms produce significantly lower amount 

of milk and FPCM per cow compared to the HI farms, but the milk sales both in volume and value 

of the two strategies do not significantly differ. Most farms from both technologies have negative 

net revenues and this makes it difficult to decide which technology is more superior than the other. 

Furthermore, regardless of the low milk productivity  per cow by the LI farms, they have higher 

technical efficiency levels than the HI farms. This contradicts with the findings of Alvarez and del 

Corral (2010) who reported that more intensive dairy systems were more efficient than the less 

intensive ones. While comparing the efficiency levels of the group specific frontiers  to the meta-

frontier, farms from both strategies contribute in the estimation of the meta-frontier hence none of 

the technologies is superior to other but rather the farms using the individual technologies (within 

the technology) are not equally efficient. 

Results indicate that some farms are referred to more than others which makes them peers to a 

larger number of inefficient farms. The higher the number of times a farm becomes a peer, the 

more influential it  becomes to the DEA model results (Barrett, 1997). The number of times a farm 

becomes a peer similarly reflects the number of farms that have used its input-output relationship 

information as a bench mark. Therefore, for an inefficient farm to follow an improvement path 

towards efficient production, it  has to mimic  the input-output combination of the farms that it 

considers to be its peers (Goyal et al., 2018). In case farmer representatives per class are to be 

selected, the farms which are references to most of the inefficient farms should be of interest if 

their qualitative characteristics are known. 

6. Conclusions  

Based on predicted factors that influence milk productivity per cow and the way how they 

influence, low and high input dairy farming in Flanders are different strategies. This differentiation 

in two technologies is also supported by some efficiency analysis outcomes, in particular 

differences in returns to scale.  
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The study, additionally concludes that neither LI nor HI strategy is more superior than the other 

even though LI farms on average have higher technical efficiency levels  than the HI farms. This 

is because both technologies had farms that were part of the meta-frontier. On the other hand it is 

also noticed that though some farms may be part of the frontier, they may not be adequate 

benchmarks. Therefore, to implement results in practice for agriculture advisory, efficiency 

analysis taking heterogeneity into account is helpful provided it is accompanied with a thorough 

peer analysis.  
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