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IL-1 family cytokines act as apical initiators of inflammation in many settings

and can promote the production of a battery of inflammatory cytokines,

chemokines and other inflammatory mediators in diverse cell types. IL-36a,
IL-36b and IL-36c, which belong to the extended IL-1 family, have been

implicated as key initiators of skin inflammation in psoriasis. IL-36c is highly

upregulated in lesional skin from psoriatic individuals, and heritable muta-

tions in the natural IL-36 receptor antagonist result in a severe form of psori-

asis. IL-36 family cytokines are initially expressed as inactive precursors that

require proteolytic processing for activation. The neutrophil granule-derived

protease elastase proteolytically processes and activates IL-36a and IL-36c,
increasing their biological activity ~ 500-fold, and also robustly activates IL-

1a and IL-33 through limited proteolytic processing. Consequently, inhibi-

tors of elastase activity may have potential as anti-inflammatory agents

through antagonizing the activation of multiple IL-1 family cytokines. Using

in silico screening approaches, we have identified small-molecule inhibitors

of elastase that can antagonize activation of IL-36c by the latter protease.

The compounds reported herein may have utility as lead compounds for the

development of inhibitors of elastase-mediated activation of IL-36 and other

IL-1 family cytokines in inflammatory conditions, such as psoriasis.

IL-1 family cytokines, which include the recently

described IL-36a, IL-36b and IL-36c proteins, are

among the first cytokines produced in response to

infection or injury and play key roles in the initiation

of inflammation as a consequence [1–4]. IL-1 family

cytokines can initiate the production of many addi-

tional cytokines from diverse cell types, such as tissue

macrophages and dendritic cells, as well as

keratinocytes and endothelial cells lining local blood

vessels [5–11]. IL-36a, IL-36b and IL-36c are encoded

by distinct genes, but all signal via the same receptor,

and much evidence now suggests that one or more

of these cytokines play an important role in psoriasis

[12–21].
Individuals that carry loss-of-function mutations in

the IL-36 receptor antagonist (IL-36RA) display a
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severe form of psoriasis, called generalized pustular pso-

riasis [16–20]. Furthermore, expression of all three IL-

36 family members has been found to be dramatically

elevated (100-fold) in skin biopsies from individuals

with the most common form of psoriasis, psoriasis vul-

garis, compared with nonlesional skin from the same

individuals, or nonaffected controls [13,14]. This sug-

gests that deregulated IL-36 cytokine signalling is suffi-

cient to initiate psoriatic-type skin inflammation.

Moreover, deregulated expression of IL-36a in the

mouse leads to a psoriasis-like condition that is exacer-

bated with the skin irritant, phorbol acetate [12]. In

addition, transplantation of human psoriatic lesions

onto immunodeficient (SCID) mice produces a psoria-

sis-like condition that is ameliorated through IL-36

receptor neutralization [13].

As is common within the extended IL-1 cytokine family,

IL-36a, IL-36b and IL-36c are all expressed as leaderless

cytokines that lack biological activity unless cleaved within

their N termini [11,22,23]. Thus, limited proteolytic pro-

cessing of IL-36 family cytokines to remove up to 15 N-

terminal amino acids dramatically increases their pro-

inflammatory activity by over 500-fold [11,22,24,25]. We

have recently reported that the neutrophil-derived pro-

teases cathepsin G (CatG) and elastase are potent IL-36-

processing proteases, with elastase playing a major role in

the processing and maturation of IL-36a and IL-36c
[11,25]. Furthermore, IL-1a and IL-33 are also proteolyti-

cally processed and activated by elastase [reviewed in Ref.

26]. Because deregulated IL-36 cytokine activation appears

to be instrumental in the initiation of inflammation in the

skin barrier, inhibitors of IL-36 activation and/or down-

stream activity are likely to have potential for the treat-

ment of inflammatory skin conditions. Neutrophil

infiltrates are common in psoriasis, and these cells are the

major source of elastase [27–29]. Thus, small-molecule

inhibitors of neutrophil elastase (NE) may have significant

potential as inhibitors of IL-36 activation in psoriasis.

Here, we have used in silico screening approaches to

identify small-molecule inhibitors of elastase, followed

by functional testing of candidates. We show that these

inhibitors are capable of antagonizing elastase-mediated

processing and activation of IL-36c, suggesting that

these compounds may be useful leads for the generation

of therapeutic modulators of IL-36 cytokine activity in

inflammatory conditions.

Results

Elastase processes and activates IL-36c

Similar to other members of the extended IL-1 fam-

ily, such as IL-1b and IL-18 [26], IL-36 cytokines

possess minimal pro-inflammatory activity as full-

length proteins and require N-terminal processing for

activation [11,22]. However, as we have recently

reported [11,25], IL-36c is robustly activated upon

incubation with elastase (Fig. 1), a protease that is

released in large quantities into the extracellular space

from the cytoplasmic granules of activated neu-

trophils. Elastase processes IL-36c at Val15, liberating

a new N terminus that unleashes the pro-inflamma-

tory activity of this cytokine, possibly through pro-

voking a conformational change in the latter or

through eliminating steric interference within the

receptor-binding domain of this cytokine [11]. Of

note, previous studies have shown that IL-36c is dra-

matically upregulated at the mRNA and protein

levels in lesional skin from psoriasis patients, com-

pared with unaffected skin from the same individuals,

or from control subjects [13,14,24,30]. Coupled with

observations that loss-of-function mutations in the

natural IL-36 receptor antagonist promote a highly

severe form of psoriasis [16–20], this suggests that IL-

36c may be an important driver of the inflammation

seen in this condition.

Migration of circulating neutrophils into peripheral

tissues is a major amplifier of inflammation and is

commonly seen in psoriatic lesions. Neutrophil-

derived proteases such as elastase and CatG,

although generally thought of as antimicrobial

enzymes, are also potent instigators of inflammation

[4,11,25,26], most likely through processing and acti-

vation of IL-1 family cytokines such as IL-36a and

IL-36c. Therefore, inhibitors of NE may have thera-

peutic potential as anti-inflammatory agents through

antagonizing processing and activation of multiple

IL-1 family cytokines.

Identification of candidate elastase inhibitors

using an in silico screening approach

To identify novel small-molecule inhibitors of elastase, we

performed in silico screening of the elastase crystal struc-

ture with an in-house compound library comprised of

over 100 000 unique molecular entities (Saint Petersburg

Technical University). Using molecular dynamics simula-

tion, compounds were docked in multiple poses into the

substrate-binding pocket of elastase, as illustrated by the

examples presented in Fig. 2. Using this approach, and

guided by known inhibitors of elastase such as dihydropy-

rimidine (DHPI) (Fig. 2A,B) and Alvelestat/AZD9668

(Fig. 2C,D), we identified a small molecule, designated

LCB016, which fit the binding parameters expected of a

candidate inhibitor (Fig. 2E,F).
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LCB016 and derivatives thereof exhibit elastase-

inhibitory activity

LCB016 has an azolactone structure (Fig. 3A); there-

fore, a series of azolactone analogues were synthesized

(LCB001–LCB165; Table 1), which were then assessed

for their ability to antagonize elastase activity, initially

using a synthetic substrate (AAPV-AMC) hydrolysis

assay. As Fig. 3B demonstrates, LCB016 and several

of its derivatives were found to inhibit NE activity as

assessed by the ability of these compounds to antago-

nize hydrolysis of the synthetic elastase substrate pep-

tide Suc-AAPV-AMC. Substitution of the bromine in

LCB016 by hydrogen (LCB108, LCB109, LCB111) led

to a significant decrease in calculated binding energy

to elastase (data not shown), and consequently to

diminished inhibitor potency (Fig. 3B). Substitution of

the ethoxy group to smaller methoxy in LCB016 also

led to a decrease in binding energy (Table 1 and

Fig. 3B). Furthermore, the presence of the benzoxy

group was found to be essential to the binding (data

not shown).

Based on these preliminary screening results, we per-

formed titrations of LCB016 and several of its deriva-

tives (LCB091, LCB092, LCB095, LCB113, LCB161,

LCB163 and LCB164) against purified elastase (Fig. 4).

Once again, we observed reproducible elastase-inhibi-

tory activity of LCB016 and several of its derivatives,

with LCB092 and LCB113 exhibiting greater potency

than LCB016 (Fig. 4). We also performed time-course

analyses of LCB016 and the most promising derivatives

over a range of drug concentrations, and as Fig. 5A

illustrates, LCB092, LCB113 and LCB116 exhibited

the greatest potency towards elastase.

Specificity of candidate elastase inhibitors

towards other inflammatory proteases

There is approximately 56% structural similarity

between NE and proteinase-3 (PR3), and these pro-

teases exhibit almost identical substrate preferences

[11]. Thus, LCB016 and its derivatives also exhibited

some inhibitory activity towards PR3, as expected

(Fig. 5B). However, no cross-inhibitory effect was

observed towards the other major neutrophil protease,

CatG (Fig. 6A). Furthermore, caspase-1, which plays
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HeLaIL-36R bioassay Fig. 1. IL-36c is processed and activated by NE. HeLaIL-36R cells

were either left untreated or were treated with the indicated

concentrations of full-length recombinant human IL-36c (ranging

from 5 to 0.3 nM), or the same amounts of IL-36c that had been

pre-incubated for 2 h at 37 °C with purified HNE (50 nM). Twenty-

four hours after incubation with either full-length or elastase-

processed IL-36c preparations, cytokine concentrations in the

culture SNs were determined by ELISA. The following cytokines

were measured: (A) IL-6, (B) IL-8 and (C) CXCL1. Results shown

are representative of at least three independent experiments. Error

bars represent the mean � SEM of triplicate determinations from

a representative experiment.
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a key inflammatory role through processing and acti-

vation of IL-1b and IL-18, was also unaffected by the

candidate elastase inhibitors (Fig. 6B). Collectively,

these data suggest that the compounds identified

herein exhibit good specificity towards NE.

Small-molecule elastase inhibitors can

antagonize IL-36c activation and cytokine

production downstream

Based on the synthetic substrate hydrolysis data, six

compounds (LCB016, LCB090, LCB092, LCB113,

LCB115 and LCB116) were selected for further testing

in the more physiologically relevant context of elas-

tase-mediated IL-36c processing. Here, we incubated

recombinant full-length IL-36c in the presence or

absence of elastase, either alone or in combination

with the candidate elastase inhibitors (Fig. 7A). The

products of the latter reactions were then incubated

with HeLaIL-36R cells, which respond to active (i.e.

elastase-processed) IL-36c by secreting a range of pro-

inflammatory cytokines and chemokines such as IL-6,

IL-8 and CXCL1 (Fig. 7A) [11,23]. As Fig. 7B illus-

trates, while LCB016 and some of its derivatives

clearly suppressed elastase-mediated activation of IL-

36c, as indicated by the inhibition of IL-6 synthesis

from HeLaIL-36R cells, LCB092 and LCB113 exhibited

greater potency in this regard, in agreement with the

synthetic substrate hydrolysis assays (Fig. 5A).

To explore whether the inhibitors identified herein

could also inhibit IL-36c processing and activation by

elastase released from activated neutrophils, we acti-

vated purified human neutrophils via treatment with

phorbol 12-myristate 13-acetate (PMA; Fig. 8A). The

latter treatment triggered the release of multiple neu-

trophil granule proteases, including elastase, PR3 and

CatG, into the extracellular space as expected

(Fig. 8B). Using activated neutrophil supernatants

(SNs) as a source of elastase to process and activate

IL-36c, we observed that the lead compounds

(LCB016, LCB092 and LCB113) robustly suppressed

activation of the latter by neutrophil-derived proteases

(Fig. 8C). As we have reported previously [11], IL-36b
is predominantly activated by CatG, and in

Elastase
+

DHPI

Elastase
+

AZD9668

Elastase
+

LCB016

A B

C D

E F

Fig. 2. Structure-based in silico screening

strategy to identify candidate elastase

inhibitors. (A, B) In silico docking of the

elastase crystal structure with the elastase

inhibitor DHPI. (C, D) In silico docking of

the elastase crystal structure with the

elastase inhibitor Alvelestat/AZD9668. (E,

F) Representation of the binding pose of

newly identified LCB016 inhibitor and

interaction interface of LCB016 in the

active site of NE. Magenta arrow

represents H-bond, and green represents

p–p contacts.
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accordance with this, we found that our elastase-

inhibitory compounds had minimal effects on IL-36b
activation by neutrophil degranulate preparations.

However, inhibition of CatG activity, using a commer-

cial inhibitor of the latter, robustly suppressed activa-

tion of IL-36b by activated neutrophil degranulate

preparations (Fig. 8D).

In summary, we have identified a number of com-

pounds that are capable of acting as inhibitors of elas-

tase and may have utility as lead compounds designed

to suppress inflammation through blocking the actions

of this protease against cytokines such as IL-36c.

Discussion

Here, we report the identification of several small

molecules that exhibit significant inhibitory activity

against NE and can antagonize the processing and

activation of IL-36c by the latter. Because elastase has

also been implicated in the processing and activation

of IL-1a, IL-1b, IL-33 and other cytokines [26], the

compounds reported herein are also likely to suppress

the activation of multiple members of the extended IL-

1 family. Further experiments will explore the latter

possibility and will also explore the activity of these

compounds in animal models of psoriasis and other

inflammatory diseases.

Neutrophil infiltration is a hallmark of a number of

skin-related inflammatory diseases. In particular, pso-

riatic plaques are heavily infiltrated with neutrophils,

dendritic cells, macrophages and T cells [27,28,31].

Neutrophils are well-known first responder cells of the

innate immune system and play a central role in the

early stages of infection or tissue damage [32–34].
Although it is widely appreciated that release of neu-

trophil proteases (through degranulation or neutrophil

extracellular trap [NET] formation) can exert pro-

found antimicrobial effects during infection, the latter

proteases can also cause extensive tissue damage and

exacerbate inflammation [35–37]. Psoriasis is often

preceded by tissue damage or abrasion, called the

Koebner reaction [38], which is most likely due to
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Fig. 3. Several candidates identified by in silico screening exhibit

inhibitory activity towards purified elastase. (A) General structural

formula of LCB016 NE azolactone inhibitor. A series of azolactone

analogues were synthesized with substitutions at position R1, R2 or

R3. (B) LCB016 and its derivatives (10 lM) were incubated with NE

for 2 h at 37 °C. Elastase enzymatic activity was measured by

hydrolysis of the elastase substrate peptide Suc-AAPV-AMC

(50 lM). AZD9668 (1 lM) was used as a positive control for

elastase inhibition.

Table 1. List of azolactone NE inhibitors and derivatives.

ID number Substituents

LCB016 R1 = Br, R2 = 2-fluoro-Bn, R3 = OEt

LCB087 R1 = Br, R2 = 2-chloro-Bn, R3 = OMe

LCB090 R1 = Cl, R2 = 2-chloro-Bn, R3 = OMe

LCB091 R1 = Br, R2 = 2-bromo-Bn, R3 = OMe

LCB092 R1 = Cl, R2 = 2-fluoro-Bn, R3 = OEt

LCB095 R1 = I, R2 = 4-iodo-Bn, R3 = OEt

LCB102 R1 = Br, R2 = Br, R3 = Br

LCB108 R1 = H, R2 = Et, R3 = H

LCB109 R1 = H, R2 = Bn, R3 = H

LCB111 R1 = H, R2 = 2-fluoro-Bn, R3 = OEt

LCB112 R1 = Br, R2 = 4-fluoro-Bn, R3 = OEt

LCB113 R1 = Br, R2 = 2-fluoro-Bn, R3 = OMe

LCB115 R1 = Br, R2 = 3-fluoro-Bn, R3 = OEt

LCB116 R1 = Br, R2 = 2-fluoro-Bn, R3 = OEt

LCB160 R1 = Cl, R2 = 2-fluoro-Bn, R3 = OEt

LCB161 R1 = I, R2 = 2-fluoro-Bn, R3 = OEt

LCB162 R1 = NO2, R2 = 2-fluoro-Bn, R3 = OEt

LCB163 Thiophene is substituted on bioisosteric furan ring

LCB164 Thiophene is substituted on benzene ring

LCB165 Azolactone ring is substituted with sulfur
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liberation of cytokines such as IL-36 and other IL-1

family cytokines into the extracellular space due to

necrosis. Upon release into the interstitial fluid, the

latter cytokines can then encounter and become

processed by proteases, such as elastase, liberated

from activated neutrophils. Thus, damage to ker-

atinocytes resulting in the liberation of IL-36 cytoki-

nes, either as a result of microbial infection or as a
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consequence of tissue trauma, may play an important

initiating role in psoriasis, especially in individuals

lacking endogenous buffers of IL-36 activity, such as

deficiency in the IL-36R antagonist [16–20]. Because

previous studies have also implicated NE in the activa-

tion of IL-1a [39], IL-1b [40], IL-18 [41] and IL-33

[42] and IL-36 receptor antagonist [43], our observa-

tions also suggest that this protease may serve as a

therapeutic target for suppressing the activation of

multiple IL-1 family cytokines in inflammatory dis-

eases.

Psoriasis is associated with a pro-inflammatory signa-

ture with elevated levels of tumour necrosis factor

(TNF), IL-17C and IL-36 among other cytokines. At

present, multiple biotherapeutics, directed against

cytokines such as TNF, IL-17, IL-12/IL-23 and IL-36,

have been approved or are in development for the treat-

ment of psoriasis, as well as other inflammatory condi-

tions. However, although these cytokine-neutralizing

approaches are highly effective, they also suffer from

several drawbacks including high cost, a necessity for

systemic delivery (which can increase vulnerability to
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Fig. 5. Kinetic analysis of elastase inhibition and specificity of azolactone derivatives. (A) Hydrolysis of the synthetic peptide substrate

AAPV-AMC by a fixed concentration of purified elastase (50 nM), in the presence or absence of the indicated concentrations of the

candidate elastase inhibitors. (B) Hydrolysis of the synthetic peptide substrate AAPV-AMC by a fixed concentration of purified PR3 (200 nM),

in the presence or absence of the indicated concentrations of the candidate elastase inhibitors.
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opportunistic infections) and their single-molecule speci-

ficity. The need for systemic delivery of cytokine-neutra-

lizing biotherapeutics is particularly problematic due to

the neutralization of cytokine throughout the body and

not just where it is overproduced. A more desirable

approach would be to neutralize cytokine only in the

affected lesions. Thus, small molecules, such as the com-

pounds reported herein, have the advantage that they

are less costly to produce, can be applied directly to

affected areas of skin and may simultaneously suppress

activation of multiple cytokines that are processed and

activated by elastase [11,29].

Experimental procedures

Materials

Suc(OMe)-AAPV-AMC was purchased from PeptaNova

(Sandhausen, Germany); elastase inhibitor Alvelestat/

AZD9668 was purchased from MedChem Express (Solen-

tuna, Sweden). Purified neutrophil-derived elastase was

purchased from Serva (Heidelberg, Germany). Purified neu-

trophil PR3 and neutrophil CatG were purchased from

Calbiochem (Merck), Cork, Ireland. Suc-FLF-SBzl, Ac-

WEHD-AMC and z-VAD-fmk were purchased from

Bachem (Bubendorf, Switzerland). Chemical inhibitors of

CatG (cathepsin G inhibitor I) and of elastase (elastase

inhibitor IV) were purchased from Calbiochem. Unless

otherwise indicated, all other reagents were purchased from

Sigma Aldrich (Ireland) (Wicklow, Ireland).

Cell culture

HeLa cells were cultured in RPMI media (Gibco (BioS-

ciences), Dublin, Ireland), supplemented with 5% FBS.

HeLa.IL-36R cell lines were generated by transfection with

pCXN2.empty or pCXN2.IL-1Rrp2 (IL-36R) plasmids fol-

lowed by selection using G-418 antibiotic (Sigma). IL-36R-

overexpressing clones were expanded from a single cell.

Clones were selected by demonstration of acquired optimal

responsiveness to active forms of IL-36 via ELISA. All cells

were cultured at 37 °C in a humidified atmosphere with

5% CO2.
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Expression and purification of recombinant

proteins

Full-length IL-36b and IL-36c were generated by cloning

the human coding sequence in frame with the polyhistidine

tag sequence in the bacterial expression vector pET45b.

Protein was expressed by addition of 600 lM IPTG to

exponentially growing cultures of BL21 strain

Escherichia coli followed by incubation for 3 h at 37 °C.
Bacteria were lysed by sonication and polyhistidine-tagged

proteins were captured using nickel/NTA agarose (Qiagen

(UK), Manchester, UK), followed by elution into PBS, pH

7.2, in the presence of 100 mM imidazole. Recombinant

polyhistidine-tagged caspase-1 and caspase-3 were

expressed and purified as described previously [44].

In silico screening and molecular modelling

Ligand 3D structures were prepared with LigPrep suite in

OPLS_2005 force field. The Schrodinger package was used

for molecular modelling studies. Glide was used for SM vir-

tual screening (VS) and docking studies; the ligands from the

in-house SM library were treated as flexible. The standard

precision protocol was used for VS. The positions of the

identified azolactone hit compounds were specified within

extra-precision protocol. Azolactone derivatives were

redocked as Z-isomers corresponding XRD data. The X-ray

human neutrophil elastase (HNE) structure (PDB ID

1HNE) was used for in silico screening; the water and cocrys-

tallized molecules were removed from the protein model.

Hydrogens were added using PROPKA program pH 7.4 and

their positions optimized. The 25 9 25 9 25 �A3 box (with

12 �A diameter ligand mid-point), centred on the coordinates

of 57His residue (active site), was used for grid map calcula-

tions; the 94Tyr, 54Ser, 195Ser and 214Ser hydroxyl groups

were allowed to rotate during docking runs. For the valida-

tion of the docking protocol, the DHPI ligand was blindly

docked to the HNE structure (PDB ID 3Q77) and the poses

of docked ligand and cocrystallized with HNE were aligned

(Fig. 2) showing good theory-to-experiment correspondence.
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Protease activity assays

Reactions (50 lL, final volume) were carried out in protease

reaction buffer (PRB) (50 mM HEPES [pH 7.2], 75 mM NaCl

and 0.1% 3-[(-cholamidopropyl)dimethylammonio]-1-propa-

nesulfonate [CHAPS] [2 mM DTT added only for caspases])

containing Ac-WEHD-AMC and Suc(OMe)-AAPV-AMC

(50 lM, final concentration). Samples were measured using

an automated fluorimeter (SPARK 10M; TECAN (UK),

Reading, UK) at wavelengths of 430 nm (excitation) and

535 nm (emission). For the Suc-FLF-SBzl hydrolysis assay,

the substrate was diluted to a final concentration of 300 lM
in PRB (50 mM HEPES [pH 7.2], 75 mM NaCl, 0.1%

CHAPS and 300 lM 5,5-dithiobis(2-nitrobenzoic acid

[DTNB]). Cathepsin G hydrolyses the synthetic substrate

Suc-FLF-sBzl with the release of the thiobenzyl group. The

free thiobenzyl group reacts with DTNB and produces a

chromophore (3,30,5,50-tetramethylbenzidine [TNB]) that

absorbs at 430 nm. Samples were measured by automated

fluorimeter (SPARK 10M TECAN (UK)).

Protease cleavage assays

Reactions (40–100 lL, final volume) were carried out in

PRB (50 mM HEPES [pH 7.2], 75 mM NaCl and 0.1%

CHAPS) for 2 h at 37 °C. For IL-36 bioassays, IL-36

cytokines were typically cleaved at a 50 nM concentration

and subsequently diluted onto target cells at a final concen-

tration ranging from 0.25 to 1 nM.

Purification of primary neutrophils and

preparation of degranulates

Primary human neutrophils were purified from donor whole

blood using the Ficoll-Hypaque gradient method as

described previously [11]. The purity of the cell preparations

(> 90%) was determined by H&E staining of cytospins. To

prepare degranulates, neutrophils (107 per treatment) were

stimulated in the presence or absence of 50 nM PMA in

Hanks’ balanced salt solution/0.25% BSA for 1–3 h at

37 °C in a humidified atmosphere with 5% CO2. SNs were

harvested and clarified by centrifugation at 4 °C (10 000 9

g for 5 min). Neutrophil degranulate aliquots were stored at

�80 °C. Experiments involving human samples were carried

out in accordance with the regulations of the EU and the

Irish Department of Health, and all procedures performed

were approved by the Trinity College Dublin Research

Ethics Committee (Ethical Approval Number 311217).

Measurement of cytokines and chemokines

Cytokines and chemokines were measured from cell culture

SNs using specific ELISA kits obtained from R&D Systems

(human IL-6, IL-8, CXCL1). All cytokine assays were car-

ried out using triplicate samples from each culture.
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