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Abstract 

 

Metaproteomics has matured into a powerful tool to assess functional interactions in 

microbial communities. While many metaproteomic workflows are available, the impact 

of method choice on results remains unclear. 

Here, we carried out the first community-driven, multi-laboratory comparison in 

metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). 

Based on well-established workflows, we evaluated the effect of sample preparation, 

mass spectrometry, and bioinformatic analysis using two samples: a simplified, 

laboratory-assembled human intestinal model and a human fecal sample. 

We observed that variability at the peptide level was predominantly due to sample 

processing workflows, with a smaller contribution of bioinformatic pipelines. These 

peptide-level differences largely disappeared at the protein group level. While differences 

were observed for predicted community composition, similar functional profiles were 

obtained across workflows. 

CAMPI demonstrates the robustness of present-day metaproteomics research, serves as 

a template for multi-laboratory studies in metaproteomics, and provides publicly available 

data sets for benchmarking future developments. 
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Main 

Microbial communities play a primary role in global biogeochemical cycling and form 

complex interactions that are crucial for the development and maintenance of health in 

humans, animals, and plants. To fully understand microbial communities and their 

interplay with their environment requires knowledge not only of the microorganisms 

involved and their biodiversity, but also of their metabolic functions at both the cellular 

and community level1. As proteins constitute the key operational units performing these 

functions, metaproteomics has emerged as the most relevant approach to characterize 

the functional expression of a given microbiome2,3. Metaproteomics corresponds to the 

large-scale characterization of the entire set of proteins accumulated by all community 

members at a given point in time, known as the metaproteome4. Since its first introduction 

in 20045, mass spectrometry (MS)-based metaproteomics has quickly emerged as a 

powerful tool to functionally characterize a broad variety of microbial communities in situ. 

This allows a direct link to the phenotypes on a molecular level and shows the adaptation 

of the microorganisms to their specific environment6. Metaproteomics thus complements 

other meta-omic approaches such as metagenomics and metatranscriptomics, as these 

only have the exploratory power to assess the diversity and functional potential of 

microorganisms, but cannot observe their actual phenotypes7. 

In metaproteomics, proteins are commonly measured using a bottom-up approach in 

which proteins are first extracted, isolated, and digested into peptides. These peptides 

are then separated and analyzed using liquid chromatography coupled to tandem mass 

spectrometry (LC-MS/MS). The resulting MS/MS spectra are typically matched against in 

silico generated spectra derived from a protein sequence database to identify the 

analyzed peptides and infer the original proteins. The inferred proteins are then used to 

describe the various active taxa in the community, their functions, and the relative gene 

expression levels8. 

Each of the aforementioned steps can potentially influence the outcomes of a 

metaproteomic analysis and every step brings specific benefits as well as challenges. As 

a result, multiple workflows have been established. While such diversity brings flexibility, 

it also complicates the comparison of results across different experiments. Sample 

processing challenges include protein recovery due to the presence of different matrices9, 
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the presence of different types of microorganisms with different optimal lysis 

conditions10,11, and limited depth of analysis3 and quantification12 due to an increased 

sample complexity. Environmental samples, such as feces or soil, are complex mixtures 

that can contain microbial cells, host cells, plant-derived fibrous materials, and other 

abiotic components. Therefore, composition and abundance of these components must 

be considered when choosing an appropriate method for cellular lysis and protein 

extraction. Fortunately, the most commonly used methods nowadays are relatively 

robust, and generally provide a reasonably representative extraction of proteins found in 

these complex mixtures. However, because differences exist, methods still need to be 

optimised for the specific samples and projects13,14 Besides, apart from different sample 

processing protocols, different mass spectrometers might also lead to a variation in 

results. 

Moreover, metaproteomics comes with many specific bioinformatic challenges8,13. First, 

the choice of an appropriate sequence database is critical for peptide identification14,15. 

Typically, large databases can strongly impact sensitivity and false discovery rate (FDR) 

estimation16, while incomplete reference databases can lead to missing or false positive 

identifications17,18. Second, the protein inference problem19 is more pronounced in 

metaproteomics due to many homologous proteins from closely related organisms20. As 

a result, several dedicated bioinformatic tools have been developed or extended for 

metaproteomic analysis21–28. Despite these challenges, the added value of 

metaproteomics has already been demonstrated in numerous examples from both the 

environmental and medical fields, providing unprecedented insights into the functional 

activity of microbial communities7,20,29–41.  

Nevertheless, a lingering concern is the potential risk of unintended, approach-based 

biases inherent in various metaproteomic workflows. This is important because 

reproducibility is key to translate metaproteome studies into applications (e.g. clinical or 

industrial). Consequently, a comprehensive evaluation of widely-used workflows is 

required to assess their respective outcomes. In the past, various reference data sets 

from defined microbial community samples (i.e., for which the composition is known a 

priori) have been used in individual benchmarking studies42–44. However, a ring trial with 

different laboratories involved has not yet been performed in the field of metaproteomics.  
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To fill this gap, the 3rd International Metaproteomics Symposium (December 2018, 

Leipzig, Germany) hosted a multi-laboratory benchmarking study in the form of a 

community challenge. Participating laboratories received two microbial samples: a 

simplified mock community simulating the gut microbiome (SIHUMIx) and a complex, 

natural stool sample (fecal sample). Each group was allowed to use any preferred sample 

preparation, analysis, and data evaluation pipeline.  

Here, we describe the results of this community-driven study, referred to as the Critical 

Assessment of MetaProteome Investigation (CAMPI). We compare and discuss the 

employed workflows covering all analysis steps from sample preparation to the 

bioinformatic identification and quantification. Moreover, we compare the metaproteome 

results with sequencing read-based analyses (metagenomics and metatranscriptomics). 

We found that meta-omics databases performed better than public reference databases 

across both samples. More importantly, even though larger differences were observed in 

identified spectra and unique peptide sequences, the different protein grouping strategies 

and the functional annotations provided similar results across the provided data sets from 

all laboratories. When minor differences could be observed, these were largely due to 

differences in sample processing methods and partially to bioinformatic pipelines. Finally, 

for the taxonomic comparison, we found that overall profiles were similar between read-

based methods and proteomics methods, with few exceptions.  

Apart from these immediate conclusions, the CAMPI study also delivers highly valuable 

benchmark data sets that can serve as a foundation for future method development for 

metaproteomics. 
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Results 

At the 3rd International Metaproteome Symposium in December 2018, individual lab 

outcomes of a collaborative, multi-laboratory effort to compare metaproteomic workflows 

were presented. In this study, metaproteomics data was acquired in seven laboratories, 

using a variety of well-established platforms. Figure 1 provides a general overview of the 

study design showing (i) the provision of two types of samples (SIHUMIx and fecal) to the 

study participants, (ii) the various experimental workflows of biomolecule extraction and 

MS/MS acquisition, and (iii) the bioinformatic processing steps from protein database 

generation to database search identification and follow-up analyses (more details in the 

Methods, see Supplementary Table 1 for an overview of all methods). 

 

Figure 1. Schematic representation of the main sample preparation steps and follow-up analyses of 

the CAMPI study. The figure consists of three parts: (i) Pre-symposium work by the organizers (left panel). 

The two samples (SIHUMIx and FECES) were, prior to the symposium, aliquoted and distributed over the 

participating laboratories. (ii) Pre-symposium work by participants (middle panels). Every used method by 

the participants, going from cell disruption to mass detection, is displayed. (iii) Post-symposium work by 

participants (right panel). The bioinformatics analyses, i.e. database creation and database search for 

peptide and protein identification, were harmonized to make the results between all participating 

laboratories comparable. 

 

At the Symposium, the decision was made to re-analyse the acquired data with different 

bioinformatics pipelines, to obtain the first multi-laboratory effort in metaproteomics to 

independently evaluate available methodological and computational approaches, in line 

with similar community-driven benchmarking studies45–48. In the first Results section, we 

analyzed 42 raw files (21 for the SIHUMIx sample and 21 for the fecal sample) from 24 

different workflow combinations with X!Tandem using either public or in-house generated 
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protein databases (see Figure 1 for a general overview, and Figure 2 for the results; see 

online Methods for the database construction). A more in-depth comparison of sample 

preparations, bioinformatic pipelines, and taxonomic and functional annotations using a 

sub-selection of ten data sets is available after the first Results section.  

 

Complex sample processing workflows and sample-specific meta-omic search 

databases lead to more identifications  

In order to study the effect of the different sample processing and LC-MS/MS workflows 

on the identification outcome, we searched all submitted MS files using the widely used 

X!Tandem search engine49. To investigate the influence of the chosen database, we 

searched each file against a publicly available reference database (SIHUMIx_REF and 

GUT_REF) and against a multi-omic database (SIHUMIx_MO and GUT_MO). The 

comparison of all CAMPI workflows is displayed in Figure 2 (raw data in Supplementary 

Table 2). 
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Figure 2. Comparison of identification rates across all CAMPI workflows. On the left side, the bar 

charts show the number of identified spectra using the reference (REF) database (orange), the number of 

identified spectra using the multi-omic (MO) database (dark blue) and total amount of measured spectra 

(red). On the right side, the light blue bars represent the identification rate calculated as the percentage of 

spectra that yielded a peptide identification at 1% FDR for both the REF database (orange) and the MO 

database (dark blue). The specific protocols can be found in Supplementary Table 1. For database 

searching, X!Tandem was used as a single search engine.  
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The results greatly differed between the samples and workflows in terms of absolute 

numbers of acquired spectra, identified spectra, and relative amount of identified spectra 

(identification rates). For the SIHUMIx data set, the number of acquired spectra varied 

between 37k to 260k, and identification rates varied between 29.99% and 68.64% for 

SIHUMIx_REF and between 32.52% and 73.34% for SIHUMIx_MO. For the fecal data 

set, between 9k and 223k spectra were acquired, with identification rates between 

11.99% and 34.79% for GUT_REF, and between 15.70% and 40.49% for GUT_MO.  

The differences in acquired spectra show a clear relation to the method used, as similar 

methods or replicates show highly similar numbers of acquired spectra. As expected, 

more complex methods with longer gradient lengths (S03 and S04: 260 min, S05 and 

S06: 460 min, S08: 240 min, F01: 210 min, F02: 160 min), fractionation (S11, F07: 4 

fractions), and additional separation methods such as MudPIT50 (F01: 4 fractions) or ion 

mobility (PASEF)51 (S13, F09) led to up to eight times more identified spectra, but at the 

cost of increased time and resources spent52 (see Supplementary Table 1 for a detailed 

description, and Supplementary Table 2 for an overview of the samples). Notably, 

identification rates were not necessarily correlated with the total number of identifications. 

For example, between analyses S03 and S05, which used a 260 min and 460 min LC 

gradient length, respectively, a higher absolute number of identified spectra was found 

for the 460 min gradient, but also a lower identification rate. As expected, if an MS 

instrument is provided with the ability to acquire more spectra, it will do so. However, the 

gains in spectral acquisition do not readily translate into gains in identification. There is 

thus a potential for diminishing returns when going for more complex methods. There is 

also a somewhat consistent drop in the number of acquired spectra of around 10% when 

comparing SIHUMIx samples with fecal samples for similar workflows (e.g., S09-S10 with 

F05-F06, and S13 Reps 1-3 with F09 Reps 1-3). However, occasionally this drop is much 

greater, as for S11_Fract1-4 and F07_Fract1-4. The overall limited drop might be 

attributed to the higher complexity of the fecal sample, and corresponding ion suppression 

effects. The differences in identification rate are likely to be derived from the choice of the 

search database. The identification rates for the publicly available databases were 

invariably lower, which is due to their larger and less specific search space, consistent 
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with literature14,16,18,42,53. Here, these public reference databases (SIHUMIx_REF and 

GUT_REF) contained 1.6 and 16 times, respectively, more unique in silico digested 

peptides than the corresponding multi-omic databases (SIHUMIx_MO and GUT_MO) 

(Supplementary File 1). 

Overall, our results indicate that generating a sample-specific meta-omic database can 

be advantageous for complex metaproteomics samples, such as the human gut 

microbiome, and even more so for complex and poorly characterised samples such as 

soil microbiota. The smaller meta-omic databases require less computational resources 

(e.g., CPU and RAM) and tend to be more accurate due to their tailored composition. 

However, for their generation, meta-omic databases require additional experimental and 

computational resources, and are often not as well assembled and/or annotated as 

reference databases. Because the composition of SIHUMIx was known, the benefit of 

using a tailored meta-omic database was limited and the analysis was feasible with 

available reference proteomes. In contrast, the community for the fecal sample was 

unknown, which represents the typical scenario in metaproteomics. 

For known reference samples (such as SIHUMIx), it is therefore reasonable to simply use 

the reference database, while the largely unknown fecal sample community is best 

analysed using a tailored meta-omic database. In the following sections, we thus opted 

to use only the SIHUMIx_REF and GUT_MO search databases for SIHUMIx and fecal 

data sets, respectively. 

 

Different bioinformatic pipelines resulted in highly similar peptide identifications 

To investigate the effect of the bioinformatic pipelines on peptide identification, we 

compared the two data sets with the most identified peptides (S11 and F07) (Figure 3). 

To ensure a robust and reliable comparison, we fixed the search parameters for the four 

different bioinformatic pipelines employed (see online Methods for details). 
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Figure 3. UpSet plot comparison of identified sets of peptides using different bioinformatic 

pipelines. The left panel displays the results for the SIHUMIx sample S11 (A), while the right panel 

corresponds to the results for the fecal sample F07 (B). The four different bioinformatic pipelines 

(MetaProteomeAnalyzer (MPA, using X!Tandem and OMSSA), Proteome Discoverer (PD, using 

SequestHT), MaxQuant (MQ, using Andromeda), SearchGUI/PeptideShaker (PS, using X!Tandem, 

OMSSA, MS-GF+, and Comet)) are indicated on the x-axis and sorted by increasing set size. Set size 

corresponds to the total number of peptides identified per tool, and intersection size corresponds to the 

number of shared peptides identified in different approaches. Green highlights the intersection, and blue 

shows unique peptides to each tool. The lower panel box plots show peptide lengths, and number of missed 

cleavages for each intersection. 

 

For SIHUMIx, the majority of the identified peptides (54.2%) were found by all four 

bioinformatic pipelines (Figure 3A), while this ratio dropped to 40% for the more complex 

fecal F07 sample (Figure 3B). As expected, this percentage increased to 73% and 55%, 

respectively, when considering the peptides identified by at least three out of four tools. 

Interestingly, 16% of the peptides were uniquely identified by a single bioinformatic 

pipeline for the S11 data set (3138, 2670, 891, and 841 peptides for 

SearchGUI/PeptideShaker, MaxQuant, Proteome Discoverer, and MPA, respectively), 

while this was 27% for the F07 data set (6024, 1264, 819, and 332 peptides for the 

SearchGUI/PeptideShaker, Proteome Discoverer, MPA and MaxQuant pipeline, 

respectively). The number of search engines varies between pipelines, with one for 

MaxQuant (Andromeda) and ProteomeDiscoverer (SequestHT), two for MPA (X!Tandem, 
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OMSSA), and four for SearchGUI (X!Tandem, OMSSA, MS-GF+, and Comet). 

Furthermore, each algorithm uses its own score as a quality metric for finding the best 

matching peptide for a spectrum. This score varies between the search engines and can 

even result in different peptide identifications for the same spectrum54.  

Overall, the combination from multiple search engines as performed by 

SearchGUI/PeptideShaker (four algorithms) resulted in the highest number of 

identifications, which is in line with the previous studies in proteomics and 

proteogenomics55,56. This effect may be attributable to algorithms with more sophisticated 

scoring methods (e.g., MS-GF+57 used in SearchGUI, but not in MPA), which generally 

lead to more identifications overall. However, we do expect that novel search engines 

based on machine learning algorithms can still boost the number of peptide identifications 

in the field of metaproteomics58. 

Additionally, we compared the pipelines in terms of peptide features using the peptide 

lengths and the number of missed cleavages (lower panels of Figure 3A and 3B). While 

few outliers could be observed (e.g. peptide length over 50 AA for MaxQuant and missed 

cleavages over two for SearchGui/PeptideShaker and ProteomeDiscoverer), the features 

were overall equally distributed between pipelines. Most of the differences thus seemed 

to be simply linked to the search engines used. 

Because the SearchGUI/PeptideShaker combination provided the most identifications, 

relatively few identifications were missed by excluding the other three pipelines. We 

therefore preferred to only use the results of the SearchGUI/PeptideShaker pipeline in 

the following sections, which investigate the effect of different sample processing 

workflows on downstream peptide identifications. These analyses are performed on ten 

representative data sets that have been selected based on their type of fractionation and 

MS instrument. These include six SIHUMIx, and four fecal data sets (Supplementary 

Table 2). 

 

Differences between laboratory workflows are mostly attributable to low 

abundance proteins 

After we ruled out bioinformatic workflows as a source of significant difference between 

samples, we investigated differences arising from different laboratory workflows. We 
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compared the overlap and uniqueness of identifications at the level of peptides, protein 

subgroups, and the 50% most abundant protein subgroups for the selected laboratory 

workflows in Figure 4. The figure shows how many peptides and protein subgroups are 

uniquely identified by a single laboratory workflow and how many are identified by all 

laboratory workflows. 

 
Figure 4. UpSet plot comparison of sets of identified peptides (A and B), protein subgroups (C and 

D), and 50% most abundant protein subgroups based on spectral counts (E and F). The figure is 

based on the identifications obtained using SearchGUI/PeptideShaker. The intersection size displays the 

number of features shared in an intersection. An intersection corresponds to features shared across 

multiple samples. This figure only displays features unique to a sample (red dot), and shared across all 

samples (blue bar overlapping all points). 

 

At the peptide level (Figure 4A and B), more complex workflows, such as those with 

longer gradient length and fractionation, identified the most peptides in general (as shown 

earlier in Figure 2) as well as the most workflow-specific peptides, thus limiting the 

potential for overlap. The number of identified peptides shared between all workflows was 
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quite limited: only 3,557 peptides (4.9% of all identified peptides) in the SIHUMIx data 

sets, and 2,186 peptides (3.4% of all identified peptides) in the fecal data set. At the 

protein subgroup level (Figure 4C and D), the intersections of protein subgroups shared 

across all workflows were 25.7% and 34.6% for the SIHUMIx and fecal data sets, 

respectively. These percentages increased to 51.5% and 67.4% when we only 

considered the 50% most abundant protein subgroups (Figure 4E and F). Large 

differences between laboratory workflows observed at the peptide level were thus 

attenuated at the protein subgroup level, and further reduced for the 50% most abundant 

protein subgroups. This trend was also clearly visible when considering all intersections, 

including partial agreement among some samples (Supplementary Figures 1 and 2). Of 

note is that the data sets that only differed in a single laboratory method parameter, such 

as LC gradient length (S03 and S05) or fractionation (F06 and F07), showed a much 

higher overlap. Also, the number of protein subgroups identified uniquely in a single 

sample mostly disappeared when only considering the 50% most abundant subgroups. 

We investigated this further by analyzing the agreement between samples at all Top-N-

% values (Supplementary Figure 3). A clear trend emerged: the lower the agreement 

between samples on a given subgroup, the lower the abundance of this subgroup. 

Furthermore, subgroups that were identified with a single peptide - and therefore usually 

at the lowest abundance - track very closely with the subgroups identified in only a single 

sample. Finally, when considering the actual spectral abundance of subgroups, those 

subgroups that were found in all samples also explained at least 77% of the identified 

spectra. It is therefore clear that the low agreement between samples at the peptide level 

is mostly attributable to the identification of low abundant proteins. The complexity of the 

samples and the limited speed of mass spectrometers in DDA mode led to stochasticity 

in precursor selection at the low end of the dynamic range. Low abundant protein 

subgroups with only one peptide thus behave more like peptides, where stochastic 

selection causes large differences between samples. It is worth noting that this issue is 

completely avoided by only selecting the Top 50% of protein subgroups. Overall, it can 

be concluded that while different laboratory workflows provide very different peptide 

identifications, the protein subgroups are well preserved. 
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Because protein grouping plays such an important role in translating peptide 

identifications into biologically meaningful information, we decided to analyze two 

commonly used grouping methods in more detail. Protein grouping is achieved using the 

algorithms PAPPSO59 and MPA26 (see Supplementary Note 1.3). These two methods 

use different rules for protein inference: PAPPSO uses Occam’s razor, and MPA uses 

Anti-Occam’s razor60. The first approach provides a minimum set of proteins that explains 

the presence of the detected peptides, while the second approach keeps all proteins 

matched by at least one peptide. Both PAPPSO and MPA can create two types of protein 

groups: comprehensive groups based on at least one shared peptide, and more specific 

subgroups based on a complete shared peptide set. Subgroups were deemed more 

suitable for this analysis, as comprehensive groups collated proteins that were too 

heterogeneous leading to diverse protein functions within the same group (see 

Supplementary Table 3, Supplementary File 2). This might not be the case for smaller 

data sets, as a smaller data set also decreases the chance for peptides that link highly 

dissimilar proteins together. For the SIHUMIx samples, the two protein grouping methods 

PAPPSO and MPA provided very similar numbers of both protein groups (8802 and 8769) 

and subgroups (10132 and 10134), while substantial differences were found for the fecal 

samples (protein groups: 10063 and 9712; subgroups: 17576 and 21973, PAPPSO and 

MPA respectively) (Supplementary Table 4). While cross sample correlation confirmed 

that the impact of bioinformatic pipelines on the analysis here was negligible, little else 

could be learned from this correlation analysis (Supplementary Figure 4 and 5). To shed 

some light on these differences between protein grouping methods, we analyzed the 

agreement between samples for different grouping approaches (Supplementary Figure 

6 and 7). Notably, when applied to the fecal sample, both grouping algorithms resulted in 

an unusually high number of protein groups that are unique to F10. However, it remains 

unclear which of these approaches is better able to capture the actual composition of the 

sample, or even if the performance of the approaches varies for different types of 

samples. Because PAPPSO grouping removes likely wrong identifications from 

homologues, it could be more appropriate for single-organism proteomics or for 

taxonomically well-defined samples like SIHUMIx. In contrast, the grouping from MPA 

could be more appropriate for complex, unknown samples like the fecal sample (where 
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shared peptides become much more likely) as it retains all information for the grouping 

(Supplementary note 1.3). To conclude, both protein grouping methods provide highly 

similar results for the SIHUMIx sample, but diverge on the fecal sample, likely due to the 

increased complexity of the protein inference task in the latter. 

 
Comparison of meta-omic methods reveals differences between peptide and 

protein-derived analysis of taxonomic community composition 

To determine if differences between sample processing workflows have an effect on the 

overall biological conclusions, we quantitatively compared the identified taxa for each 

selected sample from both data sets using spectral counts, and this at the peptide, the 

protein subgroup, and the sequencing read level.  

We found different trends between the SIHUMIx and fecal samples (Figures 5 and 6). 

For SIHUMIx, the taxonomic distributions were relatively similar between the 

metagenomic read, peptide, and protein group levels based on the principal component 

analysis. Hierarchical clustering highlighted clusters of samples, with the peptide and 

protein subgroup profiles for samples S07 and S14 clustering with the read-based 

profile (Figure 5A) (Supplementary Figure 8A and B). Interestingly, samples with 

more complex wet-lab methods (S03, S05 and S08) did not show clustering between 

the peptide and the protein subgroups level. While species were found to be similar 

between methods overall, there were some notable differences (Figure 5B). All 

methods agreed that Bacteroides thetaiotaomicron was the most abundant species, and 

found Escherichia coli at 10-13% abundance. However, differences were found for 

Blautia producta, which was barely found by the proteomics methods, while found at 

around 5% abundance by metagenomics. It is interesting to consider that this might be 

caused by the construction of the reference database: at the moment of construction, 

the UniprotKB reference proteome of Blautia producta was not available, and multiple 

Blautia sp. proteomes were therefore provided instead. When looking at the Unipept 

results in detail, 15% of the peptides were associated with the genus Blautia 

(Supplementary Table 5), which indicates that the lower identification of Blautia 

producta at the peptide level is due to difficulties in resolving Blautia at the species 

level, rather than a lack of identified Blautia peptides during the metaproteomic search. 
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Additionally, Clostridium butyricum was not found by the read-based method, while 

Clostridiales bacterium and Bacteroides dorei were falsely found by the protein-centric 

method as these are not present in the SIHUMIx sample. However, these last two were 

both found at very low abundance. For completeness, the comparisons of community 

composition for SIHUMIx at the genus level were added in Supplementary Figure 9. 
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Figure 5. Comparisons of community composition for SIHUMIx at the species level. The upper panel 

shows PCA clustering of the results (A). Different approaches and tools used for taxonomic annotation 

(mOTU2, Unipept and Prophane) are indicated in the label. Clusters (k=3) were calculated using manhattan 

distance and are represented by blue, yellow, and green. Features not annotated at species level were 

considered unclassified and discarded for PCA calculation. Unclassified features accounted for 24.2% and 

69.9% of data for peptide and protein subgroup levels. Variables driving differences between samples are 

represented by black arrows. The lower panel details taxonomic profiles of each sample as bar plots (B). 

 

For the fecal data set, which was grouped at the family level, relatively distinct 

assessments of community composition were obtained from the read-based, peptide, and 

protein subgroup levels (Figure 6A). While the same families were identified, these had 

different proportions across methods (Figure 6B). Metatranscriptomic information 

(Feces_MT) was available for the fecal sample and RNA and DNA results were closely 

colocated, while proteins and peptides were spread out from the read-based methods, 

but also from each other (Figure 6A). The difference between 

metagenomics/metatranscriptomics and metaproteomics is not surprising because these 

different methods highlight community profiles from different angles. As already shown 

before, metagenomics provides a good assessment of community composition in terms 

of cell numbers for each species, while metaproteomics reflects proteinaceous biomass 

for each species43. 

Strikingly, for the fecal samples, the community composition as quantified at the peptide 

level proved to be more similar to the read-based than to the protein-based composition 

(Figure 6A) (Supplementary Figure 9A and B). This discrepancy is likely due to the 

fundamental issue of protein inference. Indeed, in metaproteomics, identification and 

quantification usually rely on discriminative peptides. As the data sets get more complex, 

higher levels of sequence homology for many proteins will be observed and will lead to a 

much greater level of peptide degeneracy across taxonomies61. Direct taxon inference 

from peptides thus likely results in more stringent taxonomy filtering, due to the necessity 

to rely only on taxon-specific peptides. In fact, the proportion of unclassified peptides 

between the SIHUMIx and the fecal samples went up from 24.2% to 73.4% due to the 

increased taxonomic complexity of the fecal data set. In contrast, the proportion of 

unclassified protein subgroups went down from 69.9% for SIHUMIx to 9.5% for the fecal 

samples. This latter difference, while large, is not that surprising because the fecal sample 

considered protein subgroups at the family level, while the SIHUMIx sample considered 
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protein subgroups at the species level, and only considered SIHUMIx species, therefore 

greatly limiting peptide-level degeneracy. For the fecal sample, proteins within a subgroup 

are usually associated to the same family, which explains the higher proportion of protein 

subgroups that can be classified for the fecal samples. Additionally, regarding 

quantification, protein grouping for the fecal samples was done using MPA, which 

includes all peptides (shared as well as unique), while peptide level quantification only 

took into account taxon-specific peptides. Depending on the sample and the method 

used, the taxonomic resolution will thus vary. To better illustrate that, we compared the 

resolution across omes and across protein grouping methods (Supplementary Figures 

11A and B). We see that there is usually a drop of resolution either at the species 

(SIHUMIx) or the genus (Fecal) level and that the PAPPSO grouping method has a higher 

resolution for complex samples as already discussed in Supplementary note 1.3. 

Altogether, the degree of degeneracy at the peptide level combined with the grouping 

method employed for the proteins leads to a different amount of features used for each 

analysis and thus to different composition profiles between peptide-centric and protein-

centric approaches. 

Ultimately, due to the sequence homology issue, worse taxonomic resolution will be 

available for larger, more complex data sets as illustrated in the differences between the 

SIHUMIx and the fecal data sets. A promising approach to tackle these limitations can 

take advantage of shared rather than taxon-specific peptides (and thus avoiding the 

previously mentioned issues) to assess the biomass content of a given community61 

However, regardless of the chosen approach, it is clear that a higher level of peptide 

coverage will be quite helpful for higher resolution taxonomic annotation, and that 

metaproteomics will therefore benefit from focusing on analysis depth at the peptide level. 
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Figure 6. Comparisons of community composition for fecal datasets. The upper panel shows PCA 

clustering of the results (A). Different approaches and tools used for taxonomic annotation (mOTU2, 

Unipept and Prophane) are indicated in the label. Clusters (k=3) were calculated using manhattan distance 

and are represented by blue, yellow, and green. Features not annotated at species level were considered 

unclassified and discarded for PCA calculation. Unclassified features accounted for 73.4% and 9.5% of 

data for peptide and protein subgroup levels. The top 10 variables driving differences between samples are 

represented by black arrows. The lower panel details taxonomic profiles of each sample as bar plots (B). 
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The functional profile is similar between different metaproteomics workflows 

A major strength of metaproteomics is the ability to provide functional information that 

reflects the phenotype of the analyzed sample. In order to investigate the influence of 

post-processing steps on this functional information, we compared functional community 

profiles on both the SIHUMIx and the fecal samples (Figure 7). We observed that the 

functional similarity between data sets acquired with different workflows on each sample 

is extremely high, and this regardless of the approach chosen. For the peptide-centric 

approach, we compared the Gene Ontology (GO) terms (GO domain “biological process”) 

provided by Unipept for each of the identified peptides with MegaGO62, resulting in 

MegaGO similarities of 0.96 or higher. Notably, 95% of the identified peptides were 

associated with at least one GO term. For the protein-centric approach, the protein 

families (PFAM) annotations provided by Prophane were compared, resulting in Pearson 

correlations of 0.98 or higher and Spearman correlations of 0.64 or higher. This continues 

the trend already observed in Figure 4: while peptide identifications may differ greatly 

between samples, the underlying biological meaning reflected by functional annotations 

are highly similar across different analysis workflows.  

Moreover, while some more elaborate data measurements yield unique peptides, these 

peptides do not translate into more functional pathways being identified (Supplementary 

Figure 12) and usually correspond to very low abundant proteins, identified with only one 

peptide (as already shown in Supplementary Figure 3). 

In contrast, comparison between the different omics domains showed important 

differences in terms of functional profile. Notably, metagenomics and metaproteomics are 

particularly different from each other, while metatranscriptomics tends to overlap better 

with metagenomics, highlighting once more the need for integrated meta-omics 

approaches (Supplementary Figures 13, 14 and 15)30. 
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Figure 7. Functional similarity between SIHUMIx samples and fecal samples. The correlation matrices 

at the left show the Pearson correlation (upper triangle) and Spearman correlation (bottom triangle) for the 

(A) SIHUMIx data sets and (C) fecal data sets, calculated using the PFAM annotations returned by the 

protein-centric Prophane analysis. The correlation matrices at the right show the MegaGO similarity for the 

GO domain “biological process” for the (B) SIHUMIx data sets and (D) fecal data sets, calculated based on 

the GO terms returned by peptide-centric Unipept analyses.  

 

Discussion 

In this founding edition of CAMPI, we used both a simplified, laboratory-assembled 

sample as well as a human fecal sample to compare commonly used experimental 

methods and computational pipelines in metaproteomics at the peptide, protein subgroup, 

taxonomic and functional level, informed by and contrasted with metagenomics and 

metatranscriptomics. Our findings demonstrate some differences in the taxonomic 

profiles between peptide-centric metaproteomics, protein-centric metaproteomics, and 

read-based metagenomics and metatranscriptomics. This fits well with previous findings 

that assessment of microbial community structure via shotgun metagenomics and 

metaproteomics differs in the information obtained. While metagenomics has been shown 

to provide a good representation of per species cell numbers in a community, 

metaproteomics has been shown to provide a good representation of per species 
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biomass in a community43. When looking at different proteomics approaches, differences 

tend to show up primarily at the finest resolution, such as the sequences of the identified 

peptide sequences. When considering information from the protein subgroup level up, 

much of this variation disappears. Different protocols tend to primarily display different 

levels of analytic depth, which correlates with more extensive sample fractionation and 

faster instruments. Moreover, differences between search engines appear somewhat 

complementary, giving an advantage to integrative, multi-search engine approaches 

using more sophisticated scoring engines. Interestingly, there appears to be an important 

contribution to any observed differences from the sequence database used for 

identification. This is particularly evident in the protein inference step, where peptide-level 

degeneracy in the database becomes an important factor in the outcome of protein 

grouping, as already shown and discussed previously63,64. Overall, functional profiles of 

different proteomics workflows were quite similar, which is a reassuring characteristic due 

to the unique perspective provided by proteomics on the functional level. 

Besides the direct conclusions of CAMPI as summarized here, another important 

outcome of this study is the availability of the acquired data sets. Indeed, these can serve 

as benchmark data sets for the field when developing novel algorithms and approaches 

for data processing and interpretation (see Data Availability). 

Moreover, this first CAMPI study has highlighted that there is room for future editions of 

CAMPI studies. Indeed, based on the issues identified in this first study, we can already 

define interesting future research questions: what is the effect of data set complexity, and 

how do other sample types such as marine sediments affect the results; how is 

quantification affected by the workflow used, and which quantification approach yields the 

most robust and accurate results; how are taxonomic resolution, functional profiling, and 

quantification affected by the dynamic range of the sample composition; and what is the 

potential of data independent acquisition (DIA) and targeted approaches in 

metaproteomics regarding reproducibility and analytical depth? 

Obviously, relevant standardized samples will need to be defined for these studies, and 

should moreover be produced in sufficient amounts to allow their continued use by 

interested researchers after publication of these studies. These could take the form of a 

defined synthetic community with exactly known composition, including cell numbers and 
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sizes, preferably stimulated under different biological conditions. With such a sample, we 

will be able to validate a variety of quantification methods, but also investigate the effect 

of quantifying individual proteins in relation to their background. Moreover, it remains a 

question for now what the effect will be on the taxonomic resolution or functional profile. 

Label-based approaches could also be extremely valuable for the field as it has been 

shown that stable isotope labelling as a spike-in reference can strongly improve 

quantification accuracy65,66. On another technical level, we could investigate the 

opportunities and challenges of the use of DIA on metaproteomics samples. Potentially, 

there will be new, AI-driven search engines that will enter the field of (meta)proteomics, 

which also brings new opportunities for the field.  

Of course, all these follow-up CAMPI studies will contribute highly useful benchmark 

samples and data sets to the field as well, thus creating a strong, positive feedback loop 

with the metaproteomics community. Future CAMPI editions will be launched by the 

Metaproteomics Initiative (metaproteomics.org), a newly founded community of 

metaproteomics researchers which aims, among other things, to standardize and 

accelerate experimental and bioinformatic methodologies in this field. This initiative can 

combine forces with existing initiatives such as the ABRF iPRG study group, who recently 

provided a metaproteomics data set to be analysed by the proteomics informatics 

community65. We believe that such ongoing efforts will continue to advance the field of 

metaproteomics, and make it more widely applicable. Metaproteomics will thus develop 

its full potential, and further increase its relevance across the life sciences. 
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Methods 

The CAMPI study aims to evaluate the impact of different protein extraction protocols, 

MS/MS acquisition strategies, and bioinformatic pipelines used in metaproteomics (see 

Figure 1 for a general overview, and Supplementary Table 1 for an overview of all 

methods). 

 

1 Sample description 

1.1 Simplified human intestinal microbiota sample (SIHUMIx) 

A simplified human intestinal microbiota (SIHUMIx) composed of eight species was 

constructed to embody a majority of known metabolic activities typically found in the 

human gut microbiome. The SIHUMIx sample contains the Firmicutes Anaerostipes 

caccae DSMZ 14662, Clostridium butyricum DSMZ 10702, Erysipelatoclostridium 

ramosum DSMZ 1402 and Lactobacillus plantarum DSMZ 20174, the Actinobacteria 

Bifidobacterium longum NCC 2705, the Bacteroidetes Bacteroides thetaiotaomicron DSM 

2079, the Lachnospiraceae Blautia producta DSMZ 2950, and the Proteobacteria 

Escherichia coli MG1655, covering the most dominant phyla in human feces66. SIHUMIx 

was prepared as previously described, with an additional 24h of cultivation of one control 

bioreactor, to produce sufficient biomass to be sent out to each participating laboratory66. 

Participants received 3,5 x 109 cells/ml of frozen sample (-20 °C) in dry ice. 

1.2 Human fecal microbiome sample  

A natural human fecal microbiome sample was procured upon informed consent from a 

33-year old omnivorous, non-smoking woman, with approval by the ethics committee of 

the University Magdeburg (number 99/10). The sample was immediately homogenized, 

treated with RNA-later, aliquoted, frozen, and stored at -20°C until aliquots were sent to 

each participating laboratory. 
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2 Biomolecule extraction and nucleotide sequencing 

2.1 DNA/RNA extraction, sequencing, and processing 

DNA was extracted from both SIHUMIx and the fecal samples. RNA could also be 

extracted from the fecal sample but not SIHUMIx as only the former was treated with 

RNA-later. 

Extracted DNA and RNA were sequenced with Illumina technology, and the obtained 

sequencing reads subsequently co-assembled into contigs for further bioinformatic 

processing. Details on the extractions, libraries preparations, and sequencing can be 

found in Supplementary Note 1.1. Preprocessing of the sequenced reads was 

performed as part of the Integrated Meta-omic Pipeline (IMP)67 and included the trimming 

and quality filtering of the reads, the filtering of rRNA from the metatranscriptomic data, 

and the removal of human reads after mapping against the human genome version 38. 

Preprocessed RNA and DNA reads were co-assembled using MEGAHIT v1.2.468 using 

minimum and maximum k-mer sizes of 25 and 99, respectively, and a k-step of 4. The 

resulting contigs were binned using MetaBAT 2.12.169 and MaxBin 2.2.670 with default 

parameters and minimum contig length of 2500 and 1500 bps, respectively. Bins were 

refined using DASTool 1.1.271 with default parameters and a score threshold of 0.5. Open 

reading frames (ORFs) were called from all contigs provided to DASTool using Prodigal 

2.6.372 as part of the DASTool suite. 

 

2.2 Protein extraction and processing 

In total, eight different protein extraction protocols were applied and resulted in 24 

different workflows when combined with MS/MS acquisition strategies (Figure 1). Key 

characteristics for each workflow can be found in the Supplementary Table 1. The most 

obvious workflow differences were found in protein recovery, cleaning, and fractionation 

strategies. In a wide comparative approach, the protein extract was processed by either 

filter-aided sample preparation (FASP)73 (workflows 1-3, 5, 7-9,11-12,19-23 in 

Supplementary Table 1), in-gel (workflows 4, 6, 10, 13-18), or in-solution (workflows 21 

and 24) digestion. In most workflows, proteins were directly extracted from the raw 

defrosted material (workflows 1-20, 22-23). In one lab, however, microbial cells were first 

enriched at the interface of a reverse iodixanol gradient (workflows 21, 24). In most 
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approaches, cell lysis was based on mechanical cell disruption by bead beating in a 

variety of chemical buffers (workflows 1-12, 19-23), or in water (workflows 13-18). Apart 

from bead beating, ultrasonication in a chaotrope-detergent-free buffer was employed to 

allow for further separation of cytosolic and envelope-enriched microbiome fractions 

(workflows 21 and 24) and, in another separate workflow, cryogenic grinding was 

employed for the simultaneous extraction of DNA, RNA, and protein using the Qiagen 

Allprep kit (workflows 22, 23). Recovery of proteins from the lysis mixture was carried out 

either by solvent extraction using a variety of solvents, with or without further washes 

(workflows 4-18, 22, 23), or by filter-aided methods (FASP) (workflows 1-3). All methods 

included trypsin as the sole proteolytic enzyme for digestion of DTT (or DTE)-reduced 

and iodoacetamide-alkylated proteins. Digestion was performed either on filters 

(workflows 1-3, 5, 7-9, 11-12, 19-24), in-gel with or without fractionation (workflows 6, 10, 

13-18), or in-solution in the presence of a surfactant (workflows 21 and 24). Of note, the 

enzyme/substrate ratio varied from 1/50 to 1/10000, with digestion times from 2 to 16 

hours. Finally, peptides were recovered from the gel or eluted from filters (FASP) using a 

salt solution (workflows 1-3, 5-21, 24). In some protocols, peptides were desalted using 

different commercial devices (workflows 4, 21, and 24). 

 

3 LC-MS/MS acquisition 

Each laboratory used its own LC-MS/MS protocol with the largest differences and 

similarities highlighted in the following and details provided in Supplementary Table 1. 

For LC, all laboratories separated peptides using reversed-phase chromatography with a 

linear gradient length ranging from 60 min to 460 min. Furthermore, one group performed 

an additional separation using a multidimensional protein identification technology 

(MudPIT) combining cation exchange and reversed-phase separation in a single column 

prepared in-house74. 

Six groups used an Orbitrap mass spectrometer (4x Q Exactive HF, 1x Q Exactive Plus, 

1x Fusion Lumos, Thermo Fisher Scientific), while two groups employed a timsTOF mass 

spectrometer (Bruker Daltonik). All participants used data-dependent acquisition (DDA) 

with exclusion duration times ranging from 10s to 60s. All MS proteomics data and 
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X!Tandem results have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository75. 

 

4 Bioinformatics 

4.1 Generation of protein sequence databases 

Two types of databases were used for each sample; a catalog (reference) database and 

a database that was generated from metagenomic and metatranscriptomic (when 

available) data sequenced from a matching sample (meta-omic database). The catalog 

database for SIHUMIx consisted of the combined reference proteomes of the strains 

extracted from UniProt in July 201976 except for Blautia producta, for which the whole 

genus Blautia was taken (SIHUMIx_REF). The IGC 9.9 database77 (available at 

http://meta.genomics.cn/meta/dataTools) was used as the catalog database for the fecal 

sample (GUT_REF). Additionally, a meta-omic database from the assembled contigs was 

produced for both samples using the open reading frame generated with Prodigal 

(SIHUMIx_MO and GUT_MO). 

The SIHUMIx database (SIHUMIx_REF) is composed of reference proteomes, containing 

29,557 proteins (13.2 MB). In comparison, the metagenomic assembly for SIHUMIx 

(SIHUMIx_MO) produced 2,719 contigs, with an average contig length of 7.5 Kbp and the 

longest contigs being 468 Kbp, yielding 19,319 predicted ORFs (6.1 MB).  

For the fecal sample, the IGC reference catalog (GUT_REF) contains 9,879,896 protein 

sequences (2.6 GB). The co-assembly of DNA and RNA for the fecal sample (GUT_MO) 

produced 247,518 contigs with an average length of 1.6 Kbp and the longest contigs 

being 600 Kbp. The database GUT_MO yielded protein sequences from 441,558 

predicted ORFs (114.4 MB). All databases were concatenated with a cRAP database of 

contaminants (https://thegpm.org/cRAP; downloaded in July 2019) and the GUT 

databases were additionally concatenated with the human UniProtKB Reference 

Proteome (downloaded in September 2019). 

The four databases were in silico digested into tryptic peptides with an in-house 

developed script, with two missed cleavages allowed, to compare their theoretical search 

spaces. Additionally, all peptides identified with each database in the explorative analysis, 

which was carried out using all data sets, were retrieved and compared. 
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For metaproteomic data analysis, the number of spectra, PSMs, and identification rates 

(calculated by dividing the number of identified spectra by the total number of acquired 

MS/MS spectra) were extracted for all data sets searched against the selected databases 

(SIHUMIx_REF and GUT_MO) and compared. Finally, a representative subset of data 

sets, based on the different methods, was selected for further analysis (S03, S05, S07, 

S08, S11, S14 for SIHUMIx and F01, F06, F07, and F08 for the fecal sample). 

 

4.2 Data analysis using four different bioinformatic pipelines 

All submitted MS/MS raw files were first analyzed with a single commonly used database 

search method to assess both the quality of the extraction and the MS/MS acquisition, as 

well as the effect of the search database composition (reference proteomes vs. multi-

omics). For this, X!Tandem49 was used as search engine with the following parameters: 

specific trypsin digest with a maximum of two missed cleavages; mass tolerances of 10.0 

ppm for MS1 and 0.02 Da for MS2; fixed modification: Carbamidomethylation of C 

(+57.021464 Da); variable modification: Oxidation of M (+15.994915 Da); fixed 

modification during refinement procedure: Carbamidomethylation of C (+57.021464 Da). 

Peptides were filtered on length (between 6 and 50 amino acids), and charge state (+2, 

+3, and +4), and a maximum valid expectation value (e-value) of 0.178. 

The following database search engines were used for the pipeline comparison: (i) 

MaxQuant79 (including the search engine Andromeda) (ii) Galaxy-P workflows80,81 

consisting of SearchGUI82,83 (using OMSSA84, X!Tandem49, MS-GF+57, and Comet85) and 

PeptideShaker86 to merge the results, (iii) MetaProteomeAnalyzer26 (server version 3.4, 

using X!Tandem and OMSSA), and (iv) ProteomeDiscoverer 2.2 (using SequestHT, from 

Thermo Fisher). The identification settings for all search engines were the same as for 

the explorative analysis mentioned above. Refinement searches were allowed if 

implemented in the search engine (e.g., refinement search of X!Tandem), and the same 

for the inclusion of post-processing tools (e.g., Percolator within ProteomeDiscoverer). 

 

4.3 Protein inference 

To allow protein group comparison, groups were created using the combined peptide 

evidence of all compared samples. Two different protein grouping methods were tested: 
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MPA26 and PAPPSO59, and analyses were made on protein groups and subgroups 

(Supplementary Note 1.3). 

Assigning peptides to their correct protein can be a difficult task, notably due to the protein 

inference issue3, i.e., the same peptide can be found in different homologous proteins. 

This is particularly challenging in metaproteomics where the diversity and number of 

homologous proteins are much higher compared to single-species proteomics. To 

overcome this issue, most bioinformatic pipelines tend to automatically group 

homologous protein sequences into protein groups. However, each tool handles protein 

inference and protein groups in its own way, which prevents a straightforward output 

comparison at the protein group level. In order to allow robust comparison between 

approaches, the PSM output files of the four bioinformatic pipelines were combined. The 

peptides were then assigned to protein sequences in the FASTA file and the data was 

prepared for subsequent protein grouping. Two approaches of protein grouping were 

used and evaluated in this study: PAPPSO grouping59, which excludes proteins based on 

the rule of maximum parsimony, and grouping from MPA26, which does not exclude 

proteins. All data processing was done using a custom Java program except for PAPPSO 

grouping for which data was exported and imported using the appropriate XML format.  

For both methods, protein groups were created using the loose rule “share at least one 

peptide” (groups) and the strict rule “share a common set of peptides” (subgroups), 

resulting in a total of four protein grouping analyses: (1) PAPPSO groups, (2) MPA 

groups, (3) PAPPSO subgroups, and (4) MPA subgroups. Finally, the resulting protein 

groups and subgroups were exported for further analysis (Supplementary Note 1.3).  

These algorithms are also implemented in Pout2Prot91 for independent use. 

 

4.4 Taxonomic and functional annotation 

Annotations were performed at both the peptide, protein and the sequencing read level. 

Unipept was used for the peptide-centric approach22,25,87. For the taxonomic annotation 

of the SIHUMIx data sets, we used an advanced Unipept analysis that calculates the 

SIHUMIx-specific lowest common ancestor (LCA) (i.e. it calculates the LCA specific for 

its search database instead of the complete UniProtKB). Here, Unipept searched for the 

occurrence of each peptide in all species present in NCBI. For each peptide separately, 
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we removed those species that cannot be present in the SIHUMIx sample (i.e., non-

SIHUMIx species and contaminating species in the cRAP database), after which we 

calculated the SIHUMIx-specific LCA. This advanced taxonomic analysis using Unipept 

is possible since the composition of the sample is known, and resulted in a more accurate 

taxonomic annotation of the peptides. For more information and examples of the 

advanced Unipept analysis (Supplementary Note 1.4). For the taxonomic annotation of 

the fecal data sets with Unipept, the desktop87 and CLI21,88 versions were used. In both 

analyses for SIHUMIx and the fecal data sets, isoleucine (I) and leucine (L) were equated. 

The assigned taxonomies for each of the peptides can be found in Supplementary Files 

3 and 4. 

For the functional analysis at the peptide level, we used the Unipept command line option 

to extract the GO terms for each identified peptide per data set (below 1% FDR). The 

functional similarity of these sets of GO terms was calculated with MegaGO62.  

Prophane was used for the protein-centric approach89,90. For both the functional and 

taxonomic annotations, a generic output format created by the in-house developed 

protein grouping script and the protein database for a given analysis were used. Within 

Prophane, the taxonomic annotation was performed with DIAMOND blastp against the 

latest NCBI non-redundant (nr) database (2019-09-30)91, while two functional annotation 

tasks where performed against the eggNOG (database version 4.5.1)92 and Pfam-A (db 

version 32) databases93 using eggNOG-mapper94,95 and hmmscan96, respectively. Using 

eggNOG-mapper, the e-value threshold was set to 0.0005 while we applied a gathering 

threshold supported by PFAMs (cut_ga parameter) when searching using hmmscan. The 

result with the protein group identifiers from the previous analysis summary can be found 

in Supplementary Files 5-7, and the assigned taxonomies for each of the proteins 

can be found in Supplementary Files 8 and 9.. 

Metagenomic and metatranscriptomic reads were both taxonomically annotated with the 

mOTUs profiler v 2.097 with default parameters at the species and family levels for 

SIHUMIx and the feces sample, respectively. 

 

Quantification was based on read counts for metagenomic and metatranscriptomics data, 

and on spectral counts for peptides and protein subgroups. If two subgroups contained 
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the same peptide, spectra would be counted twice, distorting the abundance of these 

particular subgroups inside a measurement, but preserving a consistent count for 

comparison with other samples. Comparisons were performed with normalised values as 

described in detail below. 

 

4.5 Comparison between omics domains 

4.5.1 Taxonomic resolution 

Taxonomic annotations from the Prophane protein group outputs were used for 

metaproteomics. This method uses only identified proteins and assesses annotations 

based on the LCA approach thus generating results for each protein at the best possible 

taxonomic resolution 

The mOTU2 profiler used  for the metagenomic taxonomic annotation takes advantage 

of marker genes for taxonomic annotation and thus annotates everything at the OTU 

level. Since this approach does not allow comparison at each taxonomic level, Kraken2103 

was used to compare taxonomic resolution across omics domains. Kraken2 was run on 

the sequencing reads with the maxikraken2_1903 database and a confidence threshold 

set to 0.7. 

 

4.5.2 Functional comparison 

Each sequence database (SIHUMIx_REF, SIHUMIx_MO and GUT_MO) was annotated 

with the Mantis104 tool for consensus-driven protein annotation. For metaproteomics, 

abundance from prophane outputs and annotation from Mantis were used to generate 

functional profiles. For metagenomics and metatranscriptomics, sequencing reads were 

mapped against the assembly contigs using bowtie2105 and ORFs abundance was 

calculated using featureCounts106 KEGG107 annotations were retrieved from Mantis and 

used to compare functional profiles across omes. 

 

4.6 Statistical analyses 

Differences and overlap between search engines at the peptide level and between 

approaches at the peptide level using presence/absence data were visualized with UpSet 

plots with the UpSetR package98. For the peptides, sequences were extracted (without 
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modifications and with leucine (L) and isoleucine (I) treated equally and replaced by J) 

from each result file and a table, indicating whether a peptide was found or not, was 

prepared (Supplementary Note 1.4 and Supplementary Files 6 and 7). Similar tables 

and UpSet plots were generated to visualize differences and overlap between sample 

preparations for the peptides, the protein subgroups and the top 50% protein subgroups. 

The top 50% were first selected based on abundance data. The spectral counts were 

summed for each subgroup across all selected samples and only the top 50% was kept 

for UpSet plot comparison. Results from the taxonomic annotations for all approaches 

(peptides, proteins, metagenomic and metatranscriptomic reads) were compared and 

visualized using the PCA comparison feature of the R prcomp package. For the 

comparison, abundance values (number of reads and spectral counts) were used and 

normalized into percentage. The taxonomic annotations were harmonized across 

methods, unclassified values were filtered out and annotations with abundance lower than 

0.05% after filtering were grouped into “other”. 

All correlation plots were calculated using both Pearson and Spearman correlations with 

a p-value < 0.001. The correlations were calculated and plotted using the corrplot R 

packages.  

Hierarchical clusterings were calculated with the R function hclust using the Manhattan 

distance and the Ward method. 

 

Data availability 

The metaproteomic data sets generated and analyzed in the current study are available 

via the PRIDE partner repository with the data set identifier PXD023217 (Username: 

reviewer_pxd023217@ebi.ac.uk Password: XXX). 

Assemblies and raw metagenomic and metatranscriptomic reads are available through 

the European Nucleotide Archive under the study accession number PRJEB42466.  

 

Code availability 

All scripts are made available on github.com/metaproteomics/CAMPI. 
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