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Abstract 

As with many tasks in natural language processing, automatic term extraction (ATE) is 

increasingly approached as a machine learning problem. So far, most machine learning 

approaches to ATE broadly follow the traditional hybrid methodology, by first extracting a list 

of unique candidate terms, and classifying these candidates based on the predicted probability 

that they are valid terms. However, with the rise of neural networks and word embeddings, the 

next development in ATE might be towards sequential approaches, i.e., classifying each 

occurrence of each token within its original context. To test the validity of such approaches for 

ATE, two sequential methodologies were developed, evaluated, and compared: one feature-

based conditional random fields classifier and one embedding-based recurrent neural network. 

An additional comparison was added with a machine learning interpretation of the traditional 

approach. All systems were trained and evaluated on identical data in multiple languages and 

domains to identify their respective strengths and weaknesses. The sequential methodologies 

were proven to be valid approaches to ATE, and the neural network even outperformed the 

more traditional approach. Interestingly, a combination of multiple approaches can outperform 

all of them separately, showing new ways to push the state-of-the-art in ATE. 

 

Keywords 

Terminology, automatic term extraction, sequential labelling 

1 Introduction 

Automatic term extraction (ATE; sometimes called automatic term recognition or ATR) is the 

task of identifying specialised vocabulary in collections of domain-specific texts. The results 

can either be used directly to facilitate term management for, e.g., terminologists and 

translators, or as a preprocessing step for other tasks within natural language processing (NLP), 

ranging from automatic indexing (Koutropoulou and Efstratios 2019) to aspect-based 

sentiment analysis (De Clercq et al. 2015). In the former case, ATE is usually considered a 

semi-automatic process that requires human validation, since it is such a difficult task that 

cannot yet be perfectly automated. One of the main difficulties for ATE lies in the ambiguous 

distinction between terms and general language. This is difficult even for humans, so capturing 

the nature of terms in a set of clear rules for the automation of the task is extremely challenging.  

The traditional, hybrid approach to ATE, which still reaches state-of-the-art results, typically 

uses linguistic information to extract an initial list of candidate terms (CTs) from a specialised 

corpus, and filters and ranks this list based on statistical metrics. The result will be a list of 

unique CTs with the most likely ones ranked at the top. As with most research in NLP, it has 

become common practice to apply machine learning to the problem of ATE. No single feature 

performs well for ATE in all contexts (performance is often highly dependent on domain, 
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corpus size, language, etc.), so there is a proven benefit to combining multiple features (see, 

e.g., Dobrov & Loukachevitch, 2011). Therefore, while rule-based approaches are far from 

obsolete, the ability of machine learning to effectively combine many features poses a 

considerable advantage. There are many variations in methodologies, but most machine 

learning approaches to ATE have broadly followed the traditional approach, i.e., training a 

classifier to predict whether a given unique CT is a valid term or not. However, ATE can also 

be interpreted as a sequential labelling task, where each token in a running text is classified as 

(part of) a term or not. With this strategy, no lists of CTs are extracted, and instead, each 

occurrence of each token is classified within its original context. This strategy has been 

employed for related tasks such as Named Entity Recognition (Goyal, Gupta, and Kumar 2018) 

and automatic keyword recognition (Alami Merrouni, Frikh, and Ouhbi 2020), but only rarely 

for ATE.  

The goal was to investigate sequential labelling approaches to ATE. To do so, two alternative 

sequential methodologies have been developed: a feature-based approach using a conditional 

random fields (CRF) classifier, and a neural approach using only embeddings. Both are 

extensively compared and evaluated on the ACTER dataset (Annotated Corpora for Term 

Extraction Research) (Rigouts Terryn, Hoste, and Lefever 2020). Scores are calculated based 

on the sequential results, and the sequential labels are also used to extract a list of unique CTs 

and calculate f1-scores against the non-sequential gold standard (GS). After presenting related 

research in section 2, section 3 will offer a summary of the dataset and of the conversion of the 

original annotations to a suitable dataset for the classifiers. Section 4 is dedicated to the system 

descriptions. In section 5, the experimental setup is explained and the results of both sequential 

systems with different configurations are summarised. These results are discussed in more 

detail in section 6. A final error analysis with examples is presented in section 7, before 

concluding with a summary of the results and ideas for future research. 

 

2 Related Research 

2.1 Machine Learning Approaches 

As mentioned, there are many non-machine learning approaches to ATE that still obtain state-

of-the-art results, such as TermoStat (Drouin 2003), TExSIS (Macken, Lefever, and Hoste 

2013), Termolator (Meyers et al. 2018), and TermSuite (Cram and Daille 2016). The initial 

linguistic and statistical approaches tend to be combined into a hybrid methodology. A typical 

pipeline would start with the linguistic preprocessing of the corpus, i.e., tokenisation, 

lemmatisation, part-of-speech (POS) tagging, etc. This may also include syntactic chunking or 

parsing. CTs can then be extracted from the text based on predefined POS patterns (sometimes 

also using syntactic information). Many systems focus on nominal terms (Kageura and 

Marshman 2019), filter out stopwords, apply a frequency threshold, and/or restrict the 

minimum and maximum CT length. This initial list of CTs can then be filtered and sorted with 

statistical termhood and unithood measures (Kageura and Umino 1996). Termhood indicates 

how relevant a term is to the domain, whereas unithood signifies the cohesion between the 

different tokens of a multi-word term. Usually, one statistical measure is chosen to sort the 

result and only the n (%) highest ranked CTs are kept, or only those above a certain threshold 

value. Simple voting strategies can be used to combine multiple measures (Vivaldi and 

Rodríguez 2001), though this is not common. The rise of machine learning in NLP offered a 

new way to efficiently combine multiple metrics for ATE. The first experiments with 
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(supervised) machine learning for ATE were often based on the traditional method and still 

start with a rule-based approach to extract CTs based on POS patterns or syntactic information, 

or by selecting all n-grams with a maximum length and minimum frequency. The machine 

learning aspect only comes into play during the second step, when features are calculated for 

the extracted CTs and an algorithm can learn the optimal combination of features from 

annotated training data, to classify these CTs as either terms or not terms. Often, the extracted 

CTs can be ranked based on the classifier’s predicted probability that they are valid terms, so 

the results are presented in the same format as the traditional approach, i.e., a list of CTs with 

the most probable true terms at the top. Recently, there have been attempts to step away from 

this CT-based approach, in favour of a sequential labelling approach. Rather than classifying 

unique CTs that have already been extracted from the text, such an approach will label tokens 

in the text itself. Each token is analysed in its context and classified as a potential (part of) a 

term or not. Accordingly, each occurrence of each token is treated separately, as opposed to 

the traditional approach in which all occurrences of a CT were grouped and treated as a single 

instance. Since this project concerns machine learning methodologies, the related research will 

focus on those studies specifically. Since studies on sequential approaches to ATE are still very 

rare, non-sequential machine learning approaches (classification of CTs) will be addressed as 

well. 

2.2 Evaluation 

The accepted evaluation metrics for ATE are precision, recall, and f1-score, which compare 

the extracted CTs to a predefined list of GS terms. They are defined as follows: 

precision = 
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑡𝑒𝑟𝑚𝑠 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

𝑎𝑙𝑙 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝐶𝑇𝑠 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
 

recall = 
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑡𝑒𝑟𝑚𝑠 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

𝑎𝑙𝑙 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

f1-score = 2 ∗ 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Due to the difficulty and cost of creating completely annotated corpora, recall cannot always 

be calculated and researchers resort to alternatives, such as relative recall (Amjadian et al. 

2018), average precision (Fedorenko, Astrakhantsev, and Turdakov 2013), and 

precision@rank (Zhang, Petrak, and Maynard 2018). While there are many datasets – which 

have been annotated to various degrees and with varying accuracy – few have been used for 

multiple studies, except GENIA (Kim et al. 2003) in the domain of biomedicine, and ACL RD-

TEC (Qasemizadeh and Handschuh 2014; Qasemizadeh and Schumann 2016) in the field of 

computational linguistics. Nevertheless, even when the same scores are calculated on these 

same datasets, the GS and the way the scores are calculated may still differ. For instance, there 

might be restrictions on term length (e.g., between 1 and 5 tokens (Yuan, Gao, and Zhang 

2017)) or term frequency (e.g., only CTs that occur 10+ times (Hätty, Dorna, and Schulte im 

Walde 2017)), or the calculation of the scores might count partial matches as correct (Bay et 

al. 2020). Therefore, it is nearly impossible to get a fair idea of state-of-the-art scores. In answer 

to this issue, a recent shared task on ATE (Rigouts Terryn et al. 2020) allowed participants to 

develop and fine-tune a system based on provided training data, and all submissions were 

evaluated on the same test data. Despite the limited timeframe and number of participating 

teams (five), the results illustrate the difficulty of the task well, with modest f1-scores ranging 
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between 13.2% and 46.7%. Even with the help of the latest machine techniques, there remains 

a lot of room for improvement in the field of ATE. 

2.3 Features 

The use of machine learning allowed researchers to broaden the types of information that could 

be used as clues to find terms. POS patterns and termhood and unithood measures are still 

important but are now often supplemented with other types of features. As discussed in 

previous work (Rigouts Terryn, Hoste, and Lefever 2021), examples range from simple 

features about the shape of the CT, like length and capitalisation, to features that rely on 

external resources, and more complex features based on the use of language models and topic 

models. An especially noteworthy evolution is the use of embeddings. For instance, the best 

scoring system in the TermEval shared task (Hazem et al. 2020) contrasts a feature-based 

approach to a deep neural network using BERT models (Devlin et al. 2019), eventually 

concluding that the latter performs better in English, but that results for both approaches are 

comparable in French.  

When embeddings are used for ATE, these are often pre-trained embeddings, potentially fine-

tuned during classification. Pre-trained GloVe embeddings1 have been used in several studies 

(Amjadian et al. 2018; Kucza et al. 2018; Zhang, Petrak, and Maynard 2018) and word2vec 

(Mikolov, Yih, and Zweig 2013) has been used to train domain-specific embeddings, usually 

with the CBOW and/or skip-gram architectures (Amjadian et al. 2018; Bay et al. 2020; Wang, 

Liu, and McDonald 2016). Some studies have attempted to combine general embeddings and 

domain-specific embeddings. The first one (Amjadian et al. 2016; 2016) does so for the 

formerly mentioned English corpus on mathematics with 1.1M+ tokens, another (Hätty, 

Schlechtweg, and Dorna 2020) on German corpora, which, even after preprocessing and 

removal of all non-content words, still contain at least 0.7M words per domain. Another 

example is a Canadian-English corpus of 1.5M+ tokens on the topic of unwanted behaviours 

from potential employees (Drouin, Morel, and Homme 2020). These examples immediately 

illustrate a first issue with this methodology: they require huge corpora. One of the smallest 

corpora used to train domain-specific embeddings for ATE still counts 368k words (Bay et al. 

2020), in which case it was used in combination with a statistical measure and required a seed 

set of validated terms, so that new CTs would only be retained if they were close to one of the 

validated terms. Another aspect these studies have in common is that they only extract single-

word terms (unigrams); while it is possible to train n-gram-based embeddings, this can become 

even more computationally expensive.  

Despite the required computational power and the need for very large corpora, the combination 

of general and domain-specific embeddings remains a potentially promising strategy for ATE. 

In the English study (Amjadian et al. 2018), the general and domain-specific vectors are 

concatenated and used as input for a Multi-Layer Perceptron (MLP). The German study (Hätty, 

Schlechtweg, and Dorna 2020) goes a step further and tests two (neural) approaches to combine 

both embeddings and map them into the same space. Both approaches to combine the two 

vectors were found to work better than a simple concatenation of general and domain-specific 

 

 

1 https://nlp.stanford.edu/projects/glove/  

https://nlp.stanford.edu/projects/glove/
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vectors, and any strategy using both vectors performs better than using either the general or the 

domain-specific one by itself. 

2.4 Sequential Approaches 

In sequential labelling tasks, each token is classified within its original context. This is often 

done with an IOB labelling scheme, (Habibi et al. 2017), where each first token of a relevant 

entity is tagged as B (Beginning), each subsequent token within that entity as I (Inside), and 

tokens that are not part of any relevant entity are tagged as O (Outside). Sometimes such 

labelling is also performed at character-level (e.g., Kucza et al., 2018). IOB labelling schemes 

do not always allow encoding of nested annotations. For instance, suppose the sequence a 

supervised machine learning approach contains two terms which need to be encoded: 

supervised machine learning and machine learning; then the IOB labels could be a[O] 

supervised[B] machine[B] learning[I] approach[O], but that could be interpreted as the 

annotations of supervised and machine learning, not of supervised machine learning. 

Therefore, sometimes the B label is only used for the beginning of nested entities (not the 

beginning of annotations following an O label). In that case, the sequence could be tagged as 

a[O] supervised[I] machine[B] learning[I] approach[O], which would allow the correct 

extraction off both terms. Nevertheless, this does not always suffice, so there are more complex 

annotation schemes as well. Instead of an IOB scheme, some use BILOU (Kucza et al. 2018) 

or IOBES (Rokas, Rackevičienė, and Utka 2020), which can, e.g., have separate tags for tokens 

that form a single-word term by themselves and the last token of a multi-word term. Despite 

the added labels, this still does not allow the detection of all complex nested annotations. 

Consider, for instance, the example in Figure 1. Even the nested annotation of heart in heart 

failure is problematic with IOB labels. Therefore, a common approach is to only annotate the 

longest possible sequence (Kucza et al. 2018). In the example, this would mean only annotating 

heart failure with preserved ejection fraction and HFpEF with sequential labels. The nested 

annotations (heart, heart failure, preserved ejection fraction, ejection fraction) might then only 

be found if they occur separately elsewhere in the corpus, not nested in other annotations. 

 

 

Figure 1: Example of complex recursive (nested) annotation in BRAT interface 

 

In related tasks, such as biomedical NER, sequential labelling approaches are relatively 

common. For instance, Habibi et al. (2017) show how a generic deep learning method with 

word2vec word embeddings (Mikolov, Yih, and Zweig 2013) is often able to outperform state-

of-the-art methods. They use an LSTM-CRF architecture for this purpose (Long Short-Term 

Memory network - Conditional Random Field). For ATE, sequential methodologies are still 

very rare. The first (to the best of their, and our knowledge) to employ a sequential labelling 

approach in the context of ATE are Kucza at al. (2018). The reported scores are macro-

averaged precision, recall, and f1-scores for all five labels (no list of CTs is extracted). They 

compare recurrent neural networks (RNNs): LSTMs versus GRUs (gated recurrent units), 
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using both pre-trained word embeddings and character embeddings (both end-to-end trained 

and pre-trained), and train and test their models on the GENIA and ACL RD-TEC corpora. 

Some important findings were that preprocessing data (lowercasing and removing punctuation) 

leads to slightly worse performance, and that scores were drastically reduced for out-of-domain 

testing (training on GENIA and testing on ACL RD-TEC or the reverse) compared to training 

and testing within the same corpus. The top macro-averaged f1-score for in-domain testing was 

86.89%, versus only 48% for out-of-domain testing, in which case character embeddings 

outperform word embeddings. Another attempt at sequential labelling for ATE was performed 

for the Irish language, using the IOB labelling scheme and reporting scores per label (McCrae 

and Doyle 2019), and one for Lithuanian cybersecurity terms with FastText and BERT 

embeddings (Rokas, Rackevičienė, and Utka 2020). Earlier linguistic approaches to ATE, like 

one by Bourigault (1993) implemented in the LEXTER tool (Bourigault 1992) could also be 

considered as a type of sequential approach to ATE, as it uses noun phrases to find boundaries 

of terms in texts. However, since the current research focuses on machine learning approaches, 

this work will not be discussed in more detail. In conclusion, sequential labelling seems to be 

a viable option for ATE, but it has not really been compared to the traditional approach yet and 

requires a lot more research. By comparison, word embeddings have been more extensively 

researched in this context but can also benefit from more comparative research with feature-

based methods.  

The current project attempts to contribute by contrasting and evaluating two types of sequential 

approaches: one feature-based, one neural with embeddings. Additionally, these are compared 

to the traditional approach, using a machine learning architecture with similar features as the 

sequential feature-based approach. All experiments are performed with the same dataset, which 

covers multiple domains and languages for a more robust evaluation. An in-depth error analysis 

is performed to identify the strengths and weaknesses of the approaches. This research 

demonstrates how sequential machine learning methodologies are valid approaches to ATE, 

which might be able to push the state-of-the-art. 

 

3 Data 

The ACTER 1.4 dataset (Rigouts Terryn, Hoste, and Lefever 2020) contains three annotated 

comparable corpora and one parallel corpus in three languages (English, French, and Dutch), 

and four domains (corruption (corp), equitation - dressage (equi), heart failure (htfl), and wind 

energy (wind)). The original annotations were made with the BRAT rapid annotation tool 

(Stenetorp et al. 2011) (see also screenshot in Figure 1) with four labels: Specific Terms, 

Common Terms, Out-of-Domain Terms, and Named Entities, which were defined based on 

their domain-specificity (how relevant is the term to the domain) and lexicon-specificity (how 

much expertise is required to know the term). More information on these categories can be 

found in the original paper or the annotation guidelines2. For the current project, a binary 

definition is needed (term vs. not term), so unless specifically mentioned otherwise, 

 

 

2 http://hdl.handle.net/1854/LU-8503113  

http://hdl.handle.net/1854/LU-8503113
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annotations of all four labels are considered terms, i.e., positive instances. In total, the dataset 

counts 681,463 tokens (50,845 to 64,990 per corpus). 

 

 

Figure 2: Schematic of how the data, annotated in BRAT (middle screenshot), was converted into the different Gold Standards 

(GS) 

 

The BRAT annotations result in a separate file per text, with one annotation per line, identified 

by the indices of the first and last character of that annotation (top left box in Figure 2). To 

create a sequentially labelled dataset at token-level, rather than at character-level, the original 

annotations were mapped to tokens. Aligning the character-level annotations to tokens was 

relatively straightforward in most cases, especially since discontinuous terms (split terms, see 

annotation guidelines) were excluded from the dataset. However, there were two scenarios that 

were not quite as simple. The first concerns annotations that begin or end within a token, so 

that only a part of that token is annotated. While the guidelines specify that, generally, 

annotations should not be made within tokens, this is allowed for complex terms separated by 

a dash (e.g., angiotensin-receptor blocker, where angiotensin is annotated as a term). In cases 

where this led to only part of a token being included in any annotation, it was decided to 

consider the entire token as a valid part of a term, so it would get an I or B labelling. However, 

such cases are rare, since such annotations were often nested within longer annotations anyway, 

as in the example cited above. 

The second difficulty concerns tokens that are part of discontinuous annotations, for instance 

in the case of ellipses (see Figure 2). The discontinuous terms cannot be included in the GS 

BRAT output

ID Label Span String

T61 Common Term 831 838 cardiac
T62 Specific Term 839 848 apoptosis

T63 Specific Term 831 848 cardiac apoptosis

T64 Specific Term 850 858 fibrosis

T65 Part of Term 864 871 failure

R2 Split Term Arg1:T61 Arg2:T64
R3 Split Term Arg1:T61 Arg2:T65

Original, traditional GS (used for HAMLET)

cardiac

apoptosis
cardiac apoptosis

fibrosis

Unless “cardiac fibrosis” and “cardiac failure” occur 

uninterrupted by other tokens elsewhere in the corpus, they 

will not be included in the current Gold Standard, as none 

of the systems are designed to handle such “split terms” yet.

Sequential Gold Standard

Token IOB Label IO Label

cardiac B I

apoptosis I I

, O O

fibrosis B I

, O O

and O O

failure B I

Sequential GS converted to traditional format

cardiac apoptosis

fibrosis

failure

In this case, this Gold Standard will be the same for the IOB 

and IO methodologies. Unless “cardiac” occurs elsewhere 

in the corpus surrounded by tokens tagged as “O”, it will 

not be included in this Gold Standard. 
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(unless they occurred somewhere else without interruptions), since none of the methodologies 

in the current project are equipped to deal with such split terms yet. However, for a sequential 

methodology, it was deemed most logical to still tag these parts of terms as positive instances, 

since they are (at least partially) terminological. Deciding to tag tokens that are only partially 

annotated, and tokens that are part of discontinuous annotations as positive instances in the GS 

was most logical in a sequential setup, but not in the traditional methodology for ATE. In such 

a traditional approach, (candidate) terms are presented as a list of unique instances, so it would 

not be desirable to include such partially correct annotations. Therefore, the GS for the 

traditional approach (top right box in Figure 2), and the GS data used for the sequential 

approach (bottom left box in Figure 2), are not only presented in a different format, but also 

contain slightly different GS annotations.  

Capturing all complex nested annotations with a simple sequential annotation scheme is 

impossible. Therefore, the commonly used IOB scheme was applied to encode only the longest 

possible sequences of annotations, without considering any nested annotations. The first token 

of a sequence was tagged as B and all subsequent tokens within the annotation were tagged as 

I (even if they were the beginning of a nested annotation). While IOB labels are common 

practice, it was hypothesised that a simple binary scheme, where B and I labels are combined 

(IO instead of IOB), could also be interesting. The bottom left box in Figure 2 shows an 

example with both tagging schemes. When two terms are not separated by a non-terminological 

token, the IO scheme cannot represent these annotations as accurately as the IOB scheme. 

Nevertheless, a binary classification task is usually easier to model, which might compensate 

for the potential loss in accuracy. 

Since one of the goals of this project is to contrast traditional (non-sequential) to sequential 

ATE, the data also had to be compared somehow. Therefore, sequentially labelled data was 

converted to lists of unique instances, so that both the GS and the results of sequential 

approaches could be compared more thoroughly to those of the traditional, non-sequential 

approach. An example is the transformation of the sequential GS data in the bottom left box in 

Figure 2 to a list of unique GS terms in the bottom right box of Figure 2. As discussed, there 

will be three differences when comparing the traditional GS (top right box in Figure 2) to a GS 

in the same format extracted from the sequential data (bottom right box in Figure 2): (1) 

annotations that only ever occur nested within other annotations will not be included in the GS 

based on sequential data, (2) annotations of tokens that are only partially annotated will not be 

included in the traditional GS, and (3) tokens that are only tagged as part of a discontinuous 

(split) term will not be included in the traditional GS either.  

To discover how well the IOB and IO labelled data align with the traditional, non-sequential 

GS, and how much accuracy is lost between the IOB and IO approaches, the IOB and IO GS 

based on the sequentially labelled data were evaluated compared to the original list of standard 

terms, used for more traditional (non-sequential) ATE. Lower scores in this comparison are 

not necessarily bad, since both approaches have a different purpose, i.e., presenting a list of 

unique terms versus indicating all terms in a running text. Therefore, differences are expected 

and do not mean one approach or dataset is superior. Nevertheless, it is important to be aware 

of the differences and such a comparison is a practical way to find them. Extracting all terms 

from the IOB labelled GS results in an average f1-score of 93.4% compared to the traditional 

GS; for the IO GS, the f1-score drops to 85.1%. This is a considerable difference, so the results 

of further experiments will have to determine whether this drop in potential accuracy with the 

IO approach can be compensated by the comparatively easier setup for the classification task 
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(binary vs. multiclass classification). For the experiments in the remainder of this contribution, 

whenever the output of sequential systems is evaluated against the traditional GS, these scores 

should be considered an approximation of the upper bounds. 

A final note on the dataset is that, beyond tokenisation, no changes were made to the original 

data, and no normalisation was performed. The characteristics of terms are so diverse that 

almost any filter risks changing or removing a term. For instance, function words and special 

characters were not filtered out since they occur in terms like quality of life and β-blocker. 

Capitalisation was maintained in the sequential dataset and/or used as a feature, but whenever 

terms are presented as lists of unique instances, all data is lowercased, so that instances which 

are identical apart from their capitalisation are combined. 

 

4 System Description 

4.1 CRFSuite Feature-based Sequential ATE 

The feature-based sequential system uses CRFSuite (Okazaki 2007), an implementation of 

CRFs for Python, to apply a linear-chain CRF with Adaptive Regularisation Of Weight Vector 

(AROW) (Crammer, Kulesza, and Dredze 2009). CRFSuite’s standard settings were used and 

the variance and gamma hyperparameters were optimised through grid search with 10-fold 

cross-validation on the training set. The optimisation was based on macro-averaged f1-scores 

for all labels. Since the goal was not only to compare this feature-based method to another 

embedding-based sequential method, but also to a traditional (non-sequential) machine 

learning approach to ATE, the features were largely based on the ones used in the latter 

(HAMLET) (Rigouts Terryn, Hoste, and Lefever 2021). The main difference is the inclusion 

of contextual and string-based features. All texts are linguistically preprocessed with LeTs 

Preprocess (tokenisation, lemmatisation, POS-tagging, chunking, and NER) (van de Kauter et 

al. 2013), and all language-dependent POS tags are mapped to a shared set of 26 tags (Rigouts 

Terryn, Hoste, and Lefever 2021) based on Universal Dependencies (Petrov, Das, and 

McDonald 2012). These 26 tags (standard POS) were also mapped to a more coarse-grained 

set of 8 tags (simple POS). The reference corpora, used for frequency-based and statistical 

features, are Wikipedia dumps in all languages and newspaper reference corpora, all limited to 

10M tokens. The news corpora were News on Web for English (Davies 2017), the Gigaword 

corpus for French (Graff, Mendonça, and DiPersio 2011), and news-related subcorpora of 

openSONAR for Dutch (Oostdijk et al. 2013). Statistical features that require a reference 

corpus are all calculated twice, compared to both types of reference corpora. 

Some of the features only pertain to the token itself, whereas other features look at all 

occurrences of that token in the corpus. In most cases, only tokens with the same full form and 

capitalisation are combined (regardless of POS), but a few features consider five other 

variations of the token: (1) same lowercased full form, (2) same normalised form, (3) same full 

form and simple POS, (4) same lowercased full form and POS, (5) same lowercased lemma 

and POS. All statistical features are all explained in the work of Astrakhantsev at al. (2015), 

except for Vintar’s termhood measure, which can be found in her own work (Vintar 2010). As 

can be seen in Table 1, there are 100 features in total, split into seven categories.  
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Category Feature description # fts. 

Token token itself  1 

Context previous and next 3 tokens  6 

simple POS tag of previous and next 3 tokens 6 

standard POS tag of previous and next 3 tokens 6 

NER tag of previous and next 3 tokens 6 

chunking information from previous and next 3 tokens 6 

CT occurs before, after, between, or nowhere near brackets 4 

Linguistic simple POS 1 

standard POS 1 

NER information 2 

chunking information 2 

# possible POS tags (simple & standard) for all occurrences of token 2 

probability of current POS tag (simple & standard) for token 2 

token is in stopword list3 1 

Shape alphanumeric characteristics of token 1 

capitalisation of token 1 

# capitalisation options for all occurrences of token and probabilities 5 

# characters, digits, and special characters in token 3 

prefix and suffix (first and last 3 characters) of token 2 

suffix of lemmatised form of token 1 

Frequency frequency and document frequency in domain-specific corpus 2 

frequency and document frequency in reference corpora 4 

Statistical domain pertinence vs. reference corpora 2 

domain relevance vs. reference corpora 2 

domain specificity vs. reference corpora 2 

log-likelihood ratio vs. reference corpora 2 

relevance vs. reference corpora 2 

TF-IDF 1 

Vintar’s termhood measure vs. reference corpora 2 

Weirdness vs. reference corpora 2 

Variation 5 variants of token 5 

domain specificity vs. Wikipedia corpus for all variants 5 

Vintar’s termhood measure vs. news corpus for all variants 5 

frequency in specialised corpus for all variants 5 

Table 1: Features for CRFSuite system for sequential ATE 

 

 

3 The ISO stopwords were used for all languages: https://github.com/stopwords-iso 
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4.2 FlairNLP Neural, Embedding-based Sequential ATE 

The neural approach was implemented using the FlairNLP framework (Akbik et al. 2019), an 

open source library for sequential NLP tasks in Python. It allows a straightforward 

implementation of a Recurrent Neural Network (RNN) for sequential labelling tasks in NLP, 

using the embeddings offered through PyTorch (Paszke et al. 2019). We use the standard 

biLSTM-CRF architecture, with a single hidden layer of size 512 and the AdamW optimiser 

(Kingma and Ba 2015) with weight decay regularisation from Loschilov & Hutter (2019). The 

ACTER corpora are very small (51k-65k tokens per corpus), and the goal, for now, is not to 

build the best possible model, but rather to compare different approaches and identify the 

strengths and weaknesses of these methodologies more generally. Therefore, PyTorch’s pre-

trained embeddings (on large, general corpora) were used, and no domain-specific embeddings 

are trained. To enable fair comparisons across languages, comparable embeddings had to be 

available for each of the three languages in the corpus. This excluded GloVe or ELMo 

embeddings (Peters et al. 2018) for instance. The three types of embeddings that were used all 

incorporate even subword or character-level information, which is thought to be helpful for 

tasks that include a lot of rare words (which is likely the case in our specialised, domain-

specific corpora). None of the embeddings were specifically tuned for the task and only the 

standard settings were used. 

Multiple embeddings were tested, starting with the Flair embeddings, since we worked within 

the FlairNLP framework. These “contextual string embeddings” (Akbik, Blythe, and Vollgraf 

2018, 1638) are obtained with a neural, character-based language model and can incorporate 

both previous and next context by stacking the “backward” and “forward” embeddings in the 

FlairNLP framework, that is designed to easily combine (stack) embeddings. They achieved 

state-of-the-art results in sequence labelling for named entity recognition, which made them a 

promising first choice for ATE. The pre-trained embedding are trained on a 1 billion word 

newspaper corpus (for English embeddings), French Wikipedia (for French embeddings), the 

Dutch texts of the Wikipedia OPUS corpus (Wołk and Marasek 2014) (for Dutch embeddings), 

and the JW300 corpus, a “parallel corpus of over 300 languages with around 100 thousand 

parallel sentences per language pair on average” (Agić and Vulić 2019, 3204) for the 

multilingual embeddings. 

FastText embeddings (Bojanowski et al. 2016) were chosen as the next logical option of 

popular and often successful embeddings that are available for all languages in the project and 

that also incorporate subword information. We used the embeddings that are pre-trained on 

Common Crawl (for all languages). 

Finally, the hugely successful transformer-based architectures are supported in FlairNLP as 

well, through HuggingFace (Wolf et al. 2020), so BERT embeddings (Devlin et al. 2019) 

could be tested as well. For English, “bert-base-cased” was used, for French CamemBERT 

(Martin et al. 2020), and for Dutch BERTje (de Vries et al. 2019). Both Flair and BERT models 

were available as multilingual embeddings too, so these were included in the evaluation as 

well. BERT multilingual embeddings are trained on monolingual Wikipedia corpora in the top 

104 languages on Wikipedia, without any markers to indicate the difference between the 

languages. They are shown to generalise well cross-lingually, especially between similar 

languages (Pires, Schlinger, and Garrette 2019).  
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4.3 HAMLET Machine Learning Approach to Traditional Hybrid ATE 

The HAMLET system (Rigouts Terryn et al. 2019; Rigouts Terryn, Hoste, and Lefever 2021) 

is not the focus of this research, but it is used for comparison. It is a machine learning approach 

to ATE, also based on the ACTER corpus and with features like those of the CRFSuite feature-

based approach, but according to the traditional approach to ATE. CTs are first extracted based 

on the POS patterns of the annotated training data, and features are calculated to classify each 

CT as either a term or not, with a confidence score, using a Random Forest Classifier (RFC) in 

Scikit Learn (Pedregosa et al. 2011). It reaches state-of-the-art results, usually with higher 

recall than precision. Whenever HAMLET is compared to the sequential approaches, they are 

trained an evaluated on the exact same corpora. 

 

5 Experiments and Results 

5.1 Experimental Setup 

Despite the proven benefit of domain-specific training data, real-life applications will rarely 

have access to large, domain-specific, annotated datasets. Therefore, the strictest, but most 

realistic setting was chosen for the experiments: training on out-of-domain data and testing on 

a separate, unseen corpus in a different domain. For instance, when results are reported on the 

English heart failure corpus, the system has been trained on the three other English corpora 

(corruption, dressage, and wind energy). Per corpus, each experiment was repeated three times 

with identical data and settings, so results could be averaged over these three trials and provide 

an indication of standard deviation.  

For sequential ATE, no consensus has been reached yet about the most appropriate metrics. A 

first option would be to use micro-averaged f1-scores of all labels, which, for a task like this, 

where each instance is given one label, would be the same as accuracy. Micro-averaging scores 

of multiple labels means that the average scores per label are multiplied by the number of 

instances that were assigned this label, before adding them and dividing them by the total 

number of instances in the dataset. In other words, micro-averaging scores over multiple labels 

considers how many instances each label covers. Conversely, macro-averaging scores of 

multiple labels would assign equal weights to all labels, regardless of how often each label is 

used. Using micro-averaged f1-scores of all labels for the current sequential ATE task would 

assign a disproportionate weight to the negative instances (O labels), which, on average, 

constitute around 81% of all tokens. Therefore, a classifier that predicts O for all tokens would 

reach a micro-averaged f1-score of 81%, despite not having detected a single term. Macro-

averaging would be fairer because it would consider all labels equally, but for ATE, we are 

mostly interested in the scores of the positive labels. Consequently, it was decided to consider 

only the f1-scores of the positive labels (B and I). This strategy would also more closely 

resemble the reasoning behind the evaluation metrics for traditional ATE. In the case of the IO 

scheme, there is only a single positive label, so its f1-score did not need to be averaged. For 

the IOB data there are two positive labels that do not occur in equal proportions (13% B, and 

6% I labels on average). Since these proportions are different, the micro-averaged f1-scores 

were calculated, i.e., considering the number of instances in each class before averaging. 
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Additionally, to allow comparison with traditional ATE and the traditional GS (see Figure 2), 

traditional precision, recall, and f1-scores were also calculated by extracting lists of unique 

CTs based on the assigned IO(B) labels and comparing those against the traditional GS. It 

should be emphasised that, as explained, this puts the sequential approaches at a minor 

disadvantage. 

 

5.2 CRF Results 

The obtained scores, averaged over all corpora, are represented in Table 2. Clearly, the two 

types of scores are very different: micro-averaged f1-scores for the positive labels in the 

sequential data are considerably better than f1-scores compared to the traditional, non-

sequential GS. Conversely, f1-scores for the positive labels are much lower than, for instance, 

micro-averaged f1-scores for all labels (accuracy), which would be 83.0% and 85.1% for IOB 

and IO respectively (not shown in table).  

 

micro-averaged scores for positive label(s) scores compared to traditional GS 

p r f1 σ of f1 p r f1 σ of f1 

IOB 52.7 43.6 46.0 4.9 33.9 35.9 33.9 7.7 

IO 66.4 53.9 57.0 5.7 33.8 36.5 33.6 7.3 

Table 2: Scores (as percentages) of IOB and IO CRFSuite systems, averaged over all corpora; standard deviation is calculated 

over three trials per corpus 

 

Considering the difficulty of the task, these scores are promising, but leave room for 

improvement. Scores for the IOB versus the IO system show the expected pattern: the binary 

(IO) approach reaches higher f1-scores on the sequential data than the IOB approach, but the 

f1-scores compared to the traditional GS are almost identical. This supports our hypothesis 

that, while the binary approach is a less accurate representation of terms in sequential data, this 

is at least partially compensated by the increased performance of the sequential classifier on 

the binary (IO) versus multi-label (IOB) task: in most (though not all) cases, sequential f1-

scores are better for IO labelled data, but non-sequential, traditional f1-scores are similar for 

IO and IOB labelled data. This observation applies to experiments with the neural classifier as 

well. A final observation concerning these experiments with the CRF classifier is the large 

average standard deviation. The positive labels (I & B) represent less than 20% of all tokens, 

so relatively small differences in the results overall can lead to much larger disagreement in 

the scores. Average standard deviation for accuracy (of all labels) is considerably lower at 3.3% 

and 3.6%. 

5.3 RNN results 

As mentioned, the neural approach is tested with three types of embeddings: Flair, FastText, 

and BERT embeddings. For the latter two, both monolingual and multilingual embeddings are 

examined. The multilingual models are trained on all corpora, except the test corpus itself. This 
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means domain-specific data is included, but only in different languages. Furthermore, the Flair 

framework allows users to stack different embeddings, and the creators state that Flair 

embeddings might perform best when combined with others. Consequently, additional systems 

were trained with stacked Flair+BERT embeddings. The results are shown in Table 3, with the 

same metrics as for the CRFSuite model.  

Table 3: Scores (as percentages) for RNN systems with different monolingual and multilingual embeddings, averaged over all 

corpora; standard deviation is calculated over three trials per corpus 

Table 3 reveals that results vary not only for different types of embeddings, but also depending 

on the evaluation metric. For instance, the monolingual stacked Flair+BERT embeddings reach 

the highest micro-averaged f1-score for positive labels, but the f1-score compared to the 

traditional GS is lower than all but the FastText models. Likewise, the relation between the IO 

and IOB labels is not straightforward: the IO models invariable get higher f1-scores on the 

sequential data, but this varies for the traditional f1-scores. Therefore, the intended purpose is 

a big factor in deciding which model is best suited for a project. For the sequential scores, 

precision is always higher than recall, especially for the FastText models, which reach very 

low recall. For all but the FastText models, standard deviation is considerably lower than for 

the feature-based models, especially for the (multilingual) BERT models. Results for the 

models that stack the best two types of embeddings (BERT and Flair) are not (much) better 

than the others, despite the increased computational cost.  

 micro-averaged scores over 

positive label(s) 

scores compared to 

traditional GS 

   p r f1 σ of 

f1 

p r f1 σ of 

f1 

monolingual 

embeddings 

fast-Text IOB 60.8 12.9 18.9 7.4 41.3 15.0 19.0 6.3 

IO 69.2 23.4 32.0 10.1 37.1 21.6 24.4 6.5 

Flair IOB 66.2 42.0 48.3 4.3 43.2 45.4 42.1 2.4 

IO 74.8 52.3 58.4 3.0 41.6 47.6 42.3 1.4 

BERT IOB 73.3 44.2 52.4 2.6 51.7 48.0 47.1 1.6 

IO 80.5 50.4 58.8 2.9 49.4 47.8 45.8 1.6 

Flair + 

BERT 

IO 78.7 50.0 59.7 3.9 43.7 38.4 39.6 1.2 

multilingual 

embeddings 

Flair IOB 63.5 44.3 51.5 3.0 40.4 48.4 42.6 1.1 

IO 71.8 52.5 58.1 2.8 38.1 47.4 40.8 1.3 

BERT IOB 74.9 66.2 69.4 0.8 74.9 66.2 69.4 0.8 

IO 81.3 71.4 75.2 0.9 81.3 71.4 75.2 0.9 

Flair + 

BERT 

IO 81.0 71.1 74.9 0.9 81.0 71.1 74.9 0.9 
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Concerning the monolingual and multilingual models, not just the models are different between 

these experiments, but also the training data. Therefore, further experiments were performed 

to test the impact of that training data with BERT embeddings. Three additional experiments 

were performed with the multilingual BERT embeddings (only on IO labelled data). First, the 

model was trained on the same data as the monolingual systems (three out-of-domain corpora 

in the same language as the test corpus). Next, to test the impact of the amount of training data, 

it was trained on all nine out-of-domain corpora in all languages, excluding the two domain-

specific corpora in the other languages. Finally, to test the impact of in-domain training data, 

it was trained on only the two in-domain corpora in the other languages. The results are reported 

in Table 4.  

As expected, performance with multilingual BERT embeddings is similar to monolingual 

BERT embeddings when both are provided with the same training data (second row in Table 

4). The final system (last row), trained only on in-domain data in other languages than the test 

corpus, performs marginally better than the system trained on all available data. While the 

difference is small and only applies to sequential scores, it is remarkable since the best-

performing system only has access to two training corpora, which are a subset of the training 

data of the original multilingual system. This emphasises the importance of in-domain training 

data. By comparison, the amount of (out-of-domain) training data has much less impact. 

Comparing the second and third rows of results shows that adding six out-of-domain training 

corpora in other languages barely leads to any improvement.  

In conclusion, BERT embeddings outperform both FastText and Flair embeddings for this task. 

The (multilingual) models benefit from in-domain training data, even when it is in other 

languages. However, since the goal of this project is to approximate a realistic setting where 

in-domain training data is unlikely to be available, further experiments will use only 

monolingual BERT embeddings, where the classifier is trained on three out-of-domain corpora 

in the same language as the test corpus. This also improves comparability with the results of 

the feature-based CRF model, which is not designed to use multilingual data. 

 

Training data includes: 
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 micro-averaged scores for 

positive label(s) 

scores compared to 

traditional GS 

OOD 

data in 

same 

language  

OOD 

data in 

other 

languages  

In-dom. 

data in 

other 

languages  p r f1 

σ of 

f1 p r f1 

σ of 

f1 

Yes Yes Yes 11 81.3 71.4 75.2 0.9 47.7 61.3 52.7 0.7 

Yes No No 3 79.5 50.4 59.1 3.2 46.5 47.6 45.1 1.6 

Yes Yes No 9 80.8 50.8 59.7 2.6 49.1 47.8 45.9 1.4 

No No Yes 2 79.1 74.8 76.6 1.3 41.8 60.9 49.3 1.0 
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Table 4: Scores (as percentages) for model with multilingual Bert embeddings and binary IO labelling scheme with different 

training data 

 

6 Analyses and Discussion of Results 

6.1 Choice of Experiments and Motivation 

So far, the reported scores were averaged over three trials per corpus, and once again averaged 

over all corpora. Since it is not feasible to perform an in-depth analysis for all possible models 

and methodologies, a selection needed to be made. Instead of working with averages, only the 

best of three trials per corpus will be used, so that the actual output can be examined. 

Additionally, all analyses will continue with the RNNs, and the feature-based models will not 

be discussed in more detail for now. While both approaches reach comparable scores on the 

sequential data, the feature-based results are less stable (larger standard deviation), and scores 

compared to the traditional GS are better for the RNN. As discussed, the RNN will use 

monolingual BERT word embeddings, and will be trained on three out-of-domain corpora and 

evaluated on a held-out test corpus. To avoid double results for IOB and IO labelled data, only 

the latter was used for further experiments. For the current RNN with monolingual BERT 

embeddings specifically, the binary IO approach reaches slightly higher scores and the 

difference between the output of the IO and IOB systems is very small. On 97% of all tokens, 

the IO and IOB systems agree on either a positive (I or B) or negative label (O). In conclusion, 

all further experiments concern the best results out of three trials, per corpus, for an RNN with 

monolingual BERT embeddings, trained and evaluated on IO labelled data. 

 

6.2  Results per Corpus  

The results on each corpus for the RNN are reported in Table 5. As explained, these scores are 

slightly higher than in the previous tables because the previous tables reported on the averages 

over three trials, whereas the next tables all report the best scores out of three trials per 

experiment. The scores of HAMLET (Rigouts Terryn, Hoste, and Lefever 2021) on the same 

data are included in the same table and will be examined in more detail in section 6.3. 

Language 

& Domain 

Sequential RNN with BERT embeddings 
HAMLET: ML approach 

to traditional ATE 

scores for positive 

label (I) 

scores compared to 

traditional GS 

scores compared to 

traditional GS 

p r f1 p r f1 p r f1 

en 

 

corp 81.1 43.1 56.3 47.4 32.9 38.9 37.8 40.0 38.9 

equi 84.2 62.5 71.8 49.3 58.9 53.7 56.1 49.8 52.8 

htfl 85.9 70.3 77.3 51.8 62.6 56.7 52.9 36.8 43.4 

wind 75.2 80.2 77.6 39.7 63.9 48.9 38.2 55.5 45.3 
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fr 

 

corp 85.0 29.1 43.4 57.0 25.4 35.2 42.2 28.2 33.8 

equi 81.0 39.3 52.9 45.8 39.7 42.5 49.6 43.8 46.5 

htfl 90.8 55.6 68.9 66.2 48.3 55.8 58.0 48.2 52.7 

wind 61.4 51.0 55.8 29.0 56.3 38.3 27.6 48.6 35.2 

nl 

 

corp 81.5 19.1 30.9 47.1 23.3 31.2 38.7 46.9 42.4 

equi 92.2 37.1 52.9 62.5 45.3 52.5 68.8 54.3 60.7 

htfl 86.7 67.2 75.7 59.3 70.1 64.3 61.2 50.1 55.1 

wind 62.5 78.0 69.4 36.3 71.7 48.2 33.7 72.7 46.1 

Averages: 80.6 52.7 61.1 49.3 49.9 47.2 47.1 47.9 46.1 

Table 5: Best scores (as percentages) out of 3 trials per corpus for RNN with monolingual BERT embeddings with IO labelled 

data, compared to results of HAMLET on the same data. 

 

First, the results of the RNN per corpus will be discussed. These can differ substantially per 

corpus. For instance, scores are consistently worst in the domain of corruption for all 

languages, often by a large margin. This was not surprising, as it was reportedly the most 

difficult corpus to annotate and clearly resulted in the lowest scores for HAMLET as well. The 

corpus on heart failure reaches the highest scores in all languages except for sequential scores 

in English. For the other two corpora, results are more mixed and depend on the type of scores: 

wind energy gets consistently higher sequential f1-scores than dressage, but lower f1-scores 

compared to the traditional GS. Similarly, the conclusions concerning the impact of the 

languages differs depending on which scores are consulted. Average sequential f1-scores are 

much higher in English (70.8% versus 55.3%. and 57.2% on average for French and Dutch), 

but these differences are much smaller for f1-scores compared to the traditional GS, where the 

averages for English, French, and Dutch are 49.6%, 43.0%, and 49.1% respectively. Lower 

scores for French may be due to a higher ratio of multi-word terms, which are more difficult to 

detect (see also section 7). Precision is also much lower for the scores compared to the 

traditional GS. In conclusion, while language and domain do appear to have an impact on 

results, there are clearly other factors that have a big impact as well and more research is 

required to identify these dynamics. Additionally, while both types of scores are relevant for 

the evaluation of sequential ATE, this analysis shows how they can have a big impact on the 

conclusions that are reached from the results. Therefore, as research into sequential approaches 

for ATE continues to evolve, reporting both types of metrics whenever possible could be a 

helpful best practice. 

 

6.3 Sequential, Neural Approach vs. Traditional, Feature-based Approach 

As described in section 4.3, HAMLET is a supervised machine learning approach to ATE 

according to the traditional, non-sequential methodology (extracting a list of unique CTs). For 
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this comparison, HAMLET was always trained and evaluated on the same corpora and GS 

data, and the best out of three trials was selected as well. As mentioned in section 3, the way 

the scores are calculated compared to the traditional GS puts the sequential system at a slight 

disadvantage compared to HAMLET. It is, therefore, remarkable that the sequential approach 

is sometimes able to outperform HAMLET (if only by a small margin) despite this 

disadvantage. A second observation is that the approaches clearly have different strengths. For 

instance, the RNN performs much better on the English heart failure corpus, but HAMLET 

obtains much higher scores for the Dutch corpus on corruption. Both methodologies tend to 

extract slightly more terms than are present in the GS. Over all corpora, there are 18,801 unique 

GS terms; HAMLET extracts 19,379 CTs and when sequential results of the RNN are 

converted to a list of unique CTs, this results in 20,194 CTs.  

Investigating the results in more detail reveals more differences. For instance, the average 

length (in number of tokens) of CTs extracted by the RNN is 1.8, which is the same as in the 

GS; average length of HAMLET CTs is only 1.4. While the RNN is better at extracting longer 

terms, it also extracts many long false positives, with outliers of CTs up to 35 tokens. In 

contrast, the longest term extracted by HAMLET counts 7 tokens. These long false positives 

may, at least in part, be due to the choice of a binary (IO) labelling scheme which cannot always 

distinguish between the boundaries of terms. Analysing term frequencies revealed more 

interesting differences. The traditional approach to ATE is notoriously bad at extracting rare 

terms, which is an important disadvantage, considering domain-specific corpora will often 

contain many rare terms. In the ACTER dataset, 48.4% of all 18,801 unique GS terms are 

hapax terms, i.e., they occur only once. Even though HAMLET’s machine learning approach 

to traditional ATE performs slightly better in that respect than a rule-based approach (Rigouts 

Terryn et al. 2019), HAMLET still only extracts 34.9% of all hapax terms, versus a total 

average recall of 47.9%. The difference is smaller for the RNN, where recall on hapax terms is 

42.8%, versus a total average recall of 49.9%. Interestingly, both systems find slightly different 

hapax terms, since 58.5% of all hapax terms are found by at least one of both systems. 

While all methodologies in this project operate with a binary definition of terms, the traditional 

dataset is more fine-grained and distinguishes between Specific Terms, Common Terms, Out-

of-Domain Terms, and Named Entities (see section 3). The proportion differs per corpus, but 

out of all 18,801 GS terms in all corpora, 55% are Specific Terms, 27% Common Terms, 3% 

Out-of-Domain Terms, and 16% Named Entities. There are too few Out-of-Domain Terms to 

draw meaningful conclusions about those, but the results for the other three labels will be 

briefly discussed. Previous research on HAMLET showed that the system tends to extract a 

disproportionate number of Named Entities. This is also the case in our experiments, where 

HAMLET’s total recall for all Named Entities in the GS is 63.6%, versus only 46.4% for 

Specific Terms and 42.2% for Common Terms. This was previously explained by the fact that 

Named Entities can be identified more easily based on characteristics like capitalisation, and 

that the results of a named entity recognition system are integrated as features. Specific and 

Common Terms can be more difficult, with many hapax terms among the former category and 

many ambiguous terms in the latter. The RNN’s recall for Specific Terms, Common Terms, 

and Named Entities is 51.4%, 45.0%, and 54.8%. Both systems struggle most with Common 

Terms, likely because these terms, by definition, occur regularly in general language corpora 

as well.  

Like HAMLET, the RNN is relatively better at extracting the few Named Entities than Specific 

and Common Terms, but the difference is smaller. Training and evaluating the RNN with the 
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same settings and data but without considering Named Entities positive instances, results in an 

average sequential f1-score on the positive label of 47.7%, and an f1 compared to the traditional 

GS of 39.8%. Especially for the sequential score, this is a considerable drop compared to the 

f1-scores when Named Entities are included: 13.4 percentage points less for the sequential 

score, 7.4 percentage points less for the f1-score compared to the traditional GS. A similar 

experiment was performed with HAMLET, reported in previous work (Rigouts Terryn et al., 

2021), where HAMLET was also trained to consider Named Entities as negative instances. For 

HAMLET, leaving out Named Entities only led to a drop in f1-scores of 2.6 percentage points. 

So, concerning Named Entities, both the RNN and HAMLET appear to extract them with 

relatively higher accuracy than terms, but HAMLET appears to be better able to distinguish 

between terms and Named Entities than the RNN, which makes relatively more mistakes when 

trained to extract only terms.  

To investigate how much these differences are due to the sequential approach, or to the use of 

word embeddings instead of other features, the same experiment was performed with the 

sequential, feature-based CRF. Training and evaluating the CRF system only on terms, without 

Named Entities, resulted in a sequential f1-score of 45.1% and an f1-score versus the traditional 

GS of 26.9%, which is, respectively, -11.9 and -6.7 percentage points compared to the approach 

including Named Entities. Since these differences are similar to the ones for the RNN, and 

much higher than for HAMLET, we tentatively conclude that sequential approaches may have 

more trouble distinguishing between terms and Named Entities, though this has to be confirmed 

with more extensive comparisons.  

 

6.4 Complementarity of Results 

As all three methodologies appear to have different strengths and weaknesses, further 

experiments were performed to investigate whether they are complementary. For now, we 

focused on a simple, pairwise, lenient or strict voting system. Results from two systems can be 

combined with strict voting (token or CT only kept if extracted by both systems) or lenient 

voting (token or CT kept if extracted by either system). When all three systems are combined, 

this principle is applied twice, e.g., the results of a lenient combination of both sequential 

systems are combined with the results from HAMLET using strict voting. Results from the 

combination of both sequential systems can be seen in Table 6. Sequential scores are only 

calculated when the HAMLET system is not included. The best out of three trials is selected, 

so the feature-based CRF approach achieves similar sequential results as the RNN. As can be 

seen, some combinations are able to reach higher scores than any of the methodologies by 

themselves, most notably a lenient combination of HAMLET and the RNN. Combining all 

systems does not lead to a higher f1-score but can still be useful to optimise either precision or 

recall.  

 

 sequential scores scores vs. trad. GS 

solo performance p r f1 p r f1 

RNN 80.6 52.7 61.1 49.3 49.9 47.2 
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CRF 67.9 57.0 60.2 33.5 40.0 35.2 

HAMLET    47.1 47.9 46.1 

Combination of 2       

RNN+CRF: lenient 67.5 71.1 67.6 35.1 55.6 41.7 

RNN+CRF: strict 87.0 38.6 51.2 55.2 33.4 39.2 

HAMLET+RNN: lenient    42.2 67.0 50.5 

HAMLET+RNN: strict    68.6 30.8 40.6 

Combination of 3       

HAMLET + [RNN+CRF: lenient]: 

lenient 
   33.8 69.3 44.4 

HAMLET + [RNN+CRF: lenient]: strict    61.8 34.2 42.6 

HAMLET + [RNN+CRF: strict]: lenient    44.5 56.8 48.4 

HAMLET + [RNN+CRF: strict]: strict    70.3 24.6 34.8 

Table 6: Scores (as percentages), averaged over all twelve corpora, first for 3 separate systems (best of 3 trials), then 

combinations of 2 and 3 systems with strict & lenient voting 

 

7 RNN Error Analysis 

A first observation is that the RNN, despite having no explicit knowledge of POS patterns, 

nevertheless extracts CTs that follow logical patterns. False positives often have common POS 

patterns, for instance when the RNN adds a noun to an adjective or the reverse, e.g., in the 

English corpus on heart failure, tagging diagnostic procedures instead of only diagnostic, or 

circulating NT-proBNP instead of only NT-proBNP. 

Many of the RNN’s errors resemble errors humans might make as well, and they can even 

reveal inconsistencies in the GS. For instance, the tokens cumulative hazard (heart failure) 

were classified as terms twice, but counted as false positives since they had not been annotated. 

They should have been, as cumulative hazard is a specific medical term. Similarly, the token 

propeller (wind energy) was not included in the GS, but the RNN tagged all fourteen 

occurrences. Similar observations are made for false negatives, which are not always the best 

terms in the GS, e.g., the RNN does not tag policies (corruption), or direction of movement 

(dressage), which are both included in the GS, but probably not the best terms. While these are 

only anecdotal findings, it is promising that some errors can be interpreted more as 

disagreements on a subjective task, than as grave mistakes. 

Of course, there are also other types of errors. As discussed, multi-word terms are challenging. 

Average precision, recall, and f1-scores for single-word terms are 57.5%, 51.3%, and 51.5% 

respectively; for multi-word terms this is only 40.2%, 46.7%, and 40.7%. The RNN is not 

always able to extract all individual tokens of multi-word terms correctly. This is especially 

true for terms that contain function words and adjectives, such as heart failure with preserved 
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ejection fraction, which occurs twenty-three times in the corpus. In two cases, all tokens are 

correctly identified as parts of terms; in fourteen cases, only with is excluded, and in seven 

cases both with and preserved are wrongly tagged as O. The French equivalent, insuffisance 

cardiaque à fraction d’éjection préservée only occurs four times and is correctly identified 

once. Twice, only the final adjective is neglected, and once both the à and the final adjective 

are not correctly identified.  

One of the most common recurring errors concern ambiguous terms. These are terms which 

are only terminological in certain contexts and not in others, and often result in false negatives 

(silence). In some rare instances like the example above, ambiguous terms can lead to false 

positives, where they are tagged as terminological in a non-terminological context. In most 

cases, however, the opposite is true, and the ambiguous terms are not detected even when they 

are used in a terminological context. To go beyond anecdotal evidence to substantiate this 

claim, a small experiment was performed in which a domain expert was asked to list three types 

of terms in the corpus on dressage, in her native language (Dutch). To avoid the influence of 

multi-word terms and rare terms, only single-word terms were considered, and a minimum 

frequency of six was maintained. The selection was made without consulting the results, to 

avoid any bias. The three types of terms are listed below, including examples. For the examples, 

terms were selected that had similar ambiguous equivalents in English (provided as 

translations). 

(1) Non-ambiguous terms that are relevant to the domain, but also well-known by non-

experts 

e.g., teugels (reins), draven (trotting), zadel (saddle) 

(2) Non-ambiguous, specialised terms, which are not part of general language 

e.g., capriole, (same in English), longeren (longeing), renvers (same in English) 

(3) Very ambiguous terms with both a general meaning, and a domain-specific meaning 

that requires knowledge of the domain 

e.g., verzameling (collection), hulp (aid), overgang (transition) 

In the first category, 10 terms were selected with a combined frequency of 342; in the other 

two, 20 terms, with combined frequencies of 620 and 608, respectively. Having a similar ratio 

of number of terms versus total frequency (average frequencies of 34.2, 31, and 30.4) was 

meant to limit the effect of term frequency on the results. Both macro- and micro-averaged 

recall were calculated for each category. In this case, macro-averaging means calculating the 

average recall of all unique terms, and micro-averaging means calculating the average recall 

for all instances (so considering term frequency). Scores are shown in Table 7 and confirm 

that, in this experiment, ambiguous terms do indeed obtain much lower recall scores than the 

other categories.  

Larger-scale experiments are required to confirm this hypothesis, but the difference is 

substantial and serves as a powerful first indication. The same terms were analysed in 

HAMLET’s output. HAMLET provides a confidence score for each CT (the higher the scores, 

the more likely HAMLET predicts the CT to be a true term). Macro-averaging these scores for 

each category revealed that HAMLET struggles with that same category of ambiguous terms 

(micro-averaging for HAMLET is not possible, since the system only extracts unique terms, 

not each instance of each term). In conclusion, this error analysis shows promising results for 

a very subjective task and identifies concrete issues for further research. 
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 RNN HAMLET 

 macro-

averaged 

recall 

micro-

averaged 

recall 

macro-

averaged 

confidence  

(1) non-ambiguous common terms 75.8 73.4 61.1 

(2) non-ambiguous specific terms 62.0 61.0 85.1 

(3) very ambiguous specific terms 15.6 21.1 44.0 

 

Table 7: Scores (as percentages) for small samples of different types of single-word terms in the Dutch dressage corpus; scores 

from the best of 3 trials of the RNN and HAMLET 

 

8 Conclusion 

As with many tasks in the domain of NLP, machine learning methodologies have become 

popular strategies for ATE. So far, most of these approaches have broadly followed the 

traditional approach to ATE, i.e., using a rule-based strategy to extract a list of CTs and then 

classifying and/or ranking these CTs based on how likely they are true terms. The next phase 

may be to step away from this approach and use sequential machine learning instead, where 

each token is classified as (part of) a term or not in the text itself, without first extracting CTs. 

This methodology has rarely been tried for ATE, so the goal of the current project was to 

investigate whether such a sequential approach is suited for ATE, and what its strengths and 

weaknesses are compared to the more traditional approach. Moreover, the use of word 

embeddings will likely only become more popular with the rise of such strategies, so instead 

of developing only a single sequential methodology, both a feature-based CRF approach and 

an embedding-based RNN approach were compared. Additionally, they were compared to a 

machine learning system that follows a more traditional approach and that used similar features 

as the former. Results showed that the RNN obtained a slightly more robust performance than 

the CRF overall, and that it compared favourably to the non-sequential approach. Another 

important finding was that the type of evaluation metric has a large impact on the scores. As 

has been observed in many previous studies, the presence of in-domain training data was shown 

to have a big effect on results as well. 

A more in-depth error analysis revealed some of the strengths and weaknesses of the sequential 

RNN versus the traditional approach, like higher performance on rare terms. While it was 

shown that there is definite potential for a combination of different approaches, there are also 

terms that are still difficult for all methodologies, most notably ambiguous terms, which are 

common in general language and only acquire a specialised terminological meaning in a 

domain-specific context. Future research will, therefore, focus on combinations of the 

approaches, and the use of domain-specific embeddings in combination with general 

embeddings can be investigated to help extract the ambiguous terms. Another direction for 

future research is multilingual ATE from comparable corpora, i.e., the cross-lingual linking of 

equivalent terms based on non-aligned corpora. As multilingual embeddings were shown to 

work well for monolingual ATE in the current project, they are an interesting strategy to 

explore for cross-lingual experiments as well.  
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