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Abstract

Background

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Food biodiversity, encompassing the variety of plants, animals, and other organisms con-

sumed as food and drink, has intrinsic potential to underpin diverse, nutritious diets and

improve Earth system resilience. Dietary species richness (DSR), which is recommended

as a crosscutting measure of food biodiversity, has been positively associated with the

micronutrient adequacy of diets in women and young children in low- and middle-income

countries (LMICs). However, the relationships between DSR and major health outcomes

have yet to be assessed in any population.

Methods and findings

We examined the associations between DSR and subsequent total and cause-specific mor-

tality among 451,390 adults enrolled in the European Prospective Investigation into Cancer

and Nutrition (EPIC) study (1992 to 2014, median follow-up: 17 years), free of cancer, diabe-

tes, heart attack, or stroke at baseline. Usual dietary intakes were assessed at recruitment

with country-specific dietary questionnaires (DQs). DSR of an individual’s yearly diet was

calculated based on the absolute number of unique biological species in each (composite)

food and drink. Associations were assessed by fitting multivariable-adjusted Cox propor-

tional hazards regression models. In the EPIC cohort, 2 crops (common wheat and potato)

and 2 animal species (cow and pig) accounted for approximately 45% of self-reported total

dietary energy intake [median (P10–P90): 68 (40 to 83) species consumed per year]. Overall,

higher DSR was inversely associated with all-cause mortality rate. Hazard ratios (HRs) and

95% confidence intervals (CIs) comparing total mortality in the sAU : PleasenotethatasperPLOSstyle; ordinalsshouldbespelledoutfirstthroughninth; andnumeralsshouldbeusedfor10thandup:econd, third, fourth, and fifth

(highest) quintiles (Qs) of DSR to the first (lowest) Q indicate significant inverse associa-

tions, after stratification by sex, age, and study center and adjustment for smoking status,

educational level, marital status, physical activity, alcohol intake, and total energy intake,

Mediterranean diet score, red and processed meat intake, and fiber intake [HR (95% CI):

0.91 (0.88 to 0.94), 0.80 (0.76 to 0.83), 0.69 (0.66 to 0.72), and 0.63 (0.59 to 0.66), respec-

tively; PWald < 0.001 for trend]. Absolute death rates among participants in the highest and

lowest fifth of DSR were 65.4 and 69.3 cases/10,000 person-years, respectively. Significant

inverse associations were also observed between DSR and deaths due to cancer, heart dis-

ease, digestive disease, and respiratory disease. An important study limitation is that our
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findings were based on an observational cohort using self-reported dietary data obtained

through single baseline food frequency questionnaires (FFQs); thus, exposure misclassifi-

cation and residual confounding cannot be ruled out.

Conclusions

In this large Pan-European cohort, higher DSR was inversely associated with total and

cause-specific mortality, independent of sociodemographic, lifestyle, and other known die-

tary risk factors. Our findings support the potential of food (species) biodiversity as a guiding

principle of sustainable dietary recommendations and food-based dietary guidelines.

Author summary

Why was this study done?

• Facilitating populations to transition to diets that are both nutritious and sustainable is

a key challenge for human and environmental health. Dietary (bAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:etween food group)

diversity is increasingly advocated within the framework of dietary recommendations

and food-based dietary guidelines.

• Food biodiversity, defined as the variety of plants, animals, and other organisms that are

consumed between and within food groups globally, is a potential lever for improved

public and planetary health. Nevertheless, scientific evidence is a prerequisite to under-

stand the associations between metrics of food biodiversity and major health outcomes.

• Thus far, evidence regarding the positive association between dietary species richness

(DSR), i.e., the absolute number of unique species consumed by an individual, and micro-

nutrient adequacy of diets is limited to low- and middle-income countries (LMICs).

What did the researchers do and find?

• This study assessed the relationships between DSR and all-cause and cause-specific

mortality in the large and diverse European population that constitutes the European

Prospective Investigation into Cancer and Nutrition (EPIC) cohort, including 451,390

adults from 9 European countries with 46,627 recorded deaths between 1992 and 2014.

In addition, this study provides a picture of the usual consumption of food and beverage

species across 9 European countries.

• Higher DSR was inversely associated with total mortality rate and cause-specific deaths

due to cancer, heart disease, respiratory disease, and digestive disease, independent of

other established components of diet quality. Overall, self-reported total energy intake

was derived from a narrow range of species.

What do these findings mean?

• Our findings add to the evidence base on the relevance of food biodiversity, both

between and within food groups, as a basis for public health strategies championing die-

tary (species) diversity in European countries.
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• These findings will play a key role in communications about the merits of biodiversity

stewardship, in the context of ongoing European/global debate on nutritious and sus-

tainable diets for a stable Earth system.

Introduction

Diets inextricably link human and environmental health [1]. The global food system is the pri-

mary driver of unprecedented Earth system biodiversity loss (e.g., monocropping, land degra-

dation, and deforestation for agriculture) [2,3], while low-quality, nondiverse diets are

responsible for the greatest burden of disease worldwide, affecting countries and populations

at all levels of socioeconomic development [4]. The short- and long-term consequences of

accelerated biodiversity collapse [5,6] and the triple burden of malnutrition [7,8] restrain sus-

tainable and inclusive global development and convey unacceptable human consequences

[9,10].

At present, rapid socioeconomic, demographic, and technological transitions, coupled with

agricultural policies skewed toward a narrow range of staple crops, crop varieties, and animal

species [11], are driving a progressive homogeneity of human diets [12,13]. In parallel, the

associated global food systems, which are mainly focused on cheap calories, rather than nutri-

ents, are redirected toward more resource-intensive, energy-dense, and nutrient-poor food

species [14]. The Sustainable Development Goals (SDGs), the United Nations Decade of

Action on Nutrition 2016–2025, and the Convention on Biological Diversity’s forthcoming

post-2020 biodiversity agenda provide global and national stimuli to fast-track transition from

business-as-usual to win-win scenarios for human and environmental health in the Anthropo-

cene epoch [15].

Food biodiversity, defined as the variety of plants, animals, and other organisms (e.g., fungi

and yeast cultures) that are used for food and drink, both cultivated and from the wild, has

intrinsic potential to underpin diverse, nutritious diets and conserve (neglected and underuti-

lized) finite genetic resources (i.e., biodiversity) [16,17]. Thus, the concept of food biodiversity

potentially offers a unique and novel entry point to guide the development of sustainable food-

based dietary guidelines (and interventions) cutting across human and planetary health

[18,19]. Dietary diversity, which is conventionally measured as consumption between, rather

than within nutrient-dense food groups, is a widely acknowledged and established public

health recommendation to promote healthy, nutritionally adequate diets [20]. Furthermore,

diets based on a wide diversity of (locally available, nonthreatened) biological species exert

lower pressure on single species, hence increasing Earth system stability, resilience, ecosystem

services, and enhanced productivity of natural and agricultural systems [5,21]. Observational

studies have indicated consistently positive, but small associations between agricultural biodi-

versity [22] and forest patterns [23] with dietary diversity in low- and middle-income coun-

tries (LMICs). Nevertheless, environmental sustainability criteria, including biodiversity

preservation in, e.g., Brazil, the Netherlands, and Sweden, are only explicitly included in 8

(quasi) official sustainable food-based dietary guidelines worldwide [24]. Moreover, globally,

the potential dual benefits of at-scale adoption of national food-based dietary guidelines on

human health and environmental impacts can be substantially improved [25].

Previous cross-sectional research indicated that higher dietary species richness (DSR), a

recommended measure of food biodiversity, which captures both inter- and intra-food group
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diversity, was associated with increased micronutrient adequacy of diets in approximately

2,200 women of reproductive age and approximately 4,000 children aged 6 to 23 months in

LMICs [26]. Furthermore, several prospective studies have reported lower mortality and

chronic disease rates among participants with higher between food group diversity [27,28],

within specific food group richness (e.g., fruit and vegetables) [29], and food item variety [30].

To date, however, the evidence base for relationships between food (species) biodiversity of

whole dietary patterns and major human health outcomes is missing. In this study, we address

the knowledge gap by assessing associations between DSR and total and cause-specific mortal-

ity in a large and diverse Pan-European cohort.

Methods

Our research was reported using the STrengthening the Reporting of OBservational Studies in

Epidemiology (STROBE)-nut checklist [31].

Study population: The EPIC cohort

The European Prospective Investigation into Cancer and Nutrition (EPIC) study (http://epic.

iarc.fr/) is an ongoing multicenter, prospective cohort study investigating metabolic, dietary,

lifestyle, and environmental factors in relation to cancer and other chronic diseases. Between

1992 and 2000, more than 500,000 volunteers (25 to 70 years) were recruited from 10 Euro-

pean countries (23 administrative centers): Denmark, France, Germany, Greece, Italy, the

Netherlands, Norway, Spain, Sweden, and the United Kingdom. Most of the participants were

recruited from the general population residing in a given geographic area, town, or province.

Exceptions were the cohorts of France (female members of a health insurance scheme for

school employees), Utrecht (breast cancer screening attendees), Ragusa (blood donors and

their spouses), and Oxford (mainly vegetarian and healthy eaters). All participants gave written

informed consent and completed questionnaires on their diet, lifestyle, and medical history.

The study was approved by the local ethics committees and by the Internal Review Board of

the International Agency for Research on Cancer. Details of the study design, recruitment, and

data collection have been previously published [32–34].

Of the 521,324 participants enrolled, 451,390 were included in the analyses, with 46,627

recorded deaths between 1992 and 2014. We excluded participants with missing lifestyle or

dietary information, those with an extreme ratio of energy intake to energy requirement (top

and bottom 1%, as these values were considered physiologically implausible [34]), volunteers

with null follow-up, those with prevalent disease at baseline (history of cancer, cardiovascular

diseases [CVDs], and diabetes), and all participants from the EPIC-Greece cohort, due to

administrative constraints (S1 Fig).

Baseline data collection

An extensive and standardized phenotypic characterization was performed for each partici-

pant upon enrollment. Questionnaires were used to collect sociodemographic information,

educational level (standardized for the whole cohort), personal and familial history of diseases,

lifestyle (e.g., smoking, alcohol use, and physical activity), and menstrual and reproductive his-

tory of women. Anthropometric measurements (e.g., height, weight, waist, and hip circumfer-

ences) were performed in all centers (except France, Oxford, and Norway: self-reported data)

[35]. Height and weight were complemented with available self-reported values or imputed

with center-, age-, and gender-specific average values when missing. Body mass index (BMI)

was calculated as weight divided by height squared (kg/m2).
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Dietary intake assessment

Usual dietary intake was assessed for each individual at recruitment using country- or center-

specific validated dietary questionnaires (DQs) developed to capture the geographical specific-

ity of an individual’s diet over the preceding year. The type of DQ used differed according to

study centers and included self- or interviewer-administered semiquantitative food frequency

questionnaires (FFQs) with an estimation of individual average portions or with the same stan-

dard portion assigned to all participants or diet history questionnaires combining an FFQ and

7-day dietary records. In most centers, DQs were self-administered, with the exception of

Ragusa, Naples, and Spain, where face-to-face interviews were conducted. Extensive quantita-

tive DQs were used in northern Italy, the Netherlands, and Germany, which were structured

by meals in Spain, France, and Ragusa. Semiquantitative FFQs were used in Denmark, Nor-

way, Naples, Umeå, and the UK, while an FFQ was combined with a 7-day record on hot

meals in Malmö [33]. Post-harmonization of DQ data was conducted, following standardized

procedures (e.g., decomposing recipes into ingredients), to obtain a standardized food list for

which the level of detail is comparable between countries. The EPIC food composition data-

base comprises more than 11,000 food and beverage items reflecting the specificities of each

country [36].

Food biodiversity computation

(Bio)diversity can be partitioned into 3 components: richness, evenness, and disparity (Fig 1)

[37]. Nevertheless, our study focuses only on DSR, previously recommended as the most

appropriate measure of food biodiversity for dietary intake studies, as we aim to inform

food-based interventions and policy based on a simple, crosscutting indicator of human and

planetary health [26]. We argue that species evenness, which is defined as a perfectly equal dis-

tribution of food and drinks in the diet, is neither desired from a nutritional [38] nor environ-

mental protection perspective [39]. Hence, dietary evenness requires an arbitrary a priori

selection of a relative abundance unit (e.g., energy, nutrients, weight, volume, and frequency)

Fig 1. Partitioning food biodiversity in 2 dietary patterns, which both consist of 50 food and drink items. Distinct

species are indicated by their color. Richness is the absolute number of species: In both dietary patterns, it is equal to 5.

Evenness is the equitability of the species abundance distribution in the diet: In dietary pattern A, all species are

present in an equal abundance (e.g., frequency) and so it is perfectly even, while dietary pattern B is very uneven since

it is dominated by the yellow [Zea mays (maize)] species. Disparity is the level of similarity between species: For

example, red [Bos taurus (cow)] and pink [Gallus gallus (chicken)] species are more similar to each other, e.g.,

nutritionally and taxonomically, than the purple [Solanum melongena (aubergine)] species.

https://doi.org/10.1371/journal.pmed.1003834.g001
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and “healthfulness” weighting factors [40,41]. Moreover, unlike for species richness, there is

currently no consensus on the measurement of species evenness (e.g., Shannon entropy,

Berry–Simpson, and Pielou’s index) [37]. Dietary disparity is defined for our research pur-

poses as the consumption of foods with distinct human health [42] and ecosystem attributes

[43], rather than the more narrow, but well-established measures of nutritional food group

diversity [44]. Similarly to evenness, ecological metrics of species dissimilarity are based on an

inconsistent selection (and number) of phylogenetic, functional, and/or morphological traits

(e.g., Rao’s quadratic diversity and Jaccard index) [37].

Therefore, for the 451,390 participants included in our analysis, food biodiversity in an

individual’s diet was calculated based on the absolute number of unique biological species in

each (composite) food, drink, and recipe, using the European Food Safety Authority’s Foo-

dEx2 food classification and description system [45] in combination with the detailed EPIC

food classification system (NCLASS). Food items consumed “never or less than once per

month” (on average) were recalled under one category; accordingly, these species did not

count toward DSR. Moreover, quantities (g/day) were disregarded for overall DSR computa-

tion, since our interest is the sum of distinct species consumed per year (i.e., DQs recalled die-

tary intake over the preceding 12 months). However, relative quantities were considered

during sensitivity analyses, which excluded species consumed in trivial amounts (see below).

Furthermore, although a species can be consumed multiple times per year, potentially from

diverse functional food groups (e.g., chicken meat and eggs, which are nutritionally disparate),

through a “biodiversity conservation” lens, it contributes only one species to an individual’s

DSR in all scenarios (taxonomically identical: Gallus gallus). Here, we consider that high food

biodiversity is thus a combination of multiple species that act synergistically and complimen-

tary for both human and environmental health (e.g., ecological and net nutritional benefits

from the Mesoamerican combination of corn, beans, and squash, known as the “three sisters”)

[21,46].

For all countries, composite dishes were decomposed into their ingredients (species) using

standard recipes. Therefore, herbs and spices and other ingredients potentially used in small

amounts, for which we cannot be certain if they were added to the recipe by each EPIC partici-

pant, might bias/inflate the true value of an individual’s DSR. To assess the impact of food and

drink species consumed in relatively small quantities, we calculated 3 different scenarios of

DSR, namely the following:

i. overall DSR, including all foods consumed in the EPIC food list (thus, also ingredients

derived from standard recipes regardless of quantities);

ii. DSR excluding the lowest 5% species intake (g/day) from each EPIC food group (group/

subgroup specific); and

iii. DSR excluding the lowest 10% species intake (g/day) from each EPIC food group (group/

subgroup specific).

Follow-up for vital status and cause of death

Data on vital status and cause and date of death were obtained using record linkages with pop-

ulation-based cancer registries, boards of health, health insurance registries, pathology regis-

tries and mortality registries (Denmark, Italy, the Netherlands, Norway, Spain, Sweden, and

the UK), or through active follow-up and next of kin (France and Germany). Germany identi-

fied deceased individuals from undelivered follow-up mailings and subsequent enquiries to

municipality registries, regional health department, physicians, or hospitals. In France,
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information on deceased participants was obtained using the database of health insurance for

school employees and national death index. The end of follow-up/closure dates of the study

period varied between 2009 and 2014 depending on the countries.

Cause-specific mortality data were coded according to the 10th revision of the International

Statistical Classification of Diseases, Injuries, and Causes of Death (ICD-10) [47]. Causes of

death assessed include heart disease [i.e., coronary heart disease (CHD) (ICD-10 codes: I20 to

I25) and CVD other than CHD (I00 to I99, excluding I20 to I25)], cancer (C00 to D48), dis-

eases of the respiratory system (J00 to J99), and diseases of the digestive system (K00 to K93).

Total mortality (main outcome) was defined as mortality from all causes, except external

causes of death (S00 to T98 and V01 to Y98).

Statistical analyses

Statistical analyses were preplanned and followed the plan detailed in the project proposal that

was submitted to and approved (March 2019) by the EPIC Steering Committee (see S1 Text).

Unadjusted absolute death rates were calculated as the number of cases per 10,000 person-

years in Q5 and Q1 of DSR, respectively. Associations between food biodiversity [DSR per

year; count variable and quintiles (Qs)] and total and cause-specific mortality were character-

ized [hazard ratio (HR) and 95% confidence interval (CI)] using multivariable-adjusted Cox

proportional hazard regression models with age as the primary underlying time variable. The

Breslow method was adopted for handling ties. Examination of the Schoenfeld residuals,

according to follow-up time (years) for Qs of DSR, confirmed that the assumptions of propor-

tionality were satisfied. Overall survival curves by Q of DSR were generated using the Kaplan–

Meier method (S2 Fig). Participants contributed person-time to the model until their date of

death, their date of emigration/loss to follow-up, or end-of-follow-up, whichever occurred

first. P-values for linear trend were calculated with the use of the Wald test of a pseudo-contin-

uous score variable, based on the median number of species consumed per year for each Q of

DSR. Nonlinear associations between DSR and total mortality were examined nonparametri-

cally with restricted cubic splines [48]. P-value for nonlinear trend was calculated with the use

of the likelihood ratio test, comparing the model with only the linear term to the model with

the linear and the cubic spline terms.

Pooled cohort models were stratified by sex, age at recruitment (1-year intervals), and study

center (“strata” option in proc phreg, SAS) and multivariable-adjusted for confounding factors

using a 5% change-in-estimate criterion for β-coefficients (applied to all variables reported in

Table 1, due to limited knowledge on factors relating to DSR): smoking status (current, 1 to 15

cigarettes/day; current, 16 to 25 cigarettes/day; current, 26+ cigarettes/day; current, pipe/cigar/

occasional; current/former, missing; former, quit 11 to 20 years; former, quit 20+ years; for-

mer, quit�10 years; never; unknown), educational level, as a proxy variable for socioeconomic

status [longer education (including university degree, technical, or professional school); sec-

ondary school; primary school completed; not specified], marital status (single, divorced, sepa-

rated, or widowed; married or living together; unknown), physical activity (Cambridge index:

active; moderately active; moderately inactive; inactive; missing), alcohol intake at recruitment

(g/day), total energy intake (kcal/day), the 18-point relative Mediterranean diet score, as an

indicator for an overall healthy diet [49], the consumption of red and processed meat (g/day)

[50], and fiber intake (g/day; i.e., to reflect carbohydrate quality [51], such as whole grains).

Possible multicollinearity of (dietary) variables included in our models were assessed by “col-

lin” and “vif” options in proc phreg, SAS (all condition indices <30 and variance inflation fac-

tors<3, respectively). When data on categorical covariates were missing, a “missing class” was

introduced to the model.
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Table 1. Baseline characteristics of participants overall and by Qs of food biodiversity, EPIC cohort, 1992 to 2014.

Qs of DSR

N All Q1 (n = 93,179) Q2 (n = 96,994) Q3 (n = 90,983) Q4 (n = 90,424) Q5 (n = 79,810)

N (%)

Mean ± SD

N (%) Mean ± SD N (%) Mean ± SD N (%) Mean ± SD N (%) Mean ± SD N (%) Mean ± SD

DSR, species per yeara 451,390 68 (40 to 83) 41 (31 to 47) 58 (50 to 64) 69 (65 to 72) 77 (73 to 81) 83 (82 to 89)

Age at recruitment, years 451,390 51 ± 10 52 ± 8 51 ± 9 49 ± 11 52 ± 9 51 ± 11

Sex 451,390

Male 131,782 (29.2) 20,488 (22) 27,100 (27.9) 26,042 (28.6) 28,936 (32) 29,216 (36.6)

Female 319,608 (70.8) 72,691 (78) 69,894 (72.1) 64,941 (71.4) 61,488 (68) 50,594 (63.4)

Country 451,390

Denmark 55,014 (12.2) 947 (1.0) 8,291 (80.5) 16,642 (18.3) 28,106 (31.1) 1,028 (1.3)

France 67,920 (15) 17,403 (18.7) 14,085 (14.5) 15,888 (17.5) 15,722 (17.4) 4,822 (6)

Germany 49,352 (10.9) 98 (0.1) 1,495 (1.5) 4,182 (4.6) 15,678 (17.3) 27,899 (35)

Italy 44,547 (9.9) 923 (1) 12,879 (13.3) 15,770 (17.3) 11,844 (13.1) 3,131 (3.9)

the Netherlands 36,538 (8.1) 926 (1) 14,165 (14.6) 17,531 (19.3) 3,916 (4.3) 0 (0)

Norway 33,967 (7.5) 25,488 (27.4) 8,479 (8.7) 0 (0) 0 (0) 0 (0)

Spain 39,990 (8.9) 31,535 (33.8) 8,359 (8.6) 92 (0.1) 4 (0) 0 (0)

Sweden 48,690 (10.8) 15,721 (16.9) 28,997 (29.9) 3,966 (4.4) 6 (0) 0 (0)

UK 75,372 (16.7) 138 (0.1) 244 (0.3) 16,912 (18.6) 15,148 (16.8) 42,930 (53.8)

Marital status 451,390

Single, divorced, separated or

widowed

72,765 (16.1) 9,676 (10.4) 15,669 (16.2) 18,008 (19.8) 12,982 (14.4) 16,430 (20.6)

Married or living together 270,976 (60.0) 45,210 (48.5) 62,090 (64.0) 54,780 (60.2) 48,008 (53.1) 60,888 (76.3)

Unknown 107,649 (23.8) 38,293 (41.1) 19,235 (19.8) 18,195 (20.0) 29,434 (32.6) 2,492 (3.1)

Educational level 451,390

None or primary school completed 126,948 (28.1) 41,011 (44) 32,422 (33.4) 19,852 (21.8) 20,603 (22.8) 13,060 (16.4)

Technical/professional school 104,016 (23) 16,096 (17.3) 20,926 (21.6) 20,765 (22.8) 23,121 (25.6) 23,108 (29)

Secondary school 94,181 (20.9) 19,187 (20.6) 23,608 (24.3) 22,782 (25) 18,370 (20.3) 10,234 (12.8)

Longer education (including

university degree)

109,362 (24.2) 15,694 (16.8) 19,057 (19.6) 24,660 (27.1) 24,804 (27.4) 25,147 (31.5)

Missing 16,883 (3.7) 1,191 (1.3) 981 (1) 2,924 (3.2) 3,526 (3.9) 8,261 (10.4)

Smoking status 451,390

Never 219,854 (48.7) 44,424 (47.7) 47,361 (48.8) 45,196 (49.7) 43,014 (47.6) 39,859 (49.9)

Current 100,053 (22.2) 24,033 (25.8) 24,392 (25.1) 20,008 (22.0) 19,309 (21.4) 12,311 (15.4)

Former 123,034 (27.3) 21,813 (23.4) 23,785 (24.5) 24,693 (27.1) 26,848 (29.7) 25,895 (32.4)

Unknown 8,449 (1.9) 2,909 (3.1) 1,456 (1.5) 1,086 (1.2) 1,253 (1.4) 1,745 (2.2)

Physical activity (Cambridge index) 451,390

Inactive 88,276 (19.6) 22,188 (23.8) 20,635 (21.3) 14,439 (15.9) 13,570 (15) 17,444 (21.9)

Moderately inactive 150,393 (33.3) 29,545 (31.7) 31,027 (32) 30,253 (33.3) 31,377 (34.7) 28,191 (35.3)

Moderately active 120,554 (26.7) 28,694 (30.8) 25,870 (26.7) 22,950 (25.2) 23,741 (26.3) 19,299 (24.2)

Active 83,346 (18.5) 10,956 (11.8) 17,212 (17.7) 20,847 (22.9) 20,828 (23) 13,503 (16.9)

Missing 8,821 (2) 1,796 (1.9) 2,250 (2.3) 2,494 (2.7) 908 (1) 1,373 (1.7)

BMIb, kg/m2 451,390 25.3 ± 4.2 25.8 ± 4.5 25.3 ± 4.2 24�7 ± 4 25.2 ± 4.1 25.4 ± 4.1

Heightb, cm 451,390 166 ± 9 164 ± 8 166 ± 9 167 ± 9 167 ± 9 167 ± 9

Weightb, kg 451,390 70.0 ± 13.6 69.6 ± 13.1 69.9 ± 13.6 68.8 ± 13�6 70.4 ± 14.0 71.3 ± 13.8

Family history of breast cancer, yesc 144,611 12,451 (8.6) 4,036 (7.4) 3,430 (10.3) 2,457 (10.2) 1,564 (8.6) 964 (6.8)

Family history of colorectal cancer,

yesc
115,617 9,785 (8.5) 3,324 (7.6) 2,021 (104) 1,303 (10.2) 1,493 (9) 1,644 (7.2)

Dietary intakea 451,390

(Continued)
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Table 1. (Continued)

Qs of DSR

N All Q1 (n = 93,179) Q2 (n = 96,994) Q3 (n = 90,983) Q4 (n = 90,424) Q5 (n = 79,810)

N (%)

Mean ± SD

N (%) Mean ± SD N (%) Mean ± SD N (%) Mean ± SD N (%) Mean ± SD N (%) Mean ± SD

Energy intake, kcal/day 1,999 (1,352 to

2,904)

1,833 (1,232 to

2,756)

1,962 (1,324 to

2,861)

2,033 (1,402 to

2,909)

2,124 (1,461 to

3,023)

2,043 (1,409 to

2,944)

Potatoes and other tuber intake, g/

day

78 (20 to 184) 72 (21 to 182) 86 (17 to 213) 71 (16 to 182) 80 (21 to 180) 81 (29 to 151)

Vegetables intake, g/day 167 (68 to 364) 163 (61 to 379) 144 (46 to 329) 170 (74 to 370) 182 (84 to 364) 180 (84 to 371)

Legume intake, g/day 5 (0 to 42) 0 (0 to 66) 2 (0 to 40) 6.5 (0 to 42) 3 (0 to 31) 7 (1 to 35)

Fruit intake, g/day 193 (54 to 449) 184 (36 to 454) 194 (49 to 449) 209 (59 to 469) 197 (63 to 446) 181 (64 to 423)

Dairy product intake, g/day 285 (80 to 634) 256 (75 to 566) 286 (83 to 662) 281 (65 to 658) 284 (83 to 648) 322 (103 to 629)

Cereal intake, g/day 200 (102 to 359) 185 (90 to 319) 197 (100 to 359) 215 (114 to 387) 212 (112 to 375) 193 (97 to 351)

Meat intake, g/day 93 (26 to 177) 87 (33 to 174) 92 (40 to 173) 92 (2 to 175) 105 (28 to 189) 91 (32 to 170)

Red and processed meat intake, g/

day

69 (15 to 142) 62 (20 to 132) 67 (25 to 139) 69 (2 to 144) 80 (17 to 152) 66 (18 to 138)

Fish and shellfish intake, g/day 29 (4 to 82) 47 (11 to 113) 23 (3 to 89) 17 (0 to 54) 32 (9 to 72) 28 (8 to 69)

Egg intake, g/day 14 (2 to 39) 16 (2 to 44) 12 (1 to 36) 14 (2 to 37) 16 (4 to 42) 10 (3 to 29)

Fat intake, g/day 24 (9 to 48) 23 (8 to 48) 27 (10 to 53) 23 (8 to 47) 23 (8 to 45) 24 (9 to 48)

Sugar and confectionery intake, g/

day

32 (7 to 86) 23 (2 to 68) 29 (6 to 80) 35 (9 to 92) 39 (11 to 103) 35 (10 to 89)

Cakes and biscuits intake, g/day 31 (4 to 92) 26 (0 to 80) 31 (3 to 84) 27 (5 to 80) 28 (6 to 89) 45 (12 to 126)

Nonalcoholic beverage intake, g/day 1,046 (160 to

2,098)

556 (68 to 1,746) 833 (130 to

1,950)

1,153 (176 to

2,189)

1,326 (274 to

2,412)

1,192 (579 to

1,963)

Alcoholic beverage intake, g/day 75 (0 to 444) 43 (0 to 375) 56 (0 to 385) 83 (3 to 456) 119 (7 to 528) 94 (5 to 485)

Condiment and sauce intake, g/day 16 (3 to 46) 11 (1 to 41) 10 (1 to 37) 18 (4 to 48) 18 (6 to 44) 24 (8 to 56)

Soups and bouillon intake, g/day 22 (0 to 144) 7 (0 to 164) 17 (0 to 143) 27 (0 to 168) 19 (0 to 149) 28 (4 to 108)

Miscellaneous food intake, g/day 0 (0 to 14) 0 (0 to 7) 0 (0 to 7) 0 (0 to 38) 0 (0 to 11) 2 (0 to 15)

Fiber intake, g/day 22 (14 to 33) 20 (13 to 31) 21 (13 to 32) 23 (15 to 34) 23 (15 to 34) 22 (14 to 33)

Mediterranean diet score, 0 to 18

pointsa
451,390 8 (4 to 12) 9 (5 to 13) 7 (4 to 12) 8 (4 to 13) 9 (5 to 12) 9 (5 to 12)

Alcohol intake, categorical 451,390

Nondrinker 57,565 (12.8) 27,062 (29.0) 16,079 (16.6) 6,283 (6.9) 3,777 (4.2) 4,364 (5.5)

>0 to 6 g/dayd 134,672 (29.8) 24,830 (26.6) 35,077 (36.2) 29,092 (32.0) 22,193 (24.5) 23,480 (29.4)

>6 to 12 g/daye 118,869 (26.3) 20,582 (22.1) 22,684 (23.4) 24,094 (26.5) 26,268 (29.0) 25,241 (31.6)

>12 to 24 g/day 70,605 (15.6) 9,983 (10.7) 11,582 (11.9) 15,617 (17.2) 18,802 (20.8) 14,621 (18.3)

>24 g/day 69,679 (15.4) 10,722 (11.5) 11,572 (11.9) 15,897 (17.5) 19,384 (21.4) 12,104 (15.2)

Age at menarche, yearsf 308,875 13 ± 2 13 ± 2 13 ± 2 13 ± 2 13 ± 2 13 ± 2

Age at menarche, categorical 319,608

�12 112,773 (35.3) 24,712 (34) 22,956 (32.8) 24,193 (37.3) 21,682 (35.3) 19,230 (38)

13 to 14 147,378 (46.1) 35,312 (48.6) 30,411 (43.5) 29,788 (45.9) 28,802 (46.8) 23,065 (45.6)

�15 48,724 (15.2) 11,819 (16.3) 10,540 (15.1) 9,468 (14.6) 9,959 (16.2) 6,938 (13.7)

Missing 10,733 (3.4) 848 (1.2) 5,987 (8.6) 1,492 (2.3) 1,045 (1.7) 1,361 (2.7)

Age at first full-term pregnancy,

yearsf
257,794 25 ± 4 25 ± 4 25 ± 4 25 ± 4 25 ± 4 25 ± 5

Age at first full-term pregnancy,

categoricalf
305,652

Nulliparous 46,945 (15.4) 7,464 (10.7) 7,575 (12) 13,923 (22.2) 9,212 (15.3) 8,771 (17.8)

�21 57,190 (18.7) 15,898 (22.7) 11,969 (18.9) 9,438 (15) 11,405 (18.9) 8,480 (17.2)

22 to 30 174,342 (57) 41,164 (58.8) 38,160 (60.3) 33,742 (53.8) 34,278 (56.9) 26,998 (54.7)

(Continued)
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We performed several sensitivity analyses to test the robustness of our all-cause mortality

results. First, we stratified our multivariable-adjusted models to estimate associations by sex

and country (owing to the varying detail of food and drink items captured by DQs) separately.

Furthermore, we removed Mediterranean diet score, red and processed meat, fiber, and total

energy intake from the models to examine their role as mediators, rather than confounders.

To assess the potential for residual confounding, we carried out subgroup analyses according

to major potential categorical effect modifiers: educational level, smoking status, marital status,

and physical activity. Furthermore, we used a “complete cases” approach, excluding partici-

pants with missing/unknown data on covariates. Not all food and drink items received a spe-

cific FoodEx2 species code, but rather kept a generic NCLASS classification (e.g., “other root

vegetables,” which counted as one species toward an individual’s overall DSR). Therefore, we

reran our models dropping these generic food and drink items. Analyses were also conducted

including DSR without the lowest 5% and 10% of species intakes for each EPIC food group

(see methodological reasoning above). In addition, we repeated our prospective analyses for

species richness within each main EPIC food group adjusted for overall DSR (minus itself) to

investigate whether one or more food groups were responsible for the observed associations

[52]. Moreover, from the 46,627 fatal events, we excluded deaths within the first 3 (n = 2,969)

and 6 years (n = 7,928) of follow-up to allow sufficient delay between baseline dietary assess-

ment and mortality, thereby limiting reverse causality of subclinical disease. Findings from

sensitivity analyses, which are not different (i.e., stable direction, strength, and trend of associ-

ation) from those using the entire EPIC cohort, are not shown. To assess potential residual

confounding from unmeasured or uncontrolled confounders, E-values were used [53,54].

Table 1. (Continued)

Qs of DSR

N All Q1 (n = 93,179) Q2 (n = 96,994) Q3 (n = 90,983) Q4 (n = 90,424) Q5 (n = 79,810)

N (%)

Mean ± SD

N (%) Mean ± SD N (%) Mean ± SD N (%) Mean ± SD N (%) Mean ± SD N (%) Mean ± SD

>30 26,262 (8.6) 5,441 (7.8) 5,300 (8.4) 5,477 (8.7) 5,102 (8.5) 4,942 (10)

Missing 913 (0.3) 98 (0.1) 268 (0.4) 194 (0.3) 231 (0.4) 122 (0.2)

Menopausal statusf 319,608

Premenopause 111,058 (34.7) 22,961 (31.6) 21,198 (30.3) 25,462 (39.2) 19,838 (32.3) 21,599 (42.7)

Perimenopause 63,049 (19.7) 18,185 (25) 15,546 (22.2) 11,050 (17) 10,994 (17.9) 7,274 (14.4)

Postmenopause 136,658 (42.8) 29,836 (41) 31,310 (44.8) 26,647 (41) 28,696 (46.7) 20,169 (39�9)

Surgical postmenopause 8,843 (2.8) 1,709 (2.4) 1,840 (2.6) 1,782 (2.7) 1,960 (3.2) 1,552 (3.1)

Ever use of oral contraception, yesf 311,179 190,107 (61.1) 38,810 (53.6) 34,944 (54.4) 41,057 (64.3) 40,102 (65.8) 35,194 (70.9)

Ever use of hormonal treatment for

menopause (yes)f
297,860 80,471 (27) 17,781 (26.1) 15,272 (24.1) 14,901 (23.6) 18,733 (32.1) 13,784 (30.8)

Deaths 451,390 46,627 (10.3) 10,313 (11.1) 10,712 (11) 8,068 (8.9) 8,842 (9.8) 8,692 (10.9)

Age at death, years 46,627 71 (10) 71 (10) 70 (9) 70 (10) 71 (10) 74 (11)

aValues are median (P10–P90) for all dietary variables.
bMissing BMI for 3,710 (0.8%) and missing measured or self-reported height for 1,856 (0�4%) and weight for 3,361 (0�7%). When missing, height and weight were

imputed with center-, age-, and gender-specific average values.
cAmong first degree relatives.
dAmong women, this category is >0 to 3 g/day.
eAmong women, this category is >3 to 12 g/day.
fAmong women only.

BAU : AnabbreviationlisthasbeencompiledforthoseusedthroughoutTable1:Pleaseverifythatallentriesarecorrect:MI, body mass index; DSR, dietary species richness; EPIC, European Prospective Investigation into Cancer and Nutrition; Q, quintile.

https://doi.org/10.1371/journal.pmed.1003834.t001
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All statistical tests were 2 sided, and P< 0.05 was considered statistically significant. P-val-

ues were adjusted for multiple testing of hypothesis using the Benjamini–Hochberg method.

SAS software, version 9.4 (SAS Institute) was used for the analyses.

Results

Baseline characteristics

Initial characteristics from 451,390 eligible participants (71% female; median age 51 years)

according to Qs of DSR are shown in Table 1. After a median follow-up of 17 years (7,506,482

person-years), 44,892 deaths from nonexternal causes occurred, among which 19,284 from

cancer, 11,353 from diseases of the circulatory system, 2,479 from diseases of the respiratory

system, and 1,386 from diseases of the digestive system. From the 11,858 items included in the

EPIC food list, 80% were assigned FoodEx2 species codes (248 unique values; 78% of total

kcal/day; see S1 Table), whereas 16% received a generic NCLASS code (100 unique values, e.g.,

“other citrus fruits”), and 4% were classified as “not applicable” (e.g., added salt and water). In

the whole cohort, participant’s [median (P10–P90)] DSR was 68 (40 to 83) species per year. Bos
taurus (cow), Triticum aestivum (common wheat grain), Sus scrofa (domestic pig), and Sola-
num tuberosum (potato) contributed most to self-reported total dietary energy intake (i.e.,

approximately 45%) with [mean % (SD)] 19% (8), 16% (8), 4% (3), and 4% (3) kcal/day,

respectively. When comparing the fifth Q of DSR (highest; largely represented by the predomi-

nately vegetarian, “health-conscious” EPIC-Oxford (30%) and “omnivorous” German (35%)

cohorts) against the first (lowest) Q, our findings indicate large differences in median dietary

vegetable richness (22 versus 10 species), fruit, nuts, and seed richness (11 versus 5 species)

and condiment richness (7 versus 2 species). In France, increased DSR across Qs was observed

due to a significant positive gradient in vegetables richness only (7 versus 24 species).

Food biodiversity and all-cause mortality

Pooled multivariable analysis indicated that average DSR consumption was inversely associ-

ated with total mortality (PWald< 0.001 for trend), in that participants with low DSR (Q1;<48

species per year) had notably higher mortality rates than individuals with moderate (Q3; 64 to

72 species per year) or high DSR (Q5;�81 species per year) (see S2 Table). The corresponding

pooled HRs (95% CIs) were 0�80 (0.76 to 0.83) for moderate DSR and 0.63 (0.59 to 0.66) for

high DSR in comparison with low DSR (Fig 2). Absolute mortality rates among participants in

the highest and lowest fifth of DSR were 65.4 and 69.3 cases/10,000 person-years, respectively

(see S2 Table).

Our findings indicate slightly stronger relationships among males (see S3 Table). To illus-

trate, a 10-species increment in DSR was associated (95% CI) with a 14% to 17% and 6% to 8%

reduction in all-cause mortality rates among males and females during approximately 20 years

of follow-up, respectively. Overall, results for mortality rates from nonexternal causes were

consistent across 8 countries (P-value and PWald both <0�05; see S4 Table). In the UK, we

observed overall higher DSR and a subsequent smaller contrast between participants with

lower and higher scores (Q1;<71, Q5;�82 species per year). The associated protective effect

of DSR was not substantially changed when removing potential dietary mediators, among

major subgroups (although the lowest HRs were reported among current smokers and partici-

pants with secondary education) or complete cases, when dropping generic food and drink

codes, or exclusion of the lowest 5% (Q1;<47, Q5;�80 species per year) and 10% species

intake (Q1; <46, Q5;�78 species per year) from each EPIC food (sub)group. Furthermore, our

observed associations were not explained by species richness within one single food group,

suggesting a positive cumulative effect of overall DSR (see S5 Table). Limited graphical, but
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statistically significant (PLR<0.001), evidence of nonlinearity was observed for all-cause mor-

tality (S3 Fig).

Food biodiversity and cause-specific mortality

In multivariable analyses, a 10-species increment in DSR was inversely associated with the rate

of death [HR (95% CI)] due to digestive disease [0.80 (0.76 to 0.86)], respiratory disease [0.84

(0.80 to 0.88)], heart disease [0.88 (0.86 to 0.90)], and cancer [0.93 (0.92 to 0.95); all PWald<

0.001 for trend; Table 2].

The large E-values for total and cause-specific mortality suggest that residual confounding

is likely to be low, conditional on the measured covariates in our models (see S6 Table).

Discussion

To our knowledge, this study is the first effort to investigate the relationships between food

biodiversity and total and cause-specific mortality in a large epidemiological study. In the

EPIC cohort, higher DSR was associated with reduced rates of total mortality and deaths due

to cancer, heart disease, respiratory disease, and digestive disease, after accounting for sociode-

mographic, lifestyle, and other known dietary risk factors, which included relative Mediterra-

nean diet score, red and processed meat, fiber, and total energy intake.

The mechanisms driving the observed relationships between DSR and human health may

be largely due to 4 processes. The first is coined as the “sampling effect” and postulates that as

one increases DSR, the greater the probability—simply by chance—of including (a diversity

of) highly nutritious or health protective foods. In this regard, DSR might characterize both

the substantial inter- and intra-food group variations, often not captured by other diet quality

and diversity indicators [44], in the content and density of essential nutrients [26], bioactive

nonnutrients, and anti-nutrients [55,56]. The second mechanism is known as the

Fig 2. Inverse association between higher DSR per year and total mortality rate in the EPIC cohort, 1992 to 2014.

Multiadjusted models were stratified for center, age at recruitment (1-year intervals, timescale), and sex and adjusted for

baseline alcohol intake (g/day), physical activity (Cambridge index: active; moderately active; moderately inactive;

inactive; missing), marital status (single, divorced, separated, or widowed; married or living together; unknown), smoking

status and intensity of smoking (current, 1 to 15 cigarettes/day; current, 16 to 25 cigarettes/day; current, 26+ cigarettes/

day; current, pipe/cigar/occasional; current/former, missing; former, quit 11 to 20 years; former, quit 20+ years; former,

quit�10 years; never; unknown), educational level [longer education (including university degree, technical or

professional school); secondary school; primary school completed; not specified], baseline energy intake (kcal/day),

baseline fiber intake (g/day), baseline red and processed meat consumption (g/day), and an 18-point Mediterranean diet

score [49]. P-values remained statistically significant after adjustment for multiple testing using the Benjamini–Hochberg

method. CI, confidence interval; DSR, dietary species richness; EPIC, European Prospective Investigation into Cancer

and Nutrition; HR, hazard ratio; Q, quintile.

https://doi.org/10.1371/journal.pmed.1003834.g002
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“complementary effect,” in which (chemical) interactions between species result in a function

greater than expected by chance, i.e., each food or drink species might make an important con-

tribution to diets, but none of these foods alone provide total “healthfulness” [46]. The third

Table 2. Associations between food biodiversity and cause-specific mortality rates from multivariable Cox proportional hazards regression models, EPIC cohort,

1992 to 2014.

Qs of DSR

Per 10-species

increment

P-valuec Q1 Q2 Q3 Q4 Q5 P-trendc

DSR, species per year <48 [48 to 64] [64 to 72] [72 to 81] �81

Cancer

All (cases/person-years) 19,284/7,506,482 4,335/
1,577,991

4,385/1,662,237 3,621/1,532,349 3,860/1,479,202 3,083/1,254,703

Sex-adjusted model—HR (95%

CI)a
0.89 (0.88 to 0.91) <0.001 1.00 (ref) 0.87 (0.82 to

0.91)

0.77 (0.72 to

0.82)

0.67 (0.62 to

0.71)

0.64 (0.59 to

0.69)

<0.001

Multiadjusted model—HR

(95% CI)b
0.93 (0.92 to 0.95) <0.001 1.00 (ref) 0.92 (0.87 to

0.97)

0.87 (0.82 to

0.93)

0.78 (0.73 to

0.83)

0.75 (0.69 to

0.82)

<0.001

CVD

All (cases/person-years) 6,403/7,506,482 1,477/
1,577,991

1,526/1,662,237 1,077/1,532,349 1,148/1,532,349 1,175/1,254,703

Sex-adjusted model—HR (95%

CI)a
0.82 (0.80 to 0.84) <0.001 1.00 (ref) 0.84 (0.77 to

0.92)

0.63 (0.56 to

0.70)

0.51 (0.45 to

0.58)

0.44 (0.38 to

0.50)

<0.001

Multiadjusted model—HR

(95% CI)b
0.88 (0.85 to 0.91) <0.001 1.00 (ref) 0.94 (0.86 to

1.03)

0.78 (0.69 to

0.87)

0.65 (0.57 to

0.74)

0.56 (0.49 to

0.65)

<0.001

CHD

All (cases/person-years) 4,950/7,506,482 1,195/
1,577,991

1,081/1,662,237 679/1,532,349 873/1,532,349 1,122/1,254,703

Sex-adjusted model—HR (95%

CI)a
0.77 (0.74 to 0.79) <0.001 1.00 (ref) 0.72 (0.65 to

0.80)

0.52 (0.45 to

0.60)

0.46 (0.39 to

0.53)

0.35 (0.30 to

0.42)

<0.001

Multiadjusted model—HR

(95% CI)b
0.87 (0.84 to 0.90) <0.001 1.00 (ref) 0.89 (0.80 to

0.99)

0.75 (0.64 to

0.86)

0.67 (0.58 to

0.78)

0.55 (0.46 to

0.65)

<0.001

Respiratory disease

All (cases/person-years) 2,479/7,506,482 500/1,577,991 560/1,662,237 459/1,532,349 481/1,479,202 479/1,254,703
Sex-adjusted model—HR (95%

CI)a
0.73 (0.70 to 0.76) <0.001 1.00 (ref) 0.74 (0.64 to

0.86)

0.50 (0.41 to

0.60)

0.35 (0.29 to

0.42)

0.27 (0.21 to

0.34)

<0.001

Multiadjusted model—HR

(95% CI)b
0.84 (0.80 to 0.88) <0.001 1.00 (ref) 0.93 (0.80 to

1.09)

0.75 (0.62 to

0.91)

0.56 (0.46 to

0.69)

0.44 (0.34 to

0.55)

<0.001

Digestive disease

All (cases/person-years) 1,386/7,506,482 278/1,577,991 331/1,662,237 227/1,532,349 269/1,479,202 281/1,254,703
Sex-adjusted model—HR (95%

CI)a
0.73 (0.69 to 0.77) <0.001 1.00 (ref) 0.82 (0.67 to

1.01)

0.45 (0.35 to

0.58)

0.36 (0.28 to

0.47)

0.32 (0.23 to

0.42)

<0.001

Multiadjusted model—HR

(95% CI)b
0.80 (0.76 to 0.86) <0.001 1.00 (ref) 0.98 (0.80 to

1.21)

0.64 (0.49 to

0.83)

0.53 (0.41 to

0.69)

0.46 (0.34 to

0.63)

<0.001

aSex-adjusted models were stratified for center, age at recruitment (1-year intervals, timescale), and sex.
bMultiadjusted models were stratified for center, age at recruitment (1-year intervals, timescale), and sex and adjusted for baseline alcohol intake (g/day), physical

activity (Cambridge index: active; moderately active; moderately inactive; inactive; missing), marital status (single, divorced, separated, or widowed; married or living

together; unknown), smoking status and intensity of smoking (current, 1 to 15 cigarettes/day; current, 16 to 25 cigarettes/day; current, 26+ cigarettes/day; current, pipe/

cigar/occasional; current/former, missing; former, quit 11 to 20 years; former, quit 20+ years; former, quit�10 years; never; unknown), educational level [longer

education (including university degree, technical or professional school); secondary school; primary school completed; not specified], baseline energy intake (kcal/day),

baseline fiber intake (g/day), baseline red and processed meat consumption (g/day), and an 18-point Mediterranean diet score [49].
cP-values remained statistically significant after adjustment for multiple testing using the Benjamini–Hochberg method.

CHD, coronary heart disease; CI, confidence interval; CVD, cardiovascular disease; DSR, dietary species richness; EPIC, European Prospective Investigation into Cancer

and Nutrition; HR, hazard ratio.

https://doi.org/10.1371/journal.pmed.1003834.t002
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potential mechanism for the protective effect of higher food biodiversity encompasses “mini-

mizing trade-offs,” which might occur from consuming too much of one single species (e.g.,

potential toxicity from overconsumption of certain fish species [57], cruciferous vegetables

[58], Brazil nuts [59], and cassava [60]). Lastly, diet-induced variations in human microbial

communities may contribute to metabolic health. To illustrate, the differences between the

United States and Malawian or Amerindian gut microbiomes have been related to the differ-

ences in their diets, with a typical US diet being rich in (animal) protein, whereas diets in

Malawi and Amerindian populations are dominated by corn and cassava [61].

In addition, to our knowledge, this was the first study to characterize usual DSR over an

approximately 1-year time frame in a large multicountry cohort. There have been marked

changes in the biodiversity landscape [62,63] and global food and agriculture supply/system in

recent times [12]. To illustrate, retail level food availability data, rather than actual food intake

assessments, estimated that in excess of half the global food energy (kcal/capita) is supplied by

4 staple crops: Oryza spp. (rice), S. tuberosum (potatoes), Triticum spp. (wheat), and Zea mays
(maize) [64]. Our individual level self-reported dietary intake data from 9 diverse European

populations, which includes consumer level waste and intra-household food distribution, sug-

gest that animal species alone contributed over a quarter of total dietary energy, whereas the

aforementioned staple crops also contributed a further 25% between 1992 and 2000 in the

EPIC cohort. Our findings are alarming considering the growing realization that upstream

agroforestry, aquatic, and other biosphere biodiversity loss, approximately 1 million species

are now threatened with extinction [5], might have caused a further bottleneck of downstream

consumer food choice [15] and thus have subsequent negative impacts on dietary (bio)diver-

sity and food system sustainability [65].

The direct comparison between DSR and usual diet quality scores is neither straightforward

nor warranted. Diet quality scores allocate points based on the consumption of specific com-

plementary food items, food groups, or nutrients relevant for overall or specific chronic disease

and mortality rates (e.g., Mediterranean diet score [66], WCRF/AICR adherence score [67],

and Alternate Health Eating Index [68]), with the objective to add support to dietary recom-

mendations and/or be a basis for food-based dietary guidelines. In contrast, DSR was not

designed to find the best predictive score for total or cause-specific mortality rates; hence, our

main analyses controlled for potential dietary confounders (i.e., established components of

diet quality). Rather, we propose DSR as a simple crosscutting measure of 2 critical dimensions

of sustainable development, i.e., human nutrition and biodiversity stewardship, which comple-

ments existing indicators for healthy and sustainable diets [26,69]. To maintain simplicity in

DSR computation, we assigned an equal weight to each (rare or common) species consumed.

Our approach thus fails to account for the relative abundance distribution of foods across a

diet or species’ unique functional traits (see above). Similar to crude diet scores, DSR has

inherent statistical limitations, including between and within food group species richness

being considered as independent from one another (i.e., correlated structure of dietary compo-

nents or substitution effects disregarded) and assumptions of linear additive effects [70]. No

single intra-food group richness explained our main findings, which potentially clarifies the

weaker associations in France, where only a strong positive gradient was observed across Qs

for vegetable richness. Nevertheless, it remains unlikely that each species consumed made an

equal contribution to the associated protective effect on mortality [27]. Thus, our objective

was not to compare DSR to other existing dietary or food scores, as richness alone takes no

account of the nutritional quality [71], degree of processing [72], and quantities of food and

beverages consumed [73], but to specifically assess the relevance of the use of DSR in the

framework of sustainable dietary recommendations and food-based dietary guidelines aiming

to introduce “biodiversity/variety” into the European population [20]. Against the backdrop of
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anthropogenic species collapse [74] and rising dietary uniformity [12], our findings champion

the relevance of food biodiversity, as a guiding principle of (inter)national food-based dietary

guidelines, as explicitly included in, e.g., the Mediterranean Diet Pyramid [75], the New Nor-

dic Diet [76], and Brazilian dietary recommendations [77].

Strengths of this study include its prospective design, large sample size, long (and high rates

of) follow-up, and the inclusion of disease-free participants from different European countries

with standardized data collection, especially for habitual diet, offering a broad and detailed

perspective on a crosscutting measure of food biodiversity (approximately 250 unique species)

in European diets. However, some limitations should be acknowledged. First, caution is

needed regarding the extrapolation of these results to the entire European population or to

other populations or ethnicities worldwide since this study included middle-aged volunteers

from 9 European countries involved in a long-term cohort study investigating the association

between nutrition and health, with overall more health-conscious behaviors compared to the

general population. Therefore, individuals with lower DSR may have been underrepresented

in this study, which may have weakened the observed inverse associations by inducing a

smaller contrast between high and low DSR (or a potential food biodiversity threshold reached

in the UK cohorts). Furthermore, in our models, we included all the participants with available

dietary intake data, but with potential missing data on other covariates replaced with a “miss-

ing” class or imputation. Although this may have induced some bias, a “complete cases” model

alone might have led to a selection bias toward more adherent participants in an already

health-conscious population. Yet, our sensitivity analyses with complete cases provided similar

results. In addition, this study used a single assessment of self-reported dietary intakes at base-

line. Although diets may change over time, it is usually hypothesized that this estimation

reflects general eating behavior throughout middle-aged adult life [78]. Traditional diet mea-

surement instruments are built to capture the usual dietary intakes of an individual, but are

still subject to imprecision and inaccuracy [79]. EPIC DQs consider self-reported usual food

and drink intakes over longer periods of time, not the absolute number of species consumed

per day or season specific dietary patterns. Hence, food items potentially consumed “less than

once per month” or excluded during DQ development could not be counted toward DSR,

which is hypothetically a source of underestimation. In addition, insufficient taxonomic detail

was available to subdivide food and drink species into subspecies [e.g., Triticum aestivum
subsp. spelta (spelt wheat)] or their source (e.g., locally produced or imported). Furthermore,

the number of items that DQs cover depends on the country/center, which required in-depth

standardization procedures to guarantee the comparability between countries. For all coun-

tries, recipes were decomposed into their ingredients using standard recipes. Therefore, herbs

and spices and other ingredients potentially used in trivial amounts might have inflated the

true value of an individual’s DSR. To best address this methodological limitation, we calculated

3 different scenarios of DSR consumption, namely overall DSR, including all food and drinks

consumed in our EPIC food list (thus, also ingredients derived from standard recipes) and

DSR, excluding the lowest 5% and 10% species intake from each EPIC food (sub)group. These

sensitivity analyses confirmed the main analyses using overall DSR. Finally, this study was

based on an observational cohort. Thus, even though EPIC included a large range of covari-

ates, residual confounding in our models cannot be entirely ruled out (e.g., underlying inflam-

matory or metabolic disorders) [80] or unmeasured mediating pathways examined (e.g., role

of gut microbiome). However, large E-values support the robustness of our observed DSR and

mortality associations, providing support for the relationships having a causal basis.

In conclusion, the results from our analysis of a prospective study performed on a large

Pan-European cohort with diverse profiles and dietary habits suggest that higher DSR is asso-

ciated with lower rates of total and cause-specific mortality, independent from other known
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components of diet quality. Overall, this adds support to the relevance of public health and

conservation measures advocating “dietary (species) biodiversity” aiming to influence the

healthfulness at national and potentially supranational level. Future comparative and environ-

mental impact (e.g., greenhouse gas emissions, land use, and water use) [39,81,82] studies may

be carried out if other simple species diversity indicators with similar characteristics and a cor-

responding score derived at the individual level (e.g., capturing “optimal” species richness per

food group) are to be proposed. In particular, this would complement strategies, such as food-

based dietary guidelines [25], setting the basis for a diversified, environmentally sustainable

diet mixing distinct types of food, both between and within food groups, and by highlighting

food species for which a sensible consumption should be preferred for public and planetary

health.
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