
applied
sciences

Article

FLINT: Flows for the Internet of Things

Bart Moons 1,*,† , Michiel Aernouts 2 , Vincent Bracke 1,† , Bruno Volckaert 1,† , Jeroen Hoebeke 1,†

����������
�������

Citation: Moons; Aernouts M;

Bracke C; Volckaert B; Hoebeke, J.

FLINT: Flows for the Internet of

Things. Appl. Sci. 2021, 11, 9303.

https://doi.org/10.3390/

app11199303

Academic Editors: Dan García

Carrillo, Laurent Toutain

and Rafael Marín López

Received: 8 September 2021

Accepted: 5 October 2021

Published: 7 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 IDLab—Department of Applied Engineering, University of Ghent—Imec, 9052 Ghent, Belgium;
vincent.bracke@ugent.be (V.B.); bruno.volckaert@ugent.be (B.V.); jeroen.hoebeke@ugent.be (J.H.)

2 IDLab—Faculty of Applied Engineering, University of Antwerp—Imec, 2020 Antwerp, Belgium;
michiel.aernouts@uantwerpen.be

* Correspondence: bamoons.moons@ugent.be
† Current address: Technologiepark-Zwijnaarde 126, 9052 Ghent, Belgium.

Abstract: New protocols and technologies are continuously competing in the Internet of Things.
This has resulted in a fragmented landscape that complicates the integration of different solutions.
Standardization efforts try to avoid this problem, however within a certain ecosystem, multiple
standards still require integration to enable trans-sector innovation. Moreover, existing devices
require transformations to fit in an ecosystem. In this paper, we discuss several integration problems
in the field of Low Power Wide Area Networks in the context of the Port of the Future and propose
a new distributed platform architecture, called FLINT. FLINT is a framework to program flexible
and configurable flows on a per device basis. A flow is constructed from fine-grained components,
called adapters. Due to the modularity of an adapter, users can easily integrate existing software.
We evaluated FLINT based on five levels of interoperability and show that FLINT can be used to
interconnect non-interoperable systems and protocols on every level. We have also implemented
FLINT in a container based environment and demonstrated that a basic configuration has a 99%
forwarding rate of 17.500 513-byte packets per second, showing that the architecture can deliver
good performance.

Keywords: Internet of Things; distributed component systems; interoperability; flow-based program-
ming

1. Introduction

Due to the plethora of Internet of Things (IoT) technologies and standards available,
an overarching platform is required to interconnect heterogeneous sources of data. The
purpose of an IoT platform is to match non-interoperable data sources, ranging from
something as small as a device to something as large as a platform spanning multiple ap-
plication domains. This requires extensive flexibility. Unfortunately, many platforms, such
as Amazon Web Service (AWS) IoT [1], Kaa IoT [2] and ThingSpeak [3], have closed, inflex-
ible designs and do not enable low-level interaction between components in the system.
Furthermore, extending an IoT system with existing applications and software libraries can
often be complex due to the imposed programming paradigms and/or languages. Finally,
the upcoming trend of mobile IoT devices that can switch between networks on the one
hand and very constrained devices on the other hand, requires a platform aware of the
device its connection state and the network it is connected to.

To address this, we present FLINT: a flexible, modular and scalable network archi-
tecture for interconnecting IoT devices, networks, middleware and platforms. A FLINT
configuration can be built from fine-grained components on a per device basis. These
components are data processing elements called adapters. An adapter consists of two
sub-elements: an agent and a sink. The sink connects the adapter to the platform by means
of a Message Broker. The Message Broker provides a message bus for efficient data delivery
using the publish/subscribe paradigm. The sink and the agent communicate over a socket

Appl. Sci. 2021, 11, 9303. https://doi.org/10.3390/app11199303 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4977-8916
https://orcid.org/0000-0002-0527-3871
https://orcid.org/0000-0003-0913-6433
https://orcid.org/0000-0003-0575-5894
https://orcid.org/0000-0003-2039-007X
https://doi.org/10.3390/app11199303
https://doi.org/10.3390/app11199303
https://doi.org/10.3390/app11199303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11199303
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11199303?type=check_update&version=2

Appl. Sci. 2021, 11, 9303 2 of 20

interface so that the agent can be built from any programming language. This allows users
to recycle their existing programs and implementations. A FLINT configuration can be
built by chaining adapters. The user chooses a collection of adapters for a given device and
connects them into a chain that represents the path the data will follow.

We have implemented FLINT in a container based environment and deployed it in
Kubernets cluster to evaluate its scalability. A basic FLINT configuration has a 99% for-
warding rate of 17.500 513-byte packets per second on a 2.4 GHz intel E5645. The 1% packet
loss is caused by Central Processing Unit (CPU) spikes to 100% in the sink implementation.
Our evaluation shows that, compared to other platforms, FLINT’s architecture is still able
to deliver good performance. We show that the forwarding rate drops significantly when
adding more hops to the system. However, by demonstrating that the modular architecture
can distribute the load over different machines we show that the platform is able to scale
for more demanding applications.

Next, we evaluated FLINT based on five levels of interoperability: syntactic interop-
erability, device interoperability, network interoperability, semantic interoperability and
platform interoperability. We thereby show that FLINT provides tools to cover all levels of
interoperability as described in [4]. This is illustrated by our experiments in a Port of the
Future context (Section 2), though can be extrapolated to any other use case requiring IoT
connectivity integration. As a final contribution, FLINT is available as open source under
the LGPL-3.0 license.

The remainder of this paper first analyzes other IoT platforms and their focus (Section 3)
before describing FLINT’s architecture (Section 4) which is evaluated in Section 5. Finally,
Sections 6–8 present conclusions and avenue for future work.

2. Case Study—Port of the Future

The Port of the Future will be equipped with technology to cope with day-to-day
challenges more efficiently [5]. Sensor measurements can be used to analyze and monitor
ports in order to make better operational decisions. For example, transportation can be
tracked between different port terminals to increase the coordination of traffic and better
manage transport logistic chains. Furthermore, the environment, engineering structures,
vehicles and vessels can be tracked in order to optimize their behaviour and contribute
to sustainable ports. This either involves (1) existing data sources which have already
adopted a specific data format or (2) (wireless) IoT devices.

In order to benefit from information that is already available (1), data from existing
systems, legacy systems and systems that support different standards, should be converted
to a common format [6].

Furthermore, depending on the available wireless infrastructure of the port, this data
will originate from a multitude of data sources (2):

• Multiple wireless communication networks can coexist that serve devices equipped
with a single radio;

• Devices can be equipped with multiple radios that connect to different networks
over time;

• Devices can have a radio that supports multiple modulation schemes.

For example, devices equipped with a sub-gigahertz (sub-GHz) compatible radio and
multiple modulation schemes, such as Long Range (LoRa), DASH-7 (Gaussian Frequency
Shift Keying (GFSK)) and Sigfox (Ultra Narrowband (UNB)), can alternate between long
range, low throughput and medium range, higher throughput technologies [7]. FLINT was
initially developed to interconnect such networks and devices. However, multiple cases,
such as the integration with Obelisk [8], made clear that its flexible design was also well
suited for fast prototyping and use case support. Therefore, this section presents several
modules that were developed and illustrates the evolution of FLINT from a simple tool to
a scalable IoT platform.

Appl. Sci. 2021, 11, 9303 3 of 20

2.1. Heterogeneous Low Power Wide Area Networks (LPWANs)

The typical size of a port requires wireless technologies that can transmit traffic over
large distances. Low Power Wide Area Networks (LPWANs) can span very large areas,
however are characterized by severe bandwidth constraints [9]. Traffic towards the wireless
network is often restricted by duty cycle limitations and must be operated using different
transmission schemes. Furthermore, incorporating multiple wireless networks into a single
platform requires some sort of routing. This can be achieved with a central entity that
stores the last active network and the properties of all available networks.

Due to their bandwidth constraints, LPWANs often use proprietary payload encoding
formats. This limits the application portability and interoperability among systems. In
order to solve these issues, the Internet Engineering Task Force (IETF) LPWAN Working
Group (WG) developed the Static Context Header Compression (SCHC) technique. This
standard uses a static context to represent the most common Internet Protocol Version
6 (IPv6), User Datagram Protocol (UDP) and Constrained Application Protocol (CoAP)
patterns of the sensor node, known to both the end-device and the gateway. Every flow is
distinguished by means of a unique identifier that precedes the payload of the message.
This identifier is used by the translating gateway to perform the decompression of the
message [10].

This way, very constrained devices can establish an end-to-end IPv6 link over a low
bandwidth technology. However, LPWAN systems typically consist of a star topology in
which an intermediary captures packets from receiving gateways to remove duplicates. The
SCHC router [11] (i.e., the edge router that (de)compresses packets from the IPv6 network)
must therefore implement an abstraction to capture packets from the intermediary. Typical
examples of such abstractions include the Message Queuing Telemetry Transport (MQTT),
the Hyper Text Transfer Protocol (HTTP) and the Advanced Message Queuing Protocol
(AMQP). These observations indicate the need to incorporate abstractions for different
wireless networks and devices that have multiple network interfaces and their mapping to
standardized outputs.

2.2. Localization

Location-based Services (LBSs) are an essential aspect of IoT applications, as they pro-
vide valuable context information. For instance, sensor measurements from IoT devices in
a port can only be interpreted properly if they are correlated with the correct measurement
location. Typically, Global Navigation Satellite Systems (GNSSs) such as Global Position-
ing System (GPS), Global Navigation Satellite System (GLONASS), BeiDou Navigation
Satellite System (BDS) and Galileo are used for outdoor localization. Cellular networks or
LPWANs are used to transmit location data from GNSS receivers on IoT devices to an IoT
platform. To reduce the overall cost of IoT devices or to enable outdoor localization on de-
vices with an extremely low energy budget, it is possible to omit GNSS receivers and apply
localization methods such as Time Difference of Arrival (TDoA), Angle of Arrival (AoA)
or Received Signal Strength (RSS)-based methods to the LPWANs instead [12–14]. These
methods are especially popular for indoor localization scenarios. Technologies such as
Wi-Fi, Bluetooth Low Energy (BLE) or Ultra Wideband (UWB), can cope with the fact that
GNSS coverage is not available in indoor environments [15].

Hence, an LBS can obtain location information from a wide range of data sources,
depending on the current environment and active technology of an IoT device. Since the
performance of a wireless localization method strongly depends on estimation errors re-
lated to the environment, the network deployment and the IoT device itself [16], LBSs must
be able to intelligently switch between data sources while estimating their reliability [17].
Therefore, there is a need for flexible, heterogeneous platforms such as FLINT that can
incorporate an additional module for localization purposes. Specifically for a port use case,
this module can switch between outdoor localization with GNSS if a valid fix is available,
TDoA localization with LoRaWAN if a transmission is received by at least four gateways,
or accurate indoor fingerprinting localization when FLINT detects an active Wi-Fi network.

Appl. Sci. 2021, 11, 9303 4 of 20

2.3. Data Transformation

In the past, ports, port services and general services already have developed systems
to improve their day-to-day operations. By interconnecting (existing) infrastructure, the ef-
ficiency of the entire port can improve even more. Connecting non-interoperable platforms
is often addressed as platform interoperability and requires data transformation. In order to
do so, traffic must be transformed and interconnected between several platforms.

A common way of interconnecting data is by means of the Linked (Open) Data
schema (https://5stardata.info/en/) (accessed on 14 July 2021). Linked Data (LD) can
be the result of applying the collection of Semantic Web technologies, such as (Resource
Description Framework (RDF), Web Ontology Language (OWL), etc.) on non-interoperable
data. These tools are standardized by the World Wide Web Consortium (W3C) to provide
an environment where applications can query (using SPARQL) and interconnect data from
several domains [18]. Converting real world data to interlinked data can be challenging,
due to their heterogeneity. This can be optimized using the RDF Mapping Language
(RML) [19]. RML uses a Turtle mapfile that defines customized mapping rules, that can be
applied to heterogeneous data sources. However, managing multiple data sources requires
a specific mapfile on a per device basis.

Another common problem exists in the management of wireless equipment and IoT
devices. In order to limit coding and integration effort it can be useful to have a unified
mechanism to manage such wireless tools. For this, several management protocols are
available today [20]. However, integration of already deployed infrastructure and sensors
with standardized solutions can be hard. In this paper, we focus on the Open Mobile
Alliance (OMA) Light Weight Machine to Machine (LwM2M) protocol [21]. FLINT tries
to minimize the required effort so that their proprietary format can be transformed into
LwM2M compliant equipment.

An abstract overview of the required components is given in Figure 1.

AbstractionsWireless Networks Mapping Processing Service Endpoint

Figure 1. An abstract representation of the system. Wireless sensor networks on the left are integrated
using Application Programming Interfaces (APIs). Their data are collected in a central point that
provides an abstraction for devices with multiple network interfaces. From this central point, data
are distributed to processing nodes and other platforms.

https://5stardata.info/en/

Appl. Sci. 2021, 11, 9303 5 of 20

3. Related Work

A plethora of both open-source and commercial IoT platforms already exist. An
overview of the most common systems is given in Table 1. The architecture of every
platform is presented using a simplified notation representing the number of inputs, the
number of intermediary processing elements and the number of outputs:

• N*-N*-1: there can be N inputs, N processing elements and only 1 output. This
architecture often stores the data inside the platform.

• N*-N*-N*/N*N*/X*: there can be N inputs, N processing elements and N, N ∗ N, or
X outputs.

With

• N* representing a custom, reusable element, either input, processing or output that
can be implemented by the user.

• X* representing an element, either input, processing or output offered as is by
the platform.

Some platforms allow communication between elements inside the deployed system.
This is visualized using N*N*. Flows that end with a single N* or X* provide elements that
have a single output. Contrarily, flows that employ an N*N* approach provide reusable
components for every node that can be integrated in the platform, i.e., every element
has multiple inputs and outputs. An N*N* approach is illustrated in Figure 1, where the
message can be passed back and forth between Abstractions, Processing elements and
elements that provide platform interoperability at the Service Endpoint.

Next, the supported directionality of a platform is indicated using the Input/Output
(I/O) column. Furthermore, the complexity of the platform is presented in column ’Com-
plexity’. A distinction is made between low, medium and high complexity. A low complex-
ity platform indicates that flows can be created by making use of a GUI. A platform that
requires some technological background about the platform and technologies is labeled
with medium complexity. A platform that requires in depth knowledge about the platform
and the underlying technologies is labeled with high complexity.

Appl. Sci. 2021, 11, 9303 6 of 20

Table 1. Non-exhaustive list of commercial and open source IoT platforms.

Project Solution License Protocols Usability Interoperability Architecture Language Direction Complexity

AWS IoT [1]
Message broker,

digital twin,
AVS

Commercial
license, open

source libraries
MQTT, HTTP Draw flows in a

GUI No N*-N*-X* GUI I/O Low

OpenRemote [22]
Integrate assets,

data
visualization

AGPLv3 HTTP, WS,
MQTT, custom

Draw flows in a
GUI No N*-N*-1 GUI I Low

Kaa [2] Flows
Commercial

license, free plan
up to 5 devices

MQTT, HTTP Draw flows in a
GUI No N*-N*-1 GUI I/O Low

ThingSpeak [3] Data
visualization

Commercial
license

WS, MQTT,
HTTP

Integrate things
in Matlab No N*-1 - 1 Matlab I/O Low

INTER-IoT [23] Multi-layered
approach Apache-2.0 HTTP, CoAP,

MQTT
Distributed

platform Yes N*-N*-N* Java I/O High

ThingsBoard [24] Flows Apache-
2.0/Commercial

HTTP, MQTT,
UDP, TCP

Draw flows in a
GUI No N*-N*-X GUI I/O Low

Eclipse
node-wot [25]

Web of Things
platform EPL-2.0

HTTP, CoAP,
WS, MQTT,

custom

Access things
using web

technologies
Yes N*-N*-1 JavaScript I/O High

Eclipse
Hono [26]

Container based
IoT-platform EPL-2.0 HTTP, MQTT,

custom HTTP endpoint No N*-N*-N* Any 1 I/O High

Node-RED [27]
Visually

integrate data
flows

Apache-2.0
HTTP, MQTT,
Websockets,

custom

Draw flows in a
GUI No N*-N*-N*N* JavaScript I/O Low

FLINT Flows LGPL-3.0 HTTP, MQTT,
custom Program flows Yes N*- N*-N*N* Any 2 I/O Medium

1 Any programming language that supports AMQP. 2 Any programming language that supports sockets.

Appl. Sci. 2021, 11, 9303 7 of 20

Many of these projects aim to provide a user friendly interface to interconnect systems
and applications. The open source flow-based editor, Node-RED, provides a GUI where
modules can be connected to develop a flow [27]. Extra modules are also shared by the
Node-RED community. Node-RED runs as a single Node.js instance and focuses on usability
and fast prototyping, rather than on scalability and interoperability.

Another open source project, node-wot, implements the Web of Things (WoT) specifica-
tion and aims to provide an abstraction between physical things and the current World
Wide Web (WWW) [25]. This abstraction makes it possible to access things using web tech-
nologies. The W3C Thing Descriptions (TDs) provide semantic interoperability. Devices
can be accessed and interconnected using LD concepts. node-wot runs inside a Node.js
server and focuses on interoperability and usability, rather than on scalability.

INTER-IoT grew out of the objective to design and implement a cross-layer framework
to provide interoperability among heterogeneous IoT platforms. [28]. The INTER-IoT
Framework provides a Representational State Transfer (REST) API that exposes interactions
to any IoT platform. Developers can then access the underlying IoT platforms through a
single interface, thereby mainly focusing on interoperability.

Finally, Eclipse Hono provides a container based IoT platform. Different networks can
be added by means of protocol adapters. Setting up an instance of Eclipse Hono can be
done rather quickly using Kubernetes deployment tools. Devices can be added using an
HTTP interface.

FLINT tries to combine these properties and proposes an open source IoT platform
with support for devices with multiple network interfaces, intended for fast prototyping,
while maintaining scalability. FLINT can be used to interconnect platforms, while most plat-
forms keep data locked in the platform or do not directly support platform interoperability.

4. Flint Architecture

A FLINT configuration can be built from fine-grained components on a per device
basis. These components are data processing elements called adapters. An adapter represents
a unit of processing. This can be seen as the transformation between two data sources to
match the format from heterogeneous data sources, to enrich data by performing complex
computations, to add semantics, etc. A FLINT configuration is a graph with agents at the
vertices. An edge, or sink, between two agents represents a path for data transformation
and/or data output. The user determines the configuration for a device or a fleet of devices
by choosing a set of adapters between them. A running system consists of one or more
Kubernetes deployments, made up of at least two containers that contain the sink and
the agent. Several sinks can communicate via a Message Broker (currently MQTT), that
provides a (distributed) message bus. The most important properties of an adapter are
the following:

• Adapter identifier. Each adapter has a unique identifier. This specifies the topic that is
used by the Message Broker to interface between adapters.

• Configuration files. An agent and a sink have a configuration file. These files are passed
to the containers at initialization time. Adapters use these configuration files to set a
per-adapter state and provide flexibility during deployment.

• Socket connection. An agent and a sink interface over a socket connection. Incoming
data from the platform are forwarded to the agent. Modified data or data coming
from other data sources is returned to the sink over the socket connection.

• Sink port. The sink port is an interface from the sink to the Message Broker. Data flows
from the output sink port of an adapter to the input sink port of another adapter.

• Agent port. The agent port provides an optional connection to implementation specific
interfaces. An input agent port, for example, can be used to feed data from a network
source to the platform. An output agent port, on the other hand, can be used to
forward data to another platform.

Figure 2 shows the layout of an adapter.

Appl. Sci. 2021, 11, 9303 8 of 20

Agent Sink sink port

socket connection

Docker containers

agent port

Figure 2. The basic components of an adapter. Triangular ports connect to the platform, filled
rectangular ports connect the agent and the sink. Open rectangular ports connect the agent to
non-FLINT sources.

4.1. Adapter Types

FLINT supports three types of adapters—I/O adapters, processing adapters and direct
adapters. I/O adapters use their agent port to fetch data from a data source or push data to
a destination. Processing adapters, on the contrary, do not use their agent ports and return
the data to the sink after processing. Figure 3 shows how the different types of adapters
work in a simple configuration. Data coming from a data source is captured using the
input port of the Data in agent. The corresponding element forwards the data to the Mapper
adapter. This is a mandatory processing adapter responsible for data delivery to the next
adapter in the chain. Incoming data are passed to the agent and distributed over one or
more outputs. The Data out I/O adapter can perform extra processing to match the format
of the data source it is connected to or immediately forward the data to the destination.

Data outSink Data outSink Data outSink

Mapper SinkMapper SinkMapper SinkMapper Sink

Data inSink Data inSink Data inSink Data inSink

Figure 3. The different types of adapters in a sample configuration. The central adapter is the Mapper.
This is a processing adapter that forwards data from input adapters to processing adapters and to
output adapters.

Some configurations require bidirectional communication. I/O adapters therefore
support data flowing in both directions. Their corresponding sink element is subscribed to
a unique topic for communication happening between adapters. Communication coming
from an external data source is published to the central Mapper adapter acting as a router.
This allows for fine-grained configuration in both the upward and downward direction.

Finally, FLINT also supports the use of Direct adapters. These are a special type of
adapter that omit the Mapper adapter. This can be useful to connect a fleet of devices
directly to an adapter chain.

4.2. Device Based Context

FLINT uses the Mapper adapter as a hub for data distribution. The Mapper is a simple
processing adapter with multiple sink inputs and outputs. Incoming data are processed on
a per-device basis. The agent matches a device’s Medium Access Control (MAC) address
with an adapter based on the input topic. A routing scheme is constructed from the
configured information for a particular device. The sink then forwards the original payload
and the routing scheme to the next adapter in the chain. From there, based on the routing
scheme, the processed packet is distributed to the next hop.

Adapters have a unique identifier. These identifiers are used to construct chains of
adapters. Every adapter, except for the Mapper adapter, subscribes to their input topic, i.e.,

Appl. Sci. 2021, 11, 9303 9 of 20

urn:uuid:adapter-uuid/in. The Mapper, on the contrary, is subscribed to the output topic of
every adapter, i.e., +/out.

Figure 4 shows a directed graph using the different types of adapters. The io-1 and io-2
adapters are I/O adapters. Adapter p-1 is a processing adapter and d-1 is a direct adapter.
In this example, adapter io-1 publishes its input data to the output topic urn:uuid:io-1/out to
request a routing scheme from the mapper. An exact match for a device’s MAC address
and the requesting adapter will return the configured routing scheme. The packet from
adapter io-1 is sent to the next hop in the chain, i.e., p-1. From there, p-1 forwards the
modified data to the next adapter in the chain—io-2. At this point, data are output using
the adapter’s agent. Similarly, communication flowing in the other direction is published
to the adapter’s output topic to request routing information from the mapper. The scheme
in the other direction excludes p-1 from the chain and is directly forwarded to io-1. Direct
adapters, such as d-1, forward data directly to their destination. This can be useful to serve
a fleet of devices.

io-1

mapper

p-1

io-2

pub

urn:uuid:io-1/in

pub

urn:uuid:p-1/in

pub

urn:uuid:io-2/in

pub

urn:uuid:io-2/out

pub

urn:uuid:io-1/out

d-1

pub

urn:uuid:io-2/in

Figure 4. A directed graph constructed using the different types of adapters. Adapter io-1 is an I/O
adapter. Adapter p-1 is a processing adapter and adapter io-2 is another I/O adapter. The mapper
adapter passes the messages along the vertices. Adapter d-1 communicates directly with io-2.

4.3. Packet Storage

FLINT is built from the observation that IoT devices can have multiple network in-
terfaces that must be routed to multiple outputs. These devices can also have restricted
communication opportunities due to their energy savings mechanisms. Therefore, the Map-
per adapter keeps track of the last active network for every device and their corresponding
downlink scheme. Traffic flowing in the downward direction will be routed towards the
active network interface or will be queued when no interface is active. Consequently, other
FLINT adapters do not require the implementation of queues between adapters or any
other routing logic. The Mapper adapter forwards a routing scheme upon a request on
its input, which can be interpreted by the sink from any other adapter. Hence, the Mapper
adapter is a mandatory component in more advanced configurations.

4.4. Device Configuration

FLINT device configurations are written in JavaScript Object Notation (JSON), based
on the W3C Thing Description (TD) ontology. A standard TD is extended using three
keys: IPv6, ioAdapterDefinitions and adapterScheme. ioAdapterDefinitions contain
values required for bidirectional communication. The adapterScheme indicates how the
different adapters are connected. An example is given in Listing 1.

Appl. Sci. 2021, 11, 9303 10 of 20

Listing 1: A Thing Description contains a list of adapter definitions. These adapters can be
used in a scheme to construct a directed graph.

{
" id " : " urn : 5 f3cc650 −c91a −477 f −9726− f5f27097b6c7 " ,
" @context " : " h t tps ://www. w3 . org /2019/wot/td/v1 " ,
" t i t l e " : " SampleDevice " ,
" ipv6 " : [" 2 0 0 1 : 0 db8 : 8 5 a3 : 0 0 0 0 : 0 0 0 0 : 8 a2e : 0 3 7 0 : 7 3 3 4 "] ,
" ioAdapterDef in i t ions " :
[{
" uuid " : " urn : uuid : cc0c1e3b −ce09 −4c44 −b9da −57 ee9871497a " ,
" d e v i c e D e f i n i t i o n s " : {
" in ter faceType " : " continuous "
"mac " : "0004 a30b0024e96c "
}
} ,
{
" uuid " : " urn : uuid : 4 8 9 edd56−4b1c −4332−a5ba−cad14994668d " ,
" d e v i c e D e f i n i t i o n s " : {
" in ter faceType " : " upl ink_t r iggered " ,
"mac " : "92BC10 "
}
} ,
{
" uuid " : " urn : uuid :1323 b31a −1af7 −4548−aad7 −89 f45f7b5713 " ,
" d e v i c e D e f i n i t i o n s " : {
" id " : " 2 "
}
}] ,
" adapterScheme " : [
[
[" urn : cc0c1e3b −ce09 −4c44 −b9da −57 ee9871497a " ,
" urn : uuid : 4 8 9 edd56−4b1c −4332−a5ba−cad14994668d "]
[" urn : uuid : 8 b6092c2 −09a4 −4aca −aca2 −2948195 c10de "] ,
[" urn : uuid :1323 b31a −1af7 −4548−aad7 −89 f45f7b5713 "]
] ,
[
[" urn : uuid :1323 b31a −1af7 −4548−aad7 −89 f45f7b5713 "] ,
[" urn : cc0c1e3b −ce09 −4c44 −b9da −57 ee9871497a " ,
" urn : uuid : 4 8 9 edd56−4b1c −4332−a5ba−cad14994668d "]
]
] ,
. . .
}

An ioAdapterDefinition contains routing information. Every definition can be
linked to an adapter using its uuid. The Mapper adapter also requires the MAC address
of every I/O interface to uniquely target a device and manage the queue based on the
interfaceType. These types can be divided in three groups. A continuous interface
can be reached at any given moment. A beacon interface can be interfaced with during
predefined intervals and an uplink_triggered interface can be reached only after an
uplink transmission.

The adapterScheme is a JSON array constructed of chains that contain shackles, which
on their turn contain a list of adapters. A chain starts with an array of I/O adapters
(a shackle). Every adapter in this array can be a possible source of data. The Mapper adapter

Appl. Sci. 2021, 11, 9303 11 of 20

will therefore keep track of the last active adapter in this shackle. The chain ends with a
shackle of I/O adapters. Processing adapters can be added at any level in between them.
Every shackle in the chain indicates a hop. An adapter that receives a packet on its input
will forward the processed packet to every adapter in the next hop.

The example adapterScheme in Listing 1 contains two chains. The first chain is
used for traffic flowing in the upward direction and contains three shackles. The first
shackle contains two adapters that are used to interface with the device directly. Data
from any of these adapters will flow to the adapter in the next shackle that contains a
processing adapter (urn:uuid:8b6092c2-09a4-4aca-aca2-2948195c10de). The last shackle in
the chain will output the processed data to a given destination. The second chain contains
the inverted configuration, used for communication in the downward direction. In this
example, the processing adapter is not required for communication in this direction and
is removed from the chain. The last shackle again contains the two adapters that can
interface directly with the device. The Mapper adapter keeps track of the last active adapter
to forward data to.

Communication between the adapters also happens in JSON. Every adapter must
therefore adhere to a JSON scheme to provide syntactical interoperability.

5. Evaluation

This section evaluates a real FLINT configuration: two Low Power Wide Area Net-
works (LoRaWAN and Sigfox) serve as a communication technology for several low power
devices. Some devices use the novel SCHC standard to compress IPv6 packets. Others
require enriching their data with LPWAN localization before forwarding it to an IoT plat-
form (e.g., Linked Data Platform (LDP), Obelisk). An overview of the complete system
configuration is given in Figure 5.

LoRaWANSink LoRaWANSinkMapper SinkMapper Sink

SigfoxSink SigfoxSink

LocalizationSink LocalizationSink

Platform A
Sink

Platform A
Sink

SCHC RouterSink SCHC RouterSink from/to IPv6

from/to

LoRaWAN

from/to

Sigfox cloud

to platform A
from

platform B
Platform B Sink

processing

input/output

input/output

input/output

processing

outputinput

RDF MapperSink RDF MapperSink from/to LDP
input/output

Figure 5. More complex system configuration. Every sink is connected to others via the message bus.
The Mapper adapter implements a queue.

The system is evaluated in terms of interoperability, scalability and performance.

Appl. Sci. 2021, 11, 9303 12 of 20

5.1. Levels of Interoperability

Interoperability in the IoT can be seen from different perspectives such as syntactic
interoperability, networking interoperability, device interoperability, semantic interoper-
ability, and platform interoperability [4]. These subdivisions are further explained in the
following sections while being applied to FLINT.

5.1.1. Syntactic Interoperability

Processing tasks that involve local information do not require any adaptation to the
network. The SCHC router, for example, must store information about the fragmentation
state of a device. If the device does not acknowledge a fragment in time, the SCHC router
will re-transmit the fragment or discard the packet. These actions depend on the packet’s
content and do not involve any other adapters. Other processing tasks, however, do require
information from another adapter in the chain.

Passing information between adapters requires a common messaging pattern, often
referred to as syntactic interoperability. FLINT uses a message scheme that adapters must
adhere to. The message scheme contains fields to carry information along and may include:

• Device information. Information such as the device MAC address and the original
data packet are stored in this field. Any additional information can be added to the
device-custom-ctrl field.

• Adapter information. The adapter-ctrl field contains information about the previous
adapter in the chain. Information about the chain is also stored in this field. Every
I/O adapter first consults the Mapper adapter to generate the routing scheme that is
added to this field.

• Input information. The input-ctrl field contains information about the adapter that
first received the packet. Custom information about the network the adapter is
connected to, can be added to the input-custom-ctrl field.

• Output information. Additional information about the device is stored in the output-ctrl
field. The TD of every device contains the uuid of each device and is added to the
message by the Mapper adapter. Other adapters in the chain must be able to uniquely
identify devices, regardless of their input adapter. The uuid provides an abstraction
for devices that have multiple network interfaces.

Every sink serializes these messages using the above grammar in order to provide
syntactical interoperability.

5.1.2. Device and Network Interoperability

The lowest level of interoperability that FLINT can guarantee, is device and network
interoperability. Device interoperability ensures that high-end IoT devices, such as smart-
phones, can communicate with resource constrained, low-end IoT devices [4]. The Mapper
interface provides a queue and supports bidirectional communication over multiple net-
work interfaces. Both low-end devices and high-end devices can exchange information using
different communication technologies with diverse downlink patterns. Figure 6 shows an
excerpt of the complete FLINT configuration that provides device and network interop-
erability for a low-end device with a Sigfox and LoRaWAN interface. The Sigfox adapter
forwards packet p together with the device’s MAC address to the Mapper adapter. The
routing scheme is calculated based on the information in the TD. Packets coming from
these networks are SCHC compressed and forwarded to the SCHC router. This adapter
handles requests to, and responses from, the IPv6 network. The response from the IPv6
network (packet f) is stored in the queue of the Mapper adapter, since downward traffic
for these devices can not flow continuously. Finally, due to a network change, the device
transmits packet s over its LoRaWAN interface. The Mapper adapter will immediately
dequeue packet f and forward it to the corresponding LoRaWAN adapter. Packet s is also
delivered to the SCHC router.

As illustrated, the Mapper adapter is required to provide device and network interoperability.

Appl. Sci. 2021, 11, 9303 13 of 20

SCHC Router

input/output

SCHC Router

input/output

Mapper
processing

Mapper
processing

Sigfox
input/output

Sigfox
input/output

receive

packet p
calculate routing

scheme decompress

and send p

receive

packet f

LoRaWAN
input/output

LoRaWAN
input/output

publish p

publish p

publish f

queue f
publish s

receive

packet s

calculate routing

scheme decompress

and send s

publish s

dequeue f

publish f

Figure 6. Mobility and queue management in a FLINT system. This diagram shows how packets
travel through a FLINT system configuration. Time moves downwards. The central element is a
Mapper adapter. Packets are distributed from transmitting devices to the destination. Packets in the
downward direction are queued and dequeued according to the device’s interfaceType.

5.1.3. Semantic and Platform Interoperability

FLINT is well suited to provide both semantic and platform interoperability. For
example, imagine a LPWAN sensor network with the following requirements:

• Low-end sensors must be manageable through the LwM2M protocol. Preferably, their
packets should be compressed using the SCHC compression and fragmentation standard.

• For proprietary sensors, an adapter must run as a digital twin in the FLINT platform.
This can be done by converting their proprietary format using the Virtual Device
Manager (VDM) [29].

• Data from the LwM2M server must be delivered to a LDP. Hence, the LwM2M
ontology must be mapped to RDF. This can be done using the RML.

FLINT’s modular and extensible architecture makes this easy; Figure 7 shows the
configuration. Data coming from the LPWANs are delivered either to the SCHC router
or the VDM. Both adapters send requests to the LwM2M server and deliver responses to
the Mapper adapter. The LwM2M adapter subscribes to the event stream of the LwM2M
server. The RML adapter on its turn maps the LwM2M ontology to the Semantic Sensor
Networks (SSN) ontology. The result is published to a LDP.

schc

mapper

lwm2m

rml

CoAP

lwm2m

HTTP

event stream

ldp

HTTP

sub
urn:uuid:schc/in

sub
urn:uuid:rml/in

from/to
sensor networks

vdm

sub
urn:uuid:+/out

CoAP

sub
urn:uuid:vdm/in

Figure 7. FLINT configuration that provides semantic and platform interoperability. Packets from
the LPWANs are delivered to the LwM2M server. Data from the LwM2M server are mapped to an
ontology that matches the semantics of the LDP.

Appl. Sci. 2021, 11, 9303 14 of 20

The above configuration shows how two incompatible platforms can be interconnected
through FLINT. An adapter is dedicated to match their semantics and thereby provides
semantic and cross-platform interoperability. Once cross-platform interoperability is achieved,
cross-domain interoperability can be enabled by adding adapters that integrate platforms
from heterogeneous domains.

5.2. Scalability

This section evaluates FLINT in terms of scalability. Every FLINT adapter consists of
at least two components—the agent and the sink. Consequently, every adapter consists of
(at least) two containers. Components can be updated easily when pulling an image in a
Kubernetes deployment. Kubernetes thereby provides a fast iteration cycle and scalability.
Consider as an example the data flow from Section 5.1.3.

There, a FLINT configuration uses RML to match different ontologies. The RML
adapter uses a Turtle mapfile that describes the mapping. The Kubernetes configuration file
is used to input the mapfile to the RML adapter that runs in a Node.js server instance. In a
running system, this adapter can be replicated so multiple adapters can match the LwM2M
vocabulary to various ontologies. This can be done by simply replacing the mapfile.
Figure 8 shows two Kubernetes deployments that are managed by the Kubernetes master.
A Kubernetes deployment represents an adapter and can be configured by mounting
configuration files. In this example, the LwM2M data model can be translated to SSN by
one adapter and to Next Generation Service Interfaces (NGSI)-LD (NGSI-LD) by another
one. By simply replicating the adapter and mounting a different configuration file, the
FLINT configuration can be expanded easily.

adapter_conf.ini,

lwm2m_to_ngsi.ttl

POD

container runtime

volume

POD

container runtime

volume

POD

container runtime

volume

POD

container runtime

volume

adapter_conf.ini,

lwm2m_to_ssn.ttl

MASTER

API SERVER

etcd

CM SCHED

MASTER

API SERVER

etcd

CM SCHED

Figure 8. An excerpt of a FLINT system in a Kubernetes environment. Every Kubernetes deployment
consists of (at least) two Docker containers—the sink and the agent. Both containers can be configured
by mounting configuration files. Every deployment is managed by the Kubernetes master.

5.3. Performance Evaluation

This section first compares FLINT with other State of the Art (SoTA) platforms that
provide similar functionality (i.e., open source N*-N*-N* platforms). The evaluation uses
six MQTT clients that publish data to a broker. For every platform, a platform adapter
processes the incoming data in order to feed it to the IoT platform. The platform delivers
the data to a UDP client that forwards the data to a UDP server. This is illustrated in
Figure 9.

Appl. Sci. 2021, 11, 9303 15 of 20

MQTT BrokersMQTT Clients IoT Platform UDP Client UDP ServerPlatform Adapters

SERVER 1 SERVER 2 SERVER 3

Figure 9. The test setup. Every test consists of six MQTT clients, subscribed to six MQTT brokers.
The clients forward their data to the IoT platform that is being tested. A UDP client fetches data from
the platform and forwards the packet to a UDP server.

5.3.1. Experimental Setup

The experimental setup consists of three servers running Ubuntu 18.04 and are synced
using the Network Time Protocol daemon (ntpd). All three servers have a gigabit Network
Interface Card (NIC), 2 Hexacore Intel E5645 (2.4Gigahertz (GHz)) CPU and 24 Gigabyte
(GB) Random Access Memory (RAM). One server is used to host the MQTT clients and
brokers. Another to host the platforms and one to host the UDP server. Each IoT platform
is configured to run in a Kubernetes cluster.

5.3.2. Analysis of Platform Performance

This section analyzes the different selected platforms under different loads. The
responsiveness of every platform is measured using the goodput. This has been defined
as the total number of successfully received packets divided by the total number of sent
packets. Figure 10 shows the average time and goodput for Node-RED (v.1.3.5), Eclipse
Hono (v 1.9) and FLINT.

0 2500 5000 7500 10000 12500 15000 17500
req/s

1

2

3

4

5

6

7

8

de
la

y
(m

s)

hono
nodered multiple
flint

(a) Average delay in seconds

0 2500 5000 7500 10000 12500 15000 17500
req/s

0.5

0.6

0.7

0.8

0.9

1.0

go
od

pu
t

hono
nodered single
nodered multiple
flint

(b) Goodput

Figure 10. The latency (in seconds) and goodput measured for six MQTT adapters in different
platforms. Multiple instances of Node-RED perform best compared to Hono and FLINT. Node-RED
single had too large delays for the Figure, but can be retrieved from Table 2.

Excluded from the Figure are the very large delays for a single Node-RED instance.
For completeness, these values are provided in Table 2. These high delays are due to the
single-threaded design of the underlying Node.js instance [30]. Furthermore, the goodput
for a Node-RED (single instance) application dropped significantly for data rates above
7500 messages per second, which can be seen in Figure 10b. To take advantage of multi-core
systems, a cluster of Node.js processes can be deployed to handle the load. Therefore, six
Node-RED instances were deployed and is referenced as Node-RED multiple. Every instance

Appl. Sci. 2021, 11, 9303 16 of 20

subscribes to a MQTT broker, processes the data and forwards it to the UDP server. This
resulted in near-zero latency and a 100% goodput.

For this experiment, Hono used the default configuration. However, as Hono seemed
to struggle with data rates above 5000 messages/second (which was also reported in [31]),
we deployed a Vert.x MQTT adapter for every MQTT client. This resulted in slightly worse
results in terms of latency and goodput, compared to Node-RED.

Finally, FLINT consisted of six direct MQTT adapters that published their data directly
over the message bus to the UDP I/O adapter. Even though FLINT requires at least twice
the payload size of the other platforms, the experiment showed slightly better results
compared to Hono and slightly worse results than Node-RED running multiple instances.
We noticed CPU spikes to 100% for some threads running the sink implementation, which
likely causes the 1% packet loss.

5.4. Mapper Forwarding Rate

FLINT provides flexibility in connecting non-interoperable IoT networks. Due to
its modularity, it is possible to interconnect various IoT components on top of which
the Mapper adapter can queue packets based on the interface type of the device. These
advantages, however, come at a cost. This section analyzes the drawbacks introduced by
the platform.

The above section used six direct adapters. This type of adapter forwards the data
directly to another endpoint in the platform. However, the Mapper adapter can be used
to forward data between several components. As shown in Figure 11, the average la-
tency increases and the goodput decreases, since the message bus must process twice as
many messages.

0 2500 5000 7500 10000 12500 15000 17500
req/s

0

10

20

30

40

50

de
la

y
(m

s)

direct
mapper
dummy

(a) Average delay in seconds

0 2500 5000 7500 10000 12500 15000 17500
req/s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

go
od

pu
t

direct
mapper
dummy

(b) Goodput

Figure 11. The latency (in seconds) and goodput for six MQTT adapters measured for different
configurations in FLINT.

In order to measure the impact of another hop, a dummy adapter was added to the
system. This is a processing adapter that forwards the packet after a No Operation (NOP).
Messages will now flow from the MQTT adapter to the Mapper adapter, to the dummy
adapter and finally to the UDP adapter. Using this configuration, the message bus must
process three times the amount of messages compared to the second configuration.

An overview of the measurements is given in Table 2. It can be seen that the message
bus and the Mapper adapter form a bottleneck for the system. In the future, this can be
solved in several ways. A first solution could use MQTT v5 Shared Subscriptions. This fea-
ture distributes the load across all subscribers on the same topic and is sometimes referred
to as client load balancing. This allows setting up multiple Mapper adapter instances with-
out having duplicates. To avoid saturation of the MQTT broker, a cluster of MQTT brokers
can be deployed. Managing a cluster of MQTT brokers, however, requires non-standard
broker discovery, subscriber takeover and routing management. Therefore, other messages
busses, such as Apache Kafka or Pulsar [32] can be used. This would require a few changes
to the system. First, the sink must be replaced in order to communicate with the improved
message bus. In Apache Kafka, multiple partitions can then be used to form consumer

Appl. Sci. 2021, 11, 9303 17 of 20

groups. These groups avoid duplication of data over multiple members subscribed to the
same topic. As such, multiple mapper instances can be deployed, without the need to
redesign the Mapper adapter completely. However, all Mapper adapters should access the
same Thing Descriptions, and therefore require access to a shared Thing Directory.

Table 2. The Latency (L) in seconds, the Goodput (G) and the Payload size in bytes for the evaluated platforms.

req/s 4500 10,500 14,500 17,500 All

L (s) G L (s) G L (s) G L (s) G Payload size
(B)

Node-RED (1) 0.007 0.98 11.633 0.5 20.843 0.53 26.278 0.54 259
Node-RED (6) 0.0016 1 0.0008 0.99 0.0006 1 0.0007 0.99 259
Eclipse Hono 0.007 1 0.004 0.99 0.003 0.99 0.003 0.99 259

FLINT (direct) 0.003 1 0.002 0.98 0.004 0.98 0.002 0.99 513
FLINT (mapper) 0.005 0.99 0.012 0.97 0.022 0.78 0.025 0.64 1102
FLINT (dummy) 0.007 0.98 0.04 0.63 0.05 0.41 0.054 0.33 1202

5.5. Resource Consumption

Finally, in Figure 12, two system configurations are presented in order to explore the
impact of a very basic workload offloading approach. In Figure 12, a, every component
runs on the same machine. This results in an average of around 45% CPU load and
4.5 GB memory consumption. In the second configuration, the MQTT broker was moved
to a different machine. This resulted in an average of only 17% CPU usage and 4 GB
memory consumption.

0 5 10 15 20 25 30 35
time (s)

0

10

20

30

40

50

60

CP
U

(%
)

CPU
Memory

0

1000

2000

3000

4000

5000

Re
al

 M
em

or
y

(M
B)

(a) FLINT Direct adapter configuration
without load balancing

0 5 10 15 20 25 30 35
time (s)

0

5

10

15

20

25

30

35

CP
U

(%
)

CPU
Memory

0

1000

2000

3000

4000

Re
al

 M
em

or
y

(M
B)

(b) FLINT Direct adapter configuration with
external broker

Figure 12. Comparison of a very simple load balancing method. The first configuration runs
every component on the same machine, while in the second configuration the broker is moved to a
different machine.

This confirms the previous statement that the message bus forms a bottleneck for the
system, since every message between components passes through the broker. However,
due to FLINT’s modularity, the message bus can be transferred easily to a different system
in order to divide the load, at the cost of a higher network delay.

6. Discussion

Other platforms, such as INTER-IoT and Eclipse node-wot have been around to
provide interoperability in the IoT. However, INTER-IoT has become a rather complex
platform that provides multi-layer interoperability for large scale projects. Eclipse node-
wot, implemented in Node.js, merely focuses on interoperability, rather than scalability.

These observations led to the initial design of FLINT with the main objective to inter-
connect non-interoperable IoT networks that are characterised by intermittent connectivity.
FLINT was designed to support five levels of interoperability—syntactic interoperability,

Appl. Sci. 2021, 11, 9303 18 of 20

semantic interoperability, device interoperability, network interoperability and platform
interoperability. The modularity of the design, consisting of a sink and agent, allows the
recycling of existing programs through the use of a socket connection, while still being able
to scale.

We implemented FLINT to support our design choices and to show how the implemen-
tation behaves against different loads on comparable platforms. Our evaluation showed
that Node-RED performs best in terms of latency and goodput. However, this requires to
break apart the application in order to take advantage of the available CPU cores of the
system. Eclipse Hono and FLINT show similar results. However, due to its flexible design
using the sink, developers require only little understanding of the underlying protocols
and can use any language that supports UDP sockets. Integrating business logic in Eclipse
Hono, on the contrary, requires both an AMQP library and understanding of the protocol.

The evaluation showed that FLINT is able to deliver good performance in a scalable,
container based system. However, both the performance evaluation of the Mapper adapter
and the resource consumption of the basic load balancing approach show the impact of a
single, central message bus. Since every message has to pass through the broker and, if
configured, the Mapper adapter, this forms a bottleneck for the system. Therefore, other
distributed streaming platforms, such as Apache Kafka or Pulsar can be used in the future
to provide support for use cases that require higher data rates.

7. Conclusions

FLINT is an open and extensible distributed platform architecture. Chains of adapters
can be built in order to serve non-interoperable IoT devices. FLINT was developed and
tested in the scope of the Port of the Future where several adapters interconnect networks
and platforms. Due to the modularity of an adapter, developers can easily integrate
existing software while maintaining a flexible design. This will allow further evolution of
separate networks and platforms and may contribute to inter-port interaction, port-city
interaction and trans-sector innovation in general. Our performance analysis shows that the
modularity is comparable to other existing platforms, while offering the ability to develop
software using rapid prototyping approaches. In order to maintain a scalable platform,
components can be replicated in a distributed network. However, scalability should still be
looked at in more detail. Duplicates must be avoided when deploying multiple adapter
instances and the abilities of different messages busses should be analyzed. FLINT is free
software; it is available for download at https://github.com/imec-idlab/flint (accessed on
6 October 2021).

8. Future Work

Currently, every adapter is given a Unique Resource Name (URN) which must be
known to the Mapper adapter in order to route packets. However, adapters should be able
to configure themselves, request a URN and update existing routing schemes. Depending
on the message bus, other sink implementations must be provided. Furthermore, since
Kubernetes is deprecating Docker and Docker actually sits on top of containerd, FLINT
will evolve in the future to use containerd as a Container Runtime Interface (CRI). Due
to the fact that containerd is more lightweight, it will contribute to the rapid forwarding
which FLINT is targeting. In order to improve the responsiveness and scalability of the
system even more, the proposed methods to cope with the determined bottlenecks should
be evaluated. Finally, it should be investigated whether injecting environment variables is
more lightweight instead of using configuration files.

https://github.com/imec-idlab/flint

Appl. Sci. 2021, 11, 9303 19 of 20

Author Contributions: This work has been part of the PortForward project, where all the above au-
thors have contributed to the outcome. J.H. and B.M. started the investigation and conceptualization.
B.M. performed the formal analysis, wrote the software, performed the validation and wrote the
original draft. M.A. and V.B. contributed to the software and edited and reviewed the original draft.
J.H. supervised the implementation and validation of the software. J.H. and B.V. revised the draft of
the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research has received funding from the European Union’s Horizon 2020 research and
innovation program under grant number 769267 (PortForward project).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in https://gitlab.
ilabt.imec.be/bamoons/flint_evaluation_data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Amazon. AWS IoT Core for LoRaWAN. Available online: https://docs.aws.amazon.com/iot/latest/developerguide/connect-

iot-lorawan.html. (accessed on 13 July 2021).
2. Technologies, K. Kaa Enterprise IoT Platform. Available online: https://www.kaaiot.com. (accessed on 13 July 2021).
3. Mathworks Inc. ThingSpeak Internet of Things. Available online: https://www.thingspeak.com. (accessed on 13 July 2021).
4. Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in Internet of Things: Taxonomies and Open Challenges. Mob. Netw.

Appl. 2019, 24, 796–809. [CrossRef]
5. Yang, Y.; Zhong, M.; Yao, H.; Yu, F.; Fu, X.; Postolache, O. Internet of things for smart ports: Technologies and challenges. IEEE

Instrum. Meas. Mag. 2018, 21, 34–43. [CrossRef]
6. Inkinen, T.; Helminen, R.; Saarikoski, J. Port Digitalization with Open Data: Challenges, Opportunities, and Integrations. J. Open

Innov. Technol. Mark. Complex. 2019, 5, 30. [CrossRef]
7. Famaey, J.; Berkvens, R.; Ergeerts, G.; De Poorter, E.; Van den Abeele, F.; Bolckmans, T.; Hoebeke, J.; Weyn, M. Flexible Multimodal

Sub-Gigahertz Communication for Heterogeneous Internet of Things Applications. IEEE Commun. Mag. 2018, 56, 146–153.
[CrossRef]

8. Bracke, V.; Sebrechts, M.; Moons, B.; Hoebeke, J.; De Turck, F.; Volckaert, B. Design and evaluation of a scalable Internet of Things
backend for smart ports. Softw. Pract. Exp. 2021, 51, 1557–1579. [CrossRef]

9. Buurman, B.; Kamruzzaman, J.; Karmakar, G.; Islam, S. Low-Power Wide-Area Networks: Design Goals, Architecture, Suitability
to Use Cases and Research Challenges. IEEE Access 2020, 8, 17179–17220. [CrossRef]

10. Minaburo, A.; Toutain, L.; Gomez, C.; Barthel, D.; Zúñiga, J.C. SCHC: Generic Framework for Static Context Header Compression and
Fragmentation; Technical Report RFC8724; RFC: Fremont, CA, USA, 2020. [CrossRef]

11. Moons, B.; Karaagac, A.; Haxhibeqiri, J.; De Poorter, E.; Hoebeke, J. Using SCHC for an optimized protocol stack in multimodal
LPWAN solutions. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18
April 2019; pp. 430–435. [CrossRef]

12. Aernouts, M.; BniLam, N.; Podevijn, N.; Plets, D.; Joseph, W.; Berkvens, R.; Weyn, M. Combining TDoA and AoA with a particle
filter in an outdoor LoRaWAN network. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium
(PLANS), Portland, OR, USA, 20–23 April 2020; pp. 1060–1069. [CrossRef]

13. Janssen, T.; Weyn, M.; Berkvens, R. A Primer on Real-world RSS-based Outdoor NB-IoT Localization. In Proceedings of the 2020
International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, 2–4 June 2020; pp. 1–6. [CrossRef]

14. Anagnostopoulos, G.G; Kalousis, A. A Reproducible Analysis of RSSI Fingerprinting for Outdoor Localization Using Sigfox:
Preprocessing and Hyperparameter Tuning. In Proceedings of the 2019 International Conference on Indoor Positioning and
Indoor Navigation (IPIN), Pisa, Italy, 30 September–3 October 2019; pp. 1–8. [CrossRef]

15. Zafari, F.; Gkelias, A.; Leung, K.K. A Survey of Indoor Localization Systems and Technologies. IEEE Commun. Surv. Tutor. 2019,
21, 2568–2599. [CrossRef]

16. Li, Y.; Zhuang, Y.; Hu, X.; Gao, Z.; Hu, J.; Chen, L.; He, Z.; Pei, L.; Chen, K; Wang, M.; et al. Toward Location-Enabled IoT (LE-IoT):
IoT Positioning Techniques, Error Sources, and Error Mitigation. IEEE Internet Things J. 2020, 8, 4035–4062. [CrossRef]

17. Aernouts, M.; Lemic, F.; Moons, B.; Famaey, J.; Hoebeke, J.; Weyn, M.; Berkvens, R. A Multimodal Localization Framework
Design for IoT Applications. Sensors 2020, 20, 4622. [CrossRef] [PubMed]

18. Data—W3C. Available online: https://www.w3.org/standards/semanticweb/data (accessed on 14 July 2021).
19. Dimou, A.; Vander Sande, M.; Colpaert, P.; Verborgh, R.; Mannens, E.; Van de Walle, R. RML: A Generic Language for Integrated

RDF Mappings of Heterogeneous Data. In Proceedings of the 7th Workshop on Linked Data on the Web, Seoul, Korea, 8 April 2014;
p. 5.

https://gitlab.ilabt.imec.be/bamoons/flint_evaluation_data
https://gitlab.ilabt.imec.be/bamoons/flint_evaluation_data
https://docs.aws.amazon.com/iot/latest/developerguide/connect-iot-lorawan.html
https://docs.aws.amazon.com/iot/latest/developerguide/connect-iot-lorawan.html
https://www.kaaiot.com
https://www.thingspeak.com
http://doi.org/10.1007/s11036-018-1089-9
http://dx.doi.org/10.1109/MIM.2018.8278808
http://dx.doi.org/10.3390/joitmc5020030
http://dx.doi.org/10.1109/MCOM.2018.1700655
http://dx.doi.org/10.1002/spe.2973
http://dx.doi.org/10.1109/ACCESS.2020.2968057
http://dx.doi.org/10.17487/RFC8724
http://dx.doi.org/10.1109/WF-IoT.2019.8767210
http://dx.doi.org/10.1109/PLANS46316.2020.9110172
http://dx.doi.org/10.1109/ICL-GNSS49876.2020.9115578
http://dx.doi.org/10.1109/IPIN.2019.8911792
http://dx.doi.org/10.1109/COMST.2019.2911558
http://dx.doi.org/10.1109/JIOT.2020.3019199
http://dx.doi.org/10.3390/s20164622
http://www.ncbi.nlm.nih.gov/pubmed/32824497
https://www.w3.org/standards/semanticweb/data

Appl. Sci. 2021, 11, 9303 20 of 20

20. Sinche, S.; Raposo, D.; Armando, N.; Rodrigues, A.; Boavida, F.; Pereira, V.; Silva, J.S. A Survey of IoT Management Protocols and
Frameworks. IEEE Commun. Surv. Tutor. 2020, 22, 1168–1190. doi: 10.1109/COMST.2019.2943087. [CrossRef]

21. OMA LwM2M. Lightweight Machine to Machine Technical Specification: Core. 2020. Available online: http://www.
openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.
pdf (accessed on 6 June 2021).

22. OpenRemote Inc. OpenRemote: The 100% Open Source IoT Platform. Available online: https://openremote.io (accessed on
13 July 2021).

23. Fortino, G.; Savaglio, C.; Palau, C.E.; de Puga, J.S.; Ganzha, M.; Paprzycki, M.; Montesinos, M.; Liotta, A.; Llop, M. Towards
Multi-layer Interoperability of Heterogeneous IoT Platforms: The INTER-IoT Approach. In Integration, Interconnection, and
Interoperability of IoT Systems; Series Title: Internet of Things; Gravina, R., Palau, C.E., Manso, M., Liotta, A., Fortino, G., Eds;
Springer International Publishing: Cham, Switzerland, 2018; pp. 199–232. [CrossRef]

24. Authors, T.T. ThingsBoard: Open-source IoT Platform. Available online: https://www.thingsboard.io. (accessed on 13 July 2021).
25. Thingweb. ThingWeb: A Web of Things Implementation. Available online: https://www.thingweb.io. (accessed on 13 July 2021).
26. Project, T.E.H. Eclipse Hono: Connect, Command & Control IoT Devices. Available online: https://www.eclipse.org/hono.

(accessed on 13 July 2021).
27. Foundation, O. Node-RED: Low-Code Programming for Event-Driven Applications. Available online: https://www.nodered.org.

(accessed on 13 July 2021).
28. Giménez, P.; Llop, M.; Olivares, E.; Palau; Montesinos; Llorente, M.A. Interoperability of IoT Platforms in the Port Sector. In

Proceedings of the Transport Research Arena (TRA 2020), Helsinki, Finland, 27–30 April 2020.
29. Karaagac, A.; VanEeghem, M.; Rossey, J.; Moons, B.; DePoorter, E.; Hoebeke, J. Extensions to LwM2M for Intermittent Connectivity

and Improved Efficiency. In Proceedings of the 2018 IEEE Conference on Standards for Communications and Networking
(CSCN), Paris, France, 29–31 October 2018; pp. 1–6. [CrossRef]

30. Cluster | Node.js v16.5.0 Documentation. Available online: https://nodejs.org/api/cluster.html (accessed on 15 July 2021).
31. Reimann, J. We Scaled IoT—Eclipse Hono in the Lab. 2018. Available online: https://dentrassi.de/2018/07/25/scaling-iot-

eclipse-hono (accessed on 14 July 2021).
32. John, V.; Liu, X. A Survey of Distributed Message Broker Queues. arXiv 2017, arXiv:1704.00411.

http://dx.doi.org/10.1109/COMST.2019.2943087
http://www.openmobilealliance.org/release/ LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/ LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/ LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
https://openremote.io
http://dx.doi.org/10.1007/978-3-319-61300-0_10
https://www.thingsboard.io
https://www.thingweb.io
https://www.eclipse.org/hono
https://www.nodered.org
http://dx.doi.org/10.1109/CSCN.2018.8581821
https://nodejs.org/api/cluster.html
https://dentrassi.de/2018/07/25/scaling-iot-eclipse-hono
https://dentrassi.de/2018/07/25/scaling-iot-eclipse-hono

	Introduction
	Case Study—Port of the Future
	Heterogeneous LPWAN
	Localization
	Data Transformation

	Related Work
	Flint Architecture
	Adapter Types
	Device Based Context
	Packet Storage
	Device Configuration

	Evaluation
	Levels of Interoperability
	Syntactic Interoperability
	Device and Network Interoperability
	Semantic and Platform Interoperability

	Scalability
	Performance Evaluation
	Experimental Setup
	Analysis of Platform Performance

	Mapper Forwarding Rate
	Resource Consumption

	Discussion
	Conclusions
	Future Work
	References

