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Introduction

“
It’s a dangerous business, going out your door. You step
onto the road, and if you don’t keep your feet, there’s no
knowing where you might be swept o� to.

”— J.R.R. Tolkien, The Fellowship of the Ring

“Buildings? So . . . you’re an architect?”

I am quite sure that most mathematicians recognise the inner struggle, when the uninitiated asks

the dreaded question what your research is about. You want to make them understand — or at least

appreciate — the beauty of the abstract structures and their symmetries. You want to show them

illustrations like the one below and explain the construction. You want to grant them even a small

glimpse of the satisfaction you feel when laying the �nal puzzle piece to a new result.

At that moment, you forget the years upon years of necessary background. You forget the frequent

moments of frustration when a new approach to your tantalising research problem, again, proves

useless. And you forget that, for most people, “buildings” are totally di�erent things from the ones

you’re used to. (In my case, it probably also doesn’t help that my very young self liked drawing —

so much that, naturally, I wanted to be an architect when I grew up.)

But indeed: buildings. Oddly enough, throughout my mathematical curriculum at Ghent University

buildings never quite stole the spotlight, but simultaneously everyone seemed to know about them.

Building theory turned out to be a broad subject — encompassing various notions of group theory,

incidence geometry, graph theory . . . into a single elegant framework. Projective and a�ne spaces

are prime examples of buildings, as are in�nite trees (a fact that is another foolproof way to invoke

a giggle out of the uninitiated).
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Introduction

The �rst PhD year was mostly spent on getting to grips with this new theory of buildings and the

existing literature. My �rst goal was to generalise results of Ana Silva ([DMdSS18] and [DMdS19])

to universal groups with local groups that are not necessarily �nite or transitive — I sketch some

history and motivation in the next section — and throughout the second PhD year this went rather

smoothly, without major hindrances, except for one disenchanting problem that appeared to be oh

so innocent. In fact, I essentially wasted the third year thinking to crack the problem “next week”!

Su�ce it to say, the disillusion did not work wonders for my motivation. Moreover, the fourth and

�nal PhD year was the cursed year 2020–2021, and we all know what happened then. This thesis is

the culmination of those four years, smoothing out the ups and downs of day-to-day research into

one coherent document.

The main bulk of this PhD thesis consists of the results of [BDM21], accompanied with more back-

ground and written out in more detail. New results are the city products of buildings in Section 2.7,

the simplicity theorem in Section 3.4, and the restricted universal groups in Chapter 4. To my regret,

the results about restricted universal groups are still a bit shallow, and I mention in Chapter 5 some

research questions that I would have liked to explore further.

Framing the research

The main topic of this thesis �nds its origin in foundational work by Marc Burger and Shahar Mozes

([BM00a]) on the local versus global structure of groups acting on trees. The groups in question are

topological groups, i.e. groups equipped with a compatible topology. Topological group theory is

a very broad area on its own and has connections to numerous other mathematical areas and even

other sciences. One condition preventing the topological groups from growing uncontrollably wild

is local compactness.

Locally compact groups are interesting because they embody a huge family of naturally occurring

groups. Also, they come with a natural measure called theHaarmeasure, allowing the application of

various techniques from the toolbox of mathematical analysis. In general, a locally compact group

decomposes into a connected group and a totally disconnected one. Those two cases can more or

less be studied independently from each other.

The structure theory of connected locally compact groups can be called well understood since the

1950s, thanks to the solution of Hilbert’s �fth problem by Andrew Gleason, Deane Montgomery,

Leo Zippin, and Hidehiko Yamabe. They demonstrated that connected locally compact groups can,

roughly speaking, be approximated by Lie groups; we mention the precise result in Theorem 1.2.17.

On the other hand, totally disconnected locally compact groups are still quite mysterious. In fact,

for a long time the only general structural result was a theorem by David van Dantzig ([vD36]),

roughly saying that such a group has an abundance of compact open subgroups (Corollary 1.2.19).

Note that this result dates back to 1936! More recently in 1994, George Willis introduced in [Wil94]

some new tools to analyse totally disconnected locally compact groups, such as the scale function.

Today, a classi�cation result analoguous to the Gleason–Yamabe theorem seems far out of reach.

Encouraged by van Dantzig’s result, several theorems and techniques have been found that relate

the global structure of a totally disconnected locally compact group to its compact open subgroups.

For example, Willis showed in [Wil07] that if such a group is topologically simple and compactly

generated, then its compact open subgroups cannot be solvable. The results by Burger and Mozes

in [BM00a] also fall in this category: they studied the local-to-global properties of groups acting on

a tree by automorphisms.
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Introduction

In particular, they eventually de�ne a subgroup U(F ) of the automorphism group of a regular tree,

obtained by restricting the local actions around every vertex to a prescribed permutation group F
(we give a detailed de�nition in Section 1.5.1). This construction provides a large family of totally

disconnected locally compact groups, that are compactly generated and nondiscrete (under very

mild conditions). Moreover, these “universal groups” satisfy Tits’s independence criterion, and can

be shown to have a simple subgroup of index two.

Another “hot topic” in locally compact group theory, are lattices: discrete subgroups Γ ≤ G such

that the quotient space G/Γ is of �nite invariant volume. As Burger and Mozes showed, the auto-

morphism groups of direct products of trees are natural habitats of interesting lattices ([BM00b]).

We note that Hyman Bass and Alexander Lubotzky found interesting results in the automorphism

group of a single tree as well, and refer to [Car02] for a nice overview.

Automorphisms groups of trees have the additional bene�t of being very �exible. Simon Smith for

example proposed in [Smi17] a construction similar to the Burger–Mozes universal group over a

semiregular tree, with two local permutation groups. This allowed Smith to construct an uncount-

able family of nonisomorphic, nondiscrete, compactly generated, totally disconnected, locally com-

pact, simple groups — the existence of which was new. We give some more details in Section 1.5.2.

We also mention results by Adrien Le Boudec, who allowed for a �nite number of local exceptions

in the Burger–Mozes groups. His construction gives rise to interesting topological groups that do

not admit any lattice, which appears to quite be an elusive phenomenon. We refer to Section 1.5.3

or [LB16].

In Section 1.5.4, we touch upon recent results by Waltraud Lederle in [Led17], who de�ned another

variant of the Burger–Mozes group more similar to the Neretin group of spheromorphisms of trees

([BCGM12]). Her construction leads, again, to interesting topological groups that do not admit any

lattices.

What mainly makes all of the above constructions valuable is the fact that there is a lot of freedom

in the local data, which profoundly impacts the group’s global structure.

Following a suggestion of Pierre-Emmanuel Caprace and under supervision of Tom De Medts, Ana

Silva studied in her PhD thesis a generalisation of the original universal group of Burger and Mozes

to right-angled buildings, of which trees are prototypical examples. The main reason why universal

groups over trees “work” is the property that a permutation of the edges in any star can be extended

to a full tree automorphism, i.e. the local data is retrievable at the global scale. Buildings in general

do not enjoy this property: it is not possible to, say, extend any arbitrary permutation of the points

on a line in a projective space to a full automorphism. Right-angled buildings, however, are a general

class of buildings that do have this exceptional local-to-global property.

In this thesis we continue the work of Silva, who focused on the locally �nite case with transitive

local groups. We further develop the universal groups without these restrictions, and introduce a

generalisation of the results of Smith and Le Boudec to this building setting. A recurring theme in

this setting will be that the structure of the resulting groups not only depend on the permutational

properties of the local groups, but also on the combinatorial properties of the building’s diagram.

Overview of the results

We start with an introductory chapter with preliminaries in abstract and topological group theory,

a refresher on graph theory, general results about automorphisms of trees, and a brief sketch of the

results of Burger–Mozes, Smith, Le Boudec, and Lederle, before we introduce buildings in general.
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In the next chapter we focus solely on right-angled buildings and establish some auxiliary lemmas.

In that chapter, we de�ne the concept of an implosion of a building: a controlled way of collapsing

a building in a completely di�erent way from projections or retractions, but by collapsing the local

structure. We also introduce an operation that we call a city product, allowing us to glue together

buildings along another building, and we establish some properties of this product.

In Chapter 3 we �nally de�ne the universal groups over right-angled buildings. We need a technical

lemma for extending any partial automorphism to an automorphism “as close to a universal group

element as possible” (Proposition 3.1.9). We then characterise in terms of the local groups and the

diagram when the universal group is transitive, and more interestingly, primitive (Theorem 3.2.15,

generalising a result of Smith). Here we can already clearly see how the diagram’s combinatorial

structure a�ects the group’s global structure. We proceed to characterise when the universal group

is generated by point stabilisers, again in terms of the local data and the diagram (Theorem 3.2.20).

We proceed to endow both the local groups and the universal group with the permutation topology

and study how the local and global topological structure relate. In particular, we present su�cient

conditions under which the universal group is compactly generated. We conjecture these conditions

to be necessary as well and present some motivational partial results. Next, we establish a general

simplicity criterion, and use it to show the subgroup of the universal groups generated by chamber

stabilisers to be simple. Finally, we study our city products again, and describe the universal group

over a city product as a universal group of universal groups over the factor buildings.

In Chapter 4, we study an analogue of the Le Boudec groups to right-angled buildings. We quickly

�nd restrictions on where the exceptional local actions can occur, and properties that motivate to

restrict to locally �nite buildings again. We endow the restricted universal groups with a topology

that allows us to transfer properties of the universal groups to this setting. Finally, we generalise a

characterisation of Pierre-Emmanuel Caprace, Colin Reid, and Phillip Wesolek, and describe when

the groups are virtually simple.

We �nish this thesis with some open questions in Chapter 5.
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1 Preliminaries

“
Knowing your own ignorance is the �rst step to enlightenment.

”— Patrick Rothfuss, The Wise Man’s Fear

1.1 Abstract group theory

First and foremost, we cannot give a concise introduction to the vast area that is modern (abstract)

group theory, but we will recall some fundamental concepts. We shall assume familiarity with these

notions, and mainly take the opportunity to establish some notational conventions that we will use

throughout this thesis. We refer to Page 141 for an overview of notations.

Let (G, · ) be a group. We will always use multiplicative notation, and usually, unless the situation

calls for explicit notation, we will abbreviate g · h as gh. The identity element will be denoted by

id and the inverse of a group element g by g−1
. We denote conjugation of an element g by h by

h · g · h−1 = hg,

which is a slightly awkward notation, but that is the price to pay if we want that
h2(h1g) = h2h1g.

The commutator of two elements g and h will be denoted by

g · h · g−1 · h−1 =
[
g, h
]
.

Next, let G act on a set X . By convention, our groups always act on the left, and we denote by g .x
the image of an element x ∈ X under g ∈ G. Consequently, when G is a group of permutations,

the composition g · h means the permutation obtained by �rst applying h, and then g. Then for all

g, h ∈ G and all x ∈ X ,

(g · h) .x = g .(h.x).

Occasionally we will also use other common notations like gx or g(x), but we will try to keep this

to a minimum — we dismiss the former to avoid confusion with the group operation, and the latter

to avoid an avalanche of parentheses. Extending our group action notation, the G-orbit of x will

be denoted by G.x.

For the pointwise stabiliser of a subset Y ⊆ X , we use the notation

G(Y ) =
{
g ∈ G

∣∣ g .y = y for all y ∈ Y
}
,

and for the setwise stabiliser,

G{Y } =
{
g ∈ G

∣∣ g .y ∈ Y for all y ∈ Y
}
.

Whenever Y = {y}, we will simply write the stabiliser as Gy since both notions obviously agree.

However, in order to avoid potential confusion we will never use an abbreviation like GY when Y
is not a singleton.

11



1 Preliminaries

De�nition 1.1.1 (transversal). A transversal for the action of G on a set X is any subset Υ ⊆ X
that contains exactly one element of every orbit, or in other words, any subset Υ ⊆ X that makes

the natural map Υ→ X/G : x 7→ G.x to the orbit space bijective.

De�nition 1.1.2. LetG be a group acting on a setX . We de�ne the subgroupG+ = 〈Gx | x ∈ X〉
generated by all point stabilisers.

Let us recall some familiar general properties of group actions.

De�nition 1.1.3. Let G be a group acting on a set X . We say that the action is . . .

• transitive if G has only one single orbit on X ;

• faithful if the intersection of all point stabilisers is trivial;

• free or semiregular if every point stabiliser is trivial;

• regular if it is both transitive and free;

• primitive if it is transitive and leaves no partition of X invariant, except the trivial partitions

into one single class and into singletons.

Later on we will encounter other properties for groups acting on certain geometric structures, such

as De�nitions 1.4.1, 1.6.7, and 2.4.4. Additionally we will use the renowned primitivity criterion by

Higman ([Hig67]). Here we recall some de�nitions and state the criterion.

De�nition 1.1.4 (suborbit). Let G be acting on a set X . Then the orbits of a point stabiliser Gx
are called suborbits of G.

De�nition 1.1.5 (orbital). Let G be acting on a set X . Then G induces an action on X ×X , by

g .(x, y) = (g .x, g .y). The orbits of this action are called orbitals of G. To every orbital G.(x, y)
corresponds an orbital graph: the graph with vertex set X and with edge set{

{u, v} | (u, v) ∈ G.(x, y) or (v, u) ∈ G.(x, y)
}

(see Section 1.3 for the de�nition of a graph).

Suppose thatG is transitive. There is one trivial or diagonal orbital {(x, x) | x ∈ X}, whose orbital

graph simply has a loop at each vertex. No other orbital graph has loops.

Lemma 1.1.6. LetG be acting transitively on a setX and let x ∈ X . Then there is a natural bijection
between the orbits of Gx and the orbitals of G; the trivial suborbit corresponds to the diagonal orbital.

Proof. De�ne

X ×X → X : Y → Y (x) = {y ∈ X | (x, y) ∈ Y }.

In particular, let Y now be an orbital of G. Then Y (x) is nonempty, since the action is transitive.

Let y1, y2 ∈ Y (x). There exists some g ∈ G such that g .(x, y1) = (x, y2). It follows that g ∈ Gx
and hence Y (x) is in fact an orbit of Gx. �

Theorem 1.1.7 (Higman). Let G be acting transitively on a setX . Then G acts primitively onX if
and only if every nondiagonal orbital graph is connected.

Proof omitted. We refer to [Hig67, (1.12)]. ��

We will need the following folklore result as well.

Lemma 1.1.8. LetG be a primitive nonregular permutation group onX . Let x, y ∈ X be two distinct
elements. Then there exists a permutation g ∈ G such that g .x = x but g .y 6= y.

12



1 Preliminaries

Proof. Suppose by means of contradiction that Gx ⊆ Gy . Since G is primitive, Gx is a maximal

subgroup, hence Gx = Gy . Let g ∈ G be such that g .x = y. Then g /∈ Gx but g normalises Gx.

We can hence write

Gx � NG(Gx) E G.

Again, as Gx is maximal, it follows that Gx E G. But then all point stabilisers are equal to Gx, so

that Gx �xes all points of X , and G is regular — a contradiction. �

The next few properties and propositions involve �nite index subgroups.

De�nition 1.1.9 (virtually (∗)). For any property (∗) of groups, we say that G is virtually (∗) if

there is a subgroup of �nite index that satis�es property (∗).

Lemma 1.1.10. LetG be a group and letH ≤ G be a subgroup of �nite index. Then there is a normal
subgroup N E G of �nite index such that N ≤ H .

Proof. The action of G on the coset space G/H by left multiplication induces a permutation repre-

sentation ρ : G→ Sym(n), where n = [G : H]. LetN = ker(ρ) be its kernel. Then indeedN E G
and N ≤ H , while G/N is isomorphic to a subgroup of Sym(n), so that [G : N ] is �nite. �

Lemma 1.1.11. A simple subgroup H of �nite index in an in�nite group G is a normal subgroup.

Proof. By Lemma 1.1.10 there exists some normal subgroupN E G of �nite index, contained inH .

Then N E H must either be trivial (and G �nite) or N = H . �

De�nition 1.1.12 (monolithic). A group is called monolithic if the intersection of all its nontrivial

normal subgroups is nontrivial. In other words, a monolithic group has a unique minimal normal

subgroup, which is then called its monolith.

De�nition 1.1.13 (commensurate). Two subgroups H1 and H2 of a group G are commensurate
if their intersection is of �nite index in both H1 and H2.

Lemma 1.1.14. Commensuration is an equivalence relation on subgroups.

Proof. Clearly, commensuration is re�exive and symmetric. In order to show that it is transitive as

well, let H1, H2, H3 ≤ G be subgroups such that H1 and H2 are commensurate and such that H2

and H3 are commensurate. Then[
H1 : H1 ∩H3

]
≤
[
H1 : H1 ∩H2 ∩H3

]
=
[
H1 : H1 ∩H2

]
·
[
H1 ∩H2 : H1 ∩H2 ∩H3

]
=
[
H1 : H1 ∩H2

]
·
[
H2 : H1 ∩H2 ∩H3

]
·
[
H2 : H1 ∩H2

]−1

≤
[
H1 : H1 ∩H2

]
·
[
H2 : H1 ∩H2

]
·
[
H2 : H2 ∩H3

]
·
[
H2 : H1 ∩H2

]−1

=
[
H1 : H1 ∩H2

]
·
[
H2 : H2 ∩H3

]
,

which is �nite. Similarly

[
H3 : H1 ∩H3

]
can be shown to be �nite. �

De�nition 1.1.15 (commensurator). The commensurator of a subgroup H ≤ G is the subgroup

of elements of G that conjugate H to a subgroup commensurate with H , or explicitly,

CommG(H) =
{
g ∈ G

∣∣ gH ∩H has �nite index in both
gH and H

}
.

By Lemma 1.1.14 and the observation that conjugation preserves commensuration, it follows that

the commensurator CommG(H) is indeed a subgroup of G. Also note that CommG(H) contains

in particular the normaliser of H .

13



1 Preliminaries

We �nish this introductory section with a de�nition for permutation groups (over any, not neces-

sarily �nite set X).

De�nition 1.1.16 (Young subgroup). To every partition of a set X , we can associate a subgroup

of Sym(X) of all permutations stabilising the blocks of the partition. A subgroup obtained in this

fashion is called a Young subgroup of Sym(X), and is naturally isomorphic to the direct product of

the symmetric groups on the blocks.

For any permutation group G ≤ Sym(X), we have a canonical partition of X into G-orbitss. We

call the Young subgroup associated to this partition the Young overgroup of G and denote it by Ĝ.

Note that we indeed always have the inclusions G ≤ Ĝ ≤ Sym(Ω). Moreover, G = Ĝ if and only

if G is itself a Young subgroup, and Ĝ = Sym(Ω) if and only if G is transitive.

1.2 Topological group theory

1.2.1 General topological groups

The groups that we will encounter will be interesting examples of topological groups, i.e. groups

endowed with an additional topological structure that is compatible with the algebraic structure.

We shall give a brief overview of the theory, mainly devoting our attention to topological groups

that are totally disconnected and locally compact. For more details, we refer to one of the standard

works such as [HR13]; in addition the lecture notes by Dikran Dikranjan [Dik18], by Linus Kramer

[Kra20], and by Phillip Wesolek [Wes18] may very well prove to be helpful and accessible sources.

De�nition 1.2.1 (topological group). A topological group (G, · , τ) is a set G equipped with a

group operation · and a topology τ , such that the two maps G × G → G : (g, h) 7→ g · h and

G→ G : g 7→ g−1
are continuous.

Note that we do not require topological groups to be Hausdor�. Recall that a topological space is

Hausdor� if for every pair (x, y) of distinct points, there exist disjoint open sets Ux and Uy such

that x ∈ Ux and y ∈ Uy .

Just as we usually abbreviate a group (G, · ) simply as G, we shall do the same with a topological

group (G, · , τ) when the topology is clear from the context. The underlying group of a topological

group will be called its abstract group.

The continuity of the translation maps g 7→ g · h and g 7→ h · g (for �xed h ∈ G) intuitively means

that a topological group “looks the same in every point”, that all topological behaviour is captured

by a single point’s neighbourhood basis. We now make this precise.

De�nition 1.2.2. Let G be a topological group.

• A subset U ⊆ G is called a neighbourhood of a point g ∈ G if there is some open subset V
such that g ∈ V ⊆ U .

• A set B of neighbourhoods of a point g ∈ G is called a neighbourhood basis for g if for every

neighbourhood U of g, there is some V ∈ B such that V ⊆ U . A neighbourhood basis for

the identity will also be called an identity neighbourhood basis.

Note that if U is a neighbourhood of g, then h · U is a neighbourhood of h · g.

Proposition 1.2.3. The topology of a topological group is completely determined by an identity
neighbourhood basis.

14
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Proof omitted. We refer to [HR13, Theorem 4.5]. ��

An identity neighbourhood basis on a topological group is a special instance of a �lter basis. More

precisely, a neighbourhood basis can be de�ned as a �lter basis of the neighbourhood �lter; though

we will not need �lters in general, we will mention a useful property that allows to de�ne a group

topology by means of an (abstract) �lter basis.

De�nition 1.2.4 (�lter basis). Let X be a set. A nonempty collection B of subsets of X is called

a �lter basis on X if the intersection of any two sets in B is a superset of some set in B.

Lemma 1.2.5. LetB be a �lter basis on a group G. Assume thatB satis�es the following properties:

(i) for every U ∈ B, there exists V ∈ B such that V · V ⊆ U ;

(ii) for every U ∈ B, there exists V ∈ B such that V −1 ⊆ U ;

(iii) for every U ∈ B and every g ∈ G, there exists V ∈ B such that V ⊆ gU .

Then G admits a unique group topology such thatB is a neighbourhood basis of the identity of G.

Proof omitted. We refer to [Bou07, Proposition 1], or to be precise, the subsequent paragraph. ��

Example 1.2.6. (i) Every group can be interpreted as a topological group in a trivial way, by

endowing it with the discrete topology (i.e. by declaring every subset to be open). We refer

to such a group as a discrete group.

The discrete topology is the only possible Hausdor� topology on a �nite group.

(ii) Every group can be made into a topological group by taking as an identity neighbourhood

basis, the set of all normal subgroups of �nite index. This pro�nite topology is Hausdor� if

and only if the intersection of all normal subgroups of �nite index is trivial. Such a group is

called residually �nite.

(iii) The metric structure of the Euclidean space Rn induces a canonical topology, de�ned by the

open balls as basic open sets. This topology makes the additive group Rn into a topological

group. A neighbourhood basis of the identity is given by the family of open balls

Br(0) = {x ∈ Rn | ‖x‖ < r},

where r ranges over the positive real numbers.

(iv) The circle group T = {z ∈ C | |z| = 1} ≤ C× with the subspace topology inherited from C,

is a compact topological group.

(v) IfG is a topological group andN a normal subgroup, then the quotientG/N is a topological

group with the quotient topology. It is Hausdor� if and only if N is closed in G.

Here, Rn and T are examples of Lie groups. These are topological groups with far more exacting

geometrical structure, namely that of a di�erentiable manifold, such that the group operation and

inversion are smooth maps instead of merely continuous. Lie groups play a key role in the study

of connected locally compact groups (see Theorem 1.2.17).

Let us mention some basic but important properties of product sets and subgroups.

Proposition 1.2.7. Let A and B be two subsets of a topological group.

(i) If A or B is open (or both), then A ·B and B ·A are open as well.

(ii) If both A and B are compact, then A ·B and B ·A are compact as well.
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(iii) If A is closed and B is compact, then A ·B and B ·A are closed as well.

(iv) If both A and B are closed, then A ·B and B ·A need not be closed.

Proof omitted. This is [HR13, Theorem 4.4]. ��

Proposition 1.2.8. Let H be a subgroup of a topological group G.

(i) H is open if and only if H contains a nonempty open subset of G.

(ii) If H is open in G, then H is closed as well.

(iii) If H is closed and of �nite index in G, then H is open as well.

Proof. (i) First, if H contains a nonempty open subset U , then H = U ·H is open by Proposi-

tion 1.2.7 (i). Conversely, if H is open, then H contains the nonempty open subset H .

(ii) If H is open, then so are the cosets of H . The complement G \H =
⋃
{gH | g /∈ H} is a

union of open sets, hence open, and H is closed.

(iii) If H is closed, then so are the cosets of H . The complement G \H =
⋃
{gH | g /∈ H} is a

�nite union of closed sets, hence closed, and H is open. �

When working with topological groups, the notions of morphisms, simple groups, . . . are more

restrictive, as we need to take into account the topological structure as well.

De�nition 1.2.9 (morphism). A map ϕ : G → H between topological groups is a morphism of
topological groups is both a group morphism and a continuous map.

Since this is quite verbose, if the context is clear, usually we simply say that ϕ is a morphism. If we

want to emphasise that a morphism is not necessarily continuous, we call it an abstract morphism.

De�nition 1.2.10 (simplicity). We call a topological group topologically simple if it has no proper

nontrivial closed normal subgroups.

A topologically simple group may very well have proper nontrivial nonclosed normal subgroups,

but then the corresponding quotient groups will not be Hausdor� (in fact, not even Kolmogorov).

Let us recall a couple of notions from general point-set topology that are of primordial importance

for topological groups.

De�nition 1.2.11. Let X be a topological space. Then X is called

• compact if every open cover of X has a �nite subcover;

• locally compact or l.c. if every point of X has a compact neighbourhood;

• connected if X is not the union of two nonempty disjoint open sets (i.e. no proper subset is

both open and closed);

• totally disconnected or t.d. if all connected subsets are singletons.

• totally separated if for every two distinct points x, y ∈ X there exists a partition of X into

two open subsets Ux and Uy such that x ∈ Ux and y ∈ Uy .

Totally disconnected locally compact groups will often be abbreviated as t.d.l.c. groups. (Evidently,

whenever we call a topological group compact / locally compact / . . . , we mean that its underlying

topological space is compact / locally compact / . . . )
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Proposition 1.2.12. Let G◦ be the connected component of the identity of a topological group G,
i.e. the maximal subset containing the identity that is connected (in the subspace topology). Then G◦

is a closed normal subgroup of G, and G/G◦ is a totally disconnected group. In other words, we have
a short exact sequence

1→ G◦ → G→ G/G◦ → 1,

and every topological group is an extension of a totally disconnected one by a connected one.

Proof omitted. We refer to [HR13, Theorems 7.1, 7.3]. ��

De�nition 1.2.13. Let G be a topological group. Then G is called compactly generated if there is

a compact subset K ⊆ G that algebraically generates G. (This should not be confused with the

homonymic, but unrelated, notion for general topological spaces without a group structure.)

The last proposition of general topological groups that we mention, links topological properties of

subgroups to commensuration.

Proposition 1.2.14. Any two open compact subgroups of a topological group are commensurate.

Proof. Let H,H ′ ≤ G be compact open subgroups. Consider the open cover of the ambient group

by cosets of H ′ and, using compactness, let g1, . . . , gk be a �nite set of coset representatives with

H ⊆ g1H
′ ∪ · · · ∪ gkH ′.

Then

H = g1(H ∩H ′) ∪ · · · ∪ gk(H ∩H ′),

so that H ∩H ′ has �nite index in H . Completely similarly, H ∩H ′ has �nite index in H ′. �

1.2.2 T.d.l.c. groups

We will mainly be interested in locally compact groups. Such groups are quite well-behaved:

Proposition 1.2.15. Let G be a topological group and H a subgroup.

(i) If G is locally compact and H is closed, then H is locally compact.

(ii) If G is locally compact and Hausdor�, and H is locally compact, then H is closed.

(iii) If G is locally compact, then G/H is locally compact.

(iv) If both H and G/H are locally compact, then G is locally compact.

(v) If G is compact, then G/H is compact.

(vi) If both H and G/H are compact, then G is compact.

Proof omitted. Property (i) is evident; property (ii) is [HR13, Theorem 5.11]; properties (iii) and (v)

are [HR13, Theorem 5.22]; properties (iv) and (vi) are [HR13, Theorem 5.25]. ��

Proposition 1.2.16. LetG be a locally compact group. ThenG is the �ltering union of its compactly
generated open subgroups (where “�ltering” means that any two compactly generated open subgroups
are contained in a single larger one).
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Proof. Let V be a compact neighbourhood of the identity. Note that

〈V, g〉 =
⋃
n∈N

(
V ∪ V −1 ∪ {g±1}

)n
is an open subgroup of G. In other words, every g ∈ G is contained in some compactly generated

open subgroup of G. The �ltering property is clear, as two compactly generated open subgroups

again generate a compactly generated open subgroup. �

Propositions 1.2.12 and 1.2.15 show that — at least, in principle — the study of (Hausdor�) locally

compact groups splits into the study of connected locally compact groups, and the study of totally
disconnected locally compact groups. The former has been solved satisfactorily with the solution of

Hilbert’s �fth problem by Andrew Gleason, Deane Montgomery, Leo Zippin and Hidehiko Yamabe

in the 1950s:

Theorem 1.2.17 (Gleason–Yamabe). Let G be a connected locally compact Hausdor� group. Then
every neighbourhood U of the identity contains a compact normal subgroup K E G such that G/K
is isomorphic to a Lie group.

Proof omitted. An excellent exposition is given in [Tao11]. ��

This theorem is often restated by saying that connected locally compact Hausdor� groups are in-

verse limits of Lie groups, or more intuitively, “can be approximated by Lie groups”.

The general structure of totally disconnected locally compact (t.d.l.c.) groups is far less understood.

One of the strongest known structural results is the following theorem by van Dantzig.

Theorem 1.2.18 (van Dantzig). Every t.d.l.c. group contains a compact open subgroup.

Proof omitted. We refer to [vD36]. ��

As such a compact open subgroup is again t.d.l.c., this immediately implies a stronger statement.

Corollary 1.2.19 (van Dantzig). Every t.d.l.c. group admits an identity neighbourhood basis of
compact open subgroups.

The totally disconnected case hence stands in sharp contrast with the connected case: locally com-

pact groups of the former kind have an abundance of open subgroups, while those of the latter kind

have no proper open subgroups.

Another useful fact is that totally disconnected groups are automatically Hausdor�.

Proposition 1.2.20. Let G be a totally disconnected group G. Then G is Hausdor�.

Proof. Connected components of topological spaces are closed, hence the set {1} is closed in G.

Now consider the map f : G×G→ G : (g, h) 7→ g · h−1
. By continuity of f , the diagonal set

{(g, g) | g ∈ G} = f−1(1)

is closed in G×G, which is equivalent to saying that G is Hausdor�. �

For compactly generated t.d.l.c. groups, [KM07] presents a construction of an analogue of a Cayley

graph (which the authors call a rough Cayley graph and is more commonly called a Cayley–Abels
graph). The crux of the construction is the existence of a so-called good generating set — a compact

generating set of a very particular form.
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De�nition 1.2.21 (good generating sets). Let G be a compactly generated t.d.l.c. group. A good
generating set for G is a compact open subgroup V together with a �nite subset T which is closed

under inverses, satisfying G = 〈T 〉 · V .

Lemma 1.2.22. Let G be a compactly generated t.d.l.c. group. Let V be any compact open subgroup.
Then there exists a �nite set T such that (V, T ) is a good generating set for G.

Proof omitted. This is [KM07, Lemma 2.3], which refers to [Möl03, Lemma 2]. ��

Example 1.2.23. (i) A discrete group is trivially totally disconnected and locally compact. It is

compactly generated if and only if it is �nitely generated.

(ii) The additive group Rn is connected, locally compact, and compactly generated.

(iii) The additive group Q, with the subspace topology inherited from R, is totally disconnected

(even totally separated).

Moreover, Q is compactly generated, by the compact set

{
0
}
∪
{

1
n

∣∣ n ∈ N \ {0}}.

On the other hand, Q is not locally compact. Indeed, suppose by means of contradiction that

0 has a compact neighbourhood K . Then K contains a basic open set {x ∈ Q | a < x < b}
for some a ∈ R− and b ∈ R+

(by de�nition of the subspace topology). Let a′, b′ ∈ Q be such

that a < a′ < 0 < b′ < b. Then {x ∈ Q | a′ ≤ x ≤ b′} is a closed subset of K , and hence

compact. But closed intervals in Q are not even sequentially compact; a contradiction.

(iv) For the following example, consider the countably in�nite direct product

G =
∞∏
n=0

Z/2Z.

Pick a bit bn ∈ Z/2Z for every n ∈ N. Let G′ ≤ G be the subgroup of all elements (xn)n∈N
such that xn ∈ 〈bn〉 for all but �nitely many n. Note that this construction reduces to the

standard direct product if bn = 1 for all n, and to the direct sum if bn = 0 for all n. We can

de�ne a topology on G′ by taking as a basis of open sets, all sets of the from

∞∏
n=0

Xn

with Xn = 〈bn〉 for all but �nitely many n. This makes G′ into a totally disconnected locally

compact topological group, whose topology is governed by the choice of bits (bn)n∈N in the

following way:

• G′ is discrete if and only if bn = 0 for all but �nitely many n;

• G′ is compact if and only if bn = 1 for all but �nitely many n.

In particular, by letting for instance bn = n (mod 2), this construction provides examples of

t.d.l.c. groups that are neither discrete nor compact. This is a particular instance of a restricted
or local direct product. For a far more general de�nition and more detailed properties, we refer

to [HR13, (6.16)]. We only mention that local direct products play quite an important role in

the study of t.d.l.c. abelian groups ([Bra45, HHR18]).

(v) The next section is devoted to a natural example of a t.d.l.c. topology on permutation groups,

called the permutation topology.
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1.2.3 The permutation topology

De�nition 1.2.24 (permutation topology). LetG be any group acting on a setX . The permuta-
tion topology onG is the topology de�ned by taking as a identity neighbourhood basis, all pointwise

stabilisers of �nite subsets of X .

Intuitively, the more points ofX on which two group elements agree, the closer those elements are

in the permutation topology.

It is instructive to think of the permutation topology in terms of convergence: g ∈ G is a limit of

a net (gn)n∈I in G if and only if for every x ∈ X there exists some m ∈ I (depending on x) such

that g .x = gn .x for all n > m. In other words, when we think of X as a discrete space and of

permutations as maps X → X , then the permutation topology on G agrees with the topology of

pointwise convergence.

As the permutation topology is de�ned in terms of purely “algebraical” data from the group action,

it should not come as a surprise that there is an even stronger interplay between algebraical and

topological properties. In the next few propositions we collect a couple of such results.

Proposition 1.2.25. LetG be acting on a setX and endowG with the permutation topology. Then a
subgroup H ≤ G is open if and only if H contains the pointwise stabiliser of some �nite subset of X .

Proof. This follows immediately from the de�nition. �

As a group is discrete if and only if the trivial subgroup is open, this immediately implies . . .

Corollary 1.2.26. LetG be acting on a setX and endowG with the permutation topology. Then the
following are equivalent:

(i) the pointwise stabiliser of some �nite subset of X is trivial;

(ii) G is discrete.

Proposition 1.2.27. Let G be acting on a set X and endow G with the permutation topology. Then
the following are equivalent:

(i) G acts faithfully on X ;

(ii) G is totally separated;

(iii) G is totally disconnected;

(iv) G is Hausdor�.

Proof. For (i)⇒ (ii), it is su�cient to show that an arbitrary element g ∈ G can be separated from

the identity in G. Using faithfulness, there exists some x ∈ X such that g .x 6= x. Then Gx is an

open subgroup ofG, and the two setsGx (containing the identity) andG\Gx (containing g) de�ne

a separation of G.

The implication (ii)⇒ (iii) is a well-known exercise in point-set topology.

We have already established that (iii)⇒ (iv) for general topological groups in Proposition 1.2.20.

Finally, for (iv)⇒ (i), suppose by means of contraposition that G contains a nontrivial element g
�xing X pointwise. Then by de�nition of the permutation topology, g is contained in every neigh-

bourhood of the identity. Hence G is not Hausdor�. �

De�nition 1.2.28. Following [Möl10], we say that a group G acting on X is closed if the image of

the natural morphism G→ Sym(X) is closed in the permutation topology on Sym(X).
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Lemma 1.2.29. Let G be acting on a set X and endow G with the permutation topology. Then the
following are equivalent:

(i) G is closed;

(ii) the point stabiliser Gx is closed for every x ∈ X ;

(iii) the point stabiliser Gx is closed for some x ∈ X .

Proof. Let φ : G→ Sym(X) be the natural morphism. For (i)⇒ (ii) it su�ces to notice that φ(Gx)
is equal to the intersection of Sym(X)x and φ(G). The implication (ii)⇒ (iii) is of course trivial.

Finally for the implication (iii)⇒ (i), assume that Gx is closed. Consider a net (gn)n∈I in G such

that φ(gn) → g in the permutation topology on Sym(X). Then there exists an index m ∈ I such

that gn .x = φ(gn) .x = g .x for all n ≥ m. Then the net ((gm)−1 · gn)n∈I′ over the index set

I′ = {n ∈ I | n ≥ m} is contained in the stabiliser Gx and moreover

φ((gm)−1 · gn)→ φ(gm)−1 · g ∈ φ(Gx).

Hence g ∈ φ(G), or in other words, G is closed. �

At �rst sight both the terminology and the interpretation of Lemma 1.2.29 can be rather confusing.

We want to explicitly point out that point stabilisers in G are always open subgroups, and hence

closed, with respect to the permutation topology on G. Let G ≤ Sym(X) be a (faithful) permutation

group. Then note that the permutation topology onG coincides with the relative topology induced

from the permutation topology on Sym(X). The condition thatG is closed implies that, moreover,

the closed sets in this topology also agree with the closed subsets ofG in the permutation topology

on Sym(X), so that there is no ambiguity possible.

Proposition 1.2.30. LetG be acting on a setX and endowGwith the permutation topology. Assume
that G is closed. Then the following are equivalent:

(i) every G-orbit is �nite;

(ii) G is compact.

In particular, if G ≤ Sym(X), a subgroup of G has compact closure if and only if all G-orbits are
�nite.

Proof. Suppose thatG is compact and let x ∈ X be arbitrary. Then the cosets ofGx de�ne an open

cover of G. By compactness, Gx has �nite index in G, so that by the orbit-stabiliser theorem, the

orbit G.x is �nite.

For the converse, suppose that all G-orbits are �nite and let K be the kernel of the group action.

Then G/K — acting faithfully on X — naturally embeds as a closed subgroup in the direct product

of the �nite symmetric groups on the G-orbits. The permutation topology on the direct product

coincides with the product topology and is therefore compact by Tychonov’s theorem. Thus, G/K
is compact (in the quotient topology induced from the permutation topology on the full group G).

To �nish, note that K is contained in every neighbourhood of the identity and is therefore trivially

compact. Proposition 1.2.15 (vi) then shows that G is compact.

For the last claim, note that taking the closure of a subgroup leaves the orbits invariant. �

Proposition 1.2.31. LetG be acting on a setX and endowGwith the permutation topology. Assume
that G is closed. Then the following are equivalent:

(i) the pointwise stabiliser in G of some �nite subset of X has only �nite orbits on X ;
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(ii) the pointwise stabiliser in G of some �nite subset of X is compact;

(iii) G is locally compact.

Proof. Note that (i)⇔ (ii) by Proposition 1.2.30, and (ii)⇒ (iii) is trivial.

For (iii)⇒ (ii), letK be a compact neighbourhood of the identity. Then there exists a basic open set

in between {1} and K , i.e. there exists a �nite subset Y ⊆ X such that G(Y ) ⊆ K . This subgroup

G(Y ) is open in G, hence closed, hence compact (as a closed subset of a compact set). �

It is worth making explicit that the full symmetric group Sym(X) on any in�nite set X , endowed

with the permutation topology, is hence not locally compact.

For the next proposition, recall that a subgroup H ≤ G is called cocompact (or sometimes tongue-

in-cheekly, mpact) if the quotient space G/H of left cosets is compact. Note that this is equivalent

to asking the space H\G of right cosets to be compact, as the map G/H → H\G : gH 7→ Hg−1

is a homeomorphism.

Proposition 1.2.32. LetG be acting on a setX and endowGwith the permutation topology. Assume
that G is closed and that all suborbits of G are �nite (so that all point stabilisers of G are compact).
Let H ≤ G be a subgroup. Then the following are equivalent:

(i) some G-orbit is the union of �nitely many H-orbits;

(ii) H is cocompact in G.

Proof. Let x ∈ X be arbitrary. Consider the partition of G into double cosets

H\G/Gx = {H · g ·Gx | g ∈ G}

and note that every such double coset is open in G. Since the natural map ϕ : G → H\G is open

by Proposition 1.2.7 (i) and continuous by de�nition, the sets ϕ(H · g · Gx) = ϕ(g · Gx) are open

and compact in H\G. It thus follows that H\G is compact if and only if the partition H\G/Gx
has �nitely many blocks. The proposition now follows from the observation that the map

Λ: H\G/Gx → H\X : H · g ·Gx 7→ H .(g .x)

de�nes a bijection between double cosets and H-orbits contained in G.x. �

As noted by Pierre-Emmanuel Caprace, we can rephrase the assumptions in Proposition 1.2.32 and

alternatively require thatG is a locally compact group acting continuously and properly by permu-

tations on the discrete set X . Here, a group action is continuous and proper when the shear map

G×X → X ×X : (g, x) 7→ (g .x, x) is continuous and proper (i.e. preimages of compact sets are

again compact).

1.3 Graph theory

For completeness’ sake, this section is a quick refresher of the basic notions of graph theory.

De�nition 1.3.1. (i) A (simple, undirected) graph Γ = (V,E) consists of a set V together with

a setE of unordered pairs of elements of V . The elements of V are called the graph’s vertices
while the elements of E are called the edges. If {v, w} is an edge, then we say v and w are its

endpoints. Also we say that both v and w are incident to {v, w} and adjacent to each other, or

simply neighbours, and we then write v ∼ w. We will usually identity the graph (V,E) with

its vertex set V .
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(ii) Depending on the context, one sometimes allows for loops: edges with coinciding endpoints.

In this thesis, this is only relevant for Higman’s primitivity criterion Theorem 1.1.7.

(iii) Given a vertex v of a graph (V,E), we de�ne its star as the set

st(v) = {e ∈ E | v is incident to e}.

The degree of vertex v is the cardinality deg(v) = |st(v)|, i.e. the number of incident edges.

(iv) A graph is called regular if all vertices have the same degree, and locally �nite if all vertices

have �nite degree.

(v) A morphism between graphs (V,E) and (V ′, E′) is a map ϕ : V → V ′ that preserves adja-

cency. Explicitly, for every edge {v, w} ∈ E, we must have that {ϕ(v), ϕ(w)} ∈ E′. If ϕ
is bijective and moreover induces an bijection : E → E′ then we call ϕ an isomorphism. If

V = V ′ an isomorphism is called an automorphism. The set of all automorphisms of a �xed

graph Γ is a group under the operation of composition, and is denoted by Aut(Γ).

(vi) A subgraph of (V,E) is any graph (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. Every subset V ′ ⊆ V
de�nes an induced subgraph with edge set E′ = {{v, w} ∈ E | v, w ∈ V ′}.

(vii) A path of length n in a graph is a sequence v0 ∼ v1 ∼ v2 ∼ · · · ∼ vn of pairwise adjacent

vertices. It is said to be a path from v0 to vn or a path joining v0 and vn. The notion extends

to in�nite or bi-in�nite paths. If v0 = vn the path is called closed. If all interior vertices are

distinct, the path is called simple. Usually we will implicitly assume paths to be simple.

(viii) The distance between two vertices is the length of any shortest path joining them; if no such

path exists, the distance is de�ned to be in�nite. Note that the function

dist : V × V → N ∪ {∞} : (v, w) 7→ distΓ(v, w)

indeed turns the graph Γ into a metric space. The diameter of a graph is the maximal distance

between two vertices.

(ix) If the diameter is �nite, or in other words if every two vertices are joined by a path, the graph

is said to be connected. In general, a connected component is a maximal connected subgraph.

(x) A simple closed path of length n ≥ 3 is an n-cycle, or simply a cycle. The girth of a graph is

the length of the shortest cycle; if the graph is acyclic, the girth is de�ned to be in�nite.

(xi) A tree is a connected acyclic graph. Note that a n-regular tree with n ≥ 2 is an in�nite graph

and, up to isomorphism, unique.

(xii) A graph (V,E) is bipartite if its vertex set admits a partition V = V1 t V2 such that every

edge in E has one endpoint in V1 and one endpoint in V2. If the degree function is constant

on both bipartition classes, then we call the graph semiregular.

(xiii) A vertex cover of a graph (V,E) is a subset V ′ ⊆ V of the vertex set that includes at least one

endpoint of every edge.

To make the bridge with the previous chapter on topological group theory, a well-known corollary

of Propositions 1.2.27, 1.2.30, and 1.2.31 is the following.

Corollary 1.3.2. Let Γ be a locally �nite connected graph. Endow its automorphism group Aut(Γ)
with the permutation topology. Then Aut(Γ) is a t.d.l.c. group with compact vertex stabilisers.
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In the next section, we will study trees and their automorphisms in some more detail. Additionally,

in Section 1.7, we will essentially de�ne chamber systems and buildings as graph-like structures.

Quite some graph theory terminology has a counterpart in building theory — compare for instance

the notions of paths and galleries, or stars and panels.

1.4 Automorphisms of trees

Trees will turn out to be prototypical examples of right-angled buildings. In this section, we bundle

some properties of group actions on trees that we will frequently encounter throughout our study.

For more detailed de�nitions, we refer to [Tit70] (in French) or [GGT18].

In order to obtain a rich group of automorphisms, we usually want trees to display some regularity.

As an example, the in�nite tree having only vertices of degree two except for one central vertex of

degree n ≥ 3, has a rather uninspiring automorphism group isomorphic to Sym(n). We could ask

for instance that the full automorphism group leaves no nontrivial subtree invariant, leading to the

following de�nition.

De�nition 1.4.1 (minimal, geometrically dense). Let G be a group acting on a tree T by auto-

morphisms. The action is said to be minimal if T has no nontrivialG-invariant subtree. The action

is geometrically dense if it is minimal and if moreover G does not �x an end of T .

The existence of a minimally acting group is generally su�cient to exclude degenerate edge cases,

but we explicitly put forward a couple of additional assumptions.

We will always assume that a tree has no vertices of degree one (or leaves) and has

at least one vertex of degree at least three (as to exclude the bi-in�nite path graph).

De�nition 1.4.2. Let g be an automorphism of a tree. Then we de�ne the displacement `(g) of g
as the minimal value minv dist(v, g .v) over all vertices v.

Proposition 1.4.3. Let g be an automorphism of a tree T . Then exactly one of the following holds:

(i) g �xes a vertex, so that `(g) = 0;

(ii) g inverts an edge {v1, v2}, i.e. we have that g .v1 = v2 and g .v2 = v1;

(iii) g leaves invariant a bi-in�nite path γ in T and induces a nontrivial translation on γ.

In (iii) the path γ is unique, the induced translation on γ has length `(g), and γ can be characterised
as the set of all vertices v such that dist(v, g .v) = `(g).

Proof omitted. This is [Tit70, Proposition 3.2]. ��

De�nition 1.4.4. Let g be an automorphism of a tree T . Then we call g

(i) elliptic if g �xes a vertex;

(ii) an inversion if g inverts an edge;

(iii) hyperbolic otherwise.

The bi-in�nite path left invariant by a hyperbolic element g is called its axis and denoted by A(g).

Proposition 1.4.5. Let G act on a tree T by automorphisms.
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(i) If g, h ∈ G are hyperbolic elements with disjoint axes A(g),A(h), then gh is hyperbolic as well
and its axis A(gh) contains the unique shortest path joining A(g) to A(h). Moreover,

`(gh) = `(g) + `(h) + 2 dist(A(g),A(h)).

(ii) If g, h ∈ G are elliptic elements with disjoint �xed point sets, then gh is hyperbolic.

Proof. For (i), pick an edge e in the arc joining A(g) to A(h). Let Tg and Th denote the components

of T \ {e} containing A(g) and A(h), respectively. Note that

g±1 .(Th ∪ {e}) ⊂ Tg and h±1 .(Tg ∪ {e}) ⊂ Th,

so that for every m,n > 0, we have (gh)m .e ∈ Tg and (gh)−n .e ∈ Th. Hence the orbit 〈gh〉 .e is

unbounded and gh is hyperbolic. Since e is contained in the geodesics from (gh)−n .e to (gh)m .e
for every m,n > 0, it follows that e is in fact contained in the axis A(gh). The formula for `(gh)
then easily follows from considering the e�ect of gh on the vertex on A(h) closest to A(g).

For (ii) a similar proof applies, replacing A(g) and A(h) with the �xed point sets of g and h. �

Proposition 1.4.6. LetG act on a tree T by automorphisms and assume thatG does not contain any
hyperbolic elements. Then G stabilises some vertex, some edge, or some end of the tree T .

Proof omitted. This is [Tit70, Proposition 3.4], or [GGT18, Corollary 6.6] for the special case where

G acts without inversions. ��

Proposition 1.4.7. LetG act on a tree T by automorphisms. IfG contains a hyperbolic element, then
there is a unique minimal G-invariant subtree, namely

T0 =
{
v ∈ T

∣∣ v lies on A(g) for some hyperbolic automorphism g ∈ G
}
.

Proof. For every g, h ∈ G with g hyperbolic, we have h. A(g) = A(hgh−1). Hence T0 is indeed

G-invariant. In addition, T0 is connected by Proposition 1.4.5. On the other hand, if g ∈ G is

hyperbolic, then any convex G-invariant subtree contains its axis A(g). We conclude that T0 is an

invariant subtree contained in every other invariant subtree. �

De�nition 1.4.8 (end, boundary). Let T be a tree. A ray is an isometric embedding α : N → T
(the image of which is a semi-in�nite simple path). We declare two rays α1, α2 to be equivalent if

the function n 7→ dist(α1(n), α2(n)) remains bounded. Note that, in a tree, two equivalent rays

necessarily eventually coincide. An equivalence class of rays is called a point at in�nity or an end
of T . The set of all ends is called the boundary of T and denoted by ∂T .

Proposition 1.4.9. Let G act on T by automorphisms and assume that the action is minimal. Then
every edge of T lies on the axis A(g) of some hyperbolic element g ∈ G.

Proof. By Proposition 1.4.6, G contains a hyperbolic element. Proposition 1.4.7 and the assumption

that G acts minimally yield that every vertex v lies on the axis of some hyperbolic automorphism

gv ∈ G. Now let e = {v, w} be any edge of T and consider gv and gw. If v ∈ A(gw) or w ∈ A(gv),

then we are done. Otherwise v and w both lie on the axis of gvgw by Proposition 1.4.5 (i). �

Recall that we excluded the bi-in�nite path graph; the next few propositions motivate why.

Proposition 1.4.10. Let G act on T by automorphisms and assume that the action is geometrically
dense. Then G has no �nite orbits in T ∪ ∂T .
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Proof. Let v be a vertex of T and assume that G.v is �nite. Then the convex hull of G.v is a �nite

G-invariant subtree and hence the action is not minimal. Next, let ξ be an end of T and assume

that G.ξ is �nite, say |G.ξ| = n. If n = 1, i.e. if G �xes ξ, the action is not geometrically dense.

If n = 2, then G stabilises the unique bi-in�nite path determined by those two ends and the action

is not minimal. Finally, note that every three ends of the tree determine a unique vertex. If n ≥ 3,

pick any subset {ξ1, ξ2, ξ3} ⊆ G.ξ and let v be the uniquely determined vertex. The cardinality of

the orbit G.v is then bounded by

(
n
3

)
— a situation already handled. �

De�nition 1.4.11 (half-tree). Let T be a tree and e an edge. Denote by T \{e} the graph obtained

by removing the edge e from T . Then we call the two connected components of T \ {e}, half-trees
of T (determined by e).

Proposition 1.4.12. LetG act on T by automorphisms. Assume that the action is without inversions
and geometrically dense. Let T0 ⊂ T be any half-tree. Then G contains a hyperbolic automorphism
with axis contained in T0.

Proof. De�ne the attracting end a(g) ∈ ∂T of a hyperbolic automorphism g as the end of its axis

in the direction of translation; the opposite end is the repelling end r(g). Then, for arbitrary h ∈ G,

we have h.a(g) = a(hgh−1) and h.r(g) = r(hgh−1). Hence the setA ⊆ ∂T of all attracting ends

of hyperbolic automorphisms in G is G-invariant, and so is the subtree of T spanned by the ends

in A. Note that A is nonempty by Proposition 1.4.6. By minimality, we conclude that the boundary

of every half-tree in T contains the attracting end of some hyperbolic automorphism g ∈ G.

In particular, there exists a hyperbolic h ∈ G such that a(h) ∈ ∂T0. Consider an automorphism g0

of the form fhf−1
with f ∈ G. Then r(g0) = f.r(h) and a(g0) = f.a(h). We can choose f ∈ G

in such a way that both ends of g0 di�er from the repelling end of h— indeed, if for every f ∈ Gwe

would have that f−1 . r(h) ∈ {r(h), a(h)}, then either the end r(h) or the set {r(h), a(h)} would

be G-invariant, in contradiction to the assumption that the action is geometrically dense.

Fix g0 ∈ G such that both r(g0) and a(g0) di�er from r(h). De�ne for every n ∈ N the conjugated

automorphism gn = hn · g0 · h−n ∈ G. Then gn is again hyperbolic with axis A(gn) = hn . A(g0),

with repelling end r(gn) = hn . r(g0), and with attracting end a(gn) = hn .a(g0). For su�ciently

large n, both ends r(gn) and a(gn) will end up in ∂T0 and the result follows. �

Using Proposition 1.4.12, we now establish an improvement of Proposition 1.4.9 for geometrically

dense actions.

Proposition 1.4.13. LetG act on T by automorphisms. Assume that the action is without inversions
and geometrically dense. Let e1 and e2 be two edges. Then there exists some hyperbolic element g ∈ G,
the axis of which contains both e1 and e2.

Proof. We may assume that e1 6= e2 by Proposition 1.4.9. Let T1 be the half-tree determined by e1

not containing e2 and let T2 be the half-tree determined by e2 not containing e1. Proposition 1.4.12

yields two hyperbolic elements g1 and g2 inGwith axes A(g1) ⊂ T1 and A(g2) ⊂ T2. In particular,

the axes are disjoint, and the shortest arc joining A(g1) and A(g2) passes through both e1 and e2.

By Proposition 1.4.5 (i), the element g1 g2 does the job. We refer to Figure 1.1 for an illustration. �

For later purposes, it will be important to know that geometrical density is preserved when passing

to a normal subgroup.

Proposition 1.4.14. LetG act on T by automorphisms. Assume that the action is without inversions
and geometrically dense. Let N E G be a nontrivial normal subgroup. Then the action of N on T is
geometrically dense as well.
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Figure 1.1. The con�guration in the proof of Proposition 1.4.13.

Proof. First, we claim that N does not �x any vertex of T . Indeed, if it were the case that N.v = v
for some vertex v, then N �xes in fact every vertex in the orbit G.v. The convex hull of G.v is a

G-invariant subtree and is hence the full tree T by minimality. It follows that N �xes all vertices,

and is hence the trivial subgroup.

Similarly, we claim that N does not �x any end of the tree. Indeed, if it were the case that N.ξ = ξ
for some end ξ, then N �xes every end in the orbit G.ξ. This orbit is in�nite by Proposition 1.4.10.

The convex hull of all vertices determined by three ends in G.ξ is a G-invariant subtree, hence is

the full tree by minimality of the action. It follows that G.ξ = ∂T , so that N �xes all ends, and is

hence the trivial subgroup.

Because N �xes neither vertex, edge, or end, Proposition 1.4.6 yields that N contains a hyperbolic

automorphism, and Proposition 1.4.7 that there is a unique minimal N -invariant subtree. This tree

is stabilised by G. As the action of G is geometrically dense, we must have that in fact the full tree

is N -invariant, which concludes the proof. �

Now we �nally state Tits’s celebrated independence property and simplicity criterion.

De�nition 1.4.15 (Tits’s independence property). Let T be a tree and let γ be any path in T —

either �nite, in�nite or bi-in�nite. There is a canonical projection π : T → γ : v 7→ π(v), mapping

every vertex v to the vertex of γ that is closest to v. See Figure 1.2 for an illustration.

Let G ≤ Aut(T ) be a group of automorphisms of T and let H = G(γ) be the pointwise stabiliser

of γ. The sets π−1(v), where v ranges over γ, de�ne a partition of T intoH-invariant subtrees. We

then have a natural morphism

ϕγ : H →
∏
v∈γ

H
∣∣
π−1(v)

which is injective, but not always surjective in general. We say that G satis�es Tits’s independence
property if ϕγ is an isomorphism for every choice of γ. Tits’s independence property (intuitively)

ensures that the actions of H on the subtrees branching from γ can be chosen independently from

each other, and is also known as property (P) throughout the literature.

When G is a closed subgroup of Aut(T ) in the permutation topology, the independence property

can be relaxed to only take into account edges instead of paths of arbitrary lengths. More precisely

we have the following.

Proposition 1.4.16. Let G be a closed subgroup of Aut(T ). Then G satis�es Tits’s independence
property if and only if for every edge e of T , the equality

G(e) = G(T1) ·G(T2)

holds, where T1 and T2 are the rooted half-trees emanating from e (so that T = T1 t T2).
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Figure 1.2. Tits’s independence property for trees.

Proof omitted. This is Lemma 10 and the subsequent paragraph in [Ama03]. ��

Theorem 1.4.17. Let G ≤ Aut(T ) and let G+ be the subgroup generated by pointwise stabilisers of
edges of T . Assume that the action ofG is geometrically dense and thatG satis�es Tits’s independence
property. Then every nontrivial subgroupH ≤ G normalised byG+ in fact containsG+. In particular,
if G+ is nontrivial, then it is a simple group.

Proof omitted. We refer to [Tit70, Théorème 4.5]. ��

1.5 Universal groups over trees

In this section, we shall give an overview of the original construction by Marc Burger and Shahar

Mozes in [BM00a, Section 3.2], and brush over some more recent results by Simon Smith ([Smi17])

and Adrien Le Boudec ([LB16]). The universal groups are de�ned as groups of automorphisms of a

locally �nite regular tree, restricting the local actions around every vertex to some �xed prescribed

permutation group. The resulting groups, equipped with the permutation topology, provide a rich

class of interesting topological groups (under very mild conditions on the local groups); see Propo-

sition 1.5.5 below.

This section is by no means intended to be complete, contentwise nor rigourwise, but mostly aims

to give an overview of recent developments since the original paper of Burger–Mozes.

We asssume that m,n ≥ 3.

1.5.1 Burger–Mozes’s groups

De�nition 1.5.1 (colouring). Let Tn = (V,E) be the n-regular tree. A (legal) colouring is a map

λ : E 7→ {1, . . . , n}

assigning to every edge a label or colour in {1, . . . , n}, in such a way that for every vertex v of Tn
the restriction of λ to the star of v is a bijection.
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It is not hard to see that legal colourings always exists, and neither should the following lemma be

surprising.

Lemma 1.5.2. Let v and v′ be two vertices of Tn and let λ and λ′ be two legal colourings. Then there
exists an automorphism g such that g .v = v′ and λ′ ◦ g = λ.

Proof omitted. We refer to [LMZ94, Proposition 2.1]. ��

De�nition 1.5.3 (local action). For v ∈ V and g ∈ Aut(Tn), the local action of g at v is given by

σλ(g, v) = λ
∣∣
st(g .v)

◦ g
∣∣
st(v)
◦ λ
∣∣−1

st(v)
∈ Sym(n).

De�nition 1.5.4. Let Tn be the n-regular tree, let λ be a legal colouring, and let F ≤ Sym(n) be

a permutation group. Then the Burger–Mozes universal group of F with respect to λ is the group

Uλ(F ) =
{
g ∈ Aut(Tn)

∣∣ σλ(g, v) ∈ F for every v ∈ V
}
. (∗)

From Lemma 1.5.2 it readily follows that the groups Uλ(F ) and Uλ′(F ) (de�ned using di�erent

legal colourings λ and λ′) are in fact conjugate in Aut(Tn). Hence we can �x one colouring λ and

abbreviate Uλ(F ) to U(F ).

Consider the extremal case with F = Sym(n). Then clearly U(F ) = Aut(∆), since the condition

in (∗) is void. In the other extreme case, if F is the trivial permutation group on n elements, then

a straightforward application of the ping-pong lemma shows that U(F ) is isomorphic to the free

product of n copies of Z/2Z, coming from the automorphisms that invert an edge in a single star.

For nontrivial F , the universal group U(F ) interpolates between these extreme cases.

Endowing U(F ) and Aut(Tn) with the permutation topology, Burger and Mozes then observe the

following properties.

Proposition 1.5.5. Let F ≤ Sym(n) and consider the universal group U(F ). The following hold:

(i) U(F ) is vertex-transitive.

(ii) U(F ) is edge-transitive if and only if F is transitive.

(iii) U(F ) is a closed subgroup of Aut(Tn) and hence t.d.l.c.

(iv) U(F ) is discrete if and only if F is a free permutation group.

(v) U(F ) is compactly generated.

Proof omitted. We refer to [BM00a] but note that these are quite straightforward. ��

Observing that the universal groups satisfy Tits’s independence property (De�nition 1.4.15), and

using Theorem 1.4.17 and a result of [Tit70], the authors then remark without further proof:

Proposition 1.5.6. Let U(F )+ be the subgroup generated by pointwise edge stabilisers of U(F ).

(i) U(F )+ is either simple or trivial.

(ii) U(F )+ is of �nite index in U(F ) if and only if F is transitive and generated by stabilisers.
In this case, U(F )+ = U(F ) ∩Aut(Tn)+ and [U(F ) : U(F )+] = 2.

Proof omitted. This is [BM00a, Proposition 3.2.1]. We also refer to [GGT18] for more details. ��
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Note, the local action of U(F ) on any star of the tree is permutationally isomorphic to the original

group F . In fact, among the groups of automorphisms which are both vertex-transitive and locally

permutationally isomorphic to F , the universal group is maximal, in the following sense — this is

the universality property that justi�es the name.

Proposition 1.5.7. Let F ≤ Sym(n) be a transitive permutation group and let H ≤ Aut(Tn) be a
vertex-transitive subgroup. Assume that the local action of H on every star of Tn is permutationally
isomorphic to F . Then H ≤ Uλ(F ) for some suitable legal colouring λ.

Proof omitted. This is [BM00a, Proposition 3.2.2]. ��

1.5.2 Smith’s groups

Simon Smith generalised the construction of Burger–Mozes to groups acting on semiregular trees

with two prescribed local groups. Since the construction is very similar to De�nition 1.5.4 (and in

fact agrees with our De�nition 3.1.4 in the setting of right-angled buildings) we will not go through

the details, but refer to [Smi17]. More important than relaxing to semiregular trees is the fact that

Smith did not assume the trees to be locally �nite, but allowed for permutation groups on sets of

arbitrary cardinality. Unsurprisingly, the topology does get more subtle in this setting.

Proposition 1.5.8. LetM ≤ Sym(X1) and N ≤ Sym(X2). Let T be the (|X1|, |X2|)-semiregular
tree and consider the universal group U(M,N) ≤ Aut(T ). The following hold:

(i) IfM and N are closed, then U(M,N) is closed subgroup of Aut(T ).

(ii) IfM = M+ and N = N+, then U(M,N) is simple if and only ifM or N is transitive.

(iii) IfM and N are closed, then U(M,N) is locally compact if and only if every point stabiliser of
M and N is compact.

(iv) IfM andN are closed, compactly generated, have compact point stabilisers, have �nitely many
orbits, andM or N is transitive, then U(M,N) is compactly generated.

(v) U(M,N) is discrete if and only ifM and N are free permutation groups.

Proof omitted. This is [Smi17, Theorem 1], which also includes a generalisation of the universality

property Proposition 1.5.7. ��

Using the general universal groups, Smith de�ned the box productM �N of permutation groups,

being the new permutation group induced by U(M,N) acting on one bipartition class of the semi-

regular tree. This box product inherits quite a few permutational and topological properties from

the local groups, in particular primitivity:

Theorem 1.5.9. LetM �N be the box product ofM ≤ Sym(X1) and N ≤ Sym(X2).

(i) M �N is transitive if and only ifM is transitive.

(ii) M �N is primitive if and only ifM is primitive and nonregular, and N is transitive.

Proof omitted. We refer to [Smi17, Theorem 26.]. ��
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The box product has another, even more spectacular application that we will now describe. In 1953,

Ruth Camm proved the existence of a continuum of nonisomorphic simple 2-generated groups in

[Cam53]. A topological analogue is the class S of nondiscrete compactly generated topologically

simple t.d.l.c. groups. The cardinality of the isomorphism classes of S has long been an open ques-

tion, until Smith showed in [Smi17, Theorem 38] the existence of a continuum of nonisomorphic

groups of the form U(M,N) in S .

1.5.3 Le Boudec’s groups

In another direction of generalisation, Adrien Le Boudec in [LB16] allowed the universal groups of

Burger–Mozes to have a �nite number of singularities, where the local action does not need to be a

permutation in the prescribed local group. We do ask the tree to be locally �nite again.

De�nition 1.5.10. Let Tn be the n-regular tree, let λ be a legal colouring, and let F ≤ Sym(n) be

a permutation group. Then the Le Boudec group of F with respect to λ is the group

Gλ(F ) =
{
g ∈ Aut(Tn)

∣∣ σλ(g, v) ∈ F for all but �nitely many v ∈ V
}
. (∗)

If g ∈ Gλ(F ), then an exceptional vertex v in (∗) is called a singularity of the automorphism g.

As it turns out, the local actions of Gλ(F ) exhibit some rigidity at singularities as well.

Proposition 1.5.11. For every v ∈ V and g ∈ G(F ), the local action σλ(g, v) is a permutation that
stabilises the F -orbits. In other words, recalling De�nition 1.1.16, we have an inclusion

G(F ) ≤ U(F̂ ).

Proof omitted. The key observation is that whenever σλ(g, v) /∈ F̂ , we can �nd at least two neigh-

bours of v, and hence a bi-in�nite path of singularities. ��

Le Boudec continued with a second local group F ′ satisfying F ≤ F ′ ≤ F̂ and de�ned the group

G(F, F ′) = G(F ) ∩ U(F ′).

This group was coined a restricted universal group in [CRW19]. It contains all automorphisms where

the local actions are restricted to F ′ and, for up to a �nite number of exceptions, even to F . There is

a way to topologise G(F, F ′) that makes the inclusion U(F ) ↪→ G(F, F ′) an open continous map.

This allows one to transfer topological properties of U(F ) to the restricted universal groups.

On the other hand, the groups G(F, F ′) are usually not closed in Aut(Tn), and they hence escape

common criteria for closed subgroups of Aut(Tn) to contain lattices: a lattice in a locally compact

group G is a discrete subgroup H such that the quotient space G/H carries a �nite G-invariant

measure. Lattices are of central interest in the theory of locally compact groups, and groups without

lattices seem to be quite rare. However, as an application, Le Boudec established the following.

Theorem 1.5.12. There exists permutation groups F ≤ F ′ ≤ Sym(n) such that the group G(F, F ′)
does not admit any lattice, for example F = PSL(2, q) and F ′ = PGL(2, q) acting on the projective
line PG(1, q) with q ≡ 1 (mod 4).

Proof omitted. This is [LB16, Theorem 1.4]. ��

Le Boudec remarks that, at that point, the only known compactly generated simple group without

lattices was the Neretin group AAut(Tn) of spheromorphisms of a regular tree (Theorem 1.5.18).

Theorem 1.5.13. There exist compactly generated t.d.l.c. groups H ≤ G such that
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(i) H is cocompact in G;

(ii) both G and H are abstractly simple;

(iii) G contains lattices while H does not.

Proof omitted. This is [LB16, Theorem 1.6]. ��

Theorem 1.5.14. There exist nondiscrete, compactly generated, locally compact, abstractly simple
groups admitting (cocompact) simple lattices.

Proof omitted. This is [LB16, Theorem 1.7]. ��

1.5.4 Lederle’s groups

Finally, we brie�y mention some results by Waltraud Lederle ([Led17]), who allowed for even more

drastic departures from the Burger–Mozes universal group. First, some de�nitions — we note that

we slightly deviate from the terminology of Lederle (speaking of almost-automorphisms and sphero-
morphisms, instead of honest almost-automorphisms and almost-automorphisms).

De�nition 1.5.15 (almost-automorphism). Let T be the n-regular tree. A �nite subtree S ⊂ T
is called complete if every vertex of S is either a leaf or a vertex of degree n. Given any complete

subtree S, by the di�erence T \S we mean the rooted forest obtained by removing from T all edges

and internal vertices of S, and declaring the leaves of S to be the roots. Note that T \ S is a forest

with as many components as S has leaves. Now an almost-automorphism of T is an isomorphism

of rooted forests ϕ : T \ S1 → T \ S2 where S1 and S2 are two complete �nite subtrees.

De�nition 1.5.16 (spheromorphism). We declare almost-automorphisms g : T \ S1 → T \ S2

and h : T \ S′1 → T \ S′2 to be equivalent if we have

g
∣∣
T\S = h

∣∣
T\S

for some �nite complete subtree S ⊇ S1 ∪ S′1 of T . Note that equivalent almost-automorphisms

induce the same homeomorphism on the boundary of the tree, called a spheromorphism of ∂T .

There is a natural way to compose two spheromorphisms: pick representatives g : T \S1 → T \S2

and h : T \ S′1 → T \ S′2, then let S ⊇ S1 ∪ S′2 be �nite complete subtree, and pass to equivalent

representatives g′ ≈ g and h′ ≈ h de�ned on T \ S. These representatives can then be composed.

It is not too hard to convince oneself this gives a well-de�ned composition of equivalence classes.

De�nition 1.5.17 (Neretin group). The set of all spheromorphisms is a group under the compo-

sition described above, called the Neretin group and denoted by AAut(T ).

Theorem 1.5.18. Let T be the n-regular tree. The Neretin group AAut(T ) is compactly generated,
locally compact, simple, and does not admit any lattice.

Proof. This is the content of [BCGM12]. �

Similar to how the Burger–Mozes group imposes local conditions on automorphisms, we can play

the same game here and restrict the initial automorphisms. Given a subgroup G ≤ Aut(T ), de�ne

a G-almost-automorphism as an almost-automorphism ϕ : T \ S1 → T \ S2 with the property that

for every component Tv of T \ S1 there is some gv ∈ G with

ϕ
∣∣
Tv

= gv
∣∣
Tv

The equivalence classes of G-almost-automorphisms then de�ne a subgroup AG ≤ AAut(T ).
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Theorem 1.5.19. Let F ≤ Sym(n). Let N (F ) = AU(F ) be the group obtained as described above
from the Burger–Mozes group U(F ).

(i) The derived subgroup of N (F ) is open, simple, and has �nite index in N (F ).

(ii) N (F ) is compactly generated.

(iii) If F is a Young subgroup with strictly less than n orbits, thenN (F ) does not admit any lattice.
If F has precisely n orbits, then N (F ) does not admit any cocompact lattice.

Consequently, if F is a Young subgroup with less than n orbits, then the derived subgroup of N (F ) is
a compactly generated, non-discrete, simple group without lattices.

Proof omitted. This is [Led17, Theorem 1.2]. ��

1.6 CAT(0) geometry

CAT(0) spaces were introduced by Aleksandr Aleksandrov in the 1950s, but were put in the spot-

light by Mikhael Gromov, who showed that the CAT(0) condition alone was su�cient for a sur-

prisingly deep study of manifolds of nonpositive sectional curvature. Gromov suggested the name

CAT as an acronym for Élie Cartan, Aleksandr Aleksandrov, and Victor Toponogov. For more

motivation, details, and history, we refer to [BGS85] or [BH99].

De�nition 1.6.1 (geodesic segment). Let (X, d) be a metric space, i.e. a set X endowed with a

distance d : X ×X → R. A geodesic segment (or geodesic for short) is a continuous isometric map

γ : [s0, s1]→ X . Explicitly, for every s0 ≤ t0 ≤ t1 ≤ s1 we require that d(γ(t0), γ(t1)) = t1 − t0.

A metric space is called geodesic if every two points x0 and x1 can be joined by a geodesic segment

γ : [s0, s1]→ X (such that γ(s0) = x0 and γ(s1) = x1). We denote such a geodesic by [x0, x1] and

note that it need not be unique.

It should be noted that this de�nition of geodesic segments is a global one, while usually in di�er-

ential geometry a geodesic only needs to minimise distances locally.

As a familiar example, the Euclidean plane (R2, dE) with the Euclidean distance is a geodesic metric

space, where the geodesic segments are line segments. The intuition behind the CAT(0) condition

is that it rules out “fat” triangles, by comparing triangles of geodesic segments to Euclidean ones.

The following de�nition makes this precise.

De�nition 1.6.2 (CAT(0) space). Let (X, d) be a geodesic metric space.

(i) A geodesic triangle in X is a triple (x, y, z) of points together with three geodesic segments

[x, y], [y, z], [x, z]. A comparison triangle is a triple (x̂, ŷ, ẑ) of points in the Euclidean plane

such that

d(x, y) = dE(x̂, ŷ), d(y, z) = dE(ŷ, ẑ), d(x, z) = dE(x̂, ẑ).

For every point p on the image of [x, y], there is a Euclidean comparison point p̂ on the line

segment [x̂, ŷ] that satis�es d(x, p) = dE(x̂, p̂) and d(p, y) = dE(p̂, ŷ).

(ii) (X, d) is a CAT(0) space if for every geodesic triangle (x, y, z) and every point p on [x, y],
the inequality d(p, z) ≤ dE(p̂, ẑ) holds. See Figure 1.3 for an illustration.
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z
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ẑ
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Figure 1.3. The CAT(0) condition on triangles and comparison triangles.

(iii) If there exists some positive constant δ such that for every geodesic triangle (x, y, z) the side

[x, y] is contained in the δ-neighbourhood of [x, z]∪ [y, z], then we say that (X, d) is Gromov

hyperbolic, or explicitly, δ-hyperbolic.

The de�nition immediately yields some fundamental properties.

Proposition 1.6.3. A CAT(0) space is contractible and uniquely geodesic (i.e. geodesic segments
joining two points are unique).

Example 1.6.4. (i) Euclidean space (Rn, dE) is a CAT(0) space.

(ii) A complete Riemannian manifold M , endowed with its canonical metric, is a CAT(0) space

if and only if M has nonpositive sectional curvature. In particular real hyperbolic space Hn
is a CAT(0) space.

(iii) A metric graph, obtained by replacing every edge of a graph by a line segment of unit length,

is a CAT(0) space if and only if the original graph is a tree (i.e. a connected acyclic graph).

An example of the power of the CAT(0) condition is the following �xed point theorem, originally

proven by François Bruhat and Jacques Tits for a�ne buildings.

Theorem 1.6.5 (Bruhat–Tits). Let G be a group acting on a complete CAT(0) space (X, d) by
isometries. If G has a bounded orbit, then the �xed point set of G is a nonempty convex subset of X .

Proof omitted. This is [BH99, Corollary 2.8]. ��

One de�ning property of CAT(0) spaces is that they have a well-behaved structure at in�nity.

De�nition 1.6.6 (visual boundary). Let (X, d) be a CAT(0) space. Then we de�ne two geodesic

rays γ, γ′ : R+ → X to be equivalent if and only if the distance dist(γ(t), γ′(t)) remains bounded

(where t ranges over R+
). The rays γ and γ′ are said to be asymptotic. The equivalence class of γ

is commonly denoted by γ(∞).

The visual boundary of X is then the set of all equivalence classes of geodesic rays, and is denoted

by ∂X . Note that the images of asymptotic rays under isometries ofX are again asymptotic. Thus,

isometries of X extend to bijections of X ∪ ∂X . For a topologi�cation of X ∪ ∂X compatible with

the CAT(0) structure on X , we refer to [BH99, Chapter II.8] or [Cap14b].

De�nition 1.6.7 (minimal, geometrically dense). Let G be a group acting on a CAT(0) space

(X, d) by isometries. The action is said to be minimal if there is no nontrivial G-invariant closed

convex subset of X . The action is geometrically dense if it is minimal and if moreover G does not

�x a point in ∂X .
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Compare De�nitions 1.4.1 and 1.6.7; every automorphism of a tree in the classical sense induces an

isometry of its CAT(0) realisation as a simplicial tree, and the “combinatorial” notions of minimal

or geometrically dense actions agree with the “geometrical” notions on the metric realisation.

1.7 Building theory

The roots of buildings lie in the �eld of algebraic group theory, where Jacques Tits — the architect

of building theory — constructed a uniform framework for understanding certain algebraic groups

in a geometrical way.

Driven by Felix Klein’s Erlangen program from the 1870s, generations of mathematicians classi�ed

geometries in terms of their groups of automorphisms. The standard examples are the projective

linear groups, whose structure captures projective geometries. Similar geometries were constructed

for orthogonal, symplectic, and unitary groups, and the development of the theory of semisimple

groups allowed Tits to construct geometries for the exceptional groups as well.

A central insight in the 1950s was that to a general semisimple algebraic groupG, one can associate

a �nite re�ection group called theWeyl groupW ofG. It is obtained as the quotientN/T , where T is

a maximal torus and N its normaliser. Another key ingredient in understanding the structure of G
is that of a Borel subgroupB and the parabolic subgroups. Using such a Borel subgroup, one obtains

a decomposition G = BWB and even more precisely, a one-to-one correspondence between W
and the set B\G/B of double cosets of B. This is the so-called Bruhat decomposition of G.

Using the parabolic subgroups as building blocks, one can then de�ne a geometry whose structure

is governed by the Weyl group. One recovers e.g. the projective geometries from projective groups

in this fashion, but from purely algebraic data, and in a vastly more general setting. Tits studied

how the algebraic properties restricted the geometries, initially over the complex �eld C but grad-

ually extending to more general �elds, and eventually gave several axiomatisations of the resulting

geometries, which he called buildings.

Tits presented an outline of the theory in a 1965 Bourbaki Seminar ([Tit65]) and provided a more

extensive picture in the book Buildings of spherical type and �nite BN-pairs ([Tit74]). At that time,

Tits thought of buildings as simplicial complexes with a distinguished family of subcomplexes called

apartments. In this point of view, the chambers are the simplices of maximal dimension. Since then

other viewpoints have been developed, the most succesful one following a suggestion of Luis Puig,

taking chambers as fundamental objects and founding the theory on the more abstract framework

of chamber systems. Tits presented this approach in [Tit81]. Throughout this thesis, we will use

this more modern viewpoint.

1.7.1 Chamber systems

We brie�y go through the necessary de�nitions and some examples, and refer to one of the standard

works such as [Ron09] or [Wei03] for more background. A warning however — in the literature, the

precise de�nition of a chamber system varies somewhat, as one might or might not allow for certain

degenerate situations. There should be no confusion, as we will not encounter such degeneracies,

but in any case, our approach is based on [Ron09].
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De�nition 1.7.1 (chamber system). Let I be any index set. A chamber system over I is a set ∆
together with, for every i ∈ I , an equivalence relation called i-adjancence. The elements of ∆ are

called chambers. If two chambers c and d are i-adjacent, we write c ∼i d, or simply c ∼ d if we do

not want to stress the adjacency type. The cardinality |I| is called the rank of ∆. In this thesis, the

rank will always be �nite.

Just as with groups, we usually say “∆ is a chamber system” when the equivalence relations on ∆
are clear from context .

Convention 1.7.2. There are a few commonly used but slightly nonconcurring ways to represent

chamber systems. The original simplicial approach to building theory used the notion of a chamber
complex — a su�ciently connected simplicial complex in which all maximal simplices have the same

dimension. The chambers are these maximal simplices, and chambers are adjacent if they intersect

in a face of codimension one. Unfortunately, only chamber complexes of low rank can be visualised

satisfactorily using this approach. Our combinatorial approach treats the chambers as core objects.

It is then more natural to visualise chamber systems as graphs, where the chambers are the vertices

and the di�erent types of adjacency are represented by edges of di�erent colours. Both viewpoints

have their bene�ts and we feel the need to switch occasionally. However, whichever viewpoint we

use, chambers will always be represented in black (either as vertices, edges, simplices) and di�erent
types of adjacency will always be represented by di�erent colours.

De�nition 1.7.3 (gallery). A gallery γ is a �nite sequence of pairwise adjacent chambers

c0 ∼i1 c1 ∼i2 · · · ∼in cn

for certain i1, . . . , in ∈ I . We call the word i1 · · · in (an element of the free monoid I∗) the type
of γ, and the integer n the length of γ. If there is no strictly shorter gallery from c0 to cn we call γ
a minimal gallery. Note that we colloquially say the gallery to join the chambers c0 and cn or to go

from c0 to cn — this should not cause any confusion.

Chamber systems are naturally metric spaces, where the metric

dist : ∆×∆→ N ∪ {∞}

is de�ned by declaring dist(c, d) to be the minimal length of all galleries joining c and d (or in�nity

if there is no such gallery). It is clear that this distance function is positive-de�nite, symmetrical,

and satis�es the triangle inequality.

De�nition 1.7.4 (ball, sphere). Let c ∈ ∆ and n ∈ N. Then we de�ne the sets

Bn(c) = {d ∈ ∆ | dist(c, d) ≤ n}, Sn(c) = {d ∈ ∆ | dist(c, d) = n},

that we call the ball and the sphere, respectively, with centre c and radius n.

De�nition 1.7.5 (convex). A subset C ⊆ ∆ is called (combinatorially) convex if any gallery

between two chambers in C lies entirely in C .

De�nition 1.7.6 (panel, residue). Let J ⊆ I . A subset C ⊆ ∆ is called J-connected if any two

chambers in C can be joined by a gallery of type in J∗. A residue of type J , or simply a J-residue,
is a J-connected components of ∆. A panel of type j, or simply a J-panel, is a residue of type {j}.
A residue of type J is also said to have cotype I \ J .

For a given chamber c and type J ⊆ I , we will denote the residue of type J containing c byRJ(c).

When J = {j}, we will denote the panel of type j containing c by Pj(c). The set of all J-residues

of the chamber system ∆ will be denoted by ResJ(∆).

Note that a J-residue is in its own right a connected chamber system over the index set J .
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De�nition 1.7.7 (thin, thick). A chamber system is called thin if every panel contains exactly

two chambers, and thick if every panel contains at least three chambers. (Panels containing only a

single chamber are degenerate cases that should not occur in any reasonable application.)

Note that a chamber system does not have to be either thin or thick.

De�nition 1.7.8 (morphism). A map ϕ : ∆1 → ∆2 between two chamber systems is a morphism
if ϕ(c) ∼ ϕ(d) in ∆2 whenever c ∼ d in ∆1. As usual, an isomorphism is a bijective morphism,

and an automorphism is an isomorphism to the same chamber system. Assuming that ∆1 and ∆2

have the same index set, a morphism is type-preserving if more precisely ϕ(c) ∼i ϕ(d) whenever

c ∼i d. In this thesis, we shall always assume morphisms to be type-preserving.

The set of all automorphisms of a chamber system ∆ forms a group, denoted by Aut(∆).

Example 1.7.9. The basic notion of a chamber system has very few restrictions and examples are

plentiful, but it helps to keep in mind a more substantial example like (vi) below when building up

the theory.

(i) A chamber system of rank zero is simply a set of chambers with no adjacencies whatsoever.

(ii) By visualising the chambers as vertices of a graph and the unique adjacency relation as edges,

a chamber system of rank one is nothing more than the disjoint union of complete graphs.

(iii) A chamber system of rank one can be visualised as the disjoint union of complete graphs,

where the chambers are vertices and the adjacency is determined by the edges.

(iv) Chamber systems of rank two are essentially the same as bipartite graphs, as the following

example from [Wei03, Example 1.8] shows. Let Γ = (V,E) be a graph with a bipartition into

“white” and “black” vertices, V = V◦ t V•. De�ne a chamber system ∆Γ over the set {◦, •}
with chamber set E by declaring two chambers (i.e. edges of Γ) to be ◦-adjacent if they share

an endpoint in V◦ and •-adjacent if they share an endpoint in V•. In this chamber system,

panels in ∆Γ naturally correspond to vertices of Γ.

Conversely, let ∆ be a chamber system of rank two, and de�ne a graph Γ∆ with the panels

of ∆ as the vertex set. Join two vertices in Γ∆ by an edge if and only if the corresponding

panels have a nonempty intersection. Note that such panels necessarily have di�erent types,

so that Γ∆ is a bipartite graph.

Up to isomorphism and relabeling of the index set, these two constructions are inverses.

(v) If ∆1 and ∆2 are two chamber systems over I1 and I2 respectively, then their direct product

∆1×∆2 is naturally a chamber system over I1t I2 by declaring (c1, c2) ∼i (d1, d2) if either

c1 ∼i d1 and c2 = d2 (for i ∈ I1) or c1 = d1 and c2 ∼i d2 (for i ∈ I2). Residues in this direct

product are then direct products of residues.

(vi) Usually in geometry, projective space of dimension n consists of objects of n di�erent types

(points, lines, . . . ) and one universal incidence relation. In order to recast this into a chamber

system, we need a single set of homogeneous objects, equipped with n equivalence relations.

De�ne the chambers to be the maximal �ags, i.e. sets of exactly n mutually incident objects.

For every 0 ≤ i < n, we declare two �ags to be i-adjacent if they di�er only in their element

of dimension i. This results in a thick chamber system of rank n.

A panel of type i then corresponds to a collection of subspaces of dimension i, sandwiched

between two given incident subspaces of dimension i− 1 and i+ 1. The residues of cotype i
can be identi�ed with the i-subspaces.
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For the Fano plane PG(2, 2), there are 21 �ags in total. A visualisation of the corresponding

chamber system is given in Figure 1.4. The Levi graph of the Fano plane is the bipartite graph

with the points and lines as vertices and edges de�ned by incidence. The 21 edges correspond

to the chambers, and there are two types of adjacency, de�ned by the bipartition.

Figure 1.4. The Fano plane when interpreted as a chamber system.

1.7.2 Coxeter systems

The next step towards buildings is the de�nition of Coxeter complexes. These complexes will turn

out to be precisely the thin buildings.

De�nition 1.7.10 (Coxeter system). Let I be any index set and M a function

M : I × I → N ∪ {∞} : (i, j) 7→ mij

satisfying mii = 1, mij ≥ 2, and mij = mji for all i 6= j ∈ I . Then the Coxeter group of typeM is

the group de�ned by the presentation

W =
〈
si
∣∣ (sisj)

mij = 1 for all i, j ∈ I
〉
.

When mij =∞, this means that no relation on sisj should be imposed. Note that the assumption

that mii = 1 for all i ∈ I immediately implies that the generators si are involutions. Additionally,

note that when mij = 2, the generators si and sj commute.

Together with the generating set S = {si | i ∈ I}, the pair (W,S) is called the Coxeter system of
typeM . The rank of (W,S) is the cardinality of I .
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We can represent M be means of its Coxeter matrix (mij), or more commonly its Coxeter diagram:

the nodes of the diagram are the elements of I (sometimes with explicit labels), and two nodes are

connected by a decorated edge according to the following rules:

i j

mij = 2

i j

mij = 3

i j

mij = 4

i j
mij

mij ≥ 5

One caveat is that the set S in a Coxeter system is not uniquely determined by the Coxeter group
alone; for instance, the two diagrams below give rise to isomorphic Coxeter groups. When dealing

with general Coxeter systems, it is hence of importance to specify the generating set (although this

might be super�uous for certain speci�c families; see Theorem 2.1.2 below).

A priori from the presentation, the order of the product sisj of two generators is bounded by mij .

Tits constructed a linear representation W → GL(RI) from which one can read o� more.

Proposition 1.7.11. Let (W,S) be a Coxeter system. Then the order of sisj equalsmij .

Proof omitted. We refer to [Ron09, Lemma 2.1], [Wei03, Theorem 2.3], [Dav12, Corollary 6.12.6], or

the original article by Tits [Tit69, Corollaire 2]. ��

Let us mention a few important families.

De�nition 1.7.12 (irreducible). We call a Coxeter system (W,S) irreducible if the underlying

graph of its Coxeter diagram is connected, and reducible otherwise.

If a diagram has two or more connected components, the Coxeter group is isomorphic to the direct

product of the Coxeter groups associated to the individual components, since generators corre-

sponding to di�erent components pairwise commute. Usually, we may thus restrict our attention

to the irreducible case.

De�nition 1.7.13 (spherical). We call a Coxeter system (W,S) spherical if W is a �nite group.

As brie�y sketched in Section 1.7, Weyl groups of semisimple linear algebraic groups are spherical

Coxeter groups. Historically, these groups were realised as re�ection groups of the unit sphere in

Euclidean space of dimension n, where n is the rank of (W,S) — hence the name.

De�nition 1.7.14 (right-angled). We call a Coxeter system (W,S) right-angled if for all i 6= j,
we have that mij ∈ {2,∞}.

De�nition 1.7.15 (Coxeter complex). Let (W,S) be a Coxeter system of type M over I . De�ne

a chamber system over I with the elements of W as chambers, and declare two group elements v
and w to be i-adjacent if and only if vsi = w. Then i-adjacency is indeed an equivalence relation

since si is an involution for all i ∈ I . The resulting chamber system is called the Coxeter complex
of typeM .

It is worth emphasising that Coxeter complexes are always connected and thin: every chamber is

i-adjacent to exactly one other chamber for every i ∈ I .

The Coxeter complex associated to a Coxeter system (W,S) is nothing more than the (undirected)

Cayley graph of W with respect to the generating set S — vertices corresponding to chambers and

i-adjacency corresponding to edges with label si. In particular, W acts as the automorphism group

of the Coxeter complex.
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Example 1.7.16. It helps to have a few examples in mind.

(i) Consider the following diagram with n nodes, commonly denoted by An.

1 2 3
· · ·

n− 1 n

This corresponds to the group presentation 〈s1, . . . , sn | R〉, whereR is the set of relators

si
2 = 1 for all 1 ≤ i ≤ n,

(sisi+1)3 = 1 for all 1 ≤ i < n,

(sisj)
2 = 1 for all 1 ≤ i < j ≤ n such that |i− j| ≥ 2.

With a bit of e�ort, one can show this is a presentation for the symmetric group Sym(n+ 1)
on n+ 1 elements. We brie�y sketch a proof. There exists a well-de�ned morphism from W
to the symmetric group taking generator si to transposition (i i+ 1). Indeed: transpositions

are involutions, disjoint transpositions commute, and products of two adjacent transpositions

have order 3. Since these n transpositions generate Sym(n+ 1), the morphism is surjective.

Finally, with an inductive argument one shows that the order of W is bounded by (n + 1)!,
so we have, in fact, an isomorphism.

The associated Coxeter complex is a skeleton of a permutohedron, an n-dimensional polytope

whose k-dimensional faces correspond to rank k residues for all 0 ≤ k ≤ n. Figure 1.5 gives

a visualisation for n = 2, where the permutohedron is a hexagon, and for n = 3, where the

permutohedron is a truncated cuboctahedron.

(1 2 3)

(1 3)(1 3 2)

(2 3)

( ) (1 2)

(1 2) (2 3) (1 2) (2 3) (3 4)

Figure 1.5. The Coxeter complexes of type A2 and A3.

(ii) Consider the following diagram with n ≥ 2, commonly denoted by I2(n). For n ∈ {2, 3, 4},
instead of a label n our notational convention would dictate either no edge, a single edge, or

a double edge, but no confusion should be possible.

n

For �nite n, this corresponds to the presentation 〈s, t | s2 = t2 = (st)n = 1〉 — a familiar

presentation for the �nite dihedral group D2n (the group of symmetries of a regular n-gon).

Geometrically, s and t can be represented as re�ections in Euclidean space through lines that

make an angle of π/n. Figure 1.6 shows the associated Coxeter complex for n = 4; in general

the complex is a cycle of length 2n.

Note that diagrams I2(3) and A2 are identical, explaining the isomorphism Sym(3) ∼= D6.
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stst = tsts

sts

st

s

1

t

ts

tst

Figure 1.6. The Coxeter complex of type I2(4).

For in�nite n, we �nd a presentation 〈s, t | s2 = t2 = 1〉 for the in�nite dihedral group D∞
(the group of symmetries of the integers, or of a regular apeirogon). Geometrically, s and t
can be represented as Euclidean re�ections through parallel lines. The Coxeter complex is a

two-way in�nite path, as depicted in Figure 1.7.

stst sts st s 1 t ts tst tsts

... . . .

∞

Figure 1.7. The Coxeter complex of type I2(∞).

(iii) An important family of in�nite Coxeter groups is given by the a�ne ones. Just like spherical
Coxeter groups of rank n+ 1 are characterised as groups of re�ections of an n-sphere, a�ne
Coxeter groups of rank n+ 1 are groups of re�ections of n-dimensional a�ne space. These

groups are extensions of an abelian group by a spherical Coxeter group.

Type I2(∞) is one example. Figures 1.8 and 1.9 give two other examples, namely Ã2 and

G̃2. The Coxeter complex of the former corresponds to the hexagonal tiling of the Euclidean

plane (or its dual, the triangular tiling); the complex of the latter to the truncated trihexagonal

tiling (or its dual, the kisrhombille tiling).

(iv) Figure 1.10 is the direct product of two systems of type I2(∞) and an example of a reducible

right-angled Coxeter system. Note that the product is again an a�ne Coxeter group; the

Coxeter complex corresponds to a simple (self-dual) square tiling.

(v) Figure 1.11 is an example of an irreducible right-angled Coxeter system.

(vi) Figure 1.12 visualises an irreducible right-angled Coxeter complex embedded in the hyper-

bolic plane as the dual of a tessellation with regular right-angled pentagons. This Coxeter

system of rank �ve is the building block for the Bourdon building of type I5,2 as de�ned in

[Bou97].

Whenever a group is given by a presentation, a natural question is to understand its combinatorial

behaviour. Coxeter groups turn out to be quite tame: not only did Tits �nd a satisfying theoretical
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solution to the word problem, but also surprisingly e�cient practical algorithms for computations

in Coxeter groups have been developped as well, building further upon Tits’s geometrical approach

(see, for instance, [Cas02]). In order to introduce this, we need a couple of de�nitions.

De�nition 1.7.17. Let (W,S) be a Coxeter system over some index set I . Then there is a natural

surjective evaluation morphism of monoids from the free monoid on I to the group W de�ned by

ς : I∗ →W : i 7→ si.

De�nition 1.7.18. For every i 6= j such that mij is �nite, de�ne in I∗ the word

p(i, j) =

{
(ij)k if mij = 2k is even,

j(ij)k if mij = 2k + 1 is odd.

In other words, p(i, j) is the word withmij alternating letters i and j, ending in j. Whenmij =∞,

p(i, j) remains unde�ned.

We can now describe a couple of elementary operations on words in I∗ that will nicely relate to

the group structure of W.

De�nition 1.7.19 (homotopy). Let i, j ∈ I and w1, w2 ∈ I∗.

(i) An elementary homotopy (or also a braid relation) is a transformation of a word w1 p(i, j)w2

into the word w1 p(j, i)w2. Two words w and w′ are homotopic if w can be transformed into

w′ by a sequence of elementary homotopies; we denote this by w ' w′. Clearly, homotopy

is an equivalence relation and preserves the length of the words.

(ii) An elementary contraction is a transformation of a word w1 ii w2 into the word w1w2.

(iii) An elementary expansion is a transformation of a word w1w2 into a word w1 ii w2.
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.

.
.
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.
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.
.

. . .

.
.
.

Figure 1.8. The Coxeter complex of type Ã2.
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Figure 1.9. The Coxeter complex of type G̃2.
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Figure 1.10. The Coxeter complex of type I2(∞)× I2(∞).

Nodes and correspond to solid edges, nodes and to dotted edges.
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Figure 1.11. A right-angled Coxeter complex.

A word is called reduced if it is not homotopic to a word of the form w1 ii w2 (for some i ∈ I). Two

words w and w′ are called equivalent if w can be transformed into w′ by a sequence of elementary

homotopies, contractions, and expansions. Clearly, every equivalence class contains some reduced

word.

It helps to think of these operations in geometrical terms. Choosing any initial chamber, a word w
in I∗ can be thought of as a gallery of type w in the Coxeter complex. An elementary contrac-

tion then removes a backtracking g ∼i gsi ∼i g, while an elementary expansion introduces one.

Moreover, residues of type {i, j} correspond to a cycle of length 2mij (by Proposition 1.7.11), and

an elementary homotopy transforms a gallery of length mij in this cycle (i.e. going to an opposite

chamber) into the gallery that “goes the other way around”.

Theorem 1.7.20. (i) Two words w and w′ are equivalent if and only if ς(w) = ς(w′).

(ii) Two reduced words w and w′ are equivalent if and only if they are homotopic.

(iii) A gallery in the Coxeter complex is minimal if and only if its type is reduced.

(iv) If for some i ∈ I a word w is reduced but iw (or wi) is not, then w is homotopic to a word that
begins (or ends, respectively) with i.

Proof. By the de�ning relations (sisj)
mij = 1 in the presentation, p(i, j) and p(j, i) have the same

image under ς , and ς(ii) is the identity. Statement (i) follows immediately. For (ii) and (iii), we refer

to [Ron09, Theorem 2.11]. Statement (iv) is [Ron09, Corollary 2.13]. �
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Figure 1.12. A right-angled Coxeter complex in the hyperbolic plane.

Nodes and correspond to solid edges, nodes and to dotted edges.
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As a corollary, Theorem 1.7.20 shows the word problem in Coxeter groups to be decidable: in order

to check whether two words w and w′ represent the same group element, it su�ces to reduce them

and check whether or not the reduced words are homotopic. This is decidable, since homotopies

preserve word lengths; a brute-force algorithm could (in principle at least) �nish the job. Obviously

for practical purposes a more e�cient implementation is desirable, but the geometry continues to

play an important role (see e.g. [Cas02]).

Coxeter systems have a natural notion of subsystems, as the following proposition shows.

Proposition 1.7.21. Let (W,S) be a Coxeter system of typeM over I . Let J ⊆ I be any subset, let
SJ = {sj | j ∈ J} ⊆ S andWJ = 〈SJ〉 ≤W, and letMJ the subdiagram ofM induced by J .

(i) If si ∈WJ for some i ∈ I , then i ∈ J . In other words, SJ = S ∩WJ .

(ii) If w ∈ I∗ is a reduced word with ς(w) ∈WJ , then actually w ∈ J∗.

(iii) (WJ , SJ) is a Coxeter system of typeMJ over J .

Proof omitted. We refer to [Ron09, Lemma 2.1, Lemma 2.10, Corollary 2.14]. ��

Corollary 1.7.22. Reusing the notation from Proposition 1.7.21, let R be a J-residue in the Coxeter
complex of (W,S). ThenR is convex, andR is (isomorphic to) a Coxeter complex of typeMJ .

We conclude this section with another important property of residues in Coxeter complexes, known

as the gate property.

Proposition 1.7.23. Let R be a residue and c be a chamber of a Coxeter complex. Then there exists
a unique chamber d ∈ R such that dist(c, d) is minimal. Moreover, for every chamber c′ ∈ R, there
exists a minimal gallery from c to c′ via d.

Proof omitted. We refer to [Ron09, Theorem 2.9]. ��

1.7.3 General buildings

We can �nally state the de�nition of a building (using the “combinatorial” approach from [Tit81]).

De�nition 1.7.24 (building). Let (W,S) be a Coxeter system of typeM over some index set I . A

building (∆, δ) of typeM is a chamber system ∆ over I such that every panel contains at least two

chambers, and equipped with a map δ : ∆ ×∆ → W satisfying the following property for every

reduced word w ∈ I∗:

δ(c, d) = ς(w) if and only if c and d can be joined by a gallery of type w.

Such a gallery is automatically minimal by Theorem 1.7.20. In particular, the distance between two

chambers c and d is exactly the length of δ(c, d) in the word metric of W (w.r.t. generating set S).

Intuitively, the map δ not only measures a notion of “distance” between chambers, but in addition

a notion of “direction” as well, with values in the group W . This group is called the Weyl group of

the building, and the map δ is hence also called the W-distance or Weyl distance function.

For brevity we shall usually identify the building with its chamber set and abbreviate (∆, δ) to ∆.
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Why do we need to restrict w to reduced words in the de�nition? Suppose that γ = c0 ∼i c1 ∼i c2

is a gallery of type ii. Then two possibilities arise: either c0 = c2 in which case we can replace γ by

the null gallery, or c0 6= c2 in which case we can replace γ by the gallery c0 ∼i c2 of type i. Hence

an elementary contraction on the word level does not lift to a meaningful operation on the gallery

level: in general, a gallery of type w1 ii w2 cannot be replaced by one of type w1w2.

We bundle a couple of immediate consequences of the de�nition.

Proposition 1.7.25. Let (∆, δ) be a building.

(i) ∆ is connected and δ is surjective;

(ii) δ(c, d) = δ(d, c)−1 for all chambers c, d ∈ ∆;

(iii) δ(c, d) = 1 if and only if c = d;

(iv) δ(c, d) = si if and only if c 6= d and c ∼i d;

(v) i-adjacency and j-adjacency are mutually exclusive for i 6= j;

(vi) a gallery in ∆ of type w is minimal if and only if w is reduced;

(vii) if w is a (not necessarily reduced) word such that δ(c, d) = ς(w), then there exists a gallery of
type w from c to d;

(viii) if γ1 is a (not necessarily minimal) gallery of type w1 from c to d and w1 is homotopic to w2,
then there exists a gallery γ2 of type w2 from c to d;

(ix) if w is reduced, then a gallery of type w between two chambers is unique.

De�nition 1.7.26 (semiregular). A building ∆ over I is called semiregular with parameters (qi)i∈I
if for every i ∈ I the panels of type i all have the same (possibly in�nite) cardinality qi ≥ 2. Note

that the thin buildings are precisely the semiregular buildings with parameters qi = 2.

Example 1.7.27. The associated Coxeter complex of a Coxeter system (W,S) of type M is itself

a building of type M , by setting δ(g, h) = g−1h for all g, h ∈W. This is a thin building.

Since distances in a building are governed by δ and the underlying Coxeter system, the de�nition

of an isometry should take into account the map δ as well.

De�nition 1.7.28 (isometry). Let (∆1, δ1) and (∆2, δ2) be two buildings of the same type, and

let C ⊆ ∆1 be a subset. A map ϕ : C → ∆2 is called an isometry if δ1(c, d) = δ2(ϕ(c), ϕ(d)) for

all c, d ∈ C , or in other words, if the following diagram commutes.

C × C ∆2 ×∆2

W W

ϕ×ϕ

δ1 δ2

De�nition 1.7.29 (isomorphism). Let (∆1, δ1) and (∆2, δ2) be two buildings of the same type.

A building isomorphism ∆1 → ∆2 (or shortly an isomorphism when clear from context) is an iso-

morphism of chamber systems that is moreover an isometry.
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While chamber system isomorphisms only take into account “local” data (i-adjacencies) and build-

ing isometries more “global” data (images of δ), there is still a strong correspondence between the

two notions when considering full-scale buildings, as the following proposition shows.

Proposition 1.7.30. Let (∆1, δ1) and (∆2, δ2) be buildings of the same type. Then ϕ : ∆1 → ∆2 is
an isometry if and only if ϕ is a (type-preserving) chamber system isomorphism from ∆1 to ϕ(∆1).

Proof omitted. This is [Wei03, Proposition 8.2]. ��

De�nition 1.7.31 (apartment). Let ∆ be a building of type M and let (W,S) be the underlying

Coxeter system of type M . Using Example 1.7.27, we can then consider isometries ϕ : W → ∆.

An isometric image ϕ(W ) of W is called an apartment of ∆.

By Proposition 1.7.30, an apartment on its own is a thin building of type M . The following propo-

sition and its corollary show that apartments are plentiful in buildings.

Proposition 1.7.32. An isometry of a subset C ⊆W into ∆ extends to an isometry ofW into ∆.

Proof omitted. This is [Ron09, Theorem 3.6]. ��

Corollary 1.7.33. Every two chambers of a building are contained in a common apartment.

Proof. Let c and d be two distinct chambers in ∆. Set g = δ(c, d). Then the map ϕ : {1, g} → ∆
with ϕ(1) = c and ϕ(g) = d can be extended to an isometry ϕ̄ : W → ∆ by Proposition 1.7.32.

The image ϕ̄(W ) is an apartment containing both c and d. �

Proposition 1.7.34. LetA be an apartment of ∆ and let c ∈ A be a chamber. Then there is a unique
isometry ϕ : W → ∆ such that ϕ(1) = c and ϕ(W ) = A.

Proof. Suppose ϕ′ is another such isometry. Then ϕ−1ϕ′ is an isometry ofW and �xes the identity,

hence ϕ−1ϕ′ is the identity map. �

De�nition 1.7.35 (retraction). Let c be a chamber in an apartmentA of ∆. Let ϕ be the isometry

from Proposition 1.7.34. Then we de�ne the map

ρc,A : ∆→ A : d 7→ ϕ(δ(c, d)),

called the rectraction of ∆ onto A with centre c.

Using retractions one can then show the following.

Proposition 1.7.36. Apartments are convex.

Proof omitted. This is a special case of [Ron09, Theorem 3.8]. ��

As a corollary, we can lift Proposition 1.7.23 to the realm of buildings.

Corollary 1.7.37 (gate property). LetR be a residue and c be a chamber of a building. Then there
exists a unique chamber d ∈ R such that dist(c, d) is minimal. Moreover, for every chamber c′ ∈ R,
there exists a minimal gallery from c to c′ via d.

De�nition 1.7.38 (projection). LetR be a residue and c a chamber of ∆. The unique chamber in

R at minimal distance to c is called the projection of c ontoR and denoted by projR(c).

Similarly, Corollary 1.7.22 has an analogue in the realm of buildings.

Proposition 1.7.39. Let ∆ be a building of typeM and letR be a J-residue. ThenR is convex, and
R is (isomorphic to) a building of typeMJ .

Together with the gate property, this yields a useful characterisation of convexity in buildings.
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Corollary 1.7.40. A set C ⊆ ∆ is convex if and only if for every c ∈ C and every residue R with
C ∩R 6= ∅, we have that projR(c) ∈ C .

Before giving some examples, we collect some more useful properties of the projection map.

Proposition 1.7.41. Let ∆ be any building.

(i) If c and d are adjacent chambers in ∆, and R is any residue, then projR(c) and projR(d) are
adjacent as well (and possibly coincide).

(ii) The projection map is distance-decreasing, i.e. for any pair of chambers c, c′ and any residueR
we have that dist(projR(c),projR(c′)) ≤ dist(c, c′);

(iii) Let S ⊆ R be two residues. Then for any chamber c, we have projS(c) = projS(projR(c)). In
particular, if projR(c) ∈ S , then projS(c) = projR(c).

Proof. For (i), we may assume without loss of generality that dist(c,projR(c)) ≤ dist(d,projR(d))
so that by the gate property,

dist(projR(c),projR(d)) = dist(c,projR(d))− dist(c,projR(c))

≤ dist(c,projR(d))− dist(d,projR(d)) ≤ 1.

Property (ii) follows immediately from (i), and (iii) from the gate property (with c′ = projS(c)). �

Let us now look at a few more interesting examples of buildings.

Example 1.7.42. (i) A building of rank one is nothing more than a complete graph. Indeed,

the Coxeter group of rank one is generated by a single involution s and hence isomorphic to

Z/2Z. A building ∆ of this type needs to have δ(c, d) = s for all c 6= d, or in other words,

the adjacency relation on ∆ is the universal relation. Interpreting the chambers as vertices

of a graph, ∆ is simply a complete graph and vice versa. The apartments are the edges.

Figure 1.13. A building of rank one.

The diagram is a single node (in blue).

(ii) Recall that a generalised m-gon is a connected, bipartite graph of diameter m and girth 2m,

in which every vertex is incident to at least two edges; in this example, we shall sketch why

the generalised m-gons are precisely the rank two buildings.

Let ∆ be a building of type I2(m). From Example 1.7.16 (ii) we know the associated Coxeter

complex is a cycle of length 2m. The reduced words are of the form iji · · · or jij · · · of length

at most m; they give di�erent group elements except for the words p(i, j) and p(j, i). De�ne

a graph Γ∆ where the vertices are the i-panels and j-panels of ∆, and join two vertices by

an edge if the corresponding panels intersect nontrivially (in a necessarily unique chamber).

Then Γ∆ is connected, comes with a natural bipartition, has diameter m (since every gallery

can be reduced to one of length at most m), and girth 2m (since the shortest circuits are

galleries of type (ij)mij ).
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Conversely, if Γ is a generalised m-gon, we can construct a chamber system ∆Γ of rank two

over I = {◦, •} as in Example 1.7.9 (iv). Let (W,S) be the Coxeter system of type I2(m) with

generating set S = {s◦, s•}, subject to the relations (s◦)
2 = (s•)

2 = (s◦s•)
m = 1. Then

the only reduced words of length m are p(◦, •) and p(•, ◦), and any reduced word of length

smaller than m is homotopic only to itself. We can then de�ne δ : ∆Γ×∆Γ →W by setting

δ(c, d) = ς(w) if dist(c, d) < m and w is the type of the unique minimal gallery from c to d,

and δ(c, d) = ς(p(◦, •)) = ς(p(•, ◦)) if dist(c, d) = m. The generalised polygon axioms

then easily imply that (∆Γ, δ) is a building of type I2(m).

The apartments of a generalised m-gon are exactly the circuits of length 2m.

As a concrete illustration, a generalised triangle is nothing more than an (axiomatic) projec-

tive plane. Recall from Example 1.7.9 (vi) the interpretation of the Fano plane as a chamber

system. By the discussion above, this chamber system is a building of type I2(3) = A2. We

have already met the Coxeter complex of this type — a hexagon — in Figure 1.5. And indeed,

in Figure 1.4 we can see an abundance of hexagons: every two chambers (edges) are contained

in a common circuit of length six.

In a completely similar way, generalised quadrangles are buildings of type I2(4) = B2 with

octagons as apartments (as in Figure 1.6). The smallest nontrivial (i.e. thick) generalised quad-

rangle is commonly known as the doily, illustrated in Figure 1.14.

Generalised polygons are well-studied. Despite their apparent simplicity, the axioms enforce

rather strong restrictions. For example, if n is �nite, a generalised n-gon is automatically

semiregular — the tuple (q◦− 1, q•− 1) is called its order. We mention a couple of celebrated

theorems and refer to [VM98] for proofs.

Theorem 1.7.43 (Feit–Higman). A �nite thick n-gon exist only for n ∈ {2, 3, 4, 6, 8}.

Theorem 1.7.44. Let (s, t) be the order of a �nite thick generalised n-gon.

• If n = 2, then s and t can be arbitrary.
• If n = 3, then s = t.
• (Bose). If n = 4, then s ≤ t2 and t ≤ s2.
• (Haemers–Roos). If n = 6, then st is a square, s ≤ t3 and t ≤ s3.
• (Feit–Higman, Bose). If n = 8, then 2st is a square, s ≤ t2 and t ≤ s2.

(iii) We explicitly mention that a generalised∞-gon, or in other words a building of type I2(∞),

is nothing more than an in�nite tree without leaves (vertices of degree one). The apartments

are the two-way in�nite paths as in Figure 1.7.

It is worth emphasising the chambers are the edges of the tree, and the panels are (stars of)

the vertices. Recalling our Convention 1.7.2, we point out that a tree looks slightly unfamiliar

when drawn as a chamber complex with the chambers as vertices; in fact, we obtain the line

graph of the tree. Figure 1.15 compares the two viewpoints.

Note, in graph theory a semiregular tree is usually called biregular — which is slightly unfor-

tunate, since such a tree is only “half as regular” as a regular tree, not “twice as regular”!

(iv) Let (W1, S1) and (W2, S2) be two Coxeter systems with diagrams M1 and M2, respectively.

Let M be the disjoint union of the two diagrams. This corresponds to a new Coxeter system

(〈W1,W2〉, S1tS2) where generators in S1 and in S2 pairwise commute. Then a building ∆
of type M is (isomorphic to) a direct product of a building ∆1 of type M1 and a building ∆2

of type M2.
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Figure 1.14. The doily, the smallest nontrivial generalised quadrangle.

Left: as a point-line incidence structure. Right: as a chamber system.

In fact, we can easily construct an explicit isomorphism. Let R1 and R2 be two residues of

types I1 and I2, respectively, and recall that R1 and R2 are buildings in their own right by

Proposition 1.7.39. Then the map

ϕ : ∆→ R1 ×R2 : d 7→ (projR1
(d), projR2

(d))

is a building isomorphism. For details and proof, we refer to [Ron09, Theorem 3.10].

1.7.4 Equivalent de�nitions of buildings

In this section, we (brie�y) present two alternative but equivalent de�nitions of buildings — partly

out of historical interest, partly because certain properties might be easier to prove when using a

di�erent characterisation. We refer to the literature for proofs of the equivalence.

The original de�nition of Tits presupposed the existence of apartments in a simplicial complex. The

formulation that we give is again in terms of chamber systems and is due to Ronan.

De�nition 1.7.45. A building is a chamber system that can be expressed as the union of certain

subsystems A, called apartments and satisfying the following axioms:

(i) each apartment A is (isomorphic to) a Coxeter complex;

(ii) any two chambers c and c′ lie in a common apartment A;

(iii) if A and A′ are apartments containing a common chamber c and chamber c′ (or panel P),

then there is an isomorphism A → A′ �xing c and c′ (or P pointwise).

Proof omitted. For a proof of equivalence, we refer to [Ron09, Theorem 3.11]. ��
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(a) The familiar viewpoint.
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(b) The dual viewpoint.

∞

Figure 1.15. An in�nite tree when interpreted as a chamber system.

In both viewpoints, the chambers are drawn in black (either as edges or as vertices).
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Within this setting, the Weyl distance between two chambers can be de�ned by looking at a com-

mon apartment A, reading o� the type of a minimal gallery contained in A, and noting that this is

independent of the choice of A by axiom (iii).

Another equivalent de�nition was given in [Tit92] and super�cially resembles our de�nition, but

de�nes the Weyl distance in a more technical way from local data.

De�nition 1.7.46. Let (W,S) be a Coxeter system of type M over an index set I . A building of
typeM is a chamber system ∆ over I together with a map δ : ∆×∆→W satisfying the following

axioms:

(i) δ(c, d) = 1 if and only if c = d;

(ii) if δ(c, d) = w and c′ satis�es δ(c′, c) = s ∈ S, then δ(c′, d) ∈ {sw,w}, and if in addition

|sw| = |w|+ 1 in the word length on W, then δ(c′, d) = sw;

(iii) if δ(c, d) = w, then for any s ∈ S there exists a chamber c′ such that both δ(c′, c) = s and

δ(c′, d) = sw.

Proof omitted. For a proof of equivalence, we refer to [AB08, Chapter 5]. ��

Axiom (ii) is vaguely similar to the triangle inequality in a metric space, and axiom (iii) intuitively

says that one can always move away from any chamber in any direction. It takes a bit of work to

show that δ is “symmetrical” (in the sense that δ(c, d)−1 = δ(d, c)), but the set of axioms is more

robust; in fact, four initial exercises in [AB08, Chapter 5] ask to show that one can replace one or

more axioms by certain other properties and still retain an equivalent de�nition.

1.7.5 Buildings as CAT(0) spaces

In this section, we describe the classical result of Michael Davis ([Dav98]) that every building can

be realised as a complete CAT(0) metric space (or a Hadamard space).

In order to construct a geometrical realisation of an arbitrary building, we can essentially choose a

topological space Z that will ful�ll the role of a chamber, choose a subspace Zi for every i ∈ I , and

glue together copies of Z along those subspaces. The following de�nition makes this formal.

De�nition 1.7.47 (mirror space, Z-realisation). Let ∆ be a building of type M over I .

(i) Amirror space over I is a topological spaceZ together with a family {Zi | i ∈ I} of nonempty

closed subspaces called mirrors. For every point z ∈ Z , de�ne I(z) = {i ∈ I | z ∈ Zi}.

(ii) De�ne an equivalence relation on ∆ × Z by declaring (c, z) ∼ (c′, z′) if and only if z = z′

and δ(c, c′) ∈ WI(z) (i.e. the subgroup generated by all si such that z ∈ Zi). Equip ∆ with

the discrete topology, ∆× Z with the product topology, and the quotient

Z(∆) = (∆× Z)/∼

with the quotient topology. The space Z(∆) is called the Z-realisation of ∆.

It should not come as a surprise that topological properties of the mirror space Z are re�ected in

the Z-realisation; we mention one illustration.

Proposition 1.7.48. If Z is (path-) connected, then Z(∆) is (path-) connected.
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Proof. For Coxeter complexes, we refer to [Dav12, Corollary 5.2.4]. For general buildings, it su�ces

to notice that every two points of Z(∆) are contained in a common homeomorphic image of the

Z-realisation of a Coxeter complex (by Corollary 1.7.33). �

Of more interest is the fact that group actions lift to Z-realisations as well. Let G be a group acting

on ∆ by automorphisms. Then there is a natural action on ∆× Z , de�ned by g .(c, z) = (g .c, z).

This preserves the equivalence ∼ and hence induces an well-de�ned action on Z(∆), by

g . [(c, z)] = [(g .c, z)].

Proposition 1.7.49. Let Z be a mirror space. Let G act on ∆ by automorphisms and consider the
induced action on Z(∆).

(i) The stabiliser of the point [(c, z)] equals the stabiliser of the residue of type I(z) containing c.

(ii) Assume that Z is not the union of its mirrors. If the action on ∆ is faithful, then so is the action
on Z(∆).

Proof. For (i), we can straightforwardly calculate

G[(c,z)] = {g ∈ G | g .(c, z) ∼ (c, z)}
= {g ∈ G | δ(g .c, c) ∈ 〈si | z ∈ Zi〉}
= {g ∈ G | g .c and c are contained in the same I(z)-residue}.

For (ii), let z0 ∈ Z be a point not contained in any mirror. Then for every c ∈ ∆, the stabiliser of

[(c, z0)] coincides with the stabiliser of c, and the result follows. �

Example 1.7.50. (i) As a trivial degenerate example, whenZ is a single point, theZ-realisation

of a building collapses into a single point as well.

(ii) The tessellation in Figure 1.10 is the Z-realisation obtained by taking a square as the mirror

space with its sides as mirrors (opposites sides corresponding to noncommuting generators).

Similarly, from a pentagon as the mirror space one can obtain the tessellation in Figure 1.12.

(iii) Let the mirror space Z be a simplex on n vertices (where n is the rank of ∆), with its n faces

of codimension one as mirrors. This way, one recovers exactly the simplicial viewpoint on

buildings; we call this the simplicial realisation of a building. A simplex comes with a natural

Euclidean metric and hence so does the simplicial realisation. Unfortunately, though Z(∆)
is CAT(0) for an a�ne building, Z(∆) is a triangulation of a sphere for a spherical building

and hence the simplicial realisation is not CAT(0) in general.

Example 1.7.50 (i) shows that every building ∆ can be realised as a CAT(0) space in a trivial way.

We now construct a mirror space Z such that the resulting Z-realisation will be CAT(0) without

destroying the building’s structure, i.e. there will be a canonical injection Aut(∆) ↪→ Iso(Z(∆)).

The construction is based on Example 1.7.50 (iii), but builds a more re�ned simplicial complex Z —

intuitively, the main obstruction for the CAT(0) property to hold in the simplicial realisation are

the triangulated spheres, so the goal is to add simplices that “�ll up” these spheres into triangulated

solid balls. The spherical data of a Coxeter system is captured in the next few de�nitions.

De�nition 1.7.51 (nerve, Davis realisation). Let ∆ be a building over I and let (W,S) be the

associated Coxeter system.
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(i) A subset J ⊆ I is spherical if the subsystem (WJ , SJ) is spherical (as in Proposition 1.7.21),

i.e. if the generators sj with j ∈ J generate a �nite subgroup. Clearly, a subset of a spherical

subset is again spherical, and all singletons are spherical.

(ii) De�ne the poset L(W,S) of nonempty spherical subsets of I , partially ordered by inclusion.

This is an abstract simplicial complex where the simplices are the spherical subsets. L(W,S)
is called the nerve of (W,S). The nerve can be realised geometrically as a simplicial complex

with vertex set S, such that a set of generators spans a simplex if and only if they generate a

�nite subgroup.

(iii) De�ne L′(W,S) to be the barycentric subdivision of (the geometric realisation of) the nerve.

This is essentially a new simplicial complex with a vertex for every simplex in L(W,S).

(iv) Let K be the cone over L′(W,S). It follows that vertices of K are in natural correspondence

to spherical subsets of I ; the cone point corresponds to the empty subset. Note that K has a

natural piecewise Euclidean metric. For every i ∈ I , let Ki be the closed star in L′(W,S) of

the vertex si (i.e. the union of all simplices in L′(W,S) containing si).

(v) The Z-realisation obtained from the mirror space K with the mirrors Ki is called the Davis
realisation K(∆) of ∆.

We give an example of the Davis realisation of a thin right-angled building in Figure 1.16. Note that

the original Coxeter complex is illustrated in Figure 1.11.

Theorem 1.7.52. The Davis realisation K(∆) of any building ∆ is a complete CAT(0) space.

Proof omitted. We refer to [Dav98, Theorem 11.1] or [Dav12, Theorem 18.3.1]. ��

As a corollary, the Bruhat–Tits �xed point theorem (Theorem 1.6.5) is applicable.
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(b) The quotient space of glued-together copies of K.
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Figure 1.16. A thin right-angled example of a Davis realisation.
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“
Oh-ho-ho! Enlightenment! When it comes, it comes
like a brick to the head, doesn’t it?

”— Scott Lynch, The Lies of Locke Lamora

In this introductory section we establish some general facts about right-angled buildings and their

automorphisms. We will only work with semiregular buildings. The main motivation for restricting

our attention should be clear: automorphisms preserve cardinalities of panels, and semiregularity

is hence a necessary condition for the automorphism group to act transitively on the chambers.

∞ ∞ ∞

Figure 2.1. A right-angled Coxeter complex of rank four.

Nodes and correspond to solid edges, nodes and to dotted edges.

2.1 Global results

Recall that a rank two residue of an arbitrary building is essentially a generalised n-gon. Recall also

that Theorems 1.7.43 and 1.7.44 enforce quite strong restrictions on the parameters of this residue

— unless n ∈ {2,∞}. For n = 2, a rank two residue is a direct product of two arbitrary complete

graphs; for n =∞, a rank two residue is (the line graph of) an in�nite tree with arbitrary valencies.

The following theorem is due to Frédéric Haglund and Frédéric Paulin ([HP03]), and shows that this

local freedom in the rank two residues of a right-angled building extends to the global building.
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Theorem 2.1.1 (Haglund–Paulin). For any choice of (possibly in�nite) cardinal numbers (qi)i∈I
with qi ≥ 2, there exists a semiregular right-angled building ∆ with these parameters. Moreover, ∆
is unique up to isomorphism, the automorphism group Aut(∆) acts transitively on the chambers, and
every automorphism of a residue of ∆ extends to an automorphism of ∆.

Proof omitted. This is [HP03, Proposition 1.2]. ��

Haglund and Paulin note that Theorem 2.1.1 was already known to Mark Globus (but unpublished),

Michael Davis and Gabor Moussong, and Tadeusz Januszkiewicz and Jacek Świa̧tkowski. For right-

angled buildings embedded in the hyperbolic plane (for instance, Figure 1.12), the �rst results were

due to Marc Bourdon.

Another nice property of right-angled buildings is that the underlying Coxeter systems are “rigid”.

Theorem 2.1.2. If a right-angled Coxeter groupW admits two Coxeter systems (W,S) and (W,S′),
then these Coxeter systems are isomorphic (i.e. there is a diagram-preserving bijection S → S′).

Proof omitted. We refer to [Rad02] or [Hos03]. ��

Theorem 2.1.2 is important in the following sense. Recall that to any Coxeter system (W,S) — in

fact, to any building — we have associated a CAT(0) space in De�nition 1.7.51, de�ned by the data

in S. As a corollary of Theorem 2.1.2, for right-angled Coxeter systems, this geometry is intrinsic

to the Coxeter group. We remark that for Coxeter systems in general the “large scale geometry” of

this CAT(0) realisation is conjectured to be determined by the group alone; in particular Dranish-

nikov’s rigidity conjecture claims that isomorphic Coxeter groups have homeomorphic boundaries

([Dra01]).

We will not immediately need the associated CAT(0) geometries, as we can build up the theory in

a more combinatorial fashion using the Coxeter system and galleries in the chamber system.

2.2 Minimal galleries

A couple of important results allow us to modify minimal galleries in right-angled buildings in a

controlled way by “closing squares” — see Figure 2.2. We note that Lemmas 2.2.1 and 2.2.2, Propo-

sition 2.2.3, and Corollary 2.2.4 �rst appeared in [DMdSS18].

Lemma 2.2.1 (closing squares (1)). Let c0 be a �xed chamber in a right-angled building ∆. Let
c1, c2, c3 ∈ ∆ be such that dist(c0, c1) = dist(c0, c3) = n, dist(c0, c2) = n+ 1, and c1 ∼i c2 ∼j c3

for i 6= j. Thenmij = 2 and there exists d ∈ ∆ such that dist(c0, d) = n− 1 and c1 ∼j d ∼i c3.

Proof. Let w1 and w3 be the types of a minimal gallery joining c0 to c1 and to c3 respectively. Then

the words w1 i and w3 j of length n + 1 are both reduced representations of δ(c0, c2), hence they

are homotopic. It follows that mij = 2 and that w1 is homotopic to a word of the form wj with w
reduced of length n− 1. Let d be the chamber such that δ(c0, d) = ς(w) and δ(d, c1) = ς(j). Then

ς(w i) · ς(j) = ς(w ij) = ς(w ji) = ς(w1 i) = ς(w3 j) = ς(w3) · ς(j)

and since all words involved are reduced, we �nally obtain that the gallery of type w from c0 to d
can be extended to c3 by a single i-adjacency. In other words, d ∼i c3. �

Lemma 2.2.2 (closing squares (2)). Let c0 be a �xed chamber in a right-angled building ∆. Let
c1, c2, c3 ∈ ∆ be such that dist(c0, c1) = dist(c0, c2) = n+ 1, dist(c0, c3) = n, and c1 ∼i c2 ∼j c3

for i 6= j. Thenmij = 2 and there exists d ∈ ∆ such that dist(c0, d) = n and c1 ∼j d ∼i c3.
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Proof. Let w1 and w2 be the types of a minimal gallery joining c0 to c1 and to c2 respectively. Then

since c1 and c2 are i-adjacent and lie at equal distance to c0, typesw1 andw2 are both homotopic to

a word of the form w iwith w reduced of length n. Let c′ be the chamber such that δ(c0, c
′) = ς(w)

and δ(c′, c1) = δ(c′, c2) = ς(i). Then by Lemma 2.2.1, applied to the chambers {c′, c2, c3}, it follows

that mij = 2 and that there is a chamber d′ such that dist(c0, d
′) = n− 1 and c′ ∼j d′ ∼i c3. Now

note that there is a gallery d′ ∼j c′ ∼i c1 of type ji; hence there is also a gallery d′ ∼i d ∼j c1 of

type ij for some chamber d. Then dist(c0, d) = n and d ∼i d′ ∼i c3. �

c0

n− 1

n

n+ 1

d

c1 c3

c2

(a) The con�guration from Lemma 2.2.1.

c0

n

c3d
n+ 1

c2c1

(b) The con�guration from Lemma 2.2.2.

Figure 2.2. The “closing squares” lemmas.

As a corollary, given any minimal gallery γ and any reference point c0, we can always transform γ
into a “concave” gallery with the same extremities.

Proposition 2.2.3. Let c0, c, c
′ be three chambers in a right-angled building. Then there exists a

minimal gallery γ = (d0, . . . , d`) from d0 = c to d` = c′ of length `, and indices 0 ≤ m ≤ n ≤ `,
satisfying the following:

• dist(c0, dk−1) > dist(c0, k)
for all k ∈ {1, . . . ,m};

• dist(c0, dk−1) = dist(c0, k)
for all k ∈ {m+ 1, . . . , n};

• dist(c0, dk−1) < dist(c0, k)
for all k ∈ {n+ 1, . . . , `}.

c0

d0 = c

d2

dm
dm+1 dn

dn+1

d` = c′

Proof. Let γ = (d0, . . . , d`) be any minimal gallery from d0 = c to d` = c′. We will prove the result

by closing squares in γ whenever possible. Note that the required concavity can be rephrased more

colloquially as follows: once γ stops going downwards, it can never go down again, and once γ starts
going upwards, it must continue going up. Observe then that this translates into the local condition

that γ has no length two subgalleries of the following form (see also Figure 2.3):
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(a) (dk, dk+1, dk+2) with dist(c0, dk) = dist(c0, dk+1) > dist(c0, dk+1);

(b) (dk, dk+1, dk+2) with dist(c0, dk) < dist(c0, dk+1) and dist(c0, dk+1) > dist(c0, dk+2);

(c) (dk, dk+1, dk+2) with dist(c0, dk) < dist(c0, dk+1) = dist(c0, dk+2).

dk+1dk

dk+2

(a) case.

dk

dk+1

dk+2

(b) case.

dk+2dk+1

dk

(c) case.

Figure 2.3. The forbidden cases in a “concave” gallery.

De�ne the total height h(γ) of the gallery γ as the sum of distances

h(γ) =
∑̀
k=0

dist(c0, dk).

If γ has some length two subgallery of the form (a) or (c), then apply Lemma 2.2.2 to replace dk+1

by another chamber in order to decrease the total height by one. Similarly, if γ has a subgallery of

the form (b), then apply Lemma 2.2.1 in order to decrease the total height by two. In any case, we

obtain a new minimal gallery γ′ with the same extremities but of strictly smaller total height.

Since the total height h(γ) is a natural number, we cannot repeat this process inde�nitely, and at

some point we end up with a minimal gallery with the required properties. �

In a right-angled building, balls are not convex in general, but Proposition 2.2.3 immediately yields

a second best possibility.

Corollary 2.2.4. Let c0 be a �xed chamber in a right-angled building and let c, c′ ∈ Bn(c0). Then
there exists a minimal gallery that joins c to c′ and is contained in Bn(c0).

Proof. A “concave” gallery as in Proposition 2.2.3 (with reference chamber c0) su�ces. �

2.3 Projections, parallelism, wings

Recall our De�nition 1.7.38 of combinatorial projections: given a chamber c and a residueR of ∆,

the projection projR(c) is the unique chamber inR at minimal distance to c. We �rst give a rather

technical lemma that relates projections onto panels to the Coxeter diagram, and that will prove

useful in step-by-step constructions of automorphisms.

Lemma 2.3.1. Let c be a chamber and P an i-panel in a right-angled building ∆. Let c′ = projP(c)
and dist(c, c′) = n. Let d ∈ Bn+1(c) \ P , let d′ = projP(d), and assume that d′ 6= c′. Then
dist(c, d′) = n+ 1 and d′ is j-adjacent to some chamber in Sn(c) withmij = 2.

Proof. Since c′ is the unique chamber in P at minimal distance to c, the �rst claim follows immedi-

ately from the assumption that d′ 6= c′. By Corollary 2.2.4, there exists a concave minimal gallery

γ = (d ∼ · · · e ∼ d′) with respect to c. Let w = i1 · · · i` be the type of γ. Then i` 6= i because

projP(d) = d′ 6= e. There are two possibilities: either dist(c, e) = n and the result follows from

Lemma 2.2.1, or dist(c, e) = n+ 1 and the result follows from Lemma 2.2.2. �
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We can de�ne projections between residues in a natural way: for residuesR and S , we set

projS(R) = {projS(c) | c ∈ R}.

Note that this set is again a residue of ∆ contained in S , and that its rank is bounded by the ranks

of both S andR.

De�nition 2.3.2 (parallelism). Two residuesR1 andR2 are called parallel if projR1
(R2) = R1

and projR2
(R1) = R2. In that case, both projection maps de�ne bijections betweenR1 andR2.

Since a projection map between residues does not increase the rank, it follows immediately that

parallel residues have the same rank.

Lemma 2.3.3. LetR1 andR2 be parallel residues and let c1 ∈ R1 and c2 ∈ R2. Then

dist(c1,R2) = dist(c2,R1) = dist(R1,R2).

Proof omitted. This is [Cap14a, Lemma 2.4]. ��

There is a useful criterion for detecting parallelism among panels, that can then be used to detect

parallelism among higher rank residues as well.

Lemma 2.3.4. (i) Let P1 and P2 be panels. Then P1 and P2 are parallel if and only if there exist
two chambers in P1 with distinct projections on P2.

(ii) Let R1 and R2 be residues. Then R1 and R2 are parallel if and only if the projection of every
panel inR1 toR2 is a panel and vice versa.

(iii) LetR1 andR2 be residues. Then projR1
(R2) and projR2

(R1) are parallel.

Proof omitted. This is [Cap14a, Lemma 2.5, Lemma 2.6, and Lemma 2.7]. ��

Example 2.3.5. (i) Recall the Coxeter complex of type A2 from Figure 1.5, which is a hexagon.

There two panels are parallel if and only if they correspond to opposite sides of the hexagon.

In a full-scale building of type A2 — a projective plane — pairs of parallel panels correspond to

nonincident point-line pairs. Note in particular that this notion of parallelism is not transitive

in the projective plane.

There is a more general notion of opposition in spherical buildings (two residues are opposite
if they lie at maximal distance, in a certain precise way) and any two such opposite residues

are in fact parallel.

(ii) Let J1, J2 ⊂ I be two disjoint nonempty subsets with mj1j2 = 2 for all (j1, j2) in J1 × J2.

Then a residueR of type J1 ∪J2 is the direct product of two residuesR1 andR2 of types J1

and J2 (recall Example 1.7.42 (iv)). Moreover, the canonical projection maps

π1 : R1 ×R2 → R1 and π2 : R1 ×R2 → R2

coincide with the restrictions of the geometrical projection maps

projR1

∣∣
R : R → R1 and projR2

∣∣
R : R → R2.

In particular, any two residues of type J1 contained inR are parallel, as are any two residues

of type J2 contained inR.
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Example 2.3.5 (i) shows that parallel panels do not necessarily have the same type. In right-angled

buildings, however, Example 2.3.5 (ii) is essentially the only possible occurence of parallelism, as

the following proposition from [Cap14a] shows. In particular, parallelism in the right-angled case

will be a type-preserving equivalence relation. First we need a de�nition.

De�nition 2.3.6. Let J ⊆ I . Then we de�ne the set

J⊥ = {i ∈ I | mij = 2 for all j ∈ J} = {i ∈ I \ J | ij = ji for all j ∈ J}.

When J = {j} is a singleton, we abbreviate

j⊥ = {i ∈ I | mij = 2} = {i ∈ I \ J | ij = ji}.

Proposition 2.3.7. Let ∆ be a right-angled building over I .

(i) Two parallel residues have equal type.

(ii) Two residues of equal type J are parallel if and only if they are contained in a common residue
of type J ∪ J⊥.

(iii) Parallelism of residues is an equivalence relation.

Proof omitted. We refer to [Cap14a, Proposition 2.8 and Corollary 2.9]. ��

It is worth mentioning that [Cap14a, Proposition 2.10] characterises right-angled thick buildings in

terms of parallelism: a thick building turns out to be right-angled if and only if panel parallelism is

an equivalence relation.

De�nition 2.3.8 (tree-wall). Let ∆ be a right-angled building and let i ∈ I . An equivalence class

of parallel i-panels is called an i-tree-wall of ∆. By slight abuse of notation we often identify an

i-tree-wall T with the set of chambers {c ∈ P | P ∈ T }.

The name “tree-wall” might be quite mysterious, since we did not de�ne walls in buildings. Let us

settle here for a brief sketch (and the remark that walls are easier to de�ne in the simplicial setting).

In the Coxeter complex, one de�nes re�ections as nontrivial Coxeter group elements that stabilise

some panel (edge), and after a moment of thought, a re�ection is nothing more than a conjugate of

a generator of the Coxeter group. A maximal set of panels invariant under some re�ection is called

a wall of the complex. Then, for a general building, a wall is by de�nition nothing more than a wall

in some apartment.

One then observes that the intersection of a tree-wall with an apartment in a right-angled building

is either empty or a wall in that apartment. In the literature, tree-walls have also been called wall-
trees by ([Bou97]) or wall-residues (by [Cap14a]).

As a corollary of Proposition 2.3.7, the i-tree-walls are in one-to-one correspondence to (the sets of

i-panels contained in) the residues of type i∪ i⊥. In particular, it makes sense to de�ne projections

on tree-walls.

De�nition 2.3.9 (wings). Let J ⊆ I and let c ∈ ∆ be a chamber. Then the set of chambers

XJ(c) = {d ∈ ∆ | projR(d) = c}

where R is the J-residue containing c, is called the J-wing of c. Again, if J = {j} is a singleton,

we usually simply write Xj(c) and call it the j-wing of c.
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Lemma 2.3.10. Let c be a chamber in a right-angled building ∆ and let J ⊆ I . Then

(i) XJ(c) is convex;

(ii) XJ(c) is equal to the intersection of all wings Xj(c) with j ∈ J .

LetR be the residue of type J ∪ J⊥ containing c. Then moreover

(iii) the intersection XJ(c) ∩R is the residue of type J⊥ containing c;

(iv) for all d in the intersection XJ(c) ∩R, we have XJ(c) = XJ(d);

Proof omitted. This is [Cap14a, Lemma 3.1 and Proposition 3.2]. ��

Lemma 2.3.10 implies that every tree-wall induces a well-de�ned partition of ∆. Indeed, let P be

any i-panel in an i-tree-wall T ; then the i-wings Xi(d) with d ∈ P partition the chambers of ∆
into |P| subsets, and this partition is independent of the choice of P in the tree-wall.

We collect some more lemmas from [Cap14a], without proof.

Lemma 2.3.11. Let c ∈ ∆ and let R be the residue of type i ∪ i⊥ containing c. Let d and d′ be two
chambers such that d ∈ Xi(c) but d′ /∈ Xi(c). Then the concatenation of a minimal gallery from d to
projR(d), a minimal gallery from projR(d) to projR(d′), and a minimal gallery from projR(d′) to
d′, is a minimal gallery from d to d′.

Proof omitted. This is [Cap14a, Lemma 3.3]. ��

Lemma 2.3.12. Let i, j ∈ I and c, d ∈ ∆. Assume c ∈ Xj(d) but d /∈ Xi(c), and moreover either
i = j ormij =∞. Then Xi(c) ⊆ Xj(d).

Proof omitted. This is [Cap14a, Lemma 3.4 (a)]. ��

Lemma 2.3.13. Let J ⊆ I , letR be a residue of type J , and let c be a chamber inR. Then for every
i ∈ I \ J we have thatR ⊆ Xi(c).

Proof omitted. This is [Cap14a, Corollary 3.7]. ��

We now use the data in the i-tree-walls to associate a tree to ∆ (for every i ∈ I). It will turn out

that the collection of these trees captures enough information about group actions on the building

to be able to go back and forth between buildings and trees and apply the theory of Section 1.4.

De�nition 2.3.14 (tree-wall tree). Let V1 be the set of all i-tree-walls of ∆, and let V2 be the set

of all residues of ∆ of type I \ {i}. De�ne a bipartite graph Γi with vertex set V1 t V2 where an

i-tree-wall T is adjacent to a residueR of type I \ {i} if and only if T ∩R 6= ∅. We call this graph

the i-tree-wall tree of ∆.

Note that if the intersection T ∩R is nonempty, it equals a residue of type i⊥ of ∆. Hence there is

a one-to-one correspondence between such residues and edges of Γi.

Proposition 2.3.15. For every i ∈ I , the i-tree-wall tree Γi of ∆ is a semiregular tree.

Proof. Clearly Γi is connected, hence in order to show that it is a tree, it su�ces to show that there

are no nontrivial cycles. Suppose that

T1 ∼ R1 ∼ T2 ∼ · · · ∼ Rn ∼ T1

is a simple cycle in Γi (n ≥ 2). For every ` ∈ {1, . . . , n}, let c` be a chamber in T` ∩ R` and d`
a chamber in R`−1 ∩ T` (where the indices are considered modulo n). Then c` ∈ Xi(d`+1), which
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is disjoint from the wing Xi(c`+1). However, since c` and c`+1 do not lie in parallel panels, we do

have that c`+1 ∈ Xi(c`). Consequently, by Lemma 2.3.12, it follows that

Xi(c1) ⊇ Xi(c2) ⊇ · · · ⊇ Xi(cn) ⊇ Xi(c1).

Then all chambers c` lie in a common tree-wall — a contradiction.

The fact that Γi is moreover semiregular is a direct consequence of ∆ being semiregular. Explicitly,

the parameters of Γi are equal to the number of residues of type i⊥ in an i-tree-wall (which is qi)
and the number of residues of type i⊥ in a common residue of type I \ {i}. �

It is worth explicitly mentioning the shape of the i-tree-wall tree in the case where i is an isolated

node of the diagram. Then the building has only a single i-tree-wall (namely the full building), and

Γi is the star graph with qi leaves. If i is not an isolated node, then the i-tree-wall tree is unbounded.

We �nish this section with a couple of generalisations of earlier results. First, a de�nition.

De�nition 2.3.16 (panel-closed). A set C of chambers is called panel-closed if for every panel P
the intersection P ∩ C is either empty, a single chamber, or the full panel P .

The following lemma is a generalisation of the gate property for residues (Corollary 1.7.37). Note

that residues are indeed convex panel-closed subsets of a right-angled building ∆.

Lemma 2.3.17. LetC be a convex, panel-closed subset of ∆. Let c ∈ ∆ be any chamber. Then there is
a unique chamber d ∈ C such that dist(c, d) is minimal. Moreover, the gate property holds: for every
chamber e ∈ C , there exists a minimal gallery from c via d to e.

Proof. Assume that d and d′ are two distinct chambers in C that minimise the distance to c. Let γ
be the minimal gallery that joins d and d′ and is concave with respect to c, as in Proposition 2.2.3.

By convexity of C and concavity of γ, every chamber on γ is a chamber in C at the same distance

to c as d and d′. Henceforth we may assume that d and d′ are i-adjacent for some i ∈ I . Let P be

the i-panel containing d and d′ and let c′ = projP(c). Then dist(c, c′) < dist(c, d), while c′ ∈ C —

a contradiction.

For the gate property, we use induction on dist(c, C). If c ∈ C , then there is nothing to show, and

if dist(c, C) = 1, then we can immediately apply Corollary 1.7.40. Now assume dist(c, C) ≥ 1 and

let c′ ∈ ∆ and i ∈ I be such that dist(c′, C) < dist(c, C) and c′ ∼i c. Denote P = Pi(c). Then by

construction projP(d) = c′ and there exists a minimal gallery γ from c′ via d to e by the induction

hypothesis. Minimality yields that also projP(e) = c′. Thus dist(c, e) > dist(c′, e) and the gallery

obtained by prepending c ∼i c′ to γ is again minimal. Our conclusion follows by induction. �

We will evidently denote the unique chamber in C closest to c by projC(c).

Finally, Lemma 2.3.1 can be generalised to convex panel-closed sets as well, although in a slightly

more technical fashion. Lemma 2.3.18 will prove useful for Proposition 3.1.9 later on.

Lemma 2.3.18. Let C be a convex, panel-closed set. Let P be an i-panel that intersects both Sn(C)
and Sn+1(C) nontrivially, where n ≥ 1. Then the intersection P ∩ Sn(C) is a single chamber c.

Moreover, let d ∈ Bn+1(C) \ P , let d′ = projP(d), and assume that d′ ∈ Sn+1(C). Then either d is
contained in an i-panel parallel to P , or d′ is j-adjacent to some chamber in Sn(C) withmij = 2.

64



2 Right-angled buildings

Proof. Assume by means of contraposition that there is a pair of chambers {c1, c2} ⊆ P ∩ Sn(C)
with c1 6= c2. If projC(c1) 6= projC(c2), then those projections are i-adjacent, so that P is parallel

to a panel contained in C , and P ⊆ Sn(C). Hence it must be the case that projC(c1) = projC(c2);

let d denote the common projection. Then the projection projP(d) of d onto P must be a chamber

in Sn−1(C), and the intersection P ∩ Sn+1(C) is again empty. Our �rst claim follows.

For the second claim, write c0 = projC(c) and d0 = projC(d). When c0 = d0 we can immediately

apply Lemma 2.3.1. Otherwise, let d′ ∼ e ∼ · · · ∼ d be a minimal gallery, concave with respect

to c0 as in Proposition 2.2.3. If dist(e, c0) ≤ n + 1, we can again apply Lemma 2.3.1. In the other

case, concavity implies that dist(c0, d) = dist(c0, d
′)+dist(d′, d). Together with the gate property

(Lemma 2.3.17) we now have two minimal galleries joining c0 to d — one passing through d′ and

one passing through d0.

The types of those galleries represent the same Coxeter group element, and are hence homotopic.

In particular, we can �nd two chambers e and e′ on the minimal gallery

c ∼ · · · ∼ e′ ∼i e ∼ · · · ∼ d

that passes through d0, such that the panel containing e ∼i e′ is parallel to P (containing c ∼i d′).
If d = e, then indeed d is contained in a panel parallel to P . Otherwise {e, e′} ⊆ Bn(C), and then

all chambers {c, d′, e, e′} lie in a common residue R of type i ∪ i⊥. In this case, the intersection

R∩ Sn(C) contains some chamber j-adjacent to d′ with j ∈ i⊥. �

2.4 Automorphisms

Now that we have associated for every i ∈ I a certain tree Γi (De�nition 2.3.14) to the right-angled

building ∆, on which automorphisms of ∆ have a natural induced action, the following de�nition

should not be surprising.

De�nition 2.4.1. Let ∆ be a right-angled building over I and let i ∈ I . An automorphism g of ∆
is called i-hyperbolic or i-elliptic, if the automorphism of Γi induced by g is hyperbolic or elliptic,

respectively.

Note that an i-elliptic automorphism stabilises a residue of ∆ of type I \ {i} or of type {i} ∪ {i}⊥
(setwise), but not necessarily a chamber of ∆.

The main goal in this section is to �nd analogues to various results of Section 1.4 for right-angled

buildings, that will eventually lead us to a simplicity criterion similar to the one by Tits for groups

acting on trees (Theorem 1.4.17).

De�nition 2.4.2 (i-distance). For each i ∈ I , de�ne the i-distance disti(c1, c2) between any two

chambers c1 and c2 as the number of occurences of type i in a minimal gallery joining c1 and c2.

Note that this number does not depend on the chosen minimal gallery. This distance function is

only a pseudometric, since chambers in a common residue of type I \ {i} are at i-distance zero.

The i-distance function is quasi-isometric to the graph-theoretical edge distance in the i-tree-wall

tree: this is the content of the following lemma.

Lemma 2.4.3. Let c1 and c2 be any two chambers of ∆. Let R1 and R2 be the residues of type i⊥

containing c1 and c2 respectively, viewed as edges in the i-tree-wall tree Γi (De�nition 2.3.14). Then

distΓi(R1,R2) = 2 · disti(c1, c2) + ε ≤ dist(c1, c2), where ε ∈ {−1, 0, 1}.
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Proof. The inequality is clear. For the equality, pick any minimal gallery γ from c1 to c2 in ∆ and

consider the induced path in the i-tree-wall tree, which is a path without backtracking. Notice that

we have a one-to-one correspondence between i-adjacencies on γ on the one hand, and pairs of

adjacent edges in Γi sharing a common vertex in the bipartition class of residues of type i ∪ i⊥ on

the other hand. Consequently, if the path in Γi has even length, say 2n, there are n adjacencies of

type i on γ, and if the path has odd length, say 2n + 1, there are either n or n + 1 adjacencies of

type i on γ. Our conclusion follows. �

De�nition 2.4.4 (cobounded, minimal, combinatorially dense). Let G be a group acting on a

right-angled building ∆ by automorphisms.

• The action is cobounded if there exists a constant r ∈ N and a chamber c ∈ ∆ such that

∆ =
⋃
g∈G

Br(g .c),

i.e., if every chamber lies at a uniformly bounded distance to some G-orbit.

• The action is minimal if G leaves no nontrivial convex subsystem of ∆ invariant.

• The action is combinatorially dense if it is minimal and moreover for every i ∈ I , the induced

action on the i-tree-wall tree Γi has no �xed point at in�nity.

More generally, a group action on some metric space X is called cobounded (or more descriptively,

coarsely transitive) if there is a constant r > 0 such that the r-neighbourhood of every orbit in X
covers X completely. In symbols,(

∃ r > 0
)(
∀x, y ∈ X

)(
∃ g ∈ G

)(
dist(g .x, y) ≤ r

)
.

By now we have encountered three de�nitions of minimality and density: De�nition 1.4.1 for ac-

tions on trees, De�nition 2.4.4 for actions on general buildings, and De�nition 1.6.7 for actions on

CAT(0) spaces. Evidently these notions are not completely unrelated.

Proposition 2.4.5. Let G be a group acting on a right-angled building ∆ by automorphisms and
assume that the diagram has no isolated nodes. Then the following are equivalent:

(i) the action of G on ∆ is minimal (in the sense of De�nition 2.4.4);

(ii) for every i ∈ I , the induced action of G on the i-tree-wall tree Γi is minimal (De�nition 1.4.1).

As a corollary, the following are equivalent:

(i) the action of G on ∆ is combinatorially dense;

(ii) for every i ∈ I , the induced action of G on the i-tree-wall tree Γi is geometrically dense.

Proof. First assumeG does not act minimally on ∆, i.e. there exists a nontrivial convexG-invariant

subset C of chambers. Let c ∼i d be such that c ∈ C and d /∈ C . Using absence of isolated nodes

in the diagram, take j ∈ I such that mij = 2, and let e ∼j d. By convexity, e /∈ C . Now de�ne C ′

as the set of vertices in Γi that correspond to residues of ∆ having nonempty intersection with C ,

C ′ =
{
R ∈ ResI\{i}(∆)

∣∣ R∩ C 6= ∅} ∪ {R ∈ Res{i}∪{i}⊥(∆)
∣∣ R∩ C 6= ∅}.

Note that C ′ is a nonempty G-invariant subtree of Γi. Moreover, we claim that e is not contained

in any residue in C ′. Indeed, if it were the case that e ∈ R ∈ C ′, let e′ ∈ R ∩ C . The projection

projR(c) is either d or e, depending on the type ofR. By the gate property (Corollary 1.7.37), there
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2 Right-angled buildings

is a minimal gallery joining c to e′ passing through either d or e, contradicting the convexity of C .

Hence, C ′ is a nontrivial G-invariant subtree, and the action of G on Γi is not minimal.

Conversely, assume thatG does not act minimally on Γi for some i ∈ I , i.e. there exists a nontrivial

G-invariant subtree D. De�ne D′ as the set of chambers of ∆ that lie in a residue corresponding

to a vertex in D,

D′ =
{
c ∈ ∆

∣∣ c ∈ R ∈ D for some residueR of type I \ {i} or type {i} ∪ {i}⊥
}
.

Clearly D′ is a nontrivial G-invariant subset of chambers. Let c, c′ ∈ D′ and consider a minimal

gallery γ from c to d in ∆. Then γ descends to a path in Γi between the residues in D containing

c and d. This path is contained in the subtree D, hence γ is contained in D′. In other words, D′ is

a nontrivial convex G-invariant subsystem, and the action of G on ∆ is not minimal. �

Remark 2.4.6. Unfortunately, the notions of minimal actions on buildings and their tree-wall trees

on the one hand and CAT(0) spaces on the other hand appears to be more murky in comparison,

and we do not have a simple analogue of Proposition 2.4.5 taking into account the building’s Davis

realisation. As an example, consider the direct product of two bi-in�nite lines — an example already

encountered in Example 1.7.16 (iv). Let g be the automorphism of this thin building ∆ that shifts

every chamber two spaces right and two spaces up, as in Figure 2.4, and let G = 〈g〉. Then for an

arbitrary c ∈ ∆, every chamber lies on some minimal gallery joining two chambers in G.c. Hence

the action of G is minimal (in the sense of De�nition 2.4.4). However, the Davis realisation K(∆)
is a tessellation of the Euclidean plane, by the prototile in Figure 2.5, and the induced action of G
leaves invariant every diagonal line of unit slope.

Even when G acts minimally on an irreducible building ∆, it may happen that the induced action

on K(∆) is not minimal in the sense of De�nition 1.6.7. An example is the action of the full auto-

morphism group on the Davis realisation in Figure 1.16 (b). Indeed, the spherical rank two residues

of the thin building ∆ correspond to octagonal subcomplexes of K(∆). However, the convex hull

of the Davis chambers’s cone points (the black vertices in Figure 1.16) is obtained by “cutting o�”

four protruding corners of every such octagon, and is an invariant closed convex subspace.

Figure 2.4 additionally serves as an example of a minimal group action that is not hereditarily min-

imal, in the following sense.

De�nition 2.4.7 (hereditarily (∗)). Let G act on a right-angled building ∆ by automorphisms.

For any property (∗) of group actions, we say that the action of G is hereditarily (∗) if for every

residueR of ∆, the induced action of the setwise stabiliser G{R} onR again has property (∗).

For example, note that a transitive action on ∆ is always hereditarily transitive.

Except in degenerate cases, coboundedness is the strongest of the properties in our De�nition 2.4.4.

In the following proof, the argument for minimality is due to the anonymous referee of [BDM21],

and improves our �rst proof of the statement.

Proposition 2.4.8. Let G be a group acting on a right-angled building ∆ by automorphisms and
assume that the diagram of ∆ has no isolated nodes. If the action of G is cobounded, then it is combi-
natorially dense.

Proof. First, we show the action of G to be minimal. Suppose by means of contraposition that Γ is

a nontrivial convex subsystem stabilised by G. Let c ∼i d be such that c ∈ Γ but d /∈ Γ. Since the

action is cobounded, there is some constant m such that every chamber lies within distance m of

some chamber in the orbit G.c.
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Figure 2.4. An example of a nonhereditarily minimal action.

Figure 2.5. The Davis chamber associated to the example in Figure 2.4.

The Davis realisation of the thin building is a tessellation of the Euclidean plane.
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Using the absence of isolated nodes, pick j ∈ I such that mij =∞ and letR be the {i, j}-residue

containing the chamber c. ThenR is a semiregular tree. Since Γ is convex, the projection of Γ toR
is a connected subset ofR, which contains c but not d. AsR is a tree, we �nd that the entire set Γ
is contained in the wing Xj(d).

Choose any geodesic ray inR of the form (e0, e1, e2, e3, e4, . . .) with c = e0 and d = e1. It follows

by Lemma 2.3.12 and induction on n that the distance between en+1 and any chamber of Γ is at

least n, for all n ∈ N. In particular, the distance

dist(G.c, en) ≥ dist(Γ, en) ≥ n

can be made arbitrarily large, contradicting the assumption that the action is cobounded.

Next, let i ∈ I and consider the i-tree-wall tree Γi. By Lemma 2.4.3, the induced action of G on Γi
is cobounded as well. Note that Γi is unbounded, as i is not an isolated node of the diagram. Thus

we can take a bi-in�nite path γ in Γi (de�ning two points at in�nity). Since edges of γ cut Γi into

two unbounded subtrees, a cobounded action cannot �x a point at in�nity of the i-tree-wall tree.

In conclusion, the action of G is combinatorially dense. �

Finally we mention a couple of important extension results. Recall �rst from Haglund and Paulin’s

Theorem 2.1.1 that every automorphism of a residueR of ∆ can be extended to an automorphism

of ∆ (stabilisingR). In other words, the canonical morphism Aut(∆){R} → Aut(R) is surjective.

Pierre-Emmanuel Caprace demonstrated the following more re�ned version for panels.

Proposition 2.4.9. Let P be a panel of a right-angled building ∆ and let π be a permutation of the
chambers in P . Then there exists an automorphism g ∈ Aut(∆) satisfying the following properties:

(i) g stabilises P ;

(ii) the restriction g|P is equal to π;

(iii) g �xes every chamber of ∆ whose projection onto P is �xed by π.

Proof omitted. This is [Cap14a, Proposition 4.2]; we illustrate the technique in Lemma 3.2.8. ��

De�nition 2.4.10. We say that a group action on a building ∆ is strongly transitive if it is transitive

on the chamber-apartment pairs (c,A) with c ∈ A.

Proposition 2.4.11. The automorphism group of a semiregular right-angled building ∆ acts strongly
transitively on ∆.

Proof omitted. This is [KT12, Theorem B]; we also refer to [Cap14a, Proposition 6.1]. ��

2.5 Colourings

In order to keep track of the local behaviour of a building automorphism, we introduce the notion

of a colouring of the building. Throughout this section, ∆ is a semiregular right-angled building

with parameters (qi)i∈I .

De�nition 2.5.1 (colouring). Consider a set Ωi of cardinality qi for every i ∈ I , the elements of

which we call i-colours or i-labels. Then, a legal colouring of ∆ is a map

λ : ∆→
∏
i∈I

Ωi : c 7→ (λi(c))i∈I

satisfying the following properties for every i ∈ I and for every i-panel P :
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(i) the restriction λi|P : P → Ωi is a bijection;

(ii) for every j 6= i, the restriction λj |P : P → Ωj is a constant map.

Example 2.5.2. Figure 2.6 provides an example of a legal colouring of the semiregular tree with

parameters 3 and 4. Every chamber (i.e. edge) of the tree is allocated both a rank from {J,Q,K}
and a suit from {«,ª,¨,©}, in such a way that in each panel (i.e. star of a vertex), either the ranks

are all equal and the suits are all di�erent, or vice versa, depending on the type of the panel.

Lemma 2.5.3. Let λ be a legal colouring of a right-angled building ∆ of rank n. Let c ∈ ∆ be any
chamber and, for every i ∈ I , let xi ∈ Ωi be an i-colour. Then there exists a chamber d ∈ ∆ such that
dist(c, d) ≤ n and λi(d) = xi for all i ∈ I .

Proof. Consider the set J = {i ∈ I | λi(c) 6= xi}. For any j ∈ J , consider the panel Pj of type j
containing c. By de�nition of a colouring, Pj then contains a chamber c′ with λj(c

′) = xj and

λi(c
′) = λi(c) for every i 6= j. Repeating this for every j ∈ J , we eventually obtain a gallery of

length |J | ≤ n, joining c to a chamber d with λi(d) = xi for all i ∈ I . �

The following proposition is Proposition 2.44 in [DMdSS18] and shows that a colouring is essen-

tially unique, up to automorphism. The proof is worth repeating here.

Proposition 2.5.4. Let λ and λ′ be two legal colourings of a right-angled building ∆ using identical
colour sets. Let c and c′ be two chambers such that λ(c) = λ′(c′). Then there exists an automorphism
g ∈ Aut(∆) such that g .c = c′ and λ′ ◦ g = λ.

Proof. For all n ∈ N, consider the set

Gn = {g ∈ Aut(∆) | g .c = c′ and λ′(g .d) = λ(d) for all d ∈ Bn(c)}.

We will inductively construct a sequence of elements gn (with n ∈ N), such that gn ∈ Gn for all n
and that gn and gm agree on the ball Bm(c) whenever m < n. For n = 0, any automorphism g0

with g0 . c = c′ su�ces; note that such an automorphism exists by Proposition 2.4.11.

Now assume that n > 0 and that we have constructed gn with all the required properties. In order

to de�ne gn+1 we will construct an automorphism hn that stabilises Bn(c) pointwise and that �xes

the mismatching colours at Sn+1(c). We can then set gn+1 = hn ◦ gn.

Let P be any i-panel that intersects both Sn(c) and Sn+1(c) nontrivially. Denote P ′ = gn .P and

let πP be the permutation of gn .P that makes the following diagram commute.

P P ′ P ′

Ωi

λi

gn πP

λ′i

By Proposition 2.4.9, πP extends to an automorphism π̃P that �xes all chambers whose projection

onto P is �xed by πP . We claim that π̃P �xes the set Bn+1(c′) \ P ′. Let d ∈ Bn+1(c′) \ P ′ and

consider d′ = projP ′(d). If dist(c′, d′) = n, or in other words d′ = projP ′(c
′), then by assumption

on gn we have that d′ is �xed by πP . Hence d is �xed by π̃P . Suppose now that dist(c′, d′) = n+1.

Then by Lemma 2.3.1, we have that d′ ∼j e′ for some chamber e′ ∈ Sn(c′) and j ∈ I withmij = 2.

Writing e = g−1
n .e′, it follows that d ∼j e. Hence

λ′i(d
′) = λ′i(e

′) = λi(e) = λi(d),

so that again, d′ is �xed by πP and d is �xed by π̃P .
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Figure 2.6. A colouring of a semiregular tree by cards suits and ranks.
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We have thus constructed, for every panel P that intersects both Sn(c) and Sn+1(c), an auto-

morphism π̃P of the building with the property that all chambers of Bn+1(c′) that are moved by π̃P
are contained in Sn+1(c′) ∩ P .

Now consider an arbitrary chamber d ∈ Sn(c′) and let i ∈ I . There are two options: either Pi(d)
intersects Sn+1(c′) nontrivially, in which case we set αd,i = π̃Pi(d) — or Pi(d) ⊆ Bn(c′), in which

case we set αd,i equal to the identity. We can then de�ne

βd =
∏
i∈I

αd,i

where the product is taken in arbitary order. Even though βd might depend on the chosen order, its

action on Bn+1(c′) does not, since the sets of chambers of Bn+1(c′) moved by di�erent elements

αd,i are disjoint. Note that βd �xes Bn+1(c′) \ S1(d).

We now vary d along Sn(c′). First we claim that if d1, d2 ∈ Sn(c′) are distinct, then βd1 and βd2

restricted to Bn+1(c′) have disjoint support. The only case we need to check is when S1(d1) and

S1(d2) have a chamber e ∈ Sn+1(c′) in common, say d1 ∼i e ∼j d2. Then

λ′j(e) = λ′j(d1) = λj(g
−1 .d1) = λj(g

−1 .e),

so that βd1 �xes e. Similarly βd2 �xes e, and our claim follows.

We now consider the product

hn =
∏

d∈Sn(c′)

βd =
∏

d∈Sn(c′)

∏
i∈I

αd,i ∈ Aut(∆),

where the product is again taken in any order, and the action on Bn+1(c′) is again independent of

the chosen order. This automorphism hn stabilises the ball Bn(c′) pointwise. We now �nally show

that gn+1 = hn ◦ gn is an automorphism in Gn+1 — it is immediately clear that gn+1 . c = c′ and

that λ′(gn+1 .d) = λ(d) for all d ∈ Bn(c), so we only need to check for d ∈ Bn+1(c) that

λ′i(gn+1 .d) = λ′i((βd ◦ gn) .d) = λ′i((αd,i ◦ gn) .d) = λ′i((πPi(d) ◦ gn) .d) = λi(d)

or

λ′i(gn+1 .d) = λ′i((βd ◦ gn) .d) = λ′i((αd,i ◦ gn) .d) = λ′i(gn .d) = λi(d),

depending on whether Pi(d) contains a chamber in Sn(c′) or not. In any case, we conclude that

λ′i(gn+1 .d) = λi(d), so that gn+1 ∈ Gn+1. Moreover, by construction, gn+1 agrees with gn on the

ball Bn(c). The sequence of elements g0, g1, g2, . . . thus obtained, converges to an automorphism

that satis�es the desired properties. �

The next property states that any �nite set of chambers is contained in a single wing, and moreover

we have control over the colour of the base chamber.

Proposition 2.5.5. Let C ⊆ ∆ be a �nite subset of chambers and let x ∈ Xi be an i-colour. Assume
that the diagram of ∆ has no isolated nodes. Then there exists a chamber c ∈ ∆ such that λi(c) = x
and C ⊆ Xi(c).

Proof. Using the absence of isolated nodes, let j ∈ I be such that mij =∞. Let R be an arbitrary

residue of type {i, j} (which is a tree). The projection projR(C) is a �nite set of chambers in R,

and can be enclosed by a ball B of �nite diameter. Let P ′ be any i-panel inR \ B.
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Since R is a tree, it follows that projP ′(projR(C)) is just a single chamber c′. If λi(c
′) = x, then

we let c = c′. If λi(c
′) 6= x, then we let c be any chamber that is j-adjacent to the unique chamber

in P ′ with i-colour equal to x. In both cases, λi(c) = x. Let P be the i-panel containing c.

By construction we have that projP(projR(C)) = {c}. Hence by Proposition 1.7.41 (iii), it follows

that projP(C) = {c}, and we are done. �

Lemma 2.5.6. Let I = J t {k} be a partition of the index set. Let R,R′ be two distinct J-residues,
c, d chambers inR, and c′, d′ chambers inR′, such that c ∼k c′ and d ∼k d′. Finally, let i ∈ J \ k⊥.
Then λi(c) = λi(c

′) = λi(d) = λi(d
′).

R R′
c c′

d d′

Proof. Let P = Pk(c) = Pk(c′) and let P ′ = Pk(d) = Pk(d′). Since residues are convex, it follows

that c = projP(d) and c′ = projP(d′). Hence by Lemma 2.3.4, the panels P and P ′ are parallel. By

Proposition 2.3.7 (ii), the chambers {c, c′, d, d′} are contained in a common residue of type k ∪ k⊥.

Finally, since i /∈ k ∪ k⊥, the i-colours of these chambers are identical. �

In the following lemma, the fact that ∆ is right-angled is crucial; the result does not at all hold for,

say, general spherical buildings.

Lemma 2.5.7. Let λ be a colouring of a right-angled building ∆ using colour setsXi. For each i ∈ I ,
let Yi ⊆ Xi be a subset of the i-colours such that |Yi| ≥ 2. Let c0 ∈ ∆ be any chamber, and let Γ be
the set of chambers of ∆ that are connected to c0 by a gallery that only takes colours in the restricted
sets Yi. Then Γ is a semiregular subbuilding with the same type as ∆ and with parameters qi = |Yi|.

Proof. By [Wei03, Proposition 7.18] or [AB08, Theorem 4.66], in order to show that Γ is a building,

it su�ces to show that Γ is convex. Clearly, Γ is connected, hence consider an arbitrary gallery γ
in Γ and a minimal gallery γ′ in ∆ such that γ and γ′ are homotopic — we will demonstrate that γ′

is fully contained in Γ as well.

We can reduce γ to γ′ by means of only elementary contractions and elementary homotopies on

the types, and claim that applying such an operation on the type of a gallery in Γ results in a gallery

that is again contained in Γ.

(i) Elementary contractions. If a gallery γ in Γ of type w · ii · w′ is contracted to a gallery γ′ of

type w · w′ or w · i · w′, then the chambers of γ′ are a subset of the chambers of γ, and it

follows that γ′ is again a gallery in Γ.

(ii) Elementary homotopies. If a gallery in Γ of type ij withmij = 2 is transformed into a gallery

of type ji, then this new gallery is again contained in Γ. Indeed, whenever c ∼i d ∼j c′ with

c, d, c′ ∈ Γ and c ∼j d′ ∼i c′ with d′ ∈ ∆, we have λi(d
′) = λi(c) and λj(d

′) = λj(c
′), so

that d′ ∈ Γ.

This shows that Γ is convex, and hence a subbuilding. The parameters and type of Γ are clear. �

We can then easily obtain as a corollary . . .
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Lemma 2.5.8. Any �nite set of chambers in a semiregular right-angled building ∆ is contained in a
�nite convex set of chambers.

Proof. First, we prove that any n chambers {c1, . . . , cn} are contained in a semiregular locally �nite
subbuilding of ∆. For n = 1, this is obvious. For n ≥ 2, we will make use of a legal colouring λ
of ∆. Join c1 to every chamber in {c2, . . . , cn} by an arbitrary minimal gallery. Let Yi ⊆ Xi be

the subset of all i-colours that occur as the i-colour of some chamber on one of these newly added

minimal galleries, and note that Yi is �nite for every i ∈ I . Let Γ be the set of chambers of ∆ that

are connected to c1 by a gallery that only takes colours in the sets (Yi)i∈I .

By Lemma 2.5.7, Γ is a locally �nite subbuilding of ∆ containing the chambers {c1, . . . , cn}. In Γ
these chambers can be enclosed by a �nite ball B (of �nite radius). Moreover, as B is convex in Γ
and Γ is convex in ∆, it follows that B is a �nite convex set in ∆ containing {c1, . . . , cn}. �

2.6 Implosions

We have already met a few interesting “retraction-like” maps: the projections projR : ∆→ R onto

residues R, and the retractions ρc,A : ∆ → A onto apartments A from De�nition 1.7.35. In this

section we develop a family of maps of a similar nature that we will call implosions and that provide

a controlled way to “collapse” a coloured building by collapsing the colour sets. To the best of our

knowledge, the construction is original.

De�nition 2.6.1. Let ∆ be a semiregular right-angled building over I and let λ be a legal colouring

using colour sets Ωi for every i ∈ I . Consider an equivalence relation ≡i on every set Ωi and let

I ′ = {i ∈ I | ≡i is not the universal relation}. De�ne a new semiregular right-angled building ∆′

over I ′ with diagram induced by the diagram of ∆, with parameters q′i = |Ωi/≡i| (for every i ∈ I ′),
and with a legal colouring λ′ using the quotient Ωi/≡i as the set of i-colours.

Recall that a map f : X → Y between metric spaces is called nonexpansive if it does not increase

distances, i.e if distY (f(x1), f(x2)) ≤ distX(x1, x2) for every pair (x1, x2) of points in X .

Proposition 2.6.2. Let ∆′ be an implosion of ∆ as in De�nition 2.6.1. Let c0 ∈ ∆ be any chamber
and let c′0 ∈ ∆′ be such that λ′i(c

′
0) = [λi(c0)]i for every i ∈ I ′. Then there exists a nonexpansive

epimorphism τ of chamber systems from ∆ onto ∆′ such that λ′i(τ(c)) = [λi(c)]i for all c ∈ ∆.

Proof. We construct τ by induction on the distance from c0, settling the induction base by declaring

τ(c0) = c′0. For c ∈ ∆ such that dist(c0, c) = n+ 1, let d be such that dist(c0, d) = n and d ∼i c.
If λi(c) ≡i λi(d) (in particular, if i /∈ I ′), then we set τ(c) = τ(d). Otherwise we set τ(c) to be the

unique chamber in ∆′ i-adjacent to τ(d) such that λ′i(τ(c)) = [λi(c)]i.

Since τ(c) a priori depends on the choice of d, we need to show that τ is well-de�ned. In order

to do so, suppose that both d1 and d2 satisfy dist(c0, d1) = n = dist(c0, d2) and d1 ∼i c ∼j d2.

By Lemma 2.2.1, there exists a chamber e such that dist(c0, e) = n − 1 and d1 ∼j e ∼i d2.

Since λi(e) = λi(d1), λi(d2) = λi(c), λj(e) = λj(d2), λj(d1) = λj(c), the images of the paths

e ∼ d1 ∼ c and e ∼ d2 ∼ c end up in the same chamber in ∆′, so τ(c) is indeed well-de�ned.

This extends τ to the whole of ∆, and by construction, we have λ′i(τ(c)) = [λi(c)]i for all c ∈ ∆.

It is not hard to see that τ is surjective, since any gallery γ′ in ∆′ can be “lifted” to a gallery γ in ∆
such that τ(γ) = γ′. Explicitly, let γ′ be a gallery

d′0 ∼i1 d′1 ∼i2 d′2 ∼i3 · · · ∼in d′n
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in ∆′. For every 1 ≤ k ≤ n, let xk be a representative of the equivalence class λ′ik(d′k). Let d0 ∈ ∆
be any chamber such that τ(d0) = d′0, and, for every 1 ≤ k ≤ n, let dk ∈ ∆ be the unique chamber

ik-adjacent to dk−1 such that the ik-colour of dk equals xk. Note that the ik-colours of dk−1 and

dk cannot be ik-equivalent, since then d′k−1 and d′k would be the same chamber in ∆′; hence dk is

well-de�ned. If we then let γ be the gallery

d0 ∼i1 d1 ∼i2 d2 ∼i3 · · · ∼in dn

in ∆, we clearly have τ(γ) = γ′. In particular we see that τ is surjective (using d′0 = c′0).

It remains to show that dist∆′(τ(c1), τ(c2)) ≤ dist∆(c1, c2) for all c1, c2 ∈ ∆. It su�ces to show

that the images of adjacent chambers either are adjacent or coincide, so assume that c1 ∼j c2. We

use induction on the distance to c0. If dist(c0, c1) 6= dist(c0, c2), then there is nothing to prove (by

the very de�nition of τ ). Suppose then that dist(c0, c1) = dist(c0, c2) = n + 1 and let d1 satisfy

dist(c0, d1) = n and d1 ∼i c1. There are two possibilities. First, if i = j, then also d1 ∼i c2

in ∆ and either τ(c1) = τ(c2) or τ(c1) ∼j τ(c2) in ∆′. Second, if i 6= j, then by Lemma 2.2.2

there exists a chamber d2 such that dist(c0, d2) = n and d1 ∼j d2 ∼i c2. Since λi(c1) = λi(c2),

λi(d1) = λi(d2), λj(c1) = λj(d1), λj(c2) = λj(d2), and either τ(d1) = τ(d2) or τ(d1) ∼j τ(d2),

we see that either τ(c1) = τ(c2) or τ(c1) ∼j τ(c2) as well. �

De�nition 2.6.3 (implosion). We call the pair (∆′, τ) from Proposition 2.6.2 the implosion of ∆
with centre c0 (with respect to the relations ≡i).

Corollary 2.6.4. Let ∆ be a semiregular right-angled building of typeM over I , let J ⊆ I , and let
Γ be the semiregular building of typeMJ over J with the same parameters as ∆. Then there is a map
ϕJ : ∆→ Γ with the following properties:

(i) for every residueR of type J , the restriction ϕJ |R is an isomorphism;

(ii) for every residueR of type I \ J , the restriction ϕJ |R is a constant map.

Proof. This follows from Proposition 2.6.2 by taking as equivalence relations≡i either the equality

relation if i ∈ J or the universal relation if i /∈ J . �

2.7 City products

In this section, we develop a construction for creating new right-angled buildings of a higher rank

by glueing together lower rank buildings along another building. Our construction is inspired by

the observation that the large-scale geometry of certain right-angled buildings (such as Figure 1.11)

resembles that of a tree; the city product structure explains this behaviour in a broad sense. To the

best of our knowledge, this product is original.

We start with some combinatorics, the goal of which will become clear later on.

De�nition 2.7.1 (weak homotopy). Let i, j ∈ I with mij = 2 and de�ne the set

P (i, j) =
{
w ∈ {i, j}∗

∣∣ w contains at least one i and one j
}
.

A weak homotopy is a transformation of a word w1 pw2 into a word w1 p
′w2 where w1, w2 ∈ I∗

and p, p′ ∈ P (i, j). Two words w and w′ are weakly homotopic if w can be transformed into w′ by

a sequence of weak homotopies.
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De�nition 2.7.2 (normal form). Let ≺ be a total order on I . Endow I∗ with the induced lexico-

graphical order. Then every wordw ∈ I∗ is homotopic to a unique lexicographically minimal word

that we call the normal form of w.

Proposition 2.7.3. Let ≺ be a total order on I .

(i) If two words are homotopic, then their normal forms are equal.

(ii) A word is reduced if and only if its normal form contains no consecutive duplicate letters.

(iii) The normal forms of weakly homotopic words are equal up to consecutive duplicate letters.

Proof. Claim (i) follows immediately from the de�nitions. For (ii), letw ' w1 ii w2 and assume that

the normal form contains no subword ii. Mark the two letters i in w1 ii w2 and write the normal

form as n1 i n2 i n3 (where the two letters i are the marked ones). If n2 is not the empty word, then

let k be its �rst letter; by assumption k 6= i. From the homotopy all letters in n2 are contained in

{i} ∪ {i}⊥. It follows that the normal form cannot be lexicographically minimal: if i ≺ k, then the

homotopic word n1 ii n2 n3 is lexicographically smaller, and if i � k, then n1 n2 ii n3 is smaller.

Claim (ii) follows. For claim (iii), it su�ces to note that the e�ect of a weak homotopy of a word on

its normal form is that a subword imjn with m ≥ 1, n ≥ 1, is replaced by another such word. �

Corollary 2.7.4. If two reduced words w,w′ ∈ I∗ are weakly homotopic, then they are homotopic.

Proof. Letting ≺ be any total order, this follows readily from Proposition 2.7.3 (ii) and (iii). �

Now let us go back to the building realm and de�ne an operation on the diagrams �rst.

De�nition 2.7.5 (city product). Let M be a diagram of rank n over the index set {1, . . . , n}, and

for every 1 ≤ ` ≤ n, letM` be a given diagram over I`. Then we de�ne an new diagram as follows:

(i) the index set is the disjoint union I =
⊔n
`=1 I`;

(ii) for every pair of elements i ∈ I` and i′ ∈ I`′ there are two cases. If ` = `′ then we set mii′

equal to mii′ (considered in M`). If ` 6= `′ then we set mii′ equal to m``′ (considered in M ).

This de�nes a diagram over I that we call the city product of the diagrams {M1, . . . ,Mn} over M
and denote by zM ({M1, . . . ,Mn}). Clearly its rank is

∑n
`=1 |I`|.

Note, the special case of a city product over an empty diagram (i.e. mij = 2 for all 1 ≤ i 6= j ≤ n)

results in nothing more than the disjoint union of the diagrams M1, . . . ,Mn (or in other words,

the diagram of the direct product of buildings associated to M1, . . . ,Mn). Two more examples are

given in Figure 2.7.

∞

⇒

∞

(a) A general example.

∞ ⇒ ∞ ∞

(b) A right-angled example.

Figure 2.7. City products of diagrams.

Lemma 2.7.6. zM ({M1, . . . ,Mn}) with n ≥ 2 is irreducible if and only ifM is irreducible.
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Proof. This follows immediately from the de�nition. �

We can now straightforwardly de�ne city products of buildings.

De�nition 2.7.7 (city product). Let M be a right-angled diagram over the index set {1, . . . , n},
and for every 1 ≤ ` ≤ n, let ∆` be a given semiregular right-angled building of type M` over I`.
Then we de�ne the city product of the buildings {∆1, . . .∆n} over M as follows:

(i) the index set is the disjoint union I =
⊔n
`=1 I`;

(ii) the (right-angled) diagram is the city product of diagramszM ({M1, . . . ,Mn});

(iii) for every i ∈ I , the parameter qi of the new building is the parameter qi of ∆`, where i ∈ I`.

Up to isomorphism, this de�nes a unique semiregular right-angled building by Theorem 2.1.1, that

we denote byzM ({∆1, . . . ,∆n}). There should be no confusion possible with the city product of

diagrams. For ease of notation, for every i ∈ I , we also de�ne `(i) to be the number in {1, . . . , n}
such that i ∈ I`(i).

Note that for every 1 ≤ ` ≤ n, the residues of type I` ⊆ I of the city product zM ({∆1, . . . ,∆n})
are isomorphic to the original building ∆`. As a special case of Corollary 2.6.4, we then obtain

Lemma 2.7.8. Let ∆ = zM ({∆1, . . . ,∆n}) be a city product and let 1 ≤ ` ≤ n. Then there is a
map ϕ` : ∆→ ∆` with the following properties:

(i) for every residueR of type I` the restriction ϕ`|R : R → ∆` is an isomorphism;

(ii) for every residueR of type I \ I` the restriction ϕ`|R : R → ∆` is a constant map.

Proof. This follows immediately from Corollary 2.6.4. �

We can then easily lift colourings of the subbuildings to a colouring of the full city product.

Lemma 2.7.9. Let ∆ = zM ({∆1, . . . ,∆n}) be a city product. For every 1 ≤ ` ≤ n, let λ` be a
legal colouring of ∆` with colour sets Ωi (where i ranges over I`). Then the collection of maps

λ′i = λ
`(i)
i ◦ ϕ`(i)

provides a legal colouring of ∆ with colour sets Ωi (where i ranges over I).

Proof. This follows immediately from Lemma 2.7.8 and the de�nition of legal colourings. �

The city product construction over a diagram M essentially glues together smaller rank buildings

as if they were chambers of a building of typeM , hence the fact that the original buildings reemerge

locally as residues (Lemma 2.7.8) should not be surprising. However, we can also recover a building

of type M at the global scale by relaxing the adjacencies.

De�nition 2.7.10 (skeletal building). Let ∆ = zM ({∆1, . . . ,∆n}) be a city product, where M
is a right-angled diagram over {1, . . . , n}. The skeletal building of ∆ is the chamber system over

the index set {1, . . . , n} with the same chamber set as ∆, but with coarser adjacencies: we declare

two chambers c, d ∈ ∆ to be `-adjacent if and only if they lie in the same residue of type I`.

We will prove in Proposition 2.7.13 that the skeletal building of a city product is, in fact, a building.

First we need an auxiliary de�nition and some combinatorial lemmas, making the bridge between

city products and weak homotopies.
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De�nition 2.7.11 (parkour map). Let Φ be the skeletal building of a city product ∆, so that Φ is

a chamber system over {1, . . . , n} and ∆ a chamber system over I . The parkour map is the map

r : I∗ → {1, . . . , n}∗

that �rst replaces every letter i ∈ I by `(i) ∈ {1, . . . , n} and then removes consecutive duplicates.

Then when w is the type of a gallery in ∆ that visits no chamber twice, r(w) is the type of a gallery

in Φ with the same extremities, but cutting short subgalleries in residues of type I` to a single jump

of type `. The maximal subwords of a word w ∈ I∗ with letters in a common subset I` of indices

are called the blocks of w. These are precisely the maximal subwords such that the image under r
is a single letter.

As an example, consider the index sets

I1 = {1a, 1b, 1c}, I2 = {2a, 2b}, I3 = {3a, 3b, 3c}, I = I1 ∪ I2 ∪ I3.

Then for the word w = 2a 2b 3c 1c 1a 1b 1a 3b, the image is r(w) = 2313. The blocks are the words

2a 2b, 3c, 1c 1a 1b 1a, 3b.

The interplay between words in I∗ and words in {1, . . . , n}∗ is not completely trivial — especially

when considering reduced words. As illustrated in Figure 2.8, images of reduced words under the

parkour map are not necessarily reduced, nor are images of equivalent words necessarily equivalent.

Hence the following slightly technical lemma.

Lemma 2.7.12. Let u ∈ I∗ and let r : I∗ → {1, . . . , n}∗ be the parkour map.

(i) If u ' u′, then r(u) and r(u′) are weakly homotopic (in the sense of De�nition 2.7.1).

(ii) If we have a homotopy r(u) ' v, then there exists u′ ∈ I∗ such that u′ ' u and r(u′) = v′,
where v′ is the word obtained from v by removing consecutive duplicate letters.

u u′

r(u) v v′

r

'

r

'

(iii) If u is reduced, then all blocks of u are reduced.

(iv) If all blocks of u are reduced and r(u) is reduced, then u is reduced.

(v) If u ' u′ and both r(u) and r(u′) are reduced, then r(u) ' r(u′).

Proof. Claim (i) follows immediately from the de�nition.

To be more precise, consider an elementary homotopy u = u1 ij u2 ' u1 ji u2. If `(i) = `(j), then

the image under r remains invariant. Henceforth, we can assume that `(i) 6= `(j). We distinguish

three cases for the subword u1 of u:

[case L.a] u1 is nonempty and the last letter of u1 is in I`(i),

[case L.b] u1 is nonempty and the last letter of u1 is in I`(j),

[case L.c] u1 is the empty word, or the last letter of u1 is neither in I`(i) nor I`(i).

Analogously, we distinguish three cases for u2:
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∞

∞

⇒
2a 2b

1a 1b

∞

∞

(a) The ambient (reducible) city product.

∞

∞

∞

∞
⇒

∞

∞

∞

∞

∞

∞

(b) An irreducible city product featuring case (a) as a residue.
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Figure 2.8. The e�ect of the parkour map on equivalent types of minimal galleries.
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[case R.a] u2 is nonempty and the �rst letter of u2 is in I`(i),

[case R.b] u2 is nonempty and the �rst letter of u2 is in I`(j),

[case R.c] u2 is the empty word, or the �rst letter of u2 is neither in I`(i) nor I`(i).

Depending on the nine combinations of possibilities, the elementary homotopy u1 ij u2 ' u1 ji u2

transforms the image r(u) by substituting some subword in {ij, ji, iji, jij, ijij, jiji} into another

such word; we refer to the table in Figure 2.9 for a more detailed overview. In any case the result is

weakly homotopic to r(u).

=⇒

i

i
.
.
.L.a

.
.
. R.a

j

j.
.
.L.b

.
.
. R.b

...L.c . . . R.c

R.a R.b R.c

L.a iji 7→ iji ij 7→ ijij ij 7→ iji

L.b jiji 7→ ji jij 7→ jij jij 7→ ji

L.c iji 7→ ji ij 7→ jij ij 7→ ji

Figure 2.9. The e�ect of an elementary homotopy on the image of the parkour map.

In the table, we have simply written i and j instead of `(i) and `(j) for better readability.

For (ii), consider an elementary homotopy of r(u), i.e. let r(u) = v1 `1`2 v2 ' v1 `2`1 v2 = v with

1 ≤ `1 6= `2 ≤ n and such that `1 and `2 commute in M . Then we can write u = u1 b1b2 u2 where

b1 and b2 are the blocks corresponding to `1 and `2, respectively. Since b1 and b2 have only letters

in I`1 and in I`2 which are sets of pairwise commuting generators in the Coxeter system, we have

a homotopy u′ = u1 b2b1 u2 ' u1 b1b2 u2 that satis�es r(u′) = v′.

For (iii), simply observe that any subword of a reduced word is reduced.

For (iv), assume by means of contraposition that every block of u is reduced while u is not, i.e. there

is a homotopy u ' w1 ii w2. Since every elementary homotopy simply swaps two adjacent letters,

we can unambiguously de�ne the initial blocks b1 and b2 of u that contain the two letters i. Since

every block is assumed to be reduced, b1 6= b2, hence u = u1 b1 u2 b2 u3 such that u2 is nonempty

and mij = 2 for every letter j in u2. The image then satis�es r(u) = r(u1) ` r(u2) ` r(u3) where `
is the index such that i ∈ I`. By construction, ` commutes with every type in r(u2). Hence r(u) is

not reduced.

Finally (v) follows from (i) and Corollary 2.7.4. �

Proposition 2.7.13. Let Φ be the skeletal building of the city productzM ({∆1, . . . ,∆n}) of right-
angled buildings. Then

(i) Φ is a right-angled building of typeM over {1, . . . , n};

(ii) Φ is semiregular with parameters q` = |∆`| for every 1 ≤ ` ≤ n;

(iii) `-panels of Γ (as sets of chambers) are I`-residues of ∆ and vice versa;

(iv) the maps ϕ` with 1 ≤ ` ≤ n provide a legal colouring of Γ with colour sets ∆`.
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2 Right-angled buildings

Proof. The only nontrivial claim is that Φ is indeed a building of type M ; the other claims follow

immediately from the de�nitions. Let us �rst write out the Weyl distance function in Φ and then

verify that it satis�es the necessary properties.

Denote by W∆ be the Weyl group of the building ∆. Recall from De�nition 1.7.17 the evaluation

morphism ς∆ : I∗ → W∆. On the other hand, we have a Coxeter group WΦ of type M , together

with an evaluation morphism ςΦ : {1, . . . , n}∗ →WΦ. As a �nal part of the setup, let s : W∆ → I∗

be a section of ς∆ with reduced images such that the word length |r(s(w))| is minimal for every

w ∈W∆. Finally, we can de�ne

δΦ = ςΦ ◦ r ◦ s ◦ δ∆ : Φ× Φ→WΦ.

Notice that the composition ςΦ ◦ r ◦ s is a map W∆ →WΦ but by no means a morphism of groups

(or even monoids). We bundle all maps in the commutative diagram below.

W∆

∆×∆ W∆ I∗

Φ× Φ WΦ {1, . . . , n}∗

s

δ∆

r

ς∆

δΦ ςΦ

Clearly panels of Φ contain at least two chambers, since every such panel of Φ contains a panel of

∆. Now consider a reduced word v in {1, . . . , n}∗ — we need to demonstrate that δΦ(c, d) = ςΦ(v)
if and only if there exists a gallery of type v from c to d in Φ.

First, assume that δΦ(c, d) = ςΦ(v). By de�nition of δΦ this means that the words (r ◦ s ◦ δ∆)(c, d)
and v are equivalent. Moreover, both words are reduced, and hence homotopic by Theorem 1.7.20.

By Lemma 2.7.12 (ii), this homotopy can be realised in I∗, i.e. we can �nd a word u ∈ I∗ such that

u ' (s ◦ δ∆)(c, d) and r(u) = v. The homotopy u ' (s ◦ δ∆)(c, d) yields that u is reduced, hence

by the building axioms for ∆, there is a minimal gallery in ∆ of type u from c to d. Then r(u) = v
is the type of a gallery in Φ from c to d.

Conversely, assume that γ is a gallery of type v from c to d in Φ. We can “lift” γ to a gallery sγ in ∆
with the same extremities, by replacing each `-adjacency in γ by a minimal gallery in a residue of

type I` of ∆. Let sv be the type of sγ. Note that r(sv) = v and that sv is reduced by Lemma 2.7.12 (iv).

Hence, we have δ∆(c, d) = ς∆(sv), so that s(δ∆(c, d)) and sv are homotopic by Theorem 1.7.20. Then

by Lemma 2.7.12 (v), the images (r ◦ s ◦ δ∆)(c, d) and r(sv) = v are homotopic, so that �nally

δΦ(c, d) = (ςΦ ◦ r ◦ s ◦ δ∆)(c, d) = ςΦ(v).

This concludes our proof that Φ is a right-angled building of type M . �

As an example, note that the diagram in Figure 2.7 (b) gives rise to the Coxeter system of Figure 1.11.

Indeed, the Coxeter complex is a thin building of rank three, but by taking the union of the red and

blue adjacencies, we recognise a semiregular tree with parameters q1 = 4 and q2 = 2.

The city product of right-angled diagrams can be interpreted in a purely graph-theoretical way, and

occurs in various disguises throughout the literature. Let us present the most common de�nition.
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2 Right-angled buildings

De�nition 2.7.14 (modules). Let G be a simple, undirected graph. A subset X of the vertex set

of G is called a module of G if it has the property that every vertex v /∈ X is either adjacent to all

vertices in X or adjacent to no vertex in X . Note that every graph has trivial modules: the full set

of all vertices, the singletons of single vertices, and the empty set.

De�nition 2.7.15 (prime). A simple undirected graph is prime if it has no nontrivial modules.

Modules are generalisations of connected components, in the sense that the union X of connected

components of a graph can be characterised by the property that every vertex v /∈ X is adjacent to

no vertex in X . In particular, a prime graph is connected.

Modules were �rst described by Tibor Gallai in [Gal67]. They have since also been known as homo-

geneous sets, autonomous sets, partitive sets, or intervals. Modules play a crucial role in László

Lovász’s celebrated proof of the perfect graph theorem, but are mostly of algorithmic interest since

there is an e�cient way to compute a “modular decomposition” of a graph — a data structure that

encodes all possible ways of decomposing a graph into modules, and serves as a stepping stone for

more advances algorithms. The modular decomposition has been studied under various aliases as

well, such as the substitution decomposition or prime tree decomposition. We refer to [MS99] for

an introduction to the topic.

In the context of right-angled buildings, let us point out that a semiregular right-angled building is

a nontrivial city product of lower rank buildings if and only if the underlying graph of its diagram

is not prime. It is hence a natural question how “exclusive” prime graphs are. For small n, the prime

graphs on n vertices can easily be found by hand. As it turns out, the path graph on four vertices is

the unique smallest prime graph. There are four prime graphs on �ve vertices: the path graph, the

cycle graph, and two others informally known as the house graph and the bull graph (Figure 2.10).

However, as Table 2.1 clearly shows, the number of isomorphism classes of prime graphs tends to

explode about as quickly as the total number of isomorphism classes of (connected) graphs; with

increasing n, prime graphs become more and more common.

Figure 2.10. All prime diagrams of rank four or �ve.

For clarity, the labels∞ on the edges are omitted.
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n
total number of . . . diagrams on n nodes

unrestricted irreducible prime

1 1 1 0

2 2 1 0

3 4 2 0

4 11 6 1

5 34 21 4

6 156 112 26

7 1 044 853 260

8 12 346 11 117 4 670

9 274 668 261 080 145 870

10 12 005 168 11 716 571 8 110 356

11 1 018 997 864 1 006 700 565 804 203 096

1 2 3 4 5 6 7 8 9 10 11

100

102

104

106

108

number of nodes

n
u

m
b

e
r

o
f

d
i
a
g
r
a
m

s total

prime

1 2 3 4 5 6 7 8 9 10 11

0%

20%

40%

60%

80%

100%

number of nodes

percentage of

prime diagrams

Table 2.1. A comparison of the number of unrestricted, irreducible, and prime diagrams.

The �rst column is [OEISa], the second is [OEISb], the third is [OEISc].
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“
You can never know everything, and part of what you know is always
wrong. Perhaps even the most important part. A portion of wisdom
lies in knowing that. A portion of courage lies in going on anyway.

”— Robert Jordan, Winter’s Heart

Now that we have built up a su�ciently large background, let us �nally de�ne the central objects

of this thesis: universal groups over right-angled buildings.

3.1 De�nition

A colouring of a building is useful for keeping track of the local behaviour of its automorphisms,

in the following sense.

De�nition 3.1.1 (local action). Let λ be a legal colouring of a semiregular right-angled building

∆ with colour set Ωi for every i ∈ I . Consider an automorphism g ∈ Aut(∆) and an arbitrary

i-panel P . Then we de�ne the local action of g at P as the map

σλ(g,P) = λi
∣∣
gP ◦ g

∣∣
P ◦ λi

∣∣−1

P ,

which is a permutation of Ωi by de�nition of λ.

In other words, the local action σλ(g,P) is the map that makes the following diagram commute.

P gP

Ωi Ωi

g

λi λi

σλ(g,P)

When the colouring λ is clear from the context, we will usually omit the explicit reference to λ and

simply write σ(g,P).

Lemma 3.1.2. Let g, h ∈ Aut(∆) and let P be any panel. Then the local actions satisfy

σλ(gh,P) = σλ(g, hP) · σλ(h,P) and σλ(g,P)−1 = σλ(g−1, gP).

Proof. This follows immediately from the de�nition, or from one look at the diagrams below.

P hP ghP

Ωi Ωi Ωi

h

λi

gh

g

λi λi

σλ(h,P)

σλ(gh,P)

σλ(g, hP)

P gP

Ωi Ωi

g

λi

g−1

λi

σλ(g,P)

σλ(g−1, gP)

�
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Proposition 3.1.3. Let g be an automorphism of ∆. If P and P ′ are two parallel panels in ∆, then
the local actions σλ(g,P) and σλ(g,P ′) are identical.

Proof. By Proposition 2.3.7 (i) and (ii), P and P ′ are panels of the same type i in a common residue

of type i ∪ i⊥. This residue is isomorphic to the direct product P0 ×R0 of a building P0 of type i
andR0 of type i⊥. Thus, for every chamber c ∈ P , a minimal gallery from c to projP ′(c) is unique

and is contained in a residue of type i⊥. In particular λi(c) = λi(projP ′(c)). Moreover, since g is

an automorphism, g . projP ′(c) = projg .P ′(g .c).

Now consider the colour λi(g .c). On the one hand, by de�nition of local actions,

λi(g .c) = σλ(g,P) .λi(c).

On the other hand, using the projection onto P ′, we �nd that

λi(g .c) = λi(projg .P ′(g .c))

= λi(g . projP ′(c))

= σλ(g,P ′) .λi(projP ′(c))

= σλ(g,P ′) .λi(c).

Since this holds for all c ∈ P , we conclude that σλ(g,P) = σλ(g,P ′).

A commutative diagram is worth a thousand words.

x

gP gP ′

P P ′

Ωi Ωi

Ωi Ωi

λi

projgP′

λi

projP′

g

λi

g

σλ(g,P) σλ(g,P ′)
λi

�

De�nition 3.1.4 (universal group). Let F be a collection of permutation groups Fi ≤ Sym(Ωi),

indexed by i ∈ I . Let ∆ be a semiregular right-angled building over I with parameters qi = |Ωi|,
equipped with a colouring λ using the sets Ωi as i-colours. Then the universal group of F over ∆
is by de�nition the group

Uλ∆(F ) =
{
g ∈ Aut(∆)

∣∣ σλ(g,P) ∈ Fi for every i ∈ I and every P ∈ Resi(∆)
}
.

In words, Uλ∆(F ) is the group of automorphisms that locally act like permutations in Fi. We hence

call the group Fi the local groups. We do not put any restrictions on the local groups: they are not

required to be transitive, nor of �nite degree. Note that Uλ∆(F ) is indeed a subgroup of Aut(∆) by

Lemma 3.1.2.

Regarding the name, what is universal about these universal groups? Recall from Burger—Mozes’s

Proposition 1.5.7 in the tree setting that the universal groups over trees have a maximality property

with respect to their local actions. Silva established in [DMdSS18, Proposition 3.7 (iv)] an analogue

for right-angled buildings: if the local groups are transitive and �nite permutation groups, then any
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closed chamber-transitive subgroupH ≤ Aut(∆) for which the local action on each i-panel is permu-
tationally isomorphic to the group Fi for every i ∈ I , is in fact conjugate to a subgroup of U(F ) in
Aut(∆). Although these results assume the local actions to be transitive, we still keep the name.

We note that we can recover the original Burger–Mozes groups: for a �nite permutation group F
the group U(F ) in the sense of De�nition 1.5.4 is easily shown to be isomorphic to the group U(F )
over a tree in the sense of De�nition 3.1.4, where the local data is given by the groups F and Z/2Z
(the cyclic group of order two simulating the edge inversions).

It is worth pointing out that the universal group construction is functorial, in the following sense.

Lemma 3.1.5. For every i ∈ I , let Fi ≤ F ′i ≤ Sym(Ωi), and let F and F ′ be as in De�nition 3.1.4.
Then there is a natural inclusion Uλ∆(F ) ≤ Uλ∆(F ′).

Proof. This follows immediately from the de�nition. �

As usual, when the building ∆ or the colouring λ is clear from context, we will frequently simplify

the notation to U(F ), or occasionally even to U . In any case, the choice of legal colouring λ is not

essential for the structure of the universal group, as the following lemma shows.

Lemma 3.1.6. Up to conjugagy, the subgroup Uλ∆(F ) of Aut(∆) is independent of the choice of λ.

Proof. Let λ and λ′ be distinct legal colourings. By Proposition 2.5.4 there is an automorphism g
such that λ′ ◦ g = λ. A quick calculation then yields that

σλ(h,P) = λi
∣∣
hP ◦ h

∣∣
P ◦ λi

∣∣−1

P

= λ′i
∣∣
ghP ◦ g

∣∣
hP ◦ h

∣∣
P ◦ g

∣∣−1

P ◦ λ
′
i

∣∣−1

gP

= λ′i
∣∣
ghP ◦

(
ghg−1

)∣∣
gP ◦ λ

′
i

∣∣−1

gP

= σλ′(
gh, gP)

for every automorphism h and every panel P , or more clearly in a commutative diagram:

P hP

gP ghP

Ωi Ωi

h

λi

g g

λi

gh

λ′i λ′i

σλ(h,P)

σλ′ (
gh, gP)

Consequently, h ∈ Aut(∆) is an element of Uλ(F ) if and only if
gh is an element of Uλ′(F ). �

De�nition 3.1.7 (panel group). For every panel P of type i, the panel group U|P is the subgroup

of Sym(P) induced by the action of the panel stabiliser U{P} on the chambers in P .

We conclude this introductory section with a de�nition that will turn out to be convenient when

speaking about orbits; see, in particular, Proposition 3.1 below.

De�nition 3.1.8 (harmony). Let J andK be disjoint subsets of I . Then two residuesR andR′ of

type J are called K-harmonious if, for every k ∈ K , the (well-de�ned) colours λk(R) and λk(R′)
lie in the same orbit of the local group Fk.

When K = I \ J , we abbreviate K-harmony to harmony. In particular for J = ∅, two chambers c
and c′ are harmonious if their colours λi(c) and λi(c

′) lie in the same Fi-orbit for every i ∈ I .
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The �nal proposition of this introductory section is a rather technical one that allows us to extend

partial automorphisms on certain subsets of the building to full automorphisms that are, intuitively

speaking, “as close to universal group elements as possible”. The proof idea is completely similar to

the proof of Proposition 2.5.4, but requires the more general Lemma 2.3.18 since we are extending

from a convex set instead of merely a chamber.

Proposition 3.1.9. Let C be a convex, panel-closed subset of ∆. Let F be a collection of local groups
for ∆. Let g ∈ Aut(∆) be an automorphism mapping chambers in C to harmonious chambers (with
respect to F ). Then there exists an automorphism h ∈ Aut(∆) with the following properties:

(i) g|C = h|C ;

(ii) for every i-panel P , either P is parallel to a panel contained in C , or σλ(h,P) ∈ Fi (or both).

Note that, in particular, h maps chambers to harmonious chambers.

Proof. First we de�ne for every n ∈ N the sets

Bn(C) = {c ∈ ∆ | dist(c, C) ≤ n},
Sn(C) = {c ∈ ∆ | dist(c, C) = n}.

Just like in Proposition 2.5.4, we will inductively construct a sequence of elements gn (with n ∈ N)

such that gn|C = h|C for all n, such that property (ii) holds for all panels P contained in Bn(C),

and such that gn and gm agree on the ball Bm(C) whenever m < n. Note that gn maps chambers

in Bn(C) to harmonious chambers. For n = 0, take g0 = g.

Now assume that n ≥ 1, and that we have constructed gn with all the required properties. In order

to de�ne gn+1 we will construct an automorphism hn that stabilises Bn(gn .C) pointwise and that

�xes the mismatching local actions at Sn+1(gn .C) — we can then set gn+1 = hn ◦ gn. Already let

C ′ = gn .C = g .C .

For convenience, we will henceforth call a panel n-defect if it intersects both Sn(C) and Sn+1(C)
and it does not satisfy property (ii) with respect to gn. Explicitly, if an i-panelP is n-defect, the local

action σλ(gn,P) /∈ Fi and P is not parallel to any panel contained in C . Observe, if property (ii)

holds for any panel, then for every parallel panel as well, since parallelism is transitive and local

actions on parallel panels agree. This implies an n-defect panel is not parallel to any panel inBn(C).

Let P be an n-defect i-panel. By Lemma 2.3.18, P intersects Sn(C) in a single chamber c. Denote

c′ = gn . c and P ′ = gn .P . By the induction hypothesis, c and c′ are harmonious. Hence we can

�nd a permutation fP ∈ Fi such that fP .λi(c) = λi(c
′), and consecutively a permutation πP of

the chambers in P ′ that makes the diagram below commute.

P P ′ P ′

Ωi Ωi

λi

gn πP

λi

fP

By Proposition 2.4.9, πP extends to an automorphism π̃P that �xes all chambers whose projection

onto P is �xed by πP . Note that πP �xes c′ by construction, since both the local action of gn at P
and the target local action f(λi(c), λi(c

′)) map the colour λi(c) to the same image λi(c
′). Consider

d ∈ Bn+1(C ′)\P ′ and denote d′ = projP ′(d). If dist(d′, C ′) = n, or in other words if c′ = d′, then

d′ is �xed by πP and d is �xed by π̃P . Otherwise dist(d′, C ′) = n+ 1. Then, Lemma 2.3.18 yields

that P ′ is parallel to either the i-panel containing d, or an i-panel contained in Bn(C ′). Note that

we have excluded the latter possibility by assuming that P violates property (ii).
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We have thus constructed, for every n-defect panel P , an automorphism π̃P of the building with

the property that all chambers of Bn+1(C ′) that are moved by π̃P are contained in Sn+1(C ′) ∩R,

with R the set of all chambers in a panel parallel to P ′ (in other words, the residue of type i ∪ i⊥
containing P ′).

Next we claim that no chamber in Sn+1(C ′) lies in more than one n-defect panel. Indeed, suppose

c1 ∼i d ∼j c2 with d ∈ Sn+1(C ′) and c1, c2 ∈ Bn(C ′). As there is a unique chamber in C ′ nearest

to d, we can apply Lemma 2.2.1 to �nd that Pi(d) and Pj(d) both are parallel to panels in Bn(C ′),

so that Pi(d) and Pj(d) cannot be n-defect.

We now de�ne

hn =
∏
P
π̃P ∈ Aut(∆),

where the product runs over any set of arbitrarily chosen representatives of all equivalence classes

of parallel n-defect panels. Note that hn leaves invariant the set Bn(C ′), since all factors do. Hence

the automorphism gn+1 = hn ◦ gn satis�es gn+1|C = gn|C = g|C in particular.

Moreover, let P be any panel contained in Bn+1(C). If P ⊆ Bn(C), then property (ii) holds by the

induction hypothesis. If P ⊆ Bn+1(C), then P is parallel to some panel contained in Bn(C) and

again property (ii) holds by induction. It hence only remains to verify that property (ii) is valid for

an n-defect panel P with respect to gn+1. Let P̃ be the representative of P in the class of parallel

n-defect panels. Then

σλ(gn+1,P) = σλ(gn+1, P̃) = σλ(hn, gn . P̃) ◦ σλ(gn, P̃) = πP̃ ◦ σλ(gn, P̃) = fP̃ ∈ fi.

Finally, by construction, gn+1 agrees with gn on the ball Bn(C). The sequence of automorphisms

g0, g1, g2, . . . thus obtained, converges to an automorphism satisfying the desired properties. �

The reason for the assumption that C is panel-closed in the above proposition should be evident: if

a partial automorphism is only de�ned on a nontrivial subset of a panel, we would need to extend

it to the full panel �rst. This would require us to assume the partial local actions to be extendable

to a full permutation in the local group in the �rst place — panel-closure is a su�cient assumption

to get rid of this additional technicality.

3.2 Permutational properties

As a �rst result, we motivate why we will regularly restrict our attention to irreducible buildings.

Lemma 3.2.1. Let ∆ be a reducible right-angled building ∆ over I . Let J1, . . . , Jm be the connected
components of (the underlying graph of) the diagram of ∆. Then the universal group U∆(F ) splits
as a direct product

U∆(F ) ∼= UR1

(
F |J1

)
× · · · × URm

(
F |Jm

)
,

whereR` is a residue of type J` for every 1 ≤ ` ≤ m.

Proof. Since ∆ is isomorphic to the direct product R1 × · · · × Rm and has automorphism group

Aut(∆) ∼= Aut(R1)× · · · ×Aut(Rm), this follows immediately from the de�nition. �

Next, we can quite easily describe the orbits of U∆(F ) on chambers and residues of ∆.

Proposition 3.2.2. Two residues lie in the same orbit of U∆(F ) if and only if they are of the same
type and harmonious. In particular, two chambers c and c′ lie in the same orbit of U∆(F ) if and only
if their colours λi(c) and λi(c′) lie in the same Fi-orbit for every i ∈ I .
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Proof. First, suppose that g .R = R′ for some g ∈ Uλ∆(F ) and �x i /∈ J . Let c ∈ R be an arbitrary

chamber and let P = Pi(c). By de�nition of a legal colouring, λi is constant onR andR′. Now let

fi = σλ(g,P) ∈ Fi,

and it readily follows that

fi .λi(R) = fi .λi(c) =
(
λi
∣∣
gP ◦ g

∣∣
P ◦ λi

∣∣−1

P ◦ λi
∣∣
P

)
(c) = λi(g .c) = λi(g .R).

Hence, for every i /∈ J , the i-colours ofR andR′ lie in the same Fi-orbit.

Conversely, consider two harmonious residues R and R′ of type J , and let c ∈ R and c′ ∈ R′ be

two chambers with identical J-colours. For every i ∈ I \ J , let fi ∈ Fi be a permutation such that

fi .λi(R) = λi(R′). For every i ∈ J , let fi be the identity permutation. Now de�ne a “recolouring

map”

φ :
∏
i∈I

Ωi →
∏
i∈I

Ωi : (Ωi)i∈I 7→ (fi .Ωi)i∈I

From De�nition 2.5.1 it is clear that φ ◦ λ is again a legal colouring of ∆. By construction, we have

that (φ ◦ λ)(c) = λ(c′). Proposition 2.5.4 then provides an automorphism g ∈ Aut(∆) such that

g .c = c′ and λ ◦ g = φ ◦ λ. Now let P be any panel of type i and verify that

σλ(g,P) = (λi ◦ g)
∣∣
P ◦ λi

∣∣−1

P = (fi ◦ λi)
∣∣
P ◦ λi

∣∣−1

P = fi.

In particular this means that g ∈ Uλ∆(F ), and since g .R = R′ we are done. �

From this we can immediately deduce the cardinalities of the orbit spaces.

Corollary 3.2.3. Let J ⊆ I . The action of U(F ) on the set of J-residues has �nitely many orbits if
and only if the local groups corresponding to I \ J have �nite orbits. More precisely,∣∣ResJ(∆)/ U(F )

∣∣ =
∏
i/∈J

∣∣Ωi/Fi
∣∣.

In particular, U(F ) acts transitively on the chambers of ∆ if and only if all local groups are transitive.

We can now characterise when a universal group is trivial.

Corollary 3.2.4. The universal group U∆(F ) is nontrivial if and only if the diagram of ∆ has at
least one edge or at least one local group is nontrivial.

Proof. If the diagram has at least one edge, then ∆ has a residue of rank two isomorphic to a tree.

Such a residue contains an in�nitude of identically coloured chambers. Hence by Proposition 3.2.2

U(F ) is nontrivial. If on the other hand the diagram is the union of isolated nodes, then ∆ is iso-

morphic to a direct product of complete graphs, and U(F ) is simply the direct product of the local

groups. The result follows. �

Corollary 3.2.5. The action of U(F ) on ∆ is cobounded. More precisely, if ∆ has rank n, every ball
in ∆ of radius n contains a representative chamber of every U(F )-orbit.

Proof. Let Id be the trivial subgroups of Sym(Ωi), indexed by i ∈ I . We claim that the action of

U(Id) is cobounded. Indeed, let c and c′ be any two chambers; then by Lemma 2.5.3, there exists a

chamber d in Bn(c′) such that λ(c) = λ(d), and by Proposition 3.2.2, c and d lie in the same orbit

of U(Id). Since U(Id) ≤ U(F ), it follows that the action of U(F ) is cobounded as well. �
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Corollary 3.2.6. Let∆ be a right-angled building such that the diagram does not have isolated nodes.
Then the action of U(F ) on ∆ is combinatorially dense.

Proof. This follows immediately from Corollary 3.2.5 and Proposition 2.4.8. �

Now, we come to the principal reason why right-angled buildings provide a suitable generalisation

of the Burger–Mozes universal groups: the property that any permutation of the chambers in any

panel occurs as the local action of some automorphism.

Lemma 3.2.7. Let f be a permutation in Fi and let P be an i-panel. Then there exists an automor-
phism g ∈ U(F ) with the following properties:

(i) g stabilises P ;

(ii) the local action is equal to f at every i-panel;

(iii) the local action is trivial at every other panel.

Proof. De�ne a new colouring λ′, setting λ′i = f−1 ◦ λi and leaving λ′j = λj unchanged for j 6= i.
Pick any colour x ∈ Ωi, let c ∈ P be the chamber with λi(c) = x, and let c′ ∈ P be the chamber

with λi(c
′) = f.x. Now apply Proposition 2.5.4 to �nd an automorphism g such that g .c = c′ and

λ′ ◦ g = λ. In particular g stabilises P . Moreover, similarly to the proof of Proposition 3.2.2, we see

that the local actions are either equal to f (on panels of type i) or trivial (on panels of type j 6= i).
Thus g satis�es all required properties. �

We can slightly modify the obtained automorphism g from Lemma 3.2.7, using the same technique

from [Cap14a, Proposition 4.2].

Lemma 3.2.8. Let f be a permutation in Fi and let P be an i-panel. Then there exists an automor-
phism h ∈ U(F ) with the following properties:

(i) h stabilises P ;

(ii) the local action of h at P is equal to f ;

(iii) h �xes all chambers c with the property that λi(projP(c)) is �xed by f .

Proof. Let g be the automorphism obtained from Lemma 3.2.7. We shall modify g along the wings

of chambers in P corresponding to �xed points of f in order to satisfy property (iii). De�ne

h : ∆→ ∆: c 7→

{
c if f �xes λi(projP(c));

g .c otherwise.

Note that g|P = h|P hence properties (i) and (ii) are automatic. The restriction of h to a wing of P
is either the identity or coincides with the restriction of g. In addition, h satis�es property (iii) by

construction. It remains to check that h is an automorphism of ∆ and that all local actions of h are

in the prescribed local groups.

In order to show that h preserves the Weyl distance, let c and d be any two chambers and denote

by c′ and d′ their projections on P . If c′ = d′, then either (hc, hd) = (c, d) or (hc, hd) = (gc, gd);

in both cases we indeed have δ(hc, hd) = δ(c, d). Now assume that c′ 6= d′. LetR be the residue of

type i ∪ i⊥ containing P and let c′′ and d′′ be the projections of c and d onR, respectively. Then c
and c′′ lie in a common wing ofP . As wings are convex by Lemma 2.3.10, it follows that h preserves

the Weyl distance from c to c′′. Similarly, δ(hd′′, hd) = δ(d′′, d). Finally, since the restriction of h
toR coincides with the restriction of g, we also have that h preserves the Weyl distance from c′′ to
d′′ as well. Our claim that δ(hc, hd) = δ(c, d) now follows from Lemma 2.3.11.
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To conclude the proof, let P ′ be any panel. If P ′ is contained in a single wing of P , then the local

action σλ(h,P ′) is either the identity or σλ(g,P ′). Otherwise P ′ intersects at least two wings of P
nontrivially. Then by Lemma 2.3.4, P ′ and P are parallel, and σλ(h,P ′) = f by Proposition 3.1.3.

In conclusion, every local action of h is either trivial or equal to f . �

Proposition 3.2.9. Let P be a panel of type i. Then the groups U|P ≤ Sym(P) and Fi ≤ Sym(Ωi)
are permutationally isomorphic.

Proof. Consider the local action morphism

σλ(•,P) : U{P} → Sym(Ωi) : g 7→ σλ(g,P).

By Lemma 3.2.7, the image of this morphism is the full local group Fi; the kernel is the pointwise

stabiliser U (P). Note that U|P and U{P} / U (P) are isomorphic (as abstract groups). The universal

property of quotients then yields a natural isomorphism σ|P from U|P to Fi.

U{P} U{P} / U (P) U|P

Fi

σλ(•,P)

∼=

σ|P

Moreover, for every g ∈ U|P and every c ∈ P , we have that

λi(g .c) = σ
∣∣
P(g) .λi(c),

so that the pair (σ|P , λi) is an isomorphism of permutation groups, as required. �

Next, we present a strengthening of one property mentioned in Theorem 2.1.1, namely the fact that

automorphisms of residues can be extended to automorphisms of the full right-angled building: we

can do so while keeping the local actions under control.

Proposition 3.2.10. Let J ⊆ I and let R be a residue of type J . Then every automorphism of R in
UR(F |J) extends to an automorphism of ∆ in U∆(F ).

Proof. This is a corollary of Proposition 3.1.9, takingR to be the convex, panel-closed set. �

Corollary 3.2.11. Let J ⊆ I and letR be a residue of type J . Then U∆(F ){R}|R = UR(F |J).

Proof. On the one hand, the restriction of an automorphism in U∆(F ){R} toR clearly is an auto-

morphism in UR(F |J). On the other hand, by Proposition 3.2.10, every automorphism in UR(F |J)
occurs as the restriction of an automorphism in U∆(F ){R} toR. �

Let us now, as an example, calculate the universal group over a tree in a very speci�c case.

Proposition 3.2.12. Set I = {◦, •} with m◦• = ∞ and let q◦ ≥ 2 and q• ≥ 2 be integers. Let F◦
be the trivial permutation group of degree q◦ and let F• be a regular permutation group of degree q•.
Then U(F ) is isomorphic to the free product of q◦ copies of F•.

Proof. Let P◦ be a panel of type ◦. Consider the partition of the tree

∆ =
⊔
c∈P◦

X◦(c)
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into wings with base chambers in P◦. For every chamber c ∈ P◦ and every permutation f ∈ F•,
let f̃ be the automorphism from Lemma 3.2.8, stabilising P•(c) with local action f on •-panels and

the identity on ◦-panels. Note that the set

Gc =
{
f̃
∣∣∣ f ∈ F•}

is a subgroup of the stabiliser of P•(c) in U(F ), canonically isomorphic to the local group F•. Let

d 6= d′ be two di�erent chambers in P◦ and let g be any nontrivial automorphism in Gd. Since g
has no �xed points in P•(d), we have that g .X◦(d

′) ⊆ X◦(d). By the ping-pong lemma, it follows

that the subgroups Gc generate a free product (where c ranges over P◦).

SinceF• is transitive, Proposition 3.2.2 yields that U(F ) acts transitively on the panels of type ◦. Let

P be any such panel; we use induction on dist(P,P◦) to prove that 〈Gc | c ∈ P◦〉 acts transitively

on Res◦(∆) as well. For P = P◦ there is nothing to show. Now assume that dist(P,P◦) = n+ 1,

and let P ′ be the panel such that dist(P,P ′) = n and containing some chamber d adjacent to P◦.
Then by local transitivity there exists f ∈ Gd such that f .P◦ = P ′. Moreover, note that

dist(f−1 .P,P◦) = dist(P, f .P◦) = dist(P,P ′) = n,

so that by the induction hypothesis, there exists some g ∈ 〈Gc | c ∈ P◦〉 such that g .P◦ = f−1 .P .

Then fg ∈ 〈Gc | c ∈ P◦〉 satis�es fg .P◦ = P and our claim follows.

Since the stabilisers of P◦ in 〈Gc | c ∈ P◦〉 and in U(F ) agree, it follows that U(F ) is generated

by the subgroups Gc (with c ranging over P◦), and we already established that these subgroups

generate a free product with factors isomorphic to F•. �

An action on the chamber set of ∆ by automorphisms induces an action on the set of residues of a

�xed type. The following proposition allows us to recover the original action in most situations.

Proposition 3.2.13. Let ∆ be a right-angled building of type I and let J ⊆ I . Assume that all local
groups are nontrivial. Then the following are equivalent:

(i) U(F ) acts faithfully on the set of J-residues;

(ii) J does not contain a connected component of (the underlying graph of) the diagram of ∆.

Proof. First observe that if U acts faithfully on ResJ(∆), then it acts faithfully on ResK(∆) as well,

for every subsetK ⊆ J . Hence, it is su�cient to show that the minimal subsets J ⊆ I (with respect

to inclusion) such that the action on ResJ(∆) is not faithful, are in one-to-one correspondence with

the connected components of the diagram.

Assume that J is a connected component. If J = I , then the action on ResJ(∆) is the trivial action

on a singleton and is not faithful. If J 6= I , then we have a direct product structure ∆ ∼= R×R′
whereR is a residue of type J andR′ a residue of type I \ J . By Lemma 3.2.1,

U∆(F ) ∼= UR
(
F
∣∣
J

)
× UR′

(
F
∣∣
I\J
)
.

Since the �rst factor is nontrivial and stabilises every J-residue, we see that U∆(F ) does not act

faithfully on ResJ(∆).

Conversely, let J be a minimal subset of I such that the action on ResJ(∆) is not faithful. Then we

certainly have J 6= ∅ (because the action on the chambers is faithful). If J = I , then the diagram

is connected (because of the previous paragraph and the minimality assumption). Henceforth we

can assume that there exist types j ∈ J and k /∈ J .
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Let g be a nontrivial automorphism in U stabilising all residues of type J . Then by the minimality

assumption, there exists some residue R of type J \ {j} such that g .R 6= R. Let P be a k-panel

intersecting R in a chamber c. As c and g .c are contained in a common residue of type J , but not

of type J \ {j}, the type of a minimal gallery from c to g .c has to contain the element j. Moreover

for every d ∈ P , we have projP(g .d) = d, since d and g .d are contained in a common J-residue

as well. Hence P and g .P are parallel, and by Proposition 2.3.7 (ii), we conclude that mjk = 2.

Since j ∈ J and k /∈ J were arbitrary, this means that J is a union of connected components of the

diagram. By minimality, J is a single connected component. �

It is worth making the following corollary explicit.

Corollary 3.2.14. Let ∆ be an irreducible right-angled building over I and let J ( I . Then the
action of U∆(F ) on ResJ(∆) is faithful.

Proof. This follows immediately from Proposition 3.2.13. �

Next, we characterise when the universal group acts primitively on ResJ(∆). Our result, Theo-

rem 3.2.15, has been proved by Simon Smith in the rank two case in [Smi17, Theorem 26 (ii)]. Smith

remarks that in this setting, there is a surprising similarity with wreath products of permutation

groups; the similarity weakens in higher rank.

Theorem 3.2.15 (primitivity). Let J ⊆ I . Then the action of U(F ) on the set ResJ(∆) of residues
of type J is primitive if and only if all of the following conditions hold:

(i) |I \ J | = 1, so that I = J t {k} for some k ∈ I ;

(ii) Fk is primitive and nonregular;

(iii) Fi is transitive for all i ∈ I \ k⊥.

Proof. We proceed in �ve steps.

Step 1. Condition (i) is necessary.

Assume that J ⊆ J ′ ⊆ I . Then the residues of type J ′ induce a partition of the residues of type J ,

which is preserved by the action of U . In other words, an intermediate set J ⊆ J ′ ⊆ I determines

a block system of imprimitivity for the action on ResJ(∆). The singleton partition corresponds to

J = J ′, the trivial partition in one block to J ′ = I . Hence U can only act primitively if |I \J | ≤ 1.

In what follows, we may assume that I = J t {k}. De�ne the graph Γ with vertex set ResJ(∆),

and where two J-residues are adjacent if and only if they contain two k-adjacent chambers. Note

that U acts on Γ in a natural way by graph automorphisms. We will simply call J-residues adjacent
when they are adjacent in Γ. Note that λk induces a well-de�ned vertex colouring on Γ.

Step 2. Condition (ii) (a) is necessary: if Fk is imprimitive, then U acts imprimitively on ResJ(∆).

Let ≈ be a nontrivial equivalence relation on Ωk that is invariant under Fk. Let P be any k-panel.

Then ≈ naturally lifts to an equivalence relation on the chambers of P , by declaring c1 ≈ c2 in P
if and only if λk(c1) ≈ λk(c2) in Ωk.

If qk = 2, then as an imprimitive subgroup of Sym(2), the group Fk is trivial. By Proposition 3.2.2,

the action on ResJ(∆) is intransitive and certainly imprimitive. If qk ≥ 3, then let c1 ≈ c2 6≈ c3 be

three chambers in P , and for ` ∈ {1, 2, 3}, let R` be the residue of type J containing c`. We refer

to Figure 3.1a.
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Since {R1,R2} is an edge in Γ and U acts by graph automorphisms, the orbital graph with respect

to the orbital U .(R1,R2) is a subgraph of Γ. Since the equivalence relation is invariant under U ,

it follows that all colours in a connected component of the orbital graph are contained in a single

equivalence class of Ωk. In particular, R1 and R3 belong to di�erent connected components of Γ.

The imprimitivity of U on ResJ(∆) now follows from Higman’s theorem (Theorem 1.1.7).

Step 3. Condition (ii) (b) is necessary: if Fk is regular, then U acts imprimitively on ResJ(∆).

Assume that Fk acts regularly on the set of k-colours. LetR0 be a J-residue and let g ∈ U . De�ne

the k-colours y = λk(R0) and z = λk(g .R0). By regularity, there exists a unique element f ∈ Fk
such that f.y = z. We claim that λk(g .R) = f.λk(R) for each J-residue R, using induction on

the distance n toR0 in the graph Γ. For the case n = 0, there is nothing to show.

Next, consider a residueR at distance n+ 1 toR0 (in the graph Γ) and letR′ be a neighbour ofR
at distance n. Let x = λk(R) and x′ = λk(R′), and note that λk(g .R′) = f.x′ by the induction

hypothesis. Let P be a k-panel containing k-adjacent chambers ofR andR′. The local action of g
at P is a permutation of Fk taking x′ to f.x′ — by regularity, this local action has to be equal to f
and we may conclude that λk(g .R) = f.λk(R). Our claim follows by induction.

Since y was essentially arbitrary, we �nd that the partition of ResJ(∆) into sets

B(x) = {R ∈ ResJ(∆) | λk(R) = x}

of identically coloured residues, is in fact a nontrivial block system of imprimitivity.

Step 4. Condition (iii) is necessary.

Suppose that Fi acts intransitively on Ωi for some i ∈ I with mik =∞. By Lemma 2.5.6 we obtain

a natural well-de�ned edge colouring of Γ with colours in Ωi induced by the k-panels. Let R1 be

any residue of type J . Pick two i-adjacent chambers c ∼i d in R1 such that λi(c) and λi(d) lie in

distinct Fi-orbits. Let R2 and R3 be two J-residues containing a chamber k-adjacent to c and d,

respectively. We refer to Figure 3.1b.

Consider the orbital graph with respect to the orbital U .(R1,R2), which is again a subgraph of Γ.

The action of U on Γ preserves the orbits of the i-colours of edges under Fi. Hence the i-colours

in a connected component of the orbital graph are contained in a single Fi-orbit — in particular it

follows that R3 is not contained in the same component as R1 and R2. The imprimitivity of U
now again follows from Higman’s theorem (Theorem 1.1.7).

Step 5. Assume that conditions (i), (ii), (iii) hold. Then U acts primitively on ResJ(∆).

Let ≈ be a nontrivial U-invariant equivalence relation on the set ResJ(∆) of J-residues; we will

show that this relation is universal. Consider two equivalent residuesR0 ≈ R, consider a shortest

path fromR0 toR in Γ and letR′ be the J-residue adjacent toR on this shortest path. Let c ∈ R
and c′ ∈ R′ be two k-adjacent chambers, and let P be the k-panel containing c and c′.

By Lemma 1.1.8, since Fk is primitive and nonregular, there is a permutation f ∈ Fk �xing λk(c
′)

but not λk(c). By Lemma 3.2.8, f extends to an automorphism g ∈ U �xing c′ but not �xing c, and

�xing all chambers d such that projP(d) = c′. In particular, g �xes c0. Moreover, g .c is k-adjacent

to g .c′ = c′. It follows from U-invariance that R ≈ R0 = g .R0 ≈ g .R, so we have constructed

two equivalent J-residues that are adjacent in Γ. For an illustration we refer to Figure 3.1c.

We now claim that all J-residues containing some chamber in P are equivalent. Indeed, consider

the induced equivalence relation on the k-colours Ωk where we de�ne two colours to be equivalent
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if the J-residues of the corresponding chambers in P are equivalent. This equivalence relation on

Ωk is invariant under Fk by Lemma 3.2.7, hence universal by primitivity of Fk. Hence our claim

follows, and in particular, we �nd thatR ≈ R′ ≈ g .R.

Next, we claim that all J-residues adjacent to R are equivalent to R. Let R′′ be such a J-residue

adjacent toR and let d ∈ R be k-adjacent to a chamber inR′′. Let γ be a minimal gallery joining c
and d in R; we show that R ≈ R′′ by means of induction on the gallery length n of γ. The case

n = 0 is precisely the conclusion of the previous paragraph. For a gallery γ of length n+ 1, let d′

be the chamber on γ such that dist(c, d′) = n and let d′ ∼i d. There are two options, illustrated in

Figures 3.1d and 3.1e.

(a) If mik = 2, then all J-residues containing a chamber k-adjacent to d, contain a chamber

k-adjacent to d′ as well. Hence there is nothing to prove.

(b) If mik =∞, then by transitivity of Fi there exists some permutation f ∈ Fi mapping λi(d
′)

to λi(d). Extend this permutation by Lemma 3.2.7 to an element g ∈ U mapping d′ to d. By

the induction hypothesis, all J-residues containing a chamber k-adjacent to d′ are equivalent

to R, hence from U-invariance, all J-residues containing a chamber k-adjacent to g .d′ = d
are equivalent to g .R = R as well.

We conclude by induction that all J-residues adjacent to R are in fact equivalent to R. Repeating

this argument and using the fact that Γ is connected, it follows that all J-residues are equivalent,

so that ≈ is the universal relation. Hence U acts primitively on ResJ(∆).

This completes the proof. �

The following few properties all involve the subgroup U(F )+
generated by the chamber stabilisers,

U∆(F )+ =
〈
U(F )c | c ∈ ∆

〉
.

Clearly this is a normal subgroup of the universal group, and hence a major obstruction for U(F )
to be simple. Remark that U(F )+

is trivial if and only if every local group acts freely; it will take

some more work to characterise when U(F )+ = U(F ).

Lemma 3.2.16. Let P be an i-panel. Then the local actions of U(F )+ on P are contained in (Fi)
+.

Proof. Let g ∈ U(F ) be an automorphism that stabilises some chamber c ∈ ∆. It su�ces to show

that the local action σ(g,P) is a permutation in (Fi)
+

. We shall use induction on dist(c,P). First,

if c ∈ P , then σ(g,P) indeed stabilises the colour λi(c). If otherwise dist(c,P) = n + 1, then let

d = projP(c), let d′ ∼j d (for some j 6= i) be such that dist(c, d′) = n, and let P ′ be the i-panel

containing d′. Then we know that λi(d
′) = λi(d) and that

σ(g,P ′) .λi(d′) = λi(g .d
′) = λi(g .d) = σ(g,P) .λi(d).

This implies that σ(g,P) = σ(g,P ′) · f for some permutation f ∈ Fi stabilising the colour λi(d).

Since σ(g,P ′) ∈ (Fi)
+

by the induction hypothesis, our conclusion follows. �

Proposition 3.2.17. Let Id,F+,F be the collections of subgroups {1} ≤ (Fi)
+ ≤ Fi of the sym-

metric group Sym(Ωi), indexed by i ∈ I . Then U(F+) = 〈U(Id), U(F )+〉.

Proof. The claim that U(F+) contains both U(Id) and U(F )+
as subgroups follows immediately

from Lemmas 3.1.5 and 3.2.16, respectively. Conversely, let g be an automorphism in U(F+). Let

c be an arbitrary chamber, let i ∈ I , and let fi = σλ(g,Pi(c)) ∈ (Fi)
+

. Now use Proposition 3.2.9

to construct an automorphism hi ∈ U(F )+
stabilising Pi(c) with local action fi. By construction,

λi(hi . c) = σλ(hi,Pi(c)) .λi(c) = fi .λi(c) = σλ(g,Pi(c)) = λi(g .c),
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R1

R2

R3

c1

c2

c3

(a) The con�guration in step 2.

R1

R2 R3

c d

(b) The con�guration in step 4.

R0
R′ R

g .R

c0 c′

c

g .c

(c) The con�guration in step 5.

R′
R

R′′

c

d′
d

(d) The con�guration in step 5, �rst case.

R′
R

R′′
c

d′

d

(e) The con�guration in step 5, second case.

Figure 3.1. The con�gurations in the proof of Theorem 3.2.15.
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while λj(hi . c) = λj(c) for all j 6= i. Repeating this with hi . c for every type in I , we eventually

obtain an automorphism

h =
∏
i∈I

hi ∈ U(F )+

such that λi(h.c) = λi(g .c) for every i ∈ I . By Proposition 3.2.2, we can �nd an automorphism

h′ ∈ U(Id) such that h′ .(h.c) = g .c. It follows that (h′ · h)−1 · g ∈ U(F )+
and hence

g ∈ U(Id) · U(F )+. �

The following proposition relates U(F )+
to the notion of implosions from Section 2.6.

Proposition 3.2.18. For every i ∈ I , de�ne an equivalence relation ≡i on Ωi by declaring i-colours
to be equivalent if and only if they are contained in the same orbit of the local group Fi. Let (τ,∆′) be
an implosion of ∆ with respect to ≡i. Then the group U∆(F )+ stabilises the �bres of τ .

In other words, the following diagram commutes.

∆ ∆

∆′ ∆′

U∆(F )+

τ τ

Proof. Note that the implosion map τ identi�es harmonious chambers in panels.

Let g ∈ U(F ) stabilise some chamber c ∈ ∆. Consider any chamber d together with its image g .d.

We show that τ(d) = τ(g .d) by induction on dist(c, d). If c = d, then there is nothing to show,

since g .c = c. Otherwise if dist(c, d) = n + 1, let d′ be a chamber such that d′ ∼i d (for some i)
and dist(c, d′) = n. We distinguish between two cases.

(a) If λi(d) ≡i λi(d′), or in other words if d and d′ are harmonious, then we have τ(d) = τ(d′)
by construction of τ . Moreover, τ(d′) = τ(g .d′) by the induction hypothesis. Finally, g .d′

and g .d are again harmonious, hence τ(g .d′) = τ(g .d) by construction. Putting everything

together we conclude that τ(d) = τ(g .d).

(b) If λi(d
′) 6≡i λi(d), then by construction,

• τ(d) is the unique chamber in ∆′ that is i-adjacent to τ(d′) and that has i-colour equal

to the orbit Fi .λi(d), and

• τ(g .d) is the unique chamber in ∆′ that is i-adjacent to τ(g .d′) and that has i-colour

equal to the orbit of Fi .λi(g .d).

Since τ(d′) = τ(g .d′) by the induction hypothesis and since λi(d) and λi(g .d) clearly lie in

the same orbit of Fi we conclude again that τ(d) = τ(g .d).

By induction, the �bres of τ are stabilised by the stabiliser Uc and hence by U+
as well. �

Remark 3.2.19. Note that the equivalence relations ≡i uniquely determine the building ∆′ but not

the map τ from Proposition 2.6.2. For uniqueness of τ we additionally need to �x a centre in ∆ and

a compatible image in ∆′. Up to this choice, we then have a well-de�ned canonical morphism

ψ : Aut(∆)→ Aut(∆′)
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de�ned by ψ(g) . τ(d) = τ(g .d) for every g ∈ Aut(∆) and d ∈ ∆.

∆ ∆

∆′ ∆′

Aut(∆)

τ τ

Aut(∆′)

ψ

Observe that the kernel of ψ contains precisely those automorphisms that stabilise all �bres of τ .

In other words, Proposition 3.2.18 can be rephrased as the statement that U∆(F )+ ≤ ker(ψ).

On the other hand, note that in general U∆(F )+ 6= ker(ψ). Indeed, assume as an extreme case

that the local groups are regular. Then by Lemma 3.2.16 we have that U∆(F )+
is trivial, whereas

the implosion map collapses ∆ to a single chamber. Thus in this case the kernel of ψ is the full

automorphism group of ∆.

In the next result we characterise when the universal group is generated by its chamber stabilisers.

As it turns out, this not only depends on the local groups, but on the combinatorial structure of the

diagram as well. Recall that a vertex cover of a graph is some set of vertices that includes at least

one endpoint of every edge. Hence, in our setting, a vertex cover of a right-angled diagram over I
is a subset J ⊆ I such that whenever mij =∞, we have i ∈ J or j ∈ J (or both).

Theorem 3.2.20. Assume that the diagram of ∆ has no isolated nodes. The following are equivalent.

(i) U(F )+ = U(F );

(ii) U(F )+ has �nite index in U(F );

(iii) the local groups are generated by point stabilisers for every i ∈ I , and are transitive for every i
in some vertex cover of (the underlying graph of) the diagram of ∆.

Proof. The implication (i)⇒ (ii) is of course trivial. For (ii)⇒ (iii), we proceed in two steps.

For transitivity, we use the implosion map τ : ∆→ ∆′ from Proposition 3.2.18. Suppose by means

of contraposition that the indices of the transitive local groups do not de�ne a vertex cover, i.e. there

are intransitive local groups Fi and Fj such that mij =∞. Then in particular ∆′ is not spherical.

Let J and C be i-colours in di�erent Fi-orbits and I and B j-colours in di�erent Fj-orbits. Con-

sider an apartmentA of a residue of type {i, j} with colours only in {J,C} and {I,B}, so thatA
looks as follows.

JI CI CB JB JI CI CB..
.

. .
.

By Proposition 3.2.2, two chambers c, d ∈ A lie in the same U-orbit if and only if 4 | dist(c, d).

Meanwhile τ maps adjacent chambers inA to distinct adjacent chambers in a residue of type {i, j}
in ∆′. By Proposition 3.2.18 it then follows that no two chambers of A lie in the same U+

-orbit.

We found a U-orbit that is the union of in�nitely many U+
-orbits — hence U+

cannot have �nite

index in U .

For the claim that all local groups are generated by point stabilisers, �x an index i ∈ I and assume,

again by means of contraposition, that Fi is not generated by point stabilisers. In other words, the

Fi-orbits and of (Fi)
+

do not agree. Explicitly, there is some orbit X ∈ Ωi/Fi that is the union of

at least two (Fi)
+

-orbits.
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De�ne the new local data F ′
by replacing Fj with the trivial permutation group of degree qj for

every i 6= j, keeping Fi unaltered. Let H = U(F ′) ≤ U(F ) and set H+ = U(F )+ ∩H . Since[
H : H+

]
≤
[
U(F ) : U(F )+

]
,

it su�ces to show that H+
has in�nite index in H .

Consider the induced action of H on the i-tree-wall tree Γ = Γi. Since the diagram has no isolated

nodes, Γ is an in�nite tree. Interpret Γ as a rank two right-angled building over {•, ◦}. Then, up to

a potential nontrivial kernel, H acts on Γ as a universal group where the local groups are F• = Fi
and F◦ is trivial. Note, if g ∈ H stabilises a chamber of ∆, then it stabilises a chamber of Γ as well.

The nontrivial local actions of H+
on Γi are hence contained in (Fi)

+
by Lemma 3.2.16.

De�ne an equivalence relation ≡• by declaring every two •-colours (i.e. i-colours) in the same

(Fi)
+

-orbit to be equivalent. Let ≡◦ be the identity relation. Since (Fi)
+

is assumed to have at

least two orbits, the corresponding implosion Γ′ of Γ is again an in�nite tree. The induced action

of H+
on Γ′ is trivial (since all local actions are trivial). The action of H on Γ′ however has in�nite

orbits (sinceH acts coboundedly by Corollary 3.2.5 and the implosion map is nonexpansive). Hence

H+
cannot have �nite index in H .

Finally, for the implication (iii)⇒ (i), it is su�cient to show that U and U+
have identical orbits.

Let c, d ∈ ∆ be two harmonious chambers. We construct an automorphism in U+
taking c to d.

First assume that c and d are contained in some residueR of spherical type J ⊆ I . Recall that

R ∼=
∏
j∈J
Pj(c).

For every j ∈ J there exists some permutation fj ∈ Fj such that fj .λj(c) = λj(d). By assumption

fj can be written as some product of permutations in Fj , each of which �xes some j-colour. Extend

these permutations using Lemma 3.2.7 to automorphisms in U , each of which �xes some chamber

j-adjacent to c, and take their product over all j ∈ J (in arbitrary order). We �nd an automorphism

in U+
that stabilisesR and maps c to a chamber with J-colours equal to those of d, i.e. to d itself.

For the general case, we use induction on the distance n = dist(c, d). The case n = 0 is trivial, and

the previous paragraph settles the case n = 1. For n > 1, let γ be a minimal gallery joining c to d.

We distinguish between two cases, depending on the number of pairs of consecutive harmonious

chambers on γ.

(a) If there are no such pairs, then let Jγ be the set of all types occurring in γ. For every j ∈ Jγ
the local group Fj has at least two orbits. By the vertex cover assumption, any two elements

of Jγ commute in the Weyl group of ∆. In other words, the residue of type Jγ containing γ
is spherical, and the conclusion follows from the previous paragraph.

(b) If there exists at least one such pair (c′, d′), then let g ∈ U+
be such that g .c′ = d′. Note that

dist(c, g−1 .d) ≤ dist(c, c′) + dist(c′, g−1 .d) ≤ dist(c, c′) + dist(d′, d) = n− 1.

By the induction hypothesis, there exists an element h ∈ U+
such that h.c = g−1 .d. Then

gh ∈ U+
satis�es gh.c = d.

This �nishes the proof. �
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3.3 Topological properties

In order to make U∆(F ) into a topological group, we will endow it with the permutation topology

from Section 1.2.3. Recall that this topology is obtained by taking the pointwise stabilisers of �nite

sets of chambers as an identity neighbourhood basis.

First, let us characterise when the universal group is unexciting from a topological point of view.

Proposition 3.3.1 (discreteness). Assume that the diagram has no isolated nodes. Then the follow-
ing are equivalent:

(i) the local group Fi acts freely on Ωi for every i ∈ I ;

(ii) the universal group U(F ) acts freely on ∆;

(iii) the universal group U(F ) is a discrete topological group.

Proof. For the implication (i)⇒ (ii), suppose all of the local groups act freely and that g ∈ U(F )
�xes some chamber c. Then for every i ∈ I , the local action of g at the i-panel containing c is a

permutation in Fi with a �xed point, hence is the identity. It follows that every panel containing c
is �xed by g. Because a building is connected, g is the identity.

The implication (ii)⇒ (iii) is an immediate consequence of Corollary 1.2.26.

We prove the �nal implication (iii)⇒ (i) by contraposition. Assume some local group Fi does not

act freely on Ωi and let f be a nontrivial permutation in Fi �xing some i-colour x. Let C be any

�nite set of chambers. By Proposition 2.5.5, there is an i-panel P such that projP(C) = {c} with

λi(c) = x. By Lemma 3.2.8, the permutation f of the colours of P extends to a nontrivial element

of the universal group that stabilises C pointwise. In conclusion, no pointwise stabiliser of a �nite

set of chambers is trivial. �

Of course, the local permutation groups can be endowed with the permutation topology as well, and

it should not come as a surprise that there are strong connections between topological properties

of the local groups and of the full universal group.

The proof of the following lemma is completely similar to the proof of [Smi17, Lemma 7] for trees.

Lemma 3.3.2. Let P be a panel of type i. Then the map

σλ(•,P) : Aut(∆)→ Sym(Ωi) : g 7→ σλ(g,P)

is continuous w.r.t. the permutation topologies on Aut(∆) and Sym(Ωi).

Proof. Abbreviate σλ(•,P) to σ for readability. By Lemma 3.2.7, σ is surjective. Let V ⊆ Sym(Ωi)
be an open subset and consider any g in the preimage σ−1(V ) ⊆ Aut(∆). Then σ(g) is contained

in some open neighbourhood in V, i.e. in the coset σ(g) · (Sym Ωi)(X) of the pointwise stabiliser of

some �nite colour set X ⊆ Ωi. Consider the �nite set C = {c ∈ P | λi(c) ∈ X}. Note that for all

h ∈ (Aut ∆)(C) we have

σλ(gh,P) = σλ(g, h.P) · σλ(h,P)

where h stabilises the panel P and σλ(h,P) �xes the set X . It follows that

σ
(
g · (Aut ∆)(C)

)
⊆ σ(g) · (Sym Ωi)(X) ⊆ V.

Hence, g is contained in the open neighbourhood

g · (Aut ∆)(C) ⊆ σ−1(V ).

Since g was arbitrary, the preimage σ−1(V ) is open. �
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Proposition 3.3.3. The following are equivalent:

(i) the local group Fi is closed in Sym(Ωi) for every i ∈ I ;

(ii) the universal group U(F ) is closed in Aut(∆).

Proof. First we establish the implication (i)⇒ (ii). By Lemma 3.3.2 we have for every panel P of ∆
a continuous map

σP : Aut(∆)→ Sym(Ωi) : g 7→ σλ(g,P)

(where i is the type of P). It now su�ces to observe that

U(F ) =
⋂
P
σ−1
P (Fi).

We prove (ii)⇒ (i) by contraposition, so assume that some local group Fi is not closed. Recall that

the permutation topology agrees with the topology of pointwise convergence, and let (fn)n∈I be a

net of permutations in Fi such that

fn → f ∈ Sym(Ωi) \ Fi.

For every x ∈ Ωi let m(x) ∈ I be an index such that fn .x = f.x for every n > m(x).

Now let P be an i-panel. For every n ∈ I, let gn ∈ U(F ) be the automorphism as in Lemma 3.2.7,

stabilisingP with local action fn. Then the net (gn)n∈I converges to an automorphism g in Aut(∆).

Indeed, for any chamber c ∈ ∆, de�ne

m(c) = min
{
m(λi(d))

∣∣ d is a chamber on a minimal gallery from c to projP(c)
}

and gn . c remains constant for all n > m(c). It is clear that g is an automorphism, that g stabilises

the panel P and that the local action σλ(g,P) = f , hence

gn → g ∈ Aut(∆) \ U(F ).

This shows that the universal group is not closed in Aut(∆). �

We can characterise when the univeral group is locally compact.

Proposition 3.3.4 (local compactness). Assume that all Fi are closed in Sym(Xi). Then the
following are equivalent:

(i) every suborbit of Fi is �nite, for every i ∈ I ;

(ii) every point stabiliser in Fi is compact, for every i ∈ I ;

(iii) every chamber stabiliser in U(F ) is compact;

(iv) the universal group U(F ) is a locally compact topological group.

Proof. Note that U(F ) is closed by Proposition 3.3.3. Its chamber stabilisers are open, hence closed.

The equivalence (i)⇔ (ii) is Proposition 1.2.30.

For (ii)⇒ (iii), take an arbitrary chamber c ∈ ∆. By Proposition 1.2.30 it su�ces to show that all

Uc-orbits are �nite. Take a second chamber d and let

c = c0 ∼ c1 ∼ c2 ∼ · · · ∼ ck−1 ∼ ck = d

be a minimal gallery from c to d. Then the cardinality of the orbit Uc .d is at most∣∣Uc0 . c1

∣∣ · ∣∣U (c0, c1) . c2

∣∣ · · · ∣∣U (c0, ..., ck−1) . ck
∣∣ ≤

∣∣Uc0 . c1

∣∣ · ∣∣Uc1 . c2

∣∣ · · · ∣∣Uck−1
. ck
∣∣.
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Note that each orbit in the latter product is contained in some panel. The permutation isomorphism

from Proposition 3.2.9 yields a bijection to an orbit of a point stabiliser of a local group, i.e.

Uc`−1
. c` ↔ (Fi)(λi(c`−1)) .λi(c`)

for each 0 < ` ≤ k (where i is the type such that c`−1 ∼i c`). Since the local groups are compact,

all these orbits are �nite, hence so is the cardinality of Uc .d.

The implication (iii)⇒ (iv) is obvious.

We conclude with the implication (iv)⇒ (ii). By local compactness, there exists some �nite set C
of chambers whose pointwise stabiliser in U is compact. By Proposition 1.2.30, every U (C)-orbit

is �nite. Let i ∈ I and let x ∈ Ωi be any i-colour. Then by Proposition 2.5.5, there is an i-panel

P such that the projection projP(C) is a single chamber with i-colour x. It follows that Ωi cannot

contain in�nite (Fi)x-orbits — otherwise by Lemma 3.2.7, the corresponding chambers in P would

lie in an in�nite U (C)-orbit. Thus, every point stabiliser of every local group is compact. �

Proposition 3.3.5 (compact generation of panel stabilisers). Assume U(F ) is locally compact.
Then, for every i ∈ I , the following are equivalent:

(i) the local group Fi is compactly generated;

(ii) the setwise stabiliser in U(F ) of an i-panel is compactly generated.

Proof. By Proposition 3.2.9 and Lemma 3.3.2, we have an isomorphism

U{P} / U (P)
∼= Fi

of topological groups. Moreover, chamber stabilisers in U are compact by Proposition 3.3.4, hence

U (P) is compact as well. The result now follows from the observation that any Hausdor� quotient

of a compactly generated group is itself compactly generated, and conversely, that any extension

of a compactly generated group by a compact group is itself compactly generated. �

Characterising when the full universal group U(F ) is compactly generated, turns out to be quite

a bit harder. We still make no assumptions regarding �niteness or transitivity of the local groups,

though we do assume U(F ) to be closed and locally compact. We are grateful to Pierre-Emmanuel

Caprace for discussing the problem with us and for helping establish the rank two case.

First, a necessary condition.

Theorem 3.3.6. Assume that ∆ is irreducible and U∆(F ) is closed, locally compact, and compactly
generated. Then every local group Fi has only �nitely many orbits.

Proof. Pick any chamber c ∈ ∆. By Proposition 3.3.4, the chamber stabiliser Uc is a compact open

subgroup. Let T = {t1, . . . , tn} be a �nite set as in Lemma 1.2.22, so that T together with Uc is

a good generating set. By Lemma 2.5.8, the set {c, t1 . c, . . . , tn . c} is contained in a �nite convex

subset B ⊆ ∆.

First, we claim that the set U .B is connected. Let g ∈ U and d ∈ B be arbitrary; we show that g .d
is connected to c by some gallery contained in U .B. Let g = tk · · · t1 · s with t1, . . . , tk ∈ T and

s ∈ Uc. We use induction on k. For k = 0, we simply have that g ∈ Uc so that g .d is connected

to g .c = c by a gallery in g .B. For k ≥ 1, write g = tk · g′. By the induction hypothesis, g′ .d is

connected to c by a gallery in U .B. Consequently g .d is connected to tk . c by a gallery in U .B
and we can concatenate this gallery with one from tk . c to c in B. We conclude that the set U .B
is indeed connected.
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Next, we claim that every Fi-orbit has a “representative chamber” in B. More precisely, we claim

that for each i ∈ I , the map

λ̃i : B → Ωi/Fi : b 7→ Fi .λi(b)

is surjective. Suppose by means of contradiction that some Fj-orbit Y is not in the image of λ̃j for

some j ∈ I . Call a chamber neglected if its j-colour is contained in the orbit Y. By assumption, no

chamber in B is neglected, and Proposition 3.2.2 implies that no chamber in U .B is neglected. Let

Γ be the set of all chambers of ∆ connected to U .B by some gallery that does not pass through

any neglected chamber. Then by Lemma 2.5.7, Γ is a subbuilding of ∆ and hence convex. Moreover

Γ is U-invariant by construction. This contradicts the minimality of the action (Corollary 3.2.6).

In conclusion, for every i ∈ I we have a surjective map λ̃i from a �nite set B onto the set of orbits

of i-colours. Hence the local groups Fi have �nitely many orbits. �

Together with an additional assumption on the local groups, having �nitely many orbits is a su�-

cient condition for the universal group to be compactly generated.

Theorem 3.3.7. Assume that U(F ) is closed and locally compact. Moreover, assume that every local
group Fi is compactly generated and has �nitely many orbits. Then U(F ) is compactly generated.

Proof. We construct an explicit compact generating set Q. For every i ∈ I , choose a transversal Υi
for the action of Fi ≤ Sym(Ωi). Every Υi is �nite by assumption. Let c ∈ ∆ be some chamber such

that λi(c) ∈ Υi for all i ∈ I . Let n = |I| be the rank of ∆ and de�ne the ball

B̃ =
{
d ∈ ∆

∣∣ dist(c, d) ≤ n
}

and the �nite subset

B =
{
d ∈ B̃

∣∣ λi(d) ∈ Υi for all i ∈ I
}
.

Note that every possible colour combination with colours in Υi occurs inside B. Hence U .B = ∆
by Proposition 3.2.2. Next, de�ne

D̃ =
{
d ∈ ∆

∣∣ dist(c, d) = n+ 1 and d is adjacent to a chamber in B
}

and the �nite subset

D =
{
d ∈ D̃

∣∣ λi(d) ∈ Υi for all i ∈ I
}
.

For each of the �nitely many pairs (b, d) ∈ B × (B ∪D) of identically coloured chambers, pick an

element t(b,d) ∈ U such that t .b = d. De�ne the set T = {t(b,d) | (b, d) ∈ B × (B ∪D)} and note

that D ⊆ T .B.

c
⇒

B

⇒

D

Figure 3.2. An impression of the construction in the proof of Theorem 3.3.7.

The local groups are assumed to be compactly generated, hence by Proposition 3.3.5, the (setwise)

panel stabilisers are compactly generated as well. Let SP be a compact generating set for U{P} for
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every panel P . De�ne the set S as the union of all SP over all panels P containing some chamber

in B. As a �nite union of compact sets, S is compact.

Finally, de�ne Q = S ∪ T ∪ Uc and observe that Q is compact. We proceed in four steps to show

that U(F ) = 〈Q〉 = 〈S, T, Uc〉.

Step 1. For each chamber d ∈ B̃, we have d ∈ 〈S〉 .B.

We show this by induction on dist(c, d). If d = c there is nothing to show. Otherwise let d′ ∼i d
be such that dist(c, d′) = dist(c, d) − 1. Since d′ ∈ B̃, we can write d′ = h.b′ for some h ∈ 〈S〉
and b′ ∈ B. Now let P be the i-panel that contains b′ and let b be the unique chamber of P such

that λi(b) is the representative of the orbit of λi(h
−1 .d) in the transversal Υi. Then there is some

s ∈ U{P} such that s.b = h−1 .d, and we conclude that indeed d = hs.b ∈ 〈S〉 .B.

Step 2. For each chamber d ∈ D̃, we have d ∈ 〈S, T 〉 .B.

By de�nition of D̃, the chamber d is i-adjacent to some chamber in B (for some i ∈ I). Let P be

the i-panel containing d. Let d′ be the unique chamber in P such that λi(d
′) is the representative of

the orbit of λi(d) in Υi. There are two possible cases. If d′ ∈ B, then we can immediately set b = d′

and t = 1. Otherwise d′ ∈ D, and we can �nd some b ∈ B and t ∈ T sending b to d′. Moreover,

there exists some s ∈ U{P} sending d′ to d, and we conclude that d = st .b ∈ 〈S, T 〉 .B.

Step 3. For each chamber d ∈ ∆, we have d ∈ 〈S, T 〉 .B.

We again use induction on dist(c, d). If d = c there is nothing to show. Otherwise let d′ ∼i d be

such that dist(c, d′) = dist(c, d)− 1. Then by induction, d′ = h.b for some h ∈ 〈S, T 〉 and b ∈ B.

Notice that dist(d, h.c) ≤ n+ 1. There are three cases to consider.

(i) If d ∈ h.B, then we are done.

(ii) If d /∈ h.B but d ∈ h.B̃, then by Step 1, we indeed have that d ∈ h〈S〉 .B.

(iii) If d /∈ h.B̃, then dist(d, h.c) = n+ 1. As h−1 .d is adjacent to b ∈ B, we have h−1 .d ∈ D̃.

By Step 2, we indeed have that d ∈ h〈S, T 〉 .B.

In any case we �nd that d ∈ 〈S, T 〉 .B and we may conclude that 〈S, T 〉 .B = ∆ by induction.

Step 4. The universal group U(F ) is generated by Q.

Let g ∈ U(F ) be arbitrary. By Step 3, we have g .c = h.b for some h ∈ 〈S, T 〉 and b ∈ B. As b
and c lie in the same U-orbit, we must have λ(b) = λ(c), by construction of B. Hence there exists

some element t ∈ T that takes c to b. Putting everything together, we �nd that ht.c = h.b = g .c,
from which it follows that g ∈ ht · Uc. In particular, g ∈ 〈Q〉. �

We obtain as a corollary:

Corollary 3.3.8. Assume that U(F ) is closed and locally compact. Moreover assume that every local
group Fi is compactly generated for each i ∈ I . Then the following are equivalent:

(i) the local group Fi has �nitely many orbits, for every i ∈ I ;

(ii) the universal group U(F ) has �nitely many orbits on ∆;

(iii) the universal group U(F ) is compactly generated.

Proof. This follows immediately combining Proposition 3.2.2 and Theorems 3.3.6 and 3.3.7. �
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The natural question is now whether the converse to Theorem 3.3.7 holds as well. We established

half of the converse in Theorem 3.3.6, but we have not yet found a complete and general proof. The

missing piece of the puzzle is the following seemingly innocuous conjecture.

Conjecture 3.3.9. Assume that U(F ) is closed, locally compact, and compactly generated. Then
every local group Fi is compactly generated.

If true, this would yield a precise characterisation: a closed, locally compact universal group U(F )
is compactly generated if and only if all local groups are compactly generated and have �nitely

many orbits.

As motivation, we present some a�rmative results in speci�c special cases. First we assume some

additional information about the subgroups (Fi)
+

of the local groups.

Theorem 3.3.10. Assume that U(F ) is closed, locally compact, and compactly generated. Moreover,
assume that every F+

i is compactly generated. Then the local groups Fi are compactly generated.

Proof. Fix i ∈ I . Using Proposition 1.2.16, we can write Fi as the directed union

Fi =
−→⋃
`∈I
H`

over the natural directed system of compactly generated open subgroups of Fi. Take any chamber

c ∈ ∆, let x = λi(c), and let (Fi)x be the stabiliser of x, which is compact by Proposition 3.3.4. We

can hence assume that 0 is the least element of I and that H0 = (Fi)x.

For every ` ∈ I, we de�ne the local data F ` by slightly modifying F , replacing the local group Fi
by H`. De�ne the family of open subgroups

K` =
〈
U(F `), U(F )c

〉
≤ U(F ).

Then U(F ) is the directed union

U(F ) =
−→⋃
`∈I

K`.

By assumption, U(F ) is compactly generated, say U(F ) = 〈Q〉 (withQ a compact set). The family

{K` | ` ∈ I} de�nes an open cover ofQ. By compactness, it follows thatQ ⊆ K` for some `, i.e. the

subgroups U(F `) and U(F )c generate the full group U(F ).

Now consider the local actions of U(F ) at the i-panel P containing c. On the one hand, the local

actions are given by Fi (by Proposition 3.2.9). On the other hand, the local actions are generated

by the local actions of U(F `) and U(F )c — in other words, by the subgroups H` (by construction)

and (Fi)
+

(by Lemma 3.2.16). Hence Fi = 〈H`, (Fi)
+〉 is compactly generated. �

Remark 3.3.11. Derek Holt kindly provided an example of a group F acting on a setX which, when

endowed with the permutation topology, is totally disconnected and locally compact, has �nitely

many orbits, and is generated by its point stabilisers, but is not compactly generated. We reproduce

his example from [Hol19].

De�ne F as the semidirect product Ao 〈t〉 of any in�nite abelian group A of odd �nite exponent,

with t2 = 1 and tat = a−1
for all a ∈ A. Let F act by left translation on the set F/〈t〉 of left cosets

of 〈t〉 in F . This action is transitive, faithful, every point stabiliser Fa〈t〉 = {1, a2t} has order two,

and �nally F = F+
. However, F is not generated by �nitely many point stabilisers.

Hence, a permutation group F with �nitely many orbits and whose point stabilisers all have �nite

orbits, need not be generated by �nitely many point stabilisers — not even in the restrictive setting
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where F is generated by all point stabilisers. The question remains whether or not such a group F
can occur as a local group of a compactly generated universal group.

In the realm of rank two right-angled buildings however, i.e. for trees, we do not need additional

assumptions. The following result appeared in [Cas20, Proposition 4.1] with a technical proof using

group cohomology; we give an argument due to Colin Reid ([Rei19]) involving Bass–Serre theory.

Proposition 3.3.12. LetG be a compactly generated t.d.l.c. group. LetG act on a tree T without edge
inversions, such that the quotient graphG\T is �nite and edge stabilisers are compact open subgroups.
Then vertex stabilisers are compactly generated.

Proof. In the quotient graph G\T , let {v1, . . . , vk} be a set of representatives of the vertices, let E
be a set of (directed) representatives of the edges, and let E′ ⊆ E be a subset of edges representing

a spanning tree. From Bass–Serre theory, we can write G in the form

G ∼=
Gv1 ∗ · · · ∗Gvk ∗ F (E)〈〈

ē · αe(g) · e = αē(g) for g ∈ Ge, e · ē for e ∈ E, e for e ∈ E′
〉〉 .

Here F (E) is the free group on E, the bar notation ē denotes edge inversion, and αe : Ge → Go(e)
is the natural embedding of an edge group into the vertex group of the origin of the edge.

Fix a vertex v1 = v and note that the subgroup H0 = 〈αe(Ge) | e ∈ E, o(e) = v〉 ≤ Gv is open

and compactly generated. Use Proposition 1.2.16 to write Gv as a directed union

Gv =
−→⋃
`∈I
H`

over the natural directed system of compactly generated open subgroups, where we can assume 0
to be the least element of I. For each ` ∈ I, de�ne K` = 〈H`, Gv2 , . . . , Gvk , F (E)〉 ≤ G. Then G
is the directed union

G =
−→⋃
`∈I
K`.

By assumption, G is compactly generated, say G = 〈Q〉. The family {K` | ` ∈ I} de�nes an open

cover of Q. By compactness, it follows that Q ⊆ K` for some ` ∈ I. More explicitly every g ∈ Gv
is a product of elements in H` ∪Gv2 ∪ · · · ∪Gvk ∪ F (E). By the normal form theorem for graphs

of groups ([Hig76]), one can conclude that g ∈ H`, i.e. that Gv = H` is compactly generated. �

Corollary 3.3.13. Assume that ∆ is a semiregular tree and that U∆(F ) is closed, locally compact,
and compactly generated. Then the two local groups are compactly generated as well.

Proof. LetG = U(F ) and T = ∆. Note that the quotient graphG\T is �nite by Theorem 3.3.6 and

Proposition 3.2.2, and that chamber stabilisers are compact by Proposition 3.3.4. Proposition 3.3.12

then yields that the panel stabilisers are compactly generated, and the result follows from Proposi-

tion 3.2.9. �

Remark 3.3.14. The similarity between the proofs of Theorem 3.3.10 and Proposition 3.3.12 is cer-

tainly striking. Hence, one way to settle Conjecture 3.3.9 might be to �nd a suitable generalisation

of the necessary Bass–Serre theory and normal forms, e.g. using the theory of complexes of groups

by Martin Bridson and André Hae�iger ([BH99]).
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3.4 Simplicity

In this section, we develop an analogue for right-angled buildings of Tits’s simplicity criterion for

groups of tree automorphisms (Theorem 1.4.17). We will establish a general result for groups acting

on right-angled buildings, although the conditions we eventually need to impose will be motivated

by the universal groups in particular.

Throughout this section, G refers to a �xed group acting on ∆ by automorphisms.

First we de�ne some special subgroups of G, with support either contained in some wing or in the

complement of some wing.

De�nition 3.4.1. For every chamber c ∈ ∆ and i ∈ I , we de�ne the subgroups

Vi(c) = {g ∈ G | g .d = d for all chambers d /∈ Xi(c)},
Wi(c) = {g ∈ G | g .d = d for all chambers d ∈ Xi(c)}.

Note that Vi(c) �xes the full i-tree-wall containing c, and that Vi(c) equals the intersection of all

Wi(d) with d ∈ Pi(c) \ {c}.

De�nition 3.4.2 (independence property). Let P be an i-panel and let T be the corresponding

i-tree-wall. For every c ∈ P we de�ne the morphism

ϕc : G(T ) → Vi(c), with ϕc(g) : ∆→ ∆: d 7→

{
g .d if d ∈ Xi(c);

d otherwise.

The same technique from the proof of Lemma 3.2.8 shows that ϕc(g) is indeed an automorphism

of ∆, which is clearly contained in Vi(c). We then have an induced embedding

G(T ) ↪→
∏
c∈P

Vi(c) ↪→ Aut(∆)(T ). (∗)

We say thatG satis�es the independence property when for every P the �rst monomorphism above

is in fact an isomorphism.

Proposition 3.4.3. U(F ) satis�es the independence property.

Proof. Let g ∈
∏
c∈P Vi(c) and identify g with its image in Aut(∆)(T ). Every panel of ∆ is either

contained in T or in an i-wing with base chamber in T . Thus g is an automorphism of ∆ with the

property that all local actions are either trivial or equal to a local action of some element in U(F ).

In other words, g ∈ U(F ). �

Following the technique of [LB16, Lemma 4.4 and Theorem 4.5], when the action of G is combina-

torially dense, we could proceed to show that any nontrivial normal subgroupN E G contains the

derived subgroup of Vi(c) for every i ∈ I and c ∈ ∆. If G additionally satis�es the independence

property, we readily obtain that N contains in fact the derived subgroups of tree-wall �xators, as[
G(T ), G(T )

]
=

[ ∏
c∈P

Vi(c),
∏
c∈P

Vi(c)

]
=
∏
c∈P

[
Vi(c), Vi(c)

]
≤ N.

However, in Proposition 3.4.7 we will establish a stronger result, namely thatN contains every full

tree-wall �xator (instead of merely the derived subgroup).

The following lemma is a straightforward adaptation from [DMdSS18, Lemma 3.17] that holds in a

more general setting than only for universal groups.
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Lemma 3.4.4. Let i ∈ I and let c and d be two chambers in a common i-panel P of ∆. Let g ∈ G
and assume that P and g .P are not parallel, that projP(g .c) = d, and projg .P(d) = g .c. Consider
an automorphism

b ∈
∏

e∈P\{c,d}

Vi(e).

Then there exists an automorphism h ∈ G such that b = [h, g].

Proof. Denote V0 =
∏
e∈P\{c,d} Vi(e) ≤ G. For every n ≥ 0, let

Pn = gn .P, cn = gn . c, dn = gn .d, Vn = gn V0 g
−n ≤ G.

Then for every n ≥ 0, the support of Vn is contained in

⋃
e∈Pn\{cn,dn}Xi(e). Since by assumption

projP(g .c) = d and projg .P(d) = g .c, it follows that for every chamber e ∈ Pn \ {cn, dn} and

every m > n, we have e ∈ Xi(cm) while cm /∈ Xi(e). Hence Xi(e) ⊆ Xi(cm) by Lemma 2.3.12.

Similarly for every chamber e′ ∈ Pm \ {cm, dm} we have Xi(e
′) ⊆ Xi(dn). Consequently the sets⋃

e∈Pn\{cn,dn}

Xi(e) and

⋃
e∈Pn\{cm,dm}

Xi(e)

are disjoint. In other words, the subgroups Vm and Vn have disjoint support when m 6= n. Hence

the product

V =
∏
n≥0

Vn (∗)

can be identi�ed with a subgroup ofG, e.g. by [Cap14a, Lemma 5.3]. Note that V �xes the chambers

cm and dm for every m ≥ 0, since every factor Vn does.

Now, let us turn our attention to the automorphism b ∈ V0. For every n ≥ 0, let hn = gn · b · g−n
and notice that hn ∈ Vn. The tuple (hn)n≥0 ∈ V can be identi�ed with an automorphism h ∈ G.

The commutator [h, g] then �xes the chambers cm and dm for everym ≥ 0. Furthermore, denoting

by yn the component in Vn of an element y ∈ V according to the decomposition in (∗), we obtain

that [h, g]n = hn · (gh−1g−1)n for every n ≥ 0. Hence [h, g]0 = b, while

[h, g]n = hn · (g h−1 g−1)n = hn · g h−1
n−1 g

−1 = hn · h−1
n = id,

since g Vn−1 g
−1 = Vn. In conclusion, [h, g] = b, which proves the lemma. �

Proposition 3.4.5. Let ∆ be an irreducible right-angled building and assume that the diagram has
no isolated nodes. Let N E G be a nontrivial normal subgroup and assume that the action of G on ∆
is combinatorially dense. Then the action of N is combinatorially dense as well.

Proof. This follows immediately from Propositions 1.4.14 and 2.4.5. �

Proposition 3.4.6. Let ∆ be a right-angled building and assume that the diagram has no isolated
nodes. Let i ∈ I and let e1, e2 be adjacent edges of the i-tree-wall tree Γi. Let N E G be a nontrivial
normal subgroup and assume that the action ofG on ∆ is combinatorially dense. ThenN contains an
i-hyperbolic automorphism, the axis of which contains both e1 and e2.

Proof. By Proposition 3.4.5, the action of N on ∆ is combinatorially dense. Proposition 2.4.5 then

yields that the induced action on Γi is geometrically dense, so we can apply Proposition 1.4.13. �

Proposition 3.4.7. Let ∆ be a thick irreducible right-angled building. Let G act on ∆ by automor-
phisms. Assume that G satis�es the independence property and the action is combinatorially dense.
LetN E G be a nontrivial normal subgroup. ThenN contains the �xatorG(T ) of every i-tree-wall T .
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Proof. Let T be any arbitrary �xed i-tree-wall and let P be an i-panel of T . In the i-tree-wall tree,

T corresponds to a vertex v, and the edges incident to v correspond to the chambers in P . Let c, d
be two distinct chambers of P . By Proposition 3.4.6, there exists some i-hyperbolic element g ∈ G
such that the axis of g in Γi contains the two edges corresponding to c and d. We can assume that

d is the chamber pointing towards the attracting end of g in ∂Γi and c towards the repelling end,

replacing g by g−1
if necessary.

Note that g .T 6= T since g is an i-hyperbolic automorphism. Moreover, by construction, we have

projP(g .P) = d and projP(g .P) = g .c. Hence we can apply Lemma 3.4.4 to obtain that∏
e∈P\{c,d}

Vi(e) ⊆ N. (∗)

Since ∆ is assumed to be thick, there is at least one such chamber e ∈ P \ {c, d}. Now recall that

c and d were chosen arbitrarily in P — we can thus repeat the proof with di�erent pairs {c, d} and

multiply the resulting equations (∗) to obtain that

G(T ) =
∏
e∈P

Vi(e) ⊆ N. �

As an aside, we remark that we can already apply Proposition 3.4.7 to obtain that the nondiscrete

universal groups are monolithic.

Proposition 3.4.8. Assume not all local groups Fi are free. Then U(F ) is monolithic; the monolith
is the subgroup generated by all tree-wall �xators and is simple.

Proof. Write M = 〈U (T )〉, where T ranges over all tree-walls. Note that M is nontrivial, since not

all local groups act freely. Thanks to Proposition 3.4.3 and Corollary 3.2.6, we may apply Proposi-

tion 3.4.7 to obtain that M is contained in every nontrivial normal subgroup of U . In other words,

U is monolithic with monolith M .

For the simplicity of M , let N E M be the intersection of all nontrivial normal subgroups of M .

A characteristic subgroup of M , it follows that N is a normal subgroup of U . By Proposition 3.4.7

again, N contains the monolith M , so that in fact N = M . This shows that M is simple. �

Now �nally, our simplicity criterion.

Theorem 3.4.9. Let ∆ be a thick and irreducible right-angled building of rank at least two. LetG be
a closed subgroup of Aut(∆). Assume that G satis�es the independency property and that the action
is hereditarily combinatorially dense. If G+ is nontrivial, then it is simple group.

Proof. We use induction on the rank of ∆. In the rank two case, the fact that G+
is simple follows

from Tits’s Theorem 1.4.17. For higher rank, let i ∈ I be such that the diagram remains irreducible

upon removal of i (note that such i de�nitely exists: any leaf of a spanning tree of the underlying

graph does the trick). LetR be any residue of type I \ {i} and let c be any chamber inR.

For every group H ≤ Aut(∆) — not necessarily stabilisingR — we de�ne

H
∣∣
R =

{
h
∣∣
R

∣∣∣ h ∈ H{R}} ≤ Aut(R).

Also de�ne the restriction morphism

ρ : G{R} → G
∣∣
R : g 7→ g

∣∣
R

with kernel G(R).
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Let N E G+ E G be a series of normal subgroups. Restricting to the stabiliser of R, we �nd that

alsoN |R E G+|R E G|R are normal subgroups. By the induction hypothesis and Proposition 3.4.5,

the subgroup (G|R)+
generated by stabilisers of chambers in R is either trivial or simple. In any

case it follows that (G|R)+ ≤ N |R E G+|R. The subgroups stabilising the chamber c in R then

satisfy

Gc
∣∣
R =

(
G
∣∣
R
)
c

=
(
G
∣∣
R
)+
c
≤
(
N
∣∣
R
)
c
≤
(
G+
∣∣
R
)
c

= G+
c

∣∣
R = Gc

∣∣
R

from which we conclude that Nc|R = Gc|R.

On the other hand, pick j ∈ I \{i} such thatmij =∞. Then the j-tree-wall T of ∆ containing c is

completely contained in R, i.e. G(R) ≤ G(T ). Moreover, by Proposition 3.4.7, we have G(T ) ≤ N .

Consequently N(R) = G(R).

In other words, the restrictions of the morphism ρ to the chamber stabilisers Nc and Gc have both

identical kernels N(R) = G(R) and identical images Nc|R = Gc|R. It follows that in fact Nc = Gc.

0 N(R) Nc Nc|R 0

0 G(R) Gc Gc|R 0

ρ

ρ

Since c and R were arbitrary, we have that G+ = 〈Gc | c ∈ ∆〉 = 〈Nc | c ∈ ∆〉 ≤ N . Since N
was an arbitrary normal subgroup of G+

, we conclude that G+
is simple (or trivial). �

Corollary 3.4.10. LetM be an irreducible diagram over I . LetF be a collection of closed permutation
groups of degree at least three, at least one of which does not acts freely. Then U(F )+ is simple.

Proof. We know that U(F ) is closed by Proposition 3.3.3, satis�es the independence property by

Proposition 3.4.3, and is hereditarily combinatorially dense by Corollaries 3.2.6 and 3.2.11. Hence

we can apply Theorem 3.4.9. Finally, U(F )+
cannot be trivial unless all local groups act freely. �

Corollary 3.4.11. LetM be an irreducible diagram over I . LetF be a collection of closed permutation
groups of degree at least three, indexed by I . Assume that not all local actions are free. Then U(F ) is
simple if and only if Fi is generated by point stabilisers for every i ∈ I and transitive for every i in
some vertex cover ofM .

Proof. By Proposition 3.3.1, U(F )+
is a nontrivial normal subgroup of U(F ). Hence this follows

immediately from Corollary 3.4.10 and Theorem 3.2.20. �

3.5 City products

Earlier in Lemma 3.2.1, we already observed that the universal group construction behaves nicely

with respect to disjoint unions of diagrams. This operation on diagrams is a special case of the city

product from Section 2.7 (over a diagram with only isolated nodes). In this section, we generalise

the special case of Lemma 3.2.1 to arbitrary city products.
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We start with carefully de�ning all buildings involved. For each ` ∈ {1, . . . , n}, consider

• a diagram M` over an index set I`,

• a semiregular right-angled building ∆` of type M`,

• a colouring λ` of ∆` with colour sets Ωi (indexed by i ∈ I`),

• a collection F ` of permutation groups Fi ≤ Sym(Ωi) (indexed by i ∈ I`).

Then for each ` ∈ {1, . . . , n}, we have a universal group U ` = U(F `) over ∆`. Next, consider

• a right-angled diagram M over {1, . . . , n},

• the city product ∆ = zM ({∆1, . . . ,∆n}) of typezM ({M1, . . . ,Mn}) over I =
⊔n
`=1 I`,

• the “uni�ed” local data F over I , de�ned by (F )i = (F `(i))i for every i ∈ I .

Finally, consider

• the skeletal building Φ of the city product ∆,

• the local data F ′
over {1, . . . , n}, de�ned by (F ′)` = U(F `) for every ` ∈ {1, . . . , n}.

Theorem 3.5.1. With notation from above, we have

U∆(F ) ∼= UΦ(F ′).

In colloquial terms, the universal group over a city product of buildings is isomorphic to the universal
group over the skeletal building of the universal groups over the factor buildings.

Proof. Equip ∆ with the colouring λ′ from Lemma 2.7.9, assigning colours in the sets Ωi (indexed

by i ∈ I). Also equip its skeletal building Φ with the colouring ϕ from Proposition 2.7.13, assigning

colours in the sets ∆` (indexed by ` ∈ {1, . . . , n}).

First, every automorphism of ∆ induces an automorphism of its skeletal building, hence we have a

natural monomorphism

ι : Aut(∆) ↪→ Aut(Φ).

Let g ∈ U∆(F ) ≤ Aut(∆), letR be any panel of Φ of type `, and consider the local action of ι(g)
as an automorphism of Φ at the panel R. For readability, we will identify g with its image ι(g).

We can also identify R with a residue of ∆ of type I` (which is isomorphic to ∆`). Then the local

action

σϕ(g,R) = ϕ`
∣∣
g .R ◦ g

∣∣
R ◦ ϕ`

∣∣−1

R

is the composition of three isomorphisms ∆` → R → g .R → ∆` and is hence an automorphism

of ∆` (instead of merely a permutation). Hence, we can consider the local action of σϕ(g,R) at an

i-panel P of ∆` with i ∈ I`. First, we de�ne the i-panel P ′ = ϕ`|−1
R (P) of ∆. Then

σλ`(σϕ(g,R),P) = (λ`)i
∣∣
σϕ(g,R) .P ◦

(
ϕ`
∣∣
g .R ◦ g

∣∣
R ◦ ϕ`

∣∣−1

R
)∣∣
P ◦ (λ`)i

∣∣−1

P

= (λ`)i
∣∣
σϕ(g,R) .P ◦ ϕ`

∣∣
g .P ′ ◦ g

∣∣
P ′ ◦ ϕ`

∣∣−1

P ′ ◦ (λ`)i
∣∣−1

P

= λ′i
∣∣
g .P ′ ◦ g

∣∣
P ′ ◦ λ

′
i

∣∣−1

P ′

= σλ′(g,P ′). (∗)
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A commutative diagram helps tremendously.

∆ ∆

Φ Φ

∆` ∆`

Ωi Ωi

g

λ′i λ′i

ι(g)

ϕ` ϕ`

σϕ(g, •)

(λ`)i (λ`)i

σλ` (σϕ(g, •), •)

ι

Since g ∈ U∆(F ), the result of Equation (∗) is a permutation in Fi — hence we can conclude that

σϕ(g,R) ∈ U(F `). This shows that the image of U∆(F ) under ι is contained in UΦ(F ′).

Conversely, let g ∈ UΦ(F ′). We can identify g (an automorphism of Φ) with a permutation of ∆,

and claim that this permutation is type-preserving, i.e. g is in fact an automorphism of ∆. Indeed,

let c ∼i d be i-adjacent chambers in ∆. Let ` ∈ {1, . . . , n} be such that i ∈ I` ⊆ I and letR be the

residue of ∆ of type I` containing c and d. ThenR is an `-panel of Φ. The local action σϕ(g,R) is

an element of (F ′)` = U(F `) ≤ Aut(∆`). Hence

g
∣∣
R = ϕ`

∣∣−1

g .R ◦ σϕ(g,R) ◦ ϕ`
∣∣
R

is a composition of isomorphisms R → ∆` → ∆` → g .R, each of which preserves i-adjacency.

In particular g .c ∼i g .d. Since c and d were arbitrary, we conclude that g ∈ Aut(∆).

Let P ′ be any i-panel in ∆ with i ∈ I`, letR be the I`-residue of ∆ containing P ′, let P = ϕ`(P ′)
in ∆`. The reverse calculation of Equation (∗) shows that the local action satis�es

σλ′(g,P ′) = σλ`(σϕ(g,R),P).

Since σϕ(g,R) ∈ U(F `) we have that σλ′(g,P ′) ∈ (F `)i = Fi. Hence, g ∈ U∆(F ).

in conclusion, the restriction of ι is an isomorphism U∆(F )→ UΦ(F ′). �
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“
All you need to know for the moment is that the universe is a lot more complicated
than you might think, even if you start from a position of thinking it’s pretty damn
complicated in the �rst place.

”— Douglas Adams, The Hitchhiker’s Guide to the Galaxy

We �nish our study of the universal groups and now follow Le Boudec’s idea ([LB16]) to allow for

singularities in the building automorphisms.

4.1 De�nition

De�nition 4.1.1. Using the same setup as in De�nition 3.1.4, let F be a collection of permutation

groups Fi ≤ Sym(Ωi), indexed by i ∈ I . Let ∆ be a semiregular right-angled building over I with

parameters qi = |Ωi|, equipped with a colouring λ using the sets Ωi as i-colours. Then we de�ne

Gλ∆(F ) =
{
g ∈ Aut(∆)

∣∣ σλ(g,P) ∈ Fi for every i ∈ I and all but �nitely many i-panels P
}
.

We will, again, usually abbreviate Gλ∆(F ) to G(F ) if the context is clear. Note that by Lemma 3.1.2

G(F ) is closed under composition and inversion, and is hence a subgroup of Aut(∆). We clearly

have an inclusion

Uλ∆(F ) ≤ Gλ∆(F ) ≤ Aut(∆).

De�nition 4.1.2 (singularity). For an element g ∈ G(F ), an i-panel P with σλ(g,P) /∈ Fi will

be called a singularity of g. Then in other words, G(F ) is the group of all building automorphisms

with only �nitely many singularities. We denote by S(g) the set of all singularities of g.

Lemma 4.1.3. Let ∆ be a right-angled building over I and let i, j ∈ I be such thatmij = 2. If qj is
in�nite, then a panel of type i can never be a singularity of an element g ∈ G∆(F ).

Proof. Since the i-panels in a residue of type {i, j} with mij = 2 are parallel, this follows immedi-

ately from Proposition 3.1.3. �

Even though the de�nition of G(F ) may suggest otherwise, the local action at a singularity cannot

just be any permutation. Indeed, some panels cannot be a singularity at all! One simple observation

is that due to Proposition 3.1.3, the set of panels parallel to any singularity must be �nite. However,

consider the following.

De�nition 4.1.4 (ladder, rungs). A ladder is a rank three Coxeter system of type

M =

1 2 2
2 1 ∞
2 ∞ 1

.
∞
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The rungs of a ladder are the panels of the type corresponding to the isolated node of the diagram.

The origin of the names should be evident from one look at a ladder’s Coxeter complex, which we

have visualised in Figure 4.1.

When working with right-angled buildings, ladders will also refer to residues of the building which

have the type of a ladder, and its rungs will be the corresponding panels of the building.

... . . .

... . . .

∞

Figure 4.1. The Coxeter complex of a ladder.

Nodes and correspond to solid edges, node to dotted edges.

Lemma 4.1.5. Let ∆ be a right-angled building over I and letR be a ladder in ∆. Then a rung of R
can never be a singularity of an element g ∈ G∆(F ).

Proof. Since the rungs of a ladder are parallel, this follows immediately from Proposition 3.1.3. �

Proposition 4.1.6. Let P be an i-panel of a right-angled building ∆ such that the set of all panels
parallel to P is unbounded. Then P is the rung of a ladder in ∆.

Proof. Let P ′ be a panel such that dist(P,P ′) ≥ |I|. Let c ∈ P and let c′ = projP ′(c). A minimal

gallery γ from c to c′ has only types in i⊥ (by Proposition 2.3.7) and length |I|. By the pigeonhole

principle, there is a type j ∈ i⊥ that occurs at least twice in the type of γ. In between, there must

exist a type k ∈ i⊥ in γ such that mjk =∞, since the type of γ is a reduced word. Hence, we have

found three types {i, j, k} satisfying mij = mik = 2 and mjk = ∞, i.e. the i-panel P is the rung

of at least one ladder in ∆. �

As a corollary to Lemma 4.1.5, depending on the building’s diagram, it is possible that allowing for

a �nite number of singularities in fact does not expand the group. For instance, recall the Bourdon

building from Figure 1.12, the diagram of which was a pentagon. Every vertex of the pentagon has

an “opposite” edge, together de�ning a ladder with the original vertex corresponding to the rungs.

The Coxeter complex clearly illustrates that every panel is the rung of some ladder in the building.

Hence, for the Bourdon building ∆ of type I5,2 it follows that in fact

Gλ∆(F ) = Uλ∆(F ).

Similar to the prime graphs in the city products from Section 2.7, a natural question is again how

exceptional this example is. Let us �rst formalise some de�nitions.

De�nition 4.1.7 (ladderless, ladderfull). Let G be a simple, undirected graph. A vertex v of G
will be called a rung if there exist two other, adjacent vertices w1 ∼ w2 in G such that v is adjacent

to neither w1 nor w2. We call the graph G ladderfull if every vertex is a rung, and ladderless if no

vertex is a rung.
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Then for any building ∆ with a ladderfull diagram, we have Gλ∆(F ) = Uλ∆(F ).

Computational results for graphs on at most eleven vertices are presented in Table 4.1. In addition,

as an illustration, we include all ten irreducible ladderfull diagrams in Figure 4.2. The percentage of

ladderfull graphs versus the total number of simple undirected graphs looks quite interesting, and

we are interested in the asymptotic behaviour as n goes to in�nity. However, what mostly catches

the eye are the numbers of ladderless diagrams — these are precisely the partition numbers from

number theory and combinatorics. There is a simple explanation.

Proposition 4.1.8. A simple undirected graph is ladderless if and only if its complement is a disjoint
union of complete graphs.

Proof. A graph is ladderless if and only if its complement graph has no path graph as an induced

subgraph on three vertices. This is then easily shown to imply that every connected component of

the complement graph must be a complete graph. �

Figure 4.2. All irreducible diagrams of rank six where every panel is the rung of some ladder.

For clarity, the labels∞ on the edges are omitted.

Even for singularities that are not the rung of a ladder, there is some restriction on the local action.

Recall the Young overgroups from De�nition 1.1.16.

Proposition 4.1.9. Let g ∈ G(F ) and let P be a singularity of g of type i. Assume that i is not an
isolated node of the diagram. Then at least one of the following holds:

• the local action σλ(g,P) is contained in the Young overgroup F̂i of the local group, or

• Fi has at least two in�nite orbits, while Fj has �nite degree for all j 6= i.

Proof. Assume that σ = σλ(g,P) is not contained in F̂i — i.e., there exists a colour x ∈ Ωi such

that x and σ.x are contained in di�erent Fi-orbits. Let c ∈ P be such that λi(c) = x, let j 6= i,
and let d be any chamber j-adjacent to c. Since λi(c) = λi(d) and λi(g .c) = λi(g .d), the i-panel

containing d is again a singularity. As there are only �nitely many singularities, this implies that

the parameter qj is �nite, for every j 6= i.

Next, we claim that both orbits Fi .x and Fi .(σ.x) are in�nite. Assume by means of contradiction

that X = Fi .x is �nite. Since σ is a permutation, and x ∈ X with σ.x /∈ X , there exists a colour

y /∈ X with σ.y ∈ X . Let c′ ∈ P be such that λi(c
′) = y and note that c 6= c′. Since i is not an

isolated node in the diagram, consider k ∈ I with mik =∞ and choose d ∼k c and d′ ∼k c′. Then
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n
total number of . . . diagrams on n nodes

unrestricted irreducible ladderfull

irreducible

& ladderfull ladderless

4 11 6 1 0 5

5 34 21 4 1 7

6 156 112 24 10 11

7 1 044 853 191 132 15

8 12 346 11 117 3 095 2 719 22

9 274 668 261 080 95 208 90 871 30

10 12 005 168 11 716 571 5 561 999 5 452 862 42

11 1 018 997 864 1 006 700 565 592 458 683 586 604 553 56
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Table 4.1. A comparison of the number of irreducible, ladderfull, and ladderless diagrams.

The �rst column is [OEISa], the second is [OEISb], the �fth is [OEISd].
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the local actions at the i-panels containing d and d′ are again permutations not contained in F̂i. We

can repeat this construction with those panels to obtain an apartment of type {i, k},

· · · ∼i d ∼k c ∼i c′ ∼k d′ ∼i · · ·

every chamber of which lies in a singularity of type i. This contradiction shows that the orbit Fi .x
cannot be �nite. A similar construction shows that Fi .(σ.x) cannot be �nite. �

It follows from Proposition 4.1.9 the that local actions at singularities are contained in the Young

overgroups of the local groups, except for possibly one single type, depending on the �niteness

of the parameters. Motivated by this observation and by Lemma 4.1.3, it makes sense to restrict

our setting to locally �nite right-angled buildings for the most interesting results. We then have in

particular the following corollary.

Corollary 4.1.10. Assume that ∆ is locally �nite. Then we have an inclusion G(F ) ≤ U(F̂ ), with
F̂ the local data obtained from the Young overgroups of the local groups in F .

Proof. This follows immediately from Proposition 4.1.9. �

From now on, we will always assume that the building ∆ is locally �nite,

i.e. that the local groups are permutation groups of �nite degree.

De�nition 4.1.11 (restricted universal group). Let F and F́ be two collections of permutation

groups of �nite degree, indexed by i ∈ I and satisfying

Fi ≤ F́i ≤ F̂i ≤ Sym(Ωi)

for every i ∈ I . In particular, Fi and F́i have identical orbits. Let ∆ be a semiregular right-angled

building over I with parameters qi = |Ωi|, equipped with a colouring λ using the sets Ωi as i-
colours. Then the restricted universal group of F and F́ over ∆ is by de�nition the group

Gλ∆(F, F́ ) = Gλ∆(F ) ∩ Uλ∆(F́ ).

In words, Gλ∆(F, F́ ) is the group of all automorphisms that locally act like permutations in Fi but

with a �nite number of exceptions, where the local action still follows a prescribed fashion, namely

a permutation in F́i. We will continue to refer to those exceptions as singularities, i.e. a singularity

of g is any i-panel P such that σλ(g,P) ∈ F́i \ Fi. The set of all singularities will still be denoted

as S(g).

The local groups F́i can be chosen between Fi and F̂i. In the extreme cases, we clearly have

Gλ∆(F,F ) = Uλ∆(F ) and Gλ∆(F, F̂ ) = Gλ∆(F ),

where the latter equality follows by Corollary 4.1.10.

Remark 4.1.12. Restricted universal groups were �rst introduced by Adrien Le Boudec in [LB16],

in the setting of trees. The name originates from [CRW19], where the authors remark the analogy

with restricted direct products. There are a few related constructions in the literature, but especially

in topological group theory, the restricted direct product of a collection of groups {Gi}i∈I with

respect to subgroups {Hi ≤ Gi}i∈I (over any index set I) is by de�nition the subgroup{
(gi)i∈I ∈

∏
i∈I

Gi

∣∣∣∣∣ gi ∈ Hi for all but �nitely many i ∈ I

}
of the standard direct product. Recall also Example 1.2.23 (iv). Just like the restricted direct product

imposes extra restraints on all but �nitely many factors, automorphisms in Gλ∆(F, F́ ) are essentially

automorphisms in Uλ∆(F́ ) with extra constraints on all but �nitely many panels.
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4.2 Permutational properties

To start, we mention some analogues of properties of the standard universal groups in Section 3.2.

Like before, we will regularly focus on irreducible buildings, although the reduction to lower rank

is slightly less “clean” for restricted universal groups.

Lemma 4.2.1. Let ∆ be a reducible right-angled building over I . Let J1, . . . , Jm be the connected
components of (the underlying graph of) the diagram with at least two nodes, and let J be their union.
Let k1, . . . , kn be the isolated nodes of the diagram, and letK be their union.

(i) Ifm = 0 (i.e. all nodes are isolated), then G∆(F, F́ ) = U∆(F́ ) ∼= F́k1 × · · · × F́kn .

(ii) Ifm = 1, then G∆(F, F́ ) ∼= GRJ (F |J , F́ |J)× URK (F |K) ∼= GRJ (F |J , F́ |J)×Fk1 × · · · ×
Fkn , whereRJ andRK are residues of types J andK , respectively.

(iii) Ifm ≥ 2, then G∆(F, F́ ) = U∆(F ) ∼= UR1

(
F |J1

)
× · · · × URm

(
F |Jm

)
.

In particular, if the diagram is reducible and has no isolated nodes, then G∆(F, F́ ) = U∆(F ).

Proof. Case (i) is immediate, since there are only �nitely many panels of each type. Case (ii) follows

readily from the fact that ∆ is isomorphic to the direct product ofRJ with a �nite complete graph

for every k ∈ K . Case (iii) follows from Lemma 4.1.5, since every panel is the rung of a ladder. �

The next few propositions follow for free from the inclusions U∆(F ) ≤ G∆(F, F́ ) ≤ U∆(F́ ) and

the corresponding properties of the universal groups.

Proposition 4.2.2. Two residues lie in the same orbit of G∆(F, F́ ) if and only if they are of the same
type and harmonious. In particular, two chambers c and c′ lie in the same orbit of G∆(F, F́ ) if and
only if their colours λi(c) and λi(c′) lie in the same Fi-orbit for every i ∈ I .

Proof. For every i ∈ I , the orbits of the local groups Fi and F́i agree. By Proposition 3.2.2, the same

is true for the orbits of U∆(F ) and U∆(F́ ) on ∆. The result follows. �

The next lemma yields in particular a converse to Lemma 4.1.5: every panel that is not the rung of

a ladder, is a singularity of some element of G(F, F́ ).

Lemma 4.2.3. Let f be a permutation in F́i and let P be an i-panel. Then there exists an automor-
phism g ∈ G(F, F́ ) with the following properties:

(i) g stabilises P ;

(ii) the local action is equal to f at every panel parallel to P ;

(iii) the local action is a permutation in Fi at every other panel.

Proof. First extend the permutation on P to an automorphism of the building (e.g. in U(F́ ), using

Lemma 3.2.7). Then apply Proposition 3.1.9 with P as the convex panel-closed set. �

Proposition 4.2.4. The action of G(F, F́ ) on ∆ is cobounded.

Proof. This follows immediately from the fact that U(F ) ≤ G(F, F́ ) and Corollary 3.2.5. �

Proposition 4.2.5. Let ∆ be a right-angled building such that the diagram does not have isolated
nodes. Then the action of G(F, F́ ) on ∆ is combinatorially dense.

Proof. This follows immediately from the fact that U(F ) ≤ G(F, F́ ) and Corollary 3.2.6. �
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De�nition 4.2.6. For every panel P we de�ne the subgroup

KP =
{
g ∈ G(F, F́ )

∣∣ g stabilises P and every singularity is parallel to P
}
.

For every panel P and integer n ≥ 0 we de�ne the subgroup

Kn,P =
{
g ∈ G(F, F́ )

∣∣ g stabilises P and dist(P,P ′) ≤ n for every singularity P ′
}
.

Note that both are indeed subgroups by Lemma 3.1.2.

Lemma 4.2.7. Let P be an i-panel and f ∈ F́i be a permutation. Then there exists an automorphism
g ∈ KP such that σλ(g,P) = f .

Proof. This is a special case of Proposition 3.1.9. �

Lemma 4.2.7 yields in particular as a direct consequence that[
KP : U(F ){P}

]
=
[
F́i : Fi

]
.

Proposition 4.2.8. Let P be a set of representatives of harmonious panels of ∆. Then

G(F, F́ ) =
〈
U(F ),KP | P ∈ P

〉
.

Proof. Let g ∈ G(F, F́ ). We proceed by induction on the number |S(g)| of singularities. Of course,

if S(g) = ∅ then g ∈ U(F ) and there is nothing to show, so assume that S(g) ≥ 1 and let P be a

singularity of type i. There is an i-panel P0 ∈ P such that g .P and P0 are harmonious. Moreover,

there is an automorphism h ∈ U(F ) such that hg .P = P0 by Propositions 3.2.2 and 4.2.2. We can

assume that the local action of h at P is the identity by Lemma 3.2.7. Next let σ = σλ(g,P). Using

Lemma 4.2.7 we can �nd an automorphism h0 ∈ KP0 satisfying σλ(h0,P0) = σ−1
. Let us bundle

everything in a commutative diagram:

P P g .P

P0 P0

Ωi Ωi

Ωi Ωi Ωi

h′

h

λi λi

g

λiλi

h0

λi

h−1

σ−1

σ−1 σ

Let us also abbreviate by h′ the conjugation h−1 · h0 · h. Then singularities of h′ are parallel to P .

Consider the automorphism g′ = g · h′. By construction, the local action of g′ at P is the identity.

Now let P ′ be any other panel that is not parallel to P . Then neither is h′ .P ′ parallel to P . Since

σλ(g′,P ′) = σλ(g, h′ .P ′) ◦ σλ(h′,P ′),

where the second factor is known to be a permutation in Fi, we �nd that P ′ is a singularity of g′ if
and only if h′ .P ′ is a singularity of g. Together with the singularities of g parallel to P , this implies

that g′ has strictly less singularities than g. The induction hypothesis �nishes the proof. �

121



4 Restricted universal groups

It is worth noting that the set P in Proposition 4.2.8 is �nite. Indeed, denote the number of orbits of

the local groups by mi = |Ωi/Fi|. Then by Proposition 4.2.2 the action of G(F, F́ ) on the i-panels

has

∏
j 6=imj orbits. Summing over i,

|P| =
∑
i∈I

∏
j 6=i

mj =
∑
i∈I

1

mi
·
∏
i∈I

mi.

In the following lemma, with slight abuse of notation, we identify the set S(g) of panels of ∆ with

the set S of chambers contained in a panel in S(g).

Lemma 4.2.9. Let g ∈ G(F ) and let S be the set of all chambers contained in some singularity of g.
Let U = U(F ). Then the conjugation gU (S) = g · U (S) · g−1 in G(F ) equals U (g .S).

Proof. Since g .S(g) = S(g−1), it su�ces by symmetry to show that
gU (S) ⊆ U (g .S). Clearly g .S

remains �xed by
gU (S) = g U (S) g

−1
so we only need to check that automorphisms in

gU (S) have

no singularities. Let h ∈ U (S) and consider an arbitrary panel P . If P ∈ g .S(g), then as observed

earlier, P is �xed by
gh and cannot be a singularity of

gh. Otherwise P /∈ g .S(g), in which case

g−1 .P is not a singularity of g, and neither is hg−1 .P since h �xes S. By Lemma 3.1.2,

σλ(gh,P) = σλ(g, hg−1P) · σλ(h, g−1P) · σλ(g, g−1P)−1

is the product of three permutations in Fi (where i is the type of P). Hence P is not a singularity

of
gh. Since P was arbitrary, this concludes our proof. �

Corollary 4.2.10. G(F ) commensurates the compact open subgroups of U(F ).

Proof. Note that in Lemma 4.2.9, the set S is �nite. Hence U (S) and U (g .S) are compact open sub-

groups of U(F ). Together with Proposition 1.2.14, the corollary follows. �

4.3 Topological properties

The topology on G(F, F́ ) is slightly tricky. If we want to lift the topological structure from U(F ),

we want the embedding U(F ) ↪→ G(F, F́ ) to be a continuous open map. We proceed as follows.

Let B be the collection of all compact open subgroups of U(F ) ≤ G(F ). By van Dantzig’s theorem

(Corollary 1.2.19), B is an identity neighbourhood basis for the topology on U(F ). Note that B is

a �lter base on G(F ) that satis�es all properties in Lemma 1.2.5. Indeed, (i) and (ii) are immediate,

and in order to check (iii), take anyU ∈ B and g ∈ G(F ). Then by Corollary 4.2.10, the intersection

of U and g · U · g−1
has �nite index in U and is hence again compact and open in U(F ). We now

obtain a unique, well-de�ned group topology on G(F ) by Lemma 1.2.5.

De�nition 4.3.1. We endow G(F ) with the group topology described in the above paragraph, and

the restricted universal group G(F, F́ ) ≤ G(F ) with the subspace topology induced by G(F ).

Instead of using the technical Lemma 1.2.5 of Bourbaki (that we included without proof), we refer

the reader who prefers a more concrete approach to [GL18, Lemma 8.4].

Note that when F = F́ , the topology on G(F, F́ ) = U(F ) agrees with the permutation topology,

but in general it does not. Indeed, in our topology on G(F ), a subgroup H ≤ G(F ) is open if and

only if H contains a pointwise stabiliser of a �nite set of chambers intersected with U(F ). In other

words, the topology on G(F ) in De�nition 4.3.1 is �ner than the permutation topology — in which,

for instance, a subgroup U(F )c would not be open.
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Proposition 4.3.2. Endow G(F, F́ ) with the topology from De�nition 4.3.1.

(i) The inclusion U(F ) ↪→ G(F, F́ ) is continuous and open.

(ii) G(F, F́ ) is a totally disconnected, locally compact group.

Proof. For G(F, F́ ) = G(F ), claim (i) is a restatement of the de�nition and (ii) is an immediate con-

sequence. For the general case, both claims follow from the de�nition of the topology on G(F, F́ )
as the subspace topology induced by G(F ). �

With Proposition 3.3.1, this immediately characterises when the topology on G(F, F́ ) is discrete.

Corollary 4.3.3. G(F, F́ ) is discrete if and only if every local group in F is free.

In the following proposition, we can assume without loss of generality that the local data F and F́
already take into account the rung restriction (Lemma 4.1.5) by asking that Fi = F́i for every i ∈ I
that is the type of a rung.

Proposition 4.3.4. Let ∆ be a right-angled building over index set I . Let F and F ′ be the local data
as in De�nition 4.1.11, and assume that Fi = F́i for every i ∈ I that is the type of a rung in ∆. Then
the closure of the restricted universal group G(F, F́ ) as a subgroup of Aut(∆) is the group U(F́ ).

Proof. Let g ∈ U(F́ ). It su�ces to �nd a sequence of automorphisms gn ∈ G(F, F́ ), where n ∈ N,

converging to g in the permutation topology on Aut(∆). Let c ∈ ∆ be any chamber and, for every

n ∈ N, de�ne the set Bn to be the convex closure of the ball Bn(c). Note that Bn is panel-closed.

Proposition 3.1.9 yields an automorphism gn that agrees on Bn with g. Moreover, the only panels

where the local action of gn is not guaranteed to be a permutation in F are the panels parallel to

some panel inBn. But by assumption on the rungs, the parallel classes of singularities are bounded

(Proposition 4.1.6), and hence �nite. Hence we have gn ∈ G(F, F́ ), and this �nishes our proof. �

Corollary 4.3.5. Let F and F ′ be the local data as in De�nition 4.1.11, and assume that Fi = F́i for
every i ∈ I that is the type of a rung in ∆. Then the following are equivalent:

(i) F = F́ ;

(ii) G(F, F́ ) = U(F );

(iii) G(F, F́ ) is closed in Aut(∆);

(iv) chamber stabilisers of G(F, F́ ) are compact;

(v) chamber stabilisers of G(F, F́ ) are closed in Aut(∆).

Proof. Implications (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v) are straightforward. For (iii)⇒ (i), if G(F, F́ ) is

closed, then G(F, F́ ) = U(F́ ) by Proposition 4.3.4, and hence F = F́ . Finally (v)⇒ (iii) follows

from Lemma 1.2.29. �

Proposition 4.3.6. KP andKn,P are compact open subgroups of G(F, F́ ), for every P and n.

Proof. Since KP contains the setwise panel stabiliser U{P} as a subgroup of �nite index, it su�ces

to note that U{P} is compact and open in U(F ) (as it is a union of �nitely many cosets of chamber

stabilisers), and hence in G(F, F́ ) as well. The same argument works for Kn,P once we note that

the set {c ∈ ∆ | dist(c,P) ≤ n} contains only �nitely many panels. �

An immediate corollary is the following fact.

Corollary 4.3.7. The group G(F, F́ ) is compactly generated.
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Proof. Combining Propositions 4.2.8 and 4.3.6, we see that G(F, F́ ) is generated by a �nite number

of compactly generated subgroups. �

From Proposition 4.3.6 also follows that panel stabilisers, although not compact, are still quite close

to being compact, in the following precise sense.

De�nition 4.3.8 (regionally compact). A topological group is said to be regionally compact if it

is the increasing union of a family of compact open subgroups.

In the literature, regionally compact groups are also called locally elliptic. The authors of [CRW19,

Remark 1.0.1] argue why this terminology is best avoided: “locally” is suggestive of a property to

be satis�ed in some identity neighbourhood basis, which is not the case here.

Proposition 4.3.9. Let P be a panel of ∆. Then the stabiliser G(F, F́ ){P} is regionally compact.

Proof. Since we can write

G(F, F́ ){P} =
−→⋃
n∈N

Kn,P

the result follows immediately from Proposition 4.3.6. �

4.4 Simplicity

Recall for general groups G ≤ Aut(∆) our Theorem 3.4.9, a criterion for G+
to be simple. One of

the assumptions of Theorem 3.4.9 is that G is closed. Unfortunately, by Corollary 4.3.5, this only

occurs in degenerate boundary cases in the context of restricted universal groups. Yet we can still

show that G(F, F́ ) is virtually simple under the same conditions for U(F́ ) to be simple. The proof

idea is due to Pierre-Emmanuel Caprace, Colin Reid, and Phillip Wesolek ([CRW19]).

Proposition 4.4.1. G(F, F́ ) satis�es the independence property.

Proof. This is almost exactly the same argument as in Proposition 3.4.3, the independence property

for universal groups, taking into account the running assumption that the parameters are all �nite.

Indeed, identify g ∈
∏
c∈P Vi(c) with its image in Aut(∆)(T ). Every panel of ∆ is either contained

in T or in one of the �nitely many i-wings with base chamber in T . Hence, every nontrivial local

action of g agrees with a local action of an element in G(F, F́ ), and g has in total a �nite number

of singularities. In other words, g ∈ G(F, F́ ). �

We can recycle the argument from Proposition 3.4.8 to show that, in the nondiscrete case, G(F, F́ )
is monolithic.

Proposition 4.4.2. Assume not all local groups Fi are free. Then G(F, F́ ) is monolithic; the monolith
is the subgroup generated by all tree-wall �xators and is simple.

Proof. Write M = 〈G(T )〉, where T ranges over all tree-walls. Note that M is nontrivial, since not

all local groups act freely. Thanks to Propositions 4.2.5 and 4.4.1, we may apply Proposition 3.4.7

to obtain that every normal subgroup of G contains M . Hence G is monolithic with monolith M .

For the simplicity of M , let N E M be the intersection of all nontrivial normal subgroups of M .

A characteristic subgroup of M , it follows that N is a normal subgroup of G. By Proposition 3.4.7

again, N contains the monolith M , so that in fact N = M . This shows that M is simple. �

As an interesting corollary of Proposition 4.4.2 and using the running assumption that the building

is locally �nite, we then obtain the following.
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Proposition 4.4.3. Assume that the diagram of ∆ is not ladderfull. Then G(F, F́ ) is topologically
simple if and only if it is abstractly simple.

Proof. If every local group Fi acts freely, then G is discrete and there is nothing to prove.

Otherwise, G is monolithic by Proposition 4.4.2 and the monolith is generated by tree-wall �xators.

By the assumption on the diagram, there exists at least one index i ∈ I such that an i-tree-wall T
contains only �nitely many chambers. Then the �xator G(T ) — as the intersection of �nitely many

chamber stabilisers — is open. Consequently, the monolith of G is open, and so is every nontrivial

normal subgroup of G. �

We again assume without loss of generality that Fi = F́i for every rung type i ∈ I .

Theorem 4.4.4. Let ∆ be a thick irreducible right-angled building over index set I . Let F and F́ be
the local data as in De�nition 4.1.11. Assume that Fi = F́i for every i ∈ I that is the type of a rung.
Moreover assume that not all local groups F́i are free.

Then the restricted universal group G(F, F́ ) is virtually simple if and only if F́i is generated by point
stabilisers for every i ∈ I and transitive for every i in some vertex cover of the diagram of ∆.

Proof. Abbreviate G = G(F, F́ ) and U = U(F́ ).

First, suppose that G has a simple subgroup M of �nite index. We can assume that M is a normal

subgroup by Lemma 1.1.11. By Proposition 4.3.4, G is dense in U . Since U+
is a simple nondiscrete

open subgroup of U by Corollary 3.4.10 and Proposition 3.3.1, it follows that U+
is contained in

M . Then N = U+ ∩ G is a nontrivial normal subgroup of G and intersects M nontrivially. Since

M is simple, we obtain that M ≤ N , hence N has �nite index in G. Taking the closure, it then

follows that U+
has �nite index in U , and the characterisation follows from Theorem 3.2.20.

Conversely, suppose the local data F́ satis�es the assumptions postulated. Then by Corollary 3.4.11,

U is simple. Let M = 〈G(T )〉 be the open normal subgroup of G generated by all �xators of tree-

walls T of ∆. By Proposition 4.4.2, M is a simple group, and the monolith of G. We will show M
to have �nite index in G.

The closure ofM is a normal subgroup of U(F́ ). Hence,M is dense in U , and consequently in G as

well. This implies that theM -orbits and G-orbits on the building ∆ agree: for any c ∈ ∆ and g ∈ G
the stabiliser Gc is open, hence the intersection M ∩ g · Gc is nonempty, and any automorphism

h ∈M in the intersection satis�es h.c = g .c. It follows that G = Gc ·M .

Let P be a panel of ∆. By the previous paragraph, G = G{P} ·M . Together with Proposition 4.3.9,

we obtain an increasing union

G =
−→⋃
n∈N

Hn ·M,

where the Hn ≤ G{P} are compact open subgroups. On the other hand, G is compactly generated

by Corollary 4.3.7. The family {Hn ·M}n∈N de�nes an open cover of any compact generating set

and hence G = Hn ·M for some n ∈ N.

In conclusion, M is both open and cocompact in G. The coset space G/M being both compact and

discrete, it follows that indeed M has �nite index in G, which concludes our proof. �
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“
Well. What can we do, except try to do better?

”— Joe Abercrombie, The Blade Itself

Mathematical research isn’t all sunshine and rainbows. And even with the successful completion of

one theorem, �ve new questions arise. In this concluding chapter, we mention a couple of research

problems that we encountered thoughout this thesis and did not have the time or ingenuity for.

5.1 Geometrical vs. combinatorial density

Recall that we introduced three de�nitions for an action of a group to be minimal, depending on

whether G acts on a tree (De�nition 1.4.1), on a building (De�nition 2.4.4), or on a CAT(0) space

(De�nition 1.6.7). We did show in Proposition 2.4.5 that minimality on a right-angled building can

be characterised in terms of minimality on its tree-wall trees.

However, we also noted in Remark 2.4.6 that the minimality of a group G ≤ Aut(∆) acting on a

right-angled building ∆ is by no means equivalent to minimality of the induced action on its Davis

realisation. Hence the following natural question, trying to bridge De�nitions 1.6.7 and 2.4.4.

Question 5.1.1. Let ∆ be any right-angled building, let K(∆) be its Davis realisation, and let G act
on ∆ by automorphisms. Can we characterise when the induced action on K(∆) is minimal in terms
of the action on ∆?

Similarly, we presented in the same De�nition 2.4.4 a competing notion for a group action of G on

a right-angled building to be dense. On the one hand, more useful to our study was the requirement

that G leaves no point at in�nity of any tree-wall tree invariant — a property we called combina-
torial density. On the other hand, the more traditional approach would involve the CAT(0) Davis

realisation. By Remark 2.4.6 again, one does not want to require the induced action on the Davis

realisation to be geometrically dense in the sense of De�nition 1.6.7, but a suitable alternative might

be the following.

De�nition 5.1.2. Let G be a group acting on a right-angled building ∆ by automorphisms. We

call the action geometrically dense if it is minimal on ∆ and if moreover the induced action on the

Davis realisation K(∆) has no �xed point at in�nity in the boundary ∂K(∆).

Question 5.1.3. Let ∆ be any right-angled building, let K(∆) be its Davis realisation, and let G act
on ∆ by automorphisms. Is is true that the action of G on ∆ is combinatorially dense if and only if it
is geometrically dense in the sense of De�nition 5.1.2?

The main hindrance for answering Question 5.1.3 seems to be the following. Any minimal in�nite

gallery γ in ∆ (by which we mean that its �nite subgalleries are all minimal) induces a path in the

i-tree-wall, that may or may not be in�nite, depending on whether γ eventually stays in a single

residue of type {i}∪{i}⊥ or of type I \{i}, or not. Conversely, it is not too hard to “lift” an in�nite

path in the i-tree-wall to a gallery in ∆ that induces it. However, it is no longer straightforward to
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try a similar conversion strategy in the CAT(0) realisation. For any point in ∂K(∆), we can pick

a representative geodesic in K(∆) and read o� a gallery of ∆ from the visited Davis chambers and

vertices of the simplicial complex, but the converse requires the construction of in�nite geodesics

in K(∆) from discrete approximations.

To illustrate the di�culties, we mention only one recent result of Timothée Marquis, who studied

this correspondence between in�nite minimal galleries and geodesic rays in [Mar19].

De�nition 5.1.4. Let ∆ be a right-angled building.

(i) For any chamber c, denote by c(0)
the barycenter of the Davis chamber K(c) in K(∆).

(ii) For any minimal gallery γ in ∆, denote by γ(0)
the piecewise geodesic path in K(∆) joining

the points c(0)
where c runs over the consecutive chambers of γ.

(iii) For any c ∈ ∆ and η ∈ ∂K(∆), consider the minimal galleries γ starting in c such that γ(0)

lies at bounded Hausdor� distance from some geodesic ray pointing to η. De�ne the geodesic
ray bundle Geo(c, η) as the union of all barycenters d(0)

with d on such a minimal gallery γ.

Theorem 5.1.5. Let ∆ be a locally �nite, hyperbolic building, let c1, c2 ∈ ∆, and let η ∈ ∂K(∆).
Then the symmetric di�erence of the geodesic ray bundles Geo(c1, η) and Geo(c2, η) is �nite.

Proof omitted. This is [Mar19, Theorem A]. ��

Note that hyperbolicity is a nontrivial assumption — a result of Moussong ([Mou88, Theorem 17.1])

implies that a right-angled building is hyperbolic precisely when its diagram does not contain the

rank four subdiagram below (the Davis realisation of which is the Euclidean plane).

5.2 Compact generation of universal groups

The most jarring open result of this thesis must be our Conjecture 3.3.9, on the characterisation of

when the universal group U(F ) is compactly generated. Let us repeat the problem.

Question 5.2.1. Assume that U(F ) is closed, locally compact, and compactly generated. Does it then
follow that every local group Fi is compactly generated?

As we noted, Question 5.2.1 is the keystone to �nishing the claim that a closed and locally compact

universal group is compactly generated if and only if all local groups are compactly generated and

have �nitely many orbits.

Let us brie�y and intuitively sketch one unsuccessful way to tackle the problem, using a variant of

our city product construction of Section 2.7. We can glue together right-angled buildings over the

index sets J1 tK and J2 tK along a tree, while amalgamating their common residues of type K .

More precisely, assume the index set of a building admits a nontrivial partition J1 t J2 tK , such

that mj1j2 =∞ for all j1 ∈ J1 and j2 ∈ J2. Then de�ne the semiregular graph with vertex set

ResJ1tK(∆) ∪ ResJ2tK(∆)

and declare a residue of type J1 tK to be adjacent to a residue of type J2 tK if and only if they

share a common residue of type K . This de�nes a semiregular tree that we denote by T .
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Next, for every J ( I , an action of G ≤ Aut(∆) on the chambers of ∆ also induces an action on

the set ResJ(∆) of all J-residues. Let us assume that ∆ is irreducible, so that the action is faithful

by Proposition 3.2.13. We denote the induced permutation group by GyJ ≤ Sym(ResJ(∆)).

Then we have an abstract isomorphism G ∼= GyJ by faithfulness.

Endowing the two groups with the permutation topology, it is not too hard to show that this is,

in fact, an isomorphism of topological groups. In particular, U∆(F ) is compactly generated if and

only if U∆(F ) yJ is.

Going back to the tree T , and using similar techniques as in Section 2.7, we can proceed to show

that U∆(F ) yK is isomorphic to a subgroup of

UT
(
UR1

(
F
∣∣
J1∪K

)
yK , UR2

(
F
∣∣
J2∪K

)
yK

)
, (∗)

whereR1 andR2 are residues of type J1 ∪K and type J2 ∪K , respectively. It is only a subgroup,

because U∆(F ) imposes extra “compatibility conditions” on adjacent residues of type J1 tK and

J2 tK — the local actions have to match on the amalgamated K-residues. In (∗), there is no such

restriction.

If we would be able to show that the group in (∗) is compactly generated from the assumption that

its subgroup U∆(F ) yK is compactly generated, then we could use Corollary 3.3.13 to obtain that

UR1 and UR2 are compactly generated and make an inductive argument work. We do need that

∆ is irreducible with index type that admits a partition J1 t J2 tK , but this is not an obstruction:

we can consider an edge {j1, j2} in the diagram and set J1 = {j1} and J2 = {j2}, and with some

more care, ensure that I \ {j1} and I \ {j2} remain irreducible.

Unfortunately however, it appears that showing (∗) to be compactly generated is about just as hard

as showing UR(F |K) to be compactly generated (withR a residue of type K).

We note that a partition {j1} t {j2} tK of the index set of ∆, with mj1j2 = ∞, corresponds to

what Haglund and Paulin call a scindement (French) in [HP03].

5.3 Tidiness and the scale function

George Willis introduced in [Wil94] the scale function and the concept of tidy subgroups for t.d.l.c.

groups. The motivation was the following question of Karl Hofmann. As a topological analogue of

torsion, call an element g ∈ G of a locally compact group periodic if 〈g〉 has compact closure in G.

The subset Per(G) of all periodic elements need not be closed ifG is connected, but using the scale

function, Willis could demonstrate Per(G) to be closed if G is t.d.l.c.

Since then, the notions have been used to de�ne more structural invariants of the group (such as

the space of directions and maximal scale-multiplicative semigroups) with applications in various

other areas (such as random walks, ergodic theory, and dynamical systems).

The de�nitions are rather technical, and not easy to compactly motivate; we refer to the literature

for more details and background. In this section G always denotes a locally compact group.

De�nition 5.3.1 (scale function, tidy). We de�ne the scale of an automorphism α ∈ Aut(G) as

s(α) = min
V

[
α(V ) : α(V ) ∩ V

]
,

taken over all compact open subgroups V ≤ G. A subgroup attaining the minimum is tidy for α.

129



5 Open questions

There is a tidying procedure that takes as input any compact open subgroup V and produces a tidy

subgroup for an automorphism. With this procedure one can prove the following characterisation

of tidiness in terms of structural properties of V only.

De�nition 5.3.2. For a compact open subgroup V ≤ G and α ∈ Aut(G), de�ne

V+ =
⋂
n≥ 0

αn(V ), V− =
⋂
n≤ 0

αn(V ), V++ =
⋃
n≥ 0

αn(V+), V−− =
⋃
n≤ 0

αn(V−).

Note that V++ and V−− are again subgroups of G (being increasing unions of subgroups).

Theorem 5.3.3. A compact open subgroup V is tidy for the automorphism α if and only if V−− is
closed (“tidy below”) and V = V+V− = V−V+ (“tidy above”).

Proof omitted. We refer to [Wil01]. ��

In his recent paper [Byw19], Timothy Bywaters used this tidying procedure to explicitly calculate

the scale function on the Le Boudec groups G(F, F ′) of Section 1.5.3. Among other things he was

also able to describe the space of directions of G(F, F ′) in terms of the action on the tree and could

construct maximal scale-multiplicative semigroups using this space of directions.

We highlight one example. It is not too hard to show that all elliptic automorphisms g ∈ G(F, F ′)
are uniscalar (i.e. s(g) = 1). In fact, the tree analogue of some compact open subgroup Kn,P (as

in our De�nition 4.2.6) is tidy for g — see [Byw19, Proposition 3.1] for the precise statement. The

following theorem by Bywaters characterises conversely when the elliptic automorphisms are the

only uniscalar elements.

Theorem 5.3.4. In G(F, F ′), the subset of uniscalar elements equals the subset of elliptic elements if
and only if F has distinct point stabilisers.

Proof omitted. This is [Byw19, Corollary 3.23]. ��

Bywaters studied far more and also considered the space of directions of G(F, F ′) and associated

scale-multiplicative semigroups, but it would lead us too far to introduce these concepts here.

The calculations in [Byw19] quickly grow quite complicated. Moreover, they rely on the notion of

a pando for a hyperbolic element g ∈ G(F, F ′), which is a speci�c subtree associated to g.

Question 5.3.5. Can the results in [Byw19] be generalised to our setting of restricted universal groups
over right-angled buildings? In particular, what can we say about the behaviour of the scale function
on G∆(F, F́ )?

5.4 Restricted universal groups over locally in�nite buildings

Recall from Section 4.1 that we assumed the building ∆ to be locally �nite, since even a innocuous

fundamental result like Corollary 4.1.10 gets far more technical without this assumption. In fact, it

is not so clear what the “best” generalisations of Le Boudec’s De�nition 1.5.10 would be.

A promising candidate might be the following:

Gλ∆(F ) =
{
g ∈ Aut(∆)

∣∣
the set of all i-panels P with σλ(g,P) /∈ Fi is bounded in ∆

}
.

With this de�nition, Lemma 4.1.5 would still be valid and the existence of ladders would still impose

restrictions. However the independence property Proposition 4.4.1 would not hold anymore: one

could construct an automorphism that has in every wing around a central tree-wall T a bounded
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set of singularities, but in such a way that the distances between these bounded sets and T grows

arbitrarily large.

In any case, it goes without saying that the topological structure of such a locally in�nite variation

would again be quite subtle.

Question 5.4.1. What can we say about the family of groups Gλ∆(F, F́ ) in the locally in�nite case?

5.5 Lattices in universal groups

One research question the author would have liked to study is the existence of lattices in universal

and restricted universal groups over locally �nite right-angled buildings. We refer to Section 1.5.3

for some more motivation.

Question 5.5.1. What can we say about (cocompact) lattices in Uλ∆(F )?

Question 5.5.2. What conditions can we impose on the local groups that guarantee that Gλ∆(F, F́ )
does not admit lattices? How does the combinatorics of the diagram relate to the existence of lattices?
Can we use similar constructions as in [LB16] to construct other new interesting topological groups?

We mention that Anne Thomas in [Tho06] studied lattices in the full automorphism group Aut(∆)
of a right-angled building and showed that they share many properties with tree lattices.

5.6 Spheromorphisms of buildings

A �nal, very broad research question is whether there is an interesting generalisation of Lederle’s

results in Section 1.5.4. The hands-on de�nition of the Neretin group (or a Burger–Mozes variant)

involves almost-automorphisms of trees, and it is not immediately clear how a general right-angled

building analogue would look like.

However, given a groupG acting on a topological space, there is a general framework to rigorously

de�ne a group of homeomorphisms that “locally look like” elements of G.

De�nition 5.6.1. LetG be a group acting on a topological spaceX . Then the topological full group
(with respect to this action) is the group of all homeomorphisms ϕ : X → X such that for every

x ∈ X there is a group element g ∈ G and an open neighbourhood U where ϕ|U = g|U .

Lederle established the following lemma; here we reuse our notation AG from Section 1.5.4 for the

group of equivalence classes of G-almost-automorphisms.

Lemma 5.6.2. Let T be a regular tree and let G ≤ Aut(T ). Then the group AG is isomorphic to the
topological full group of G acting on ∂T .

Proof omitted. This is [Led17, Lemma 2.19]. ��

We could hence quite straightforwardly de�ne the topological full group of U∆(F ) with its action

on the boundary ∂K(∆) of the Davis realisation (equipped with a suitable topology). Let us denote

this group byN∆(F ). We remark again, however, that the interplay between the combinatorics of

the building and the geometry of its CAT(0) realisation is not quite trivial.

Question 5.6.3. What can we say aboutN∆(F )? How does the combinatorics of the diagram relate
toN∆(F )? Can we �nd conditions on the local data that prohibitN∆(F ) from admitting (cocompact)
lattices, similar to Theorem 1.5.19 (iii)? Can we establish similar simplicity results?
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“
If we do nothing with the knowledge we gain, then we have wasted our study.
Books can store information better than we can; what we do that books cannot
is interpret. So if one is not going to draw conclusions, then one might as well
just leave the information in the texts.

”— Brandon Sanderson, The Way of Kings

Recall the general goal that we sketched in the introduction: the goal of the original Burger–Mozes

construction was to provide families of topological groups, the global structure of which depends

on the local data. In the variations by Smith, Le Boudec, and Lederle, this local-to-global principle

remained a central anchor point. The results of Silva showed that right-angled buildings allow for

a fruitful generalisation, in which the global structure of the group not only depends on local data,

but also on the diagram of the building. Silva assumed the local groups to be �nite and transitive,

while we explicitly did not.

In this concluding section, we present a brief summary of our results for general local groups (that

are not necessarily transitive or �nite). Here we will assume our building to be irreducible for sake

of convenience; we refer to Chapter 3 for more precise statements.

Theorem. LetM be an irreducible diagram over an index set I . Let F be a collection of permutation
groups Fi ≤ Sym(Ωi) with 3 ≤ |Ωi|, indexed by i ∈ I . Let ∆ be a semiregular right-angled building
of typeM with parameters equal to |Ωi| for every i ∈ I . Equip the building ∆ with a legal colouring
λ taking values in the sets Ωi.

Let Uλ∆(F ) ≤ Aut(∆) be the corresponding universal group, equipped with the permutation topology.
We then have the following.

• U(F ) is transitive on the residues of type J if and only if Fi is transitive for every i ∈ I \ J .
This is Proposition 3.2.2.

• U(F ) is primitive on the residues of type J if and only if I = J t {k} for some k ∈ I , and Fk
is primitive and nonregular, and Fi is transitive for all i ∈ I \ k⊥.
This is Theorem 3.2.15.

• U(F ) is generated by chamber stabilisers if and only if Fi is generated by point stabilisers for
every i ∈ I and transitive for every i in some vertex cover ofM .
This is Theorem 3.2.20.

• U(F ) is totally disconnected.
This is Proposition 1.2.27.

• U(F ) is discrete if and only if Fi acts freely on Ωi for every i ∈ I .
This is Proposition 3.3.1.

• U(F ) is closed in Aut(∆) if and only if Fi is closed in Sym(Ωi) for every i ∈ I .
This is Proposition 3.3.3.
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• Assuming that U(F ) is closed, then U(F ) is locally compact if and only if, for every i ∈ I , all
suborbits of Fi are �nite.
This is Proposition 3.3.4.

• Assuming that Conjecture 3.3.9 is true, and assuming that U(F ) is closed and locally compact,
then U(F ) is compactly generated if and only if Fi is compactly generated and has only �nitely
many orbits for every i ∈ I .
This is a rephrasing of Theorems 3.3.6 and 3.3.7 and Conjecture 3.3.9.

• Assuming that U(F ) is closed and nondiscrete, then U(F )+ is simple.
This is Corollary 3.4.10.

In particular, if we pick closed local groups Fi such that every point stabiliser has �nite orbits, then

U(F ) is a totally disconnected locally compact group. If at least one point stabiliser is nontrivial,

then U(F ) is nondiscrete and the subgroup generated by chamber stabilisers is a simple group.

In Chapter 4, we extended the construction by Le Boudec to the setting of right-angled buildings

and argued why we want to restrict to locally �nite buildings for our initial study. We �nd that the

diagram may enforce additional restrictions on the local groups, due to the existence of ladders. A

brief summary of our results follows below.

Theorem. LetM be an irreducible diagram over an index set I . Let F and F́ be two collections of
permutation groups Fi ≤ F́i ≤ F̂i ≤ Sym(Ωi) with 3 ≤ |Ωi| < ∞, indexed by i ∈ I . Let ∆ be
a semiregular right-angled building of typeM with parameters equal to |Ωi| for every i ∈ I . Equip ∆
with a legal colouring λ taking values in the sets Ωi. We stress that ∆ is assumed to be locally �nite.

Let Gλ∆(F, F́ ) ≤ Aut(∆) be the corresponding restricted universal group, equipped with the topology
from De�nition 4.3.1. We then have the following.

• G(F, F́ ) is transitive on the residues of type J if and only if Fi is transitive for every i ∈ I \ J .
This is Proposition 4.2.2.

• G(F, F́ ) is totally disconnected and locally compact.
This is Proposition 4.3.2.

• G(F, F́ ) is discrete if and only if Fi acts freely on Ωi for every i ∈ I .
This is Corollary 4.3.3.

• G(F, F́ ) is compactly generated.
This is Corollary 4.3.7.

• Assuming that G(F, F́ ) is nondiscrete and that Fi = F́i for every rung i ∈ I of some ladder,
then G(F, F́ ) is virtually simple if and only if U(F́ ) is simple — or explicitly, F́i is generated
by point stabilisers for every i ∈ I and transitive for every i in some vertex cover ofM .
This is Theorem 4.4.4.

We note there is again a lot of freedom in the choice of local groups, and that it should be possible

to further generalise results of [LB16] to right-angled buildings.
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“
I have learned all kinds of things from my many mistakes.
The one thing I never learn is to stop making them.

”— Joe Abercrombie, Last Argument of Kings

Historische context

Het centrale thema van deze thesis vindt zijn oorsprong in een gelauwerd artikel van Marc Burger

en Shahar Mozes, [BM00a], over de lokale en globale structuur van groepen die werken op bomen.

De groepen in kwestie zijn uitgerust met een natuurlijke topologie onder dewelke de groep volledig

onsamenhangend en lokaal compact is.

De theorie van topologische groepen is bijzonder ruim en kent dan ook verscheidene raakgebieden

en toepassingen binnen de wiskunde en daarbuiten. Vaak beperkt men zich tot lokaal compacte
groepen, waar de eenheid een compacte omgeving heeft. De samenhangscomponent van de een-

heid van zo’n lokaal compacte groep is steeds een normaaldeler en de corresponderende quotiënt-

groep een volledig onsamenhangende groep. De studie van deze groepen valt dan ook min of meer

uiteen in twee deelgebieden — samenhangende lokaal compacte groepen enerzijds, en volledig on-
samenhangende lokaal compacte groepen anderzijds.

Samenhangende lokaal compacte groepen zijn reeds sinds de jaren 50 goed begrepen te noemen.

Resultaten van Andrew Gleason, Deane Montgomery, Leo Zippin en Hidehiko Yamabe in verband

met het vijfde probleem van Hilbert geven een bevredigende structurele karakterisatie en drukken

uit dat deze groepen, grof gezegd, benaderd kunnen worden door middel van Liegroepen (Stelling

1.2.17 in deze thesis).

Volledig onsamenhangende lokaal compacte groepen daarentegen zijn veel minder goed begrepen,

en een gelijkaardige algemene karakterisatie lijkt niet meteen binnen handbereik. Gedurende lange

tijd was de enige gekende algemene structurele eigenschap een stelling van van Dantzig uit 1936,

die het bestaan van open compacte deelgroepen stipuleert (Stelling 1.2.19). Pas in de jaren 90 werd

er verdere vooruitgang geboekt met nieuwe technieken van George Willis, zoals een schaalfunctie,

een theorie van nette deelgroepen, en een ruimte van richtingen geassocieerd aan de groep.

De vroege resultaten van van Dantzig legden de focus op technieken om de globale structuur van

een volledig onsamenhangende lokaal compacte groep te bestuderen aan de hand van de structuur

van diens compacte open deelgroepen. Eén voorbeeld is een resultaat van Willis, dat stelt dat als de

globale groep topologisch enkelvoudig en compact voortgebracht is, een open compacte deelgroep

dan nooit oplosbaar kan zijn ([Wil07]). Ook de resultaten van Burger en Mozes vallen onder deze

categorie, en bestuderen de globale structuur van groepen van automor�smen van bomen via hun

lokale acties.

Hun meest iconische constructie is de universele groep U(F ), in functie van een nog vrij te kiezen

eindige permutatiegroep F die de lokale groep wordt genoemd. Deze universele groep bestaat uit
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alle automor�smen van een reguliere boom die zich lokaal gedragen als permutaties in deze lokale

groep F (we geven een precieze de�nitie in Hoofdstuk 1.5.1). Deze groepen worden voorzien van

de permutatietopologie. De constructie van Burger en Mozes leidt aldus tot een uitgebreide familie

volledig onsamenhangende lokaal compacte groepen, die daarenboven compact voortgebracht zijn

en onder milde voorwaarden op F ook niet-discreet. Bovendien voldoen deze universele groepen

nog eens aan een even iconische “onafhankelijkheidsvoorwaarde” van Jacques Tits, waarmee men

kan aantonen dat ze een enkelvoudige deelgroep van index twee bezitten.

Automor�smegroepen van bomen zijn om meerdere redenen aanlokkelijk. Zo kunnen lokaal com-

pacte groepen steeds worden uitgerust met de zogenaamde Haarmaat, dat aan deelverzamelingen

een invariant volume toekent. In de globale groep kan men dan zoeken naar roosters: een discrete

deelgroep Γ ≤ Gwaarvoor de quotiëntruimte Γ/G een eindig invariant volume heeft. Zoals Burger

en Mozes opmerkten, zijn er heel wat interessante roosters te vinden in de automor�smegroepen

van producten van bomen. Hyman Bass en Alexander Lubotzky vonden ook interessante resultaten

in automor�smegroepen van enkele bomen. We verwijzen naar [BM00a, Car02].

Een ander voordeel is dat bomen en hun automor�smen zeer �exibel zijn. In [Smi17] stelde Simon

Smith een variatie voor op de constructie van Burger en Mozes, die gebruikmaakt van twee lokale

permutatiegroepen en een semireguliere boom. Dankzij die variant kon Smith als eerste een over-

aftelbare familie van niet-isomorfe, niet-discrete, enkelvoudige, compact voortgebrachte, volledig

onsamenhangende lokaal compacte groepen construeren. We geven meer details in Sectie 1.5.2.

Ook Adrien Le Boudec wist met een eenvoudige twist een nieuwe familie aan groepen op te stellen

([LB16]). Hij liet in de universele groepen van Burger en Mozes een eindig aantal singulariteiten

toe, waar de lokale actie de voorgeschreven permutatiegroep niet hoeft te volgen. Zijn constructie

leidde tot nieuwe topologische groepen zonder roosters. We geven meer details in Sectie 1.5.3.

Waltraud Lederle volgde een nog drastischere aanpak en bestudeerde varianten op de groepen van

Burger–Mozes die iets weg hebben van de Neretingroep. Deze groepen bestaan uit sferomor�smen
van een boom, waarbij (op een precieze manier) stukken uit de boom weggeknipt mogen worden.

Opnieuw waren interessante topologische groepen zonder roosters het resultaat. We geven meer

details in Sectie 1.5.4.

Al deze constructies hebben als terugkerend thema dat de uiteindelijke structuur van de verkregen

groep in sterke mate afhangt van de gekozen lokale data.

Op suggestie van Pierre-Emmanuel Caprace bestudeerde Ana Silva nog een andere veralgemening

van de Burger–Mozesgroepen, waar de bomen worden veralgemeend naar rechthoekige gebouwen.

Gebouwen zijn, heel grof gezegd, meetkundige structuren die gecoördinatiseerd kunnen worden

met een Coxetergroep. Gebouwentheorie overkoepelt onder andere projectieve en a�ene ruimtes,

veralgemeende veelhoeken, en oneindige bomen. Intuïtief kan men stellen de voornaamste reden

dat de constructie van Burger en Mozes (en alle varianten) zo krachtig is, de eigenschap is dat elke

lokale permutatie van de bogen rond een top van een reguliere boom kan worden uitgebreid naar

een automor�sme van de volledige boom. Rechthoekige gebouwen zijn een brede veralgemening

van meetkundige structuren die eenzelfde �exibiliteit kennen, zodat universele groepen ook over

deze gebouwen zinvol zijn. Naast de permutationele eigenschappen van de lokale groepen spelen

nu ook de combinatorische eigenschappen van (het diagram van) het gebouw een grote rol.

Wij zetten in deze thesis de studie van deze groepen verder. De focus van Silva lag op lokaal eindige

rechthoekige gebouwen, waarbij de lokale permutatiegroepen ook transitief werken. Wij werken

zonder dergelijke aannames en veralgemenen de gekende resultaten verder. Daarnaast passen ook

enkele resultaten van Smith en Le Boudec probleemloos in deze context.
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Overzicht van de resultaten

We gaan van start met een inleidend hoofdstuk. Hierin bouwen we de nodige achtergrondkennis op

in abstracte en topologische groepentheorie, geven we een snelle opfrissing van wat grafentheorie,

vermelden we enkele algemene eigenschappen van automor�smen van bomen, geven we een korte

schets van de resultaten van Burger–Mozes, Smith, Le Boudec en Lederle, en wijden we ten slotte

nog een sectie aan algemene gebouwentheorie.

Het tweede hoofdstuk richten we onze pijlen speci�ek op rechthoekige gebouwen. We vermelden

een aantal algemene hulpresultaten over automor�smen, gallerijen, projecties, evenwijdigheid, . . .

Ook de�niëren we kleuringen van gebouwen, essentieel om de lokale acties van een automor�sme

te kunnen volgen. We voeren ook enkele nieuwe concepten in. Zo voorzien implosies een manier om

rechthoekige gebouwen samen te trekken op een fundamenteel andere manier dan de vertrouwde

projectie- en retractieafbeeldingen dat doen, en de�niëren we stadsproducten, die ons toelaten om

nieuwe gebouwen te construeren door gebouwen aaneen te plakken langs een ander gebouw.

In Hoofdstuk 3 voeren we uiteindelijk de universele groepen over rechthoekige gebouwen in volle

algemeenheid in. We hebben een technisch lemma nodig dat toelaat om partiële automor�smen uit

te breiden naar automor�smen “zo goed lijkend op elementen uit de universele groep als mogelijk”

(Stelling 3.1.9). We berekenen de banen van de universele groepen op het gebouw en karakteriseren

wanneer de actie transitief is. Daarna veralgemenen we een resultaat van Smith en karakteriseren

we wanneer de actie op de residuen van het gebouw primitief is (Stelling 3.2.15). We bekijken ook

de deelgroep van de universele groep voortgebracht door alle kamerstabilisatoren. Deze deelgroep

is het grootste obstakel voor enkelvoudigheid; we karakteriseren dan ook wanneer deze triviaal is

en bewijzen verderop, aan de hand van een algemeen enkelvoudigheidscriterium, dat deze in ieder

geval zelf enkelvoudig is.

Op zowel de lokale groepen als de universele groepen zelf leggen we de permutatietopologie. Deze

topologie maakt de universele groep in ieder geval volledig onsamenhangend. Daar we er niet

langer van uitgaan dat de lokale groepen eindig zijn, wordt deze topologie een pak subtieler. We

bekijken hoe de lokale en globale topologie elkaar beïnvloeden en karakteriseren bijvoorbeeld wan-

neer de universele groep lokaal compact is. We stellen voldoende voorwaarden op onder dewelke

de groep compact voortgebracht is. We vermoeden dat deze voorwaarden ook nodig zijn, en mo-

tiveren dit aan de hand van enkele bijzondere gevallen en partiële resultaten.

Tot slot beschrijven we universele groepen over stadsproducten als universele groepen van lagere

rang, waar de lokale data opnieuw bestaat uit universele groepen maar over de factorgebouwen.

We geven een overzicht van Hoofdstuk 3 in meer detail. We veronderstellen voor de eenvoud dat

het gebouw irreducibel is, en verwijzen naar de afzonderlijke stellingen voor de precieze resultaten.

Stelling. Zij M een irreducibel diagram over indexverzameling I . Zij F een collectie permutatie-
groepen Fi ≤ Sym(Ωi) met 3 ≤ |Ωi| en geïndexeerd door i ∈ I . Zij ∆ een semiregulier rechthoekig
gebouw van typeM met parameters gelijk aan |Ωi| voor elke i ∈ I . Voorzie ∆ van een legale kleuring
λ die kleuren aanneemt in de verzamelingen Ωi.

Zij Uλ∆(F ) ≤ Aut(∆) de bijhorende universele groep uitgerust met de permutatietopologie. Dan geldt
het volgende.

• U(F ) is transitief op de residuen van type J als en slechts als Fi transitief is voor elke i ∈ I \J .
Dit is Propositie 3.2.2.
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• U(F ) is primitief op de residuen van type J als en slechts als I = J t {k} voor zekere k ∈ I ,
terwijl Fk primitief en niet-regulier is en Fi transitief voor elke i ∈ I \ k⊥.
Dit is Stelling 3.2.15.

• U(F ) is voortgebracht door kamerstabilisatoren als en slechts als Fi voortgebracht is door punt-
stabilisatoren voor elke i ∈ I en transitief is voor elke i in een toppenbedekking vanM .
Dit is Stelling 3.2.20.

• U(F ) is volledig onsamenhangend.
Dit is Propositie 1.2.27.

• U(F ) is discreet als en slechts als Fi vrij werkt op Ωi voor elke i ∈ I .
Dit is Propositie 3.3.1.

• U(F ) is gesloten in Aut(∆) als en slechts als Fi gesloten is in Sym(Ωi) voor elke i ∈ I .
Dit is Propositie 3.3.3.

• Als U(F ) gesloten is, dan is U(F ) lokaal compact als en slechts als Fi uitsluitend eindige sub-
banen heeft, voor elke i ∈ I .
Dit is Propositie 3.3.4.

• Onder voorbehoud van Vermoeden 3.3.9 en als U(F ) gesloten en lokaal compact is, dan is U(F )
compact voortgebracht als en slechts als Fi compact voortgebracht is en eindig veel banen heeft,
voor elke i ∈ I .
Dit is een herformulering van Stellingen 3.3.6 en 3.3.7 en Vermoeden 3.3.9.

• Als U(F ) gesloten en niet-discreet is, dan is U(F )+ enkelvoudig.
Dit is Gevolg 3.4.10.

In het bijzonder, kiezen we lokale groepen Fi waarvoor elke puntstabilisator slechts eindige banen

heeft, dan is U(F ) een volledig onsamenhangende lokaal compacte groep. Is bovendien minstens

één puntstabilisator niet-triviaal, dan is U(F ) niet-discreet en is de deelgroep voortgebracht door

alle kamerstabilisatoren een enkelvoudige groep.

In Hoofdstuk 4 de�niëren we een analogon voor de groepen van Le Boudec in de gebouwensetting,

waar eindig veel singulariteiten worden toegelaten. De combinatoriek van het gebouw leidt snel

tot extra restricties (in de vorm van ladders). We motiveren waarom we ons hier opnieuw beperken

tot lokaal eindige gebouwen en bestuderen de eigenschappen van de verkregen groepen. Opnieuw

voorzien we deze van een topologie: dit keer een op maat gemaakte topologie, die toelaat om heel

wat eigenschappen van de universele groepen rechtstreeks over te zetten. Ten slotte veralgemenen

we een resultaat uit [CRW19] en karakteriseren we wanneer de groepen virtueel enkelvoudig zijn.

We geven een overzicht van Hoofdstuk 4 in meer detail. We veronderstellen voor de eenvoud dat

het gebouw irreducibel is, en verwijzen naar de afzonderlijke stellingen voor de precieze resultaten.

Stelling. ZijM een irreducibel diagram over indexverzameling I . ZijF , F́ twee collecties permutatie-
groepen Fi ≤ F́i ≤ F̂i ≤ Sym(Ωi) met 3 ≤ |Ωi| < ∞ en geïndexeerd door i ∈ I . Zij ∆ een
semiregulier rechthoekig gebouw van typeM met parameters gelijk aan |Ωi| voor elke i ∈ I . Voorzie
∆ van een legale kleuring λ die kleuren aanneemt in de verzamelingen Ωi. We benadrukken dat ∆
lokaal eindig is.

Zij Gλ∆(F, F́ ) ≤ Aut(∆) de bijhorende gerestringeerde universele groep, uitgerust met de topologie
van De�nitie 4.3.1. Dan geldt het volgende.

• G(F, F́ ) is transitief op de residuen van type J als en slechts alsFi transitief is voor elke i ∈ I\J .
Dit is Propositie 4.2.2.
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• G(F, F́ ) is volledig onsamenhangend en lokaal compact.
Dit is Propositie 4.3.2.

• G(F, F́ ) is discreet als en slechts als Fi vrij werkt op Ωi voor elke i ∈ I .
Dit is Propositie 4.3.3.

• G(F, F́ ) is compact voortgebracht.
Dit is Gevolg 4.3.7.

• Als G(F, F́ ) niet-discreet is en als Fi = F́i voor elke sport i ∈ I van een ladder in het diagram,
dan is G(F, F́ ) virtueel enkelvoudig als en slechts als U(F́ ) enkelvoudig is — of expliciet, F́i
voortgebracht is door puntstabilisatoren voor elke i ∈ I en transitief voor elke i in een toppen-
bedekking vanM .
Dit is Stelling 4.4.4.

In zowel Hoofdstuk 3 als 4 valt regelmatig op dat de combinatoriek van het gebouw tot boeiende

bijkomende condities en eigenschappen leidt, zodat de globale structuur van de verkregen groepen

in sterke mate afhangt van zowel de lokale permutatiegroepen als de Coxeterdiagrammen.

We sluiten deze thesis af met enkele open vragen, die doorheen het doctoraatsonderzoek opdoken

en waar we niet de nodige tijd of inzichten voor bleken te hebben.
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“
I strive for nothing if not consistency.

”— Brandon Sanderson, The Final Empire

Abstract groups and group actions

g, h typical group elements

id the identity element

g · h group multiplication

Sym(Ω) the symmetric group on Ω

Sym(n) shorthand for Sym({1, . . . , n})

H ≤ G a subgroup of G

N E G a normal subgroup of G

hg the conjugate h · g · h−1

[g, h] the commutator g · h · g−1 · h−1

g .x the group action of g on x

Gx the stabiliser of an element x

G{Y } the setwise stabiliser of a set Y

G(Y ) the pointwise stabiliser of a set Y

G.x the orbit of an element x

X/G the orbit space

G+
the subgroup 〈Gx | x ∈ X〉
generated by point stabilisers

Ĝ the Young overgroup of G

Actions on trees

T a typical tree

∂T the boundary of T

γ a typical path in T
(�nite or in�nite)

`(g) the displacement of g

A(g) the axis of g

Chamber systems

I an index set

I∗ the free monoid on I

i, j, k typical elements of I

J a typical subset of I

∆ a chamber system or building

c, d typical chambers of ∆

∼i an i-adjacency relation on ∆

γ a gallery in ∆

Aut(∆) the group of (type-preserving)

automorphisms of ∆

P a panel in ∆

Pi(c) the panel of type i containing c

R a residue in ∆

RJ(c) the residue of type J containing c

ResJ(∆) the set of residues of ∆ of type J

Resj(∆) the set of panels of ∆ of type j

dist the distance function in ∆

Bn(c) the ball of radius n and centre c

Sn(c) the sphere of radius n and centre c

Coxeter systems

M a Coxeter matrix over I

mij a Coxeter matrix’s entries

(W,S) a Coxeter system

ς the evaluation map I∗ →W
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p(i, j) the word of length mij of

alternating letters i and j

' the homotopy relation on I∗

MJ the Coxeter matrix induced by J

(WJ , SJ) the Coxeter system induced by J

L(W,S) the nerve of the Coxeter system

K(W,S) the cone over the barycentric

subdivision of the nerve L(W,S)

General buildings

δ a building’s W-distance function

A an apartment in ∆

qi a semiregular building’s parameter

projR the projection map ontoR
ρc,A the retraction map onto A

with centre c

K(∆) the Davis realisation of ∆

Right-angled buildings

J⊥ the set of i ∈ I with mij = 2
for all j ∈ J

j⊥ an abbreviation for {j}⊥

XJ(c) the J-wing of c

Xj(c) the j-wing of c

T a tree-wall

Γi the i-tree-wall tree

Ωi a set of i-colours of cardinality qi

λ a (legal) colouring (λi)i∈I

λi an i-colouring, component of λ

(∆′, τ) an implosion of ∆

zM a city product of diagrams

or buildings, over diagram M

Φ the skeletal building of a city product

Universal groups

σλ(g,P) the local action of g at P

F a family of local groups

Fi ≤ Sym(Ωi)

Uλ∆(F ) the universal group of F over ∆,

usually abbreviated as U(F ) or U

U|P the panel group of U w.r.t. P

U+
the subgroup 〈Uc | c ∈ ∆〉
generated by chamber stabilisers

Vi(c) the subgroup with support in Xi(c)

Wi(c) the pointwise stabiliser of Xi(c)

Restricted universal groups

F́ a second family of local groups

satisfying Fi ≤ F́i ≤ F̂ ≤ Sym(Ωi)

Gλ∆(F ) a relaxation of Uλ∆(F ) allowing

for �nitely many singularities

Gλ∆(F, F́ ) the group G(F ) ∩ U(F́ ),

usually abbreviated as G(F, F́ ) or G

S(g) the set of singularities of g

KP a subgroup of G{P} with only

singularities parallel to P

Kn,P a subgroup of G{P} with only

singularities at bounded distance
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