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Enabling and Leveraging AI in the Intelligent Edge: A Review of
Current Trends and Future Directions

Tom Goethals, Bruno Volckaert, Filip De Turck, Fellow, IEEE
The use of AI in Smart applications and in the organization of the network edge presents a rapidly advancing research field, with

a great variety of challenges and opportunities. This article aims to provide a holistic review of studies from 2019 to 2021 related to
the Intelligent Edge, a concept comprising both the use of AI to organize edge networks (Edge Intelligence) and Smart applications
in the edge. An introduction is given to the technologies required to understand the state of the art of AI in edge networks, and a
taxonomy is provided with “Enabling Technology” for Edge Intelligence, “Organization” of the edge using AI, and AI “Applications”
in the edge as its main topics. Research trend data from 2015 to 2020 is presented for various subdivisions of these topics, showing
both absolute and relative research interest in each subtopic. The “Organization” aspect, being the main focus of this article, has a
more fine-grained subdivision, explaining all contributing factors in detail. The trends indicate an exponential increase in research
interest in nearly all subtopics, but significant differences between them. For each subdivision of the taxonomy a number of selected
studies from 2019 to 2021 are gathered to form a high-level illustration of the state of the art of Edge Intelligence. From these
selected studies and the trend data, a number of short-term challenges and high-level visions for Edge Intelligence are formulated,
providing a basis for future work.

Index Terms—Fog computing, fog networks, edge networks, edge computing, artificial intelligence, review, trends

I. INTRODUCTION

In recent years, many of the computational workloads
previously associated with the cloud have moved into fog
networks, or even to the network edge [1], where they are
run as distributed or decentralized tasks. This migration is a
necessary step in the emergence of various “Smart” application
domains, and eventually Smart Cities, in which Artificial
Intelligence (AI) is to be deployed exactly where and when it
is required.

There are several reasons for the computational migration
to fog and edge networks. For example, to run software
services closer to end-users in order to reduce latency, or to
pre-process data instead of gathering all data to the cloud,
thereby avoiding bandwidth issues or undue pressure on cloud
resources. Additionally, the number of devices in fog and edge
networks increases at an accelerated pace, while the hardware
resources of the average device keep increasing. As such, there
is ever more task offloading capacity available in the fog and
in the edge.

However, there are also disadvantages to offloading tasks to
geographically widespread fog and edge networks. In cloud
data centers, hardware resources and network technologies are
homogeneous, and properly managed using planned upgrades,
typically resulting in high availability of services and systems.
In the edge, networks are heterogeneous and unpredictable,
and hardware resources and capabilities are extremely varied.
As the scale of edge networks and the variety of devices
they comprise increases, these factors make it increasingly
more difficult to manage software services and organize traffic
flows. For example, gathering all the required data for service
orchestration in the cloud becomes infeasible due to network
bandwidth saturation and memory requirements.
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Additionally, tasks such as data placement and service mi-
gration are more difficult to orchestrate in edge networks than
they are in the cloud. In cloud data centers, or a limited number
of fog data centers, the target nodes for service deployments
can be optimally calculated, and migrations can be executed
quickly over high bandwidth connections. The network edge,
however, is a volatile environment with a continually changing
topology. In such an environment, calculating the optimal
nodes to deploy data or services on is nearly impossible, and
limited network bandwidth reduces the potential for service
migration.

Finally, there are also various security risks that present
themselves when running software services in the fog or edge.
As opposed to the strictly controlled environment of a cloud
data center, edge networks are largely comprised of unknown
devices in networks with unknown, and often insufficient
security measures. Such environments make it difficult to
detect issues such as unauthorized access, data loss, privacy
infringement and malicious injections of data or code, and
nearly impossible to avoid them.

AI can solve many of these issues. For example, some
classes of AI algorithms can learn from data gathered in
the cloud and from the edge in order to recognize net-
work intrusions, route traffic around faulty nodes, or quickly
determine suitable nodes to deploy software and data on.
However, AI algorithms can be resource intensive, and edge
devices are often resource constrained and low-powered. Until
recently, most edge devices were incapable of running any
containerized services or advanced AI applications. Advances
in both software and hardware, specifically related to Artificial
Neural Networks (ANN), have commoditized AI in the edge.
Although many devices have different priorities, e.g. extremely
low-power sensors, all data is usually gathered at local gateway
devices in the edge, or edge servers, which have the appropri-
ate hardware resources to run complex AI algorithms. These
advances have enabled AI to play an increasingly important
role in properly organizing the network edge, orchestrating
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software services in the edge, and in software services them-
selves, which use AI to optimize end-user experience. Edge
Intelligence (EI) [2] arises from any use of AI to enhance
the organization or operation of software services in the edge,
while the whole EI and the AI-powered end-user applications
it enables results in the Intelligent Edge.

In this article, several important types of AI for the edge
are explained, along with the concept of edge computing itself.
The synthesis of edge computing and AI is discussed to show
how the Intelligent Edge emerges from it, and what the general
areas of end-user AI-powered applications in Smart Cities are.
After the introductions to these topics, a taxonomy of EI is
presented, and the state of the art of each category is discussed
by charting research trends, and by presenting a selection of
recent studies. The main topics are enabling technologies for
AI in the edge, AI approaches to organize various aspects of
edge networks, and finally AI-assisted applications running in
edge networks. From the presented studies, future challenges
for each topic are drawn, along with some long-term visions
for the use of AI in the edge.

In short, the contributions of this article are:
• A high-level introduction to the topics required to under-

stand the state of the art of the Intelligent Edge.
• A holistic taxonomy of AI in the Intelligent Edge, includ-

ing enabling technologies, organization of the network
edge, and applications.

• Discussion of research trends and recent advances in ev-
ery aspect of the Intelligent Edge, based on the taxonomy.

• Suggestions for short-term and long-term research direc-
tions, compiled from trends and selected studies.

The rest of this article is organized as follows. Section II
explains the different types of AI touched upon in this article,
while Section III describes the emergence of fog and edge
computing, and the potential of combining AI and the edge.
Section IV explains the motivation for this review, and lists
related work for the main topics. In Section V, the taxonomy
of the review is elaborated, and a number of recent studies for
each topic are examined in Sections VI, VII and VIII. Finally,
future challenges and vision papers are presented in Section
IX and conclusions are drawn in X. Table I lists recurrent
abbreviations and acronyms used in the text.

II. COMMON TYPES OF AI IN THE EDGE

In this section, the most common types of AI mentioned
in this article are introduced. Although sufficient explanation
is given for the purposes of this review, the goal is only to
introduce each of the topics, with more comprehensive works
included as references. There are numerous studies and books
that explain the general principles of AI, for example Hunt [3]
or Brewka [4].

A. Statistical

Statistical approaches can be used to solve (binary) classifi-
cation problems. The most popular algorithm of this type is lo-
gistic regression [5], a special case of binary regression which
results in binary classifiers that output probabilities rather than
a hard classification. This algorithm uses supervised learning

TABLE I: Abbreviations and acrynoms used in the text.

AI Artificial Intelligence
AIoT Artificial Intelligence of Things
ANN Artificial Neural Network
CNN Convolutional Neural Network
DNN Deep Neural Network
DRL Deep Reinforcement Learning

EI Edge Intelligence
FL Federated Learning

FPGA Field Programmable Grid Array
GRU Gated Recurrent Units
IIoT Industrial Internet of Things

IoMT Internet of Medical Things
IoV Internet of Vehicles

LSTM Long Short Term Storage
MDP Markov Decision Process
MLP Multi-Layer Perceptron
NFV Network Function Virtualization
NPU Neural Processing Unit
PSO Particle Swarm Optimization
PU Processing Unit
RL Reinforcement Learning

RNN Recurrent Neural Network
SDN Software Defined Networking

SI Swarm Intelligence
VANet Vehicular Ad-hoc Network

[6], a method which “trains” a model on an initial data set
containing expert-labeled outputs for known sets of inputs.
After training, the statistical patterns in the data learned by
the model are used to predict the probability of new inputs
belonging to either class.

Assume that for an input with values xi the output Y is
required, with Y = 0 meaning that the input belongs to class A
and for Y = 1 it belongs to class B. In logistic regression, the
log-odds of an input is calculated using a linear combination
of its values:

log
p

1 − p
= α0 +

∑
αixi (1)

with α0 and αi being learned parameters. To recover the
probability p from this, a Sigmoid function is applied to the
right side of the equation, giving the probability that the output
Y belongs to class B, or p(Y = 1). Generally, p < 0.5 means
the input is likely to belong to class A, and for p > 0.5 to
class B.

During training, the difference between p(Y = 1) and
the expert-labeled output is used to adjust the parameters
α, improving the model. This is achieved through gradient
descent [7], which calculates the impact of each input value xi
on the final output, and adjusts its parameter αi to better match
the output that is required. Generally, a learning rate l << 1
is used to modify the weights only slightly for each input, to
avoid undoing the effects of previous adjustments. The model
resulting from this training process is visualized in Fig. 1.
Fig. 1a shows how the model discriminates between points
in one dimension. The red curve represents a model trained
on the input dimension (X), giving the probability of a point
belonging to Y = 1. The points A and D are classified with
absolute certainty, and B almost certainly belongs to Y = 0,
as p(Y = 1)B is only 0.05. However, the model has difficulty
classifying points such as C, which may belong to either class
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(a) Logistic regression for one input dimension (X). The points A, B
and D can be reliably classified, but the model will give unreliable
output for C, which has p(Y = 1)C = 0.5 and may belong to either
class.

(b) Logistic regression for two input dimensions. The red line de-
scribes the “border” between the output classes, or p(Y = 1) = 0.5
. The points A and C can be reliably classified, but again the model
will give unreliable output for points such as B, which have high
probability of belonging to either class.

Fig. 1: Classification in 1 and 2 dimensions using logistic regression.

as p(Y = 1)C is 0.5. Similarly, Fig. 1b shows the classification
of points with two input dimensions. In this figure, the red line
represents the “border” of the two classes as determined by the
model, or p(Y = 1) = 0.5. Points A and C can be classified
with high certainty, but again there are points such as B which
could belong to either class. Such data points may exist for
any trained model; no training set can contain all possible data
points as that would defeat the purpose of training a model.

However, this approach means that the accuracy of the final
model generally increases with the amount of training data,
as long as the inputs and outputs are properly distributed over
all possible values. A downside of logistic regression is that
the algorithm can get stuck in a local optimum or oscillate
between several local optima, depending on initial parameters
and the available training data.

Although logistic regression can be applied to any number
of inputs, it can only discriminate between two output classes,
limiting its usefulness. However, it is often used as a base
model in more complex systems.

Some problems can be modeled as a Markov Decision
Process (MDP) [8], a discrete-time stochastic process model.
Such a process defines a state space S, an action space A,
and a probability function Pa(sα, sβ , t) which describes the
likelihood of transitioning from state sα to state sβ through ac-
tion a at timestep t. A reward function Ra(sα, sβ , t) provides
the relevant reward for any state transition. Using the reward
function, Reinforcement Learning (RL) [9], which is further
explained in Section II-C, can be used to learn the optimal
action policy for an MDP. This policy, once learned, decides
which action to take in any state, reducing Pa(sα, sβ , t) to a
straightforward probabilistic state transition P (sα, sβ).

B. Evolutionary

Evolutionary or genetic algorithms [10] are modeled after
the process of evolution in biological organisms, and can be

applied to a wide range of problems. Technically, they can
solve any problem that can be represented using a fitness
function [11], whose minimum value over a search space
should be minimized. This basic property makes them well-
suited for scheduling problems and organizational problems.

An evolutionary algorithm starts by randomly generating
n genomes (potential solutions), each of which contains all
the values necessary to construct a concrete solution to the
problem at hand. Each genome can be evaluated by the fitness
function, thus ranking them by effectiveness. The algorithm
then runs for a predetermined number of epochs (iterations),
with two actions being performed in each epoch. First, n
new genomes are generated by combining the values of
parent genomes from the previous epoch, taking into account
restrictions on the search problem. The chance of a genome
being selected is proportional to its fitness value. In the second
step, the new genomes are mutated by randomly changing
values in order to introduce randomness in the search process.
After the last epoch, the genome with the best fitness value is
selected as the solution.

This type of algorithm relies on examining many potential
solutions simultaneously and introducing randomness in the
search process to cover as much of the search space as
possible, while using unsupervised learning [12] in the form
of a fitness function to guide the process in the direction of
optimal solutions. However, the solution is not guaranteed
to be optimal, and the algorithm may need to run for an
undetermined amount of time before arriving at an acceptable
solution, while the end result may not be explainable through
math or logic.

Multi-objective optimization algorithms [13] such as
MOGA [14] and NSGA-II [15] are a popular subset of
evolutionary algorithms in the fog and edge. These algorithms
find Pareto optimal solutions [16] for multiple optimization
parameters by encoding data points, parameters and restric-
tions in genomes. As an example, consider finding the optimal
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computational nodes to deploy a number of software services
on, depending on end-user latency and available resources.
A multi-objective optimization algorithm will integrate the
relevant properties of services and nodes into the genome,
and both latency and available resources will be combined
in a fitness function resembling Pareto search. The output is
a genome that encodes the optimal node for each service to
deploy.

C. Artificial Neural Networks

Like evolutionary algorithms, ANNs [9] are biologically
inspired, simulating computation as it occurs in biological
brains. The base element of an ANN is the neuron, which in
its most basic form is described by Eq. 2. It accepts a number
of inputs xi, weighted by factors wi. The sum of these values
is used as input for the activation function f , the result of
which is the output y of the neuron:

y = f(
∑

xi ∗ wi) (2)

This equation is visualized in Fig. 2a. Geometrically, a neu-
ron represents a hyperplane dividing an i-dimensional space,
which can be interpreted as performing binary classification
of the points in the space. There are many variations on the
basic neuron, with binary or floating point input/output values,
a great variety of activation functions [17], [18], and the option
of adding a “bias” value; a static input that is always active.
For example, a single neuron can perform logistic regression
by choosing a Sigmoid activation function and including a bias
with weight α0, resulting in 1.

ANNs learn patterns in a data set by using a backpropaga-
tion algorithm (gradient descent) [9] to modify their weights,
similar to how parameters are updated in logistic regression.
This can be done with either supervised (pre-labeled data)
or unsupervised learning (loss function, automated feedback).
However, backpropagation can be computationally intensive
depending on the choice of activation function, as the complex-
ity of the loss function involved in gradient descent depends
largely on the activation function used.

In the case of supervised learning [6], a training data set
is used with inputs and expert-labeled outputs. The output of
the ANN for a given input is compared to the expert-labeled
output, and the difference is used to update the weights. This
type of learning is usually reserved for classification.

Unsupervised learning or Reinforcement Learning [12] is
used for tasks where labeling outputs is infeasible, either due
to the volume of data involved or because the correct output
is not known. In these cases, a reward function is constructed
which returns higher values for “more correct” outputs, and a
modified backpropagation algorithm is used.

Although a single neuron (or perceptron) can emulate basic
algorithms such as logistic regression, multiple neurons can be
combined into neural networks (or Multi-Layer Perceptron,
MLP) to solve a wide range of problems. An example of
a basic neural network is shown in Fig. 2b, with neurons
organized into several layers, each processing the outputs of
the previous layers using a weights tensor wkij , between
neuron i in layer k and neuron j in layer k + 1. In this

figure, the middle layer is a “hidden layer”, only used for
computation rather than writing input values xi or reading
output values yi. The concept of bias neurons B is also
illustrated here. Constructing neural networks in layers allows
each layer to process progressively more complex features
in the input data, with the final layer being able to classify
intricate, abstract shapes or patterns. Note that the example
model is fully connected, with each neuron in any layer being
connected to each neuron in the previous one, but in practical
applications this is rarely the case.

Stacking layers of neurons results in a more complex,
recursive learning process. Neural networks and backpropa-
gation require a lot of parameters to work correctly, such as
initial input weights and learning rates. Sub-optimal choices
often result in the failure to train a network, and as such
many studies have focused on choosing correct initialization
values for these parameters, and if and how they should be
modified throughout the training process [19]. Regularization
and specialized activation functions are also used to reduce
model size and improve the learning process [20], [21].

The goal of gradient descent can be interpreted geomet-
rically as finding the lowest point in the hyperplane formed
by the loss function used during backpropagation. By itself,
a static learning rate results in only a minor improvement in
a specific direction for each training input, which may not
be entirely in line with the true gradient of the hyperplane.
Alternatives include using decaying momentum [22] to guide
the backpropagation algorithm into a general direction over
multiple training inputs. Other methods, using second-order
derivatives of the loss function, are more computationally
intensive and not always applicable, but produce excellent
results with less training data [23]. Finally, training samples
are often processed in batches to optimize both performance
and training results.

In the last decade, hardware acceleration and architectural
improvements [24] have made it possible to create and train
neural networks with dozens or even hundreds of layers,
now known as Deep Neural Networks (DNN) [9]. Combined
with other advances, this has led to many specialized, highly
efficient innovations. For example, Convolutional Neural Net-
works (CNN) [25] contain layers that have a similar function
to image kernels, and are currently the most effective classifi-
cation networks for visual input. Recurrent Neural Networks
(RNN) [26], in which certain layers feed their outputs back
into their own inputs, can use memory strategies such as
Long Short Term Storage (LSTM) [27] or Gated Recurrent
Units (GRU) for natural language processing or translation, or
other types of tasks with tokenized, unbounded input where
the state depends on previous inputs. In terms of training,
Deep Reinforcement Learning (DRL) [28] has enabled the
unsupervised training of deep networks, and advanced RL
approaches such as Q-learning [9] can take into account
expected and future rewards, rather than immediate returns
from a reward function.

D. Distributed
Distributed and decentralized algorithms are designed to

run on a large number of computational nodes simultane-
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(a) (b)

Fig. 2: Visual representations of (a) a single neuron (perceptron) and (b) layered neural network (Multi-Layer Perceptron,
MLP). Neurons generally output the result of a function f on the weighted wi sum Σ of their inputs. Neurons without inputs
represent input values xi or bias neurons B.

ously. Whereas distributed algorithms generally still have
a centralized goal and combine their outputs, decentralized
algorithms simply divide a problem into small, independent
parts without the need to merge the outputs. Distribution and
decentralization are applicable to a wide range of algorithms,
although some types of problems are easier to partition, such
as ANN training. Distributed algorithms have two important
advantages compared to monolithic, centralized algorithms.
First, the complexity of a problem can often be greatly reduced
by splitting it up into smaller tasks. Second, a distributed
algorithm is generally far more scalable, e.g. grid computing
projects such as Boinc [29].

A popular distributed learning algorithm in the fog and
edge is Federated Learning (FL) [30], in which the training
of a neural network is split up into parts. This may be
a straightforward division of labor, or it can be organized
hierarchically. After each node finishes its part of the training,
the resulting model updates are integrated into a centralized
model, usually in the cloud. The main advantage of FL is
that it can offload model training from the cloud to fog and
edge devices depending on the computational capacity of each
node. A further advantage is the reduction of network traffic
by processing training data at the network edge, and that
local processing of training data can avoid privacy issues
related to sending data to the cloud. However, depending on
the model involved, training may be unfeasible on resource-
limited edge hardware, and a long-term disadvantage is that
FL has to update a centralized model and distribute it to fog
and edge nodes from the cloud. More advanced approaches try
to eliminate the cloud part, and fully decentralize the weight
updates through peer-to-peer updates. Hierarchical Federated
Learning (HFL) solves some of the communications issues
of vanilla FL by introducing a hierarchical structure into the
process of consolidating weight updates, usually through a
middle layer in which cluster heads perform intermediate
model integration.

Swarm Intelligence (SI) [31] is a general class of distributed
algorithms in which large numbers of independently func-
tioning nodes or particles perform localized improvements,
resulting in a globally optimal solution. The logic of this
approach is that an improvement for any node is also an overall
improvement, and the optimal solution is simply that in which
each node can find its own optimal state. Although this can
result in acceptable solutions, the lack of global coordination
does not often result in a theoretically optimal solution. SI
is usually applied to problems that are easy to handle for
a single node, but which are intractable on a larger scale.
Particle Swarm Optimization (PSO) is a subclass of SI, but
it usually simulates all particles and generally does not run
as a distributed algorithm. PSO finds optimal solutions in a
search space by simulating the movement of large numbers
of particles, gravitating them towards each other as they find
optimal states in the search space.

E. Blockchain

Blockchains are relatively new, originally introduced as the
technology behind various digital currencies, but increasingly
popular in research for their potential as secure, distributed
storage. While a blockchain is not an AI concept in itself,
it is interesting to introduce it here because of its popularity
in AI-related studies. Although variations exist, blockchains
in general have interesting properties, but also significant
challenges for their widespread adoption [32].

Generally, blockchains are transaction-based, and they oper-
ate through a number of decentralized, non-hierarchical nodes
known as miners. Each node in the network has a copy of
the blockchain, a collection of “blocks”, each of which in
turn contains a number of transactions. Whenever a node
in the blockchain network creates a transaction, it is spread
throughout the network on a peer-to-peer basis, and processed
by the miners into a new block at the end of the chain. For the
blockchain to be reliable, all miners must reach a consensus on
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the transactions processed, and the order blocks are processed
in. However, this process is quite computationally intensive,
and a (financial) reward for miners is usually attached in
the form of digital currency, either through the process of
mining itself or by demanding a transaction cost. This digital
currency is tracked by the blockchain itself, avoiding fraud
and contested transactions.

The most popular alternative currently used in studies is
Ethereum [33], an open source blockchain using Ether as
currency. Ethereum implements smart contracts, allowing code
to be embedded into transactions, and enabling its execution
whenever the requirements are met. Due to the nature of the
blockchain, all parties agree by definition on the contents and
execution of the smart contracts.

Although the decentralization of blockchain solutions offers
some intrinsic security and reliability, and smart contracts
are a flexible and reliable approach to digital transactions,
there are also some challenges to widespread adoption these
technologies. Most importantly, the energy use of blockchain
solutions is generally known to be excessively high, although
various solutions have been presented to alleviate this issue,
for example Proof-of-Stake consensus. However, the current
state of the art still requires orders of magnitude more energy
per transaction than classical systems [34]. Because of its
distributed, peer-to-peer nature, it also takes far longer for
transactions to be processed by a blockchain solution than
by a classical, centralized system. Whereas a single node can
process a transaction in just a few milliseconds, the need for
a network-wide consensus can increase the total transaction
processing time to minutes. Some blockchain implementations
are susceptible to manipulation if any single party controls
over 50% of the mining capacity, giving that party a monopoly
on the consensus mechanism. This risk can be mitigated with
both technical and practical measures. Finally, the distributed
and open nature of the blockchain means that anyone can
view its contents. Although they can not be changed, the plain
readability of transactions presents severe privacy issues. As
such, extra security measures will be needed for most concrete
blockchain solutions, or off-chain storage solutions may be
needed to augment the blockchain.

F. Other
AI is not limited to the types previously listed in this section.

It can take many forms, especially when applied in a new
environment such as edge computing. For the purposes of this
review, any method or algorithm is considered a form of AI
as long as the base problem is intractable, the algorithm runs
in the fog or edge, and predictive outputs are generated based
on any number of input dimensions. Note that this does not
necessarily mean that the algorithm has learning capabilities.

III. EDGE COMPUTING

This section details how fog and edge computing arise from
a growing number of devices and the demand of consumers for
more functionality and better responsiveness. It also explains
some of the base technologies that are used to deploy and
manage software in the fog and edge, and factors that can
enable the use of AI in the edge.

A. Fog and Edge

In the last decade, the Internet of Things (IoT) paradigm has
become popular in any number of products, from basic sensors
for home or process automation to intelligent appliances such
as smart light bulbs and washing machines with self-adjusting
programs.

These devices regularly send operational data and metadata
to data centers in the cloud for several reasons. For one, a
centralized access point for software services makes it easier
for consumers to control their devices from any physical
location. Another reason is that gathering all this data allows
manufacturers to further improve their devices and services.
However, in the last few years the growth of network traffic
and processing power required to support the increasing num-
ber of smart devices is too high for centralized data centers to
keep pace with.

Fog computing [1] offers a solution to this problem by
decentralizing data centers. Although cloud data centers are
often geographically distributed, they usually service entire
countries or large geographical regions. Fog data centers, on
the other hand, only service small geographical areas such
as (parts of) cities. As a result, they are more numerous by
orders of magnitude, but also less powerful because each of
them must process less data. This concept is illustrated in Fig.
3.

Fig. 3: Representation of the difference of scale and device
types in cloud, fog and edge networks.

Edge computing is an additional solution to reduce the load
on cloud data centers and end-user devices alike, enabled by
ever-improving hardware, increasing energy efficiency, and the
proliferation of powerful handheld devices and IoT gateways.
The essence of edge computing is that much of the work that
is normally performed in the cloud can be broken up into
small tasks which are then performed in the network edge.
The network edge, shown in Fig. 3, consists of billions of
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low-power, resource constrained devices which are nonetheless
highly programmable. To alleviate the workload of the cloud,
the spare capacity of these devices is leveraged to pre-process
data and provide basic, highly responsive end-user services.

The combination of cloud, fog and edge has resulted in
many studies into tiered service architectures, where intensive
data processing, big data analysis and the learning phase of
AI models generally take place in the cloud, and the fog
and edge provide responsive services and run the inference
stage of AI models. Tiered architectures can be achieved with
offloading, which uses real-time monitoring and migration
of micro-services to move workloads to the fog and edge
whenever possible, and back to the cloud if necessary. The
term “necessary” may involve a combination of many param-
eters, from end-user proximity to packet loss and battery life.
However, the volatile and heterogeneous nature of the edge and
fog are problematic for scalable, optimal software deployment.

B. Service Deployment
Both the fog and edge are composed of a wide range of

network technologies and various types of devices, leading to
volatile conditions for software deployment and communica-
tion. Edge computing also presents new security issues. For
example, edge devices are often less secure than cloud servers,
and traffic over public networks may be intercepted.

In order for a piece of software to work on a wide range
of devices, various types of virtualization can be used. Virtual
machines are commonly used in cloud data centers, but since
they contain an entire operating system, they are bulky and
slow to migrate. Container technology [35] on the other
hand uses the host operating system for kernel functions, and
enables flexible but lightweight software deployment on any
device that can run the required parts of the Linux kernel.
Combined with container engines that manage the containers
on a device, and container orchestrators which distribute
deployments and tasks among computational nodes, containers
are an essential enabling technology for edge computing.

Another recent virtualization technology is unikernels [36],
which are essentially virtual machines that avoid context
switches by always running in kernel mode. They also min-
imize their memory use and image size by only includ-
ing the kernel functions required by the software they are
compiled for. Finally, there are hybrid technologies such as
Kata containers, which combine lightweight virtual machines
with containers for increased security, at the cost of some
performance.

As mentioned in Section III-A, offloading often takes into
account many factors related to device resources and user
experience. This is true for service deployment in general,
especially in the fog and edge. For example, Kubernetes [37]
accepts any number of custom plug-ins for its scheduler,
and many studies are directly concerned with measuring the
effectiveness of combinations of specific parameters for AI
models to optimally assign services to fog and edge nodes.

C. Software Defined Networks
In some cases computational nodes are located in different

physical networks and may not be able to reach each other

directly, but have to be able to work together as if they are
in the same logical network. Software Defined Networking
(SDN) [38] is a flexible solution to such situations. Using
Network Function Virtualization (NFV), SDN can create a
highly flexible logical network on top of any physical network
infrastructure. Because the network is completely virtual, IP
addresses can also be assigned to interfaces used by virtual
machines and containers.

Note that while a Virtual Private Network (VPN) is an
example of an SDN, the latter is usually more lightweight and
does not require features such as traffic encryption by default.
In a container network, the most basic function of an SDN is
to create an overlay network using a single IP address pool,
from which addresses are assigned to nodes and containers.

SDNs can be used both in the cloud and in fog networks,
and many networking features can be implemented on top
of them using AI. For example, because the entire network
is software-managed, much of the information required for
service discovery, DNS, intrusion detection and intelligent
traffic routing is available by default. The difficulty in building
such features is finding the right parameters to use, and
running them as fault-tolerant, distributed services over many
nodes.

D. Integrating Intelligence

As the scale of fog and edge networks grows, they eventu-
ally contain so many computational nodes that classical, cen-
tralized algorithms cannot scale sufficiently to manage them.
In networks containing millions of nodes, it is impossible
to gather network information and changing node statuses in
real-time to a single location, nor is it feasible for a single
algorithm instance to orchestrate services, detect malicious
traffic, and route traffic within an acceptable time frame. Even
in applications where timing is not an issue, the scale of any
problem combined with the computational complexity of any
classical, cloud-based algorithm will quickly overwhelm the
hardware resources of a single cloud node, or even a few
cloud nodes. This problem of scalability can be solved by
decentralizing such algorithms and deploying them in the edge,
and by integrating AI into them. As discussed in Section
II, some types of AI algorithms have a training phase, and
as such they can determine the important parameters for a
problem during the training phase and produce results quickly
at inference. Furthermore, AI algorithms can be designed
to either send data to the cloud for use in further training,
or even to keep executing training rounds themselves us-
ing gathered data, and merging the resulting weight updates
through federated training. In all cases, AI algorithms can
keep improving their efficiency. Finally, neural networks are
very computationally intensive, but using multiple, specialized
layers they can discover complex, non-linear relations between
parameters that classical algorithms would not be programmed
to take into account.

Apart from decentralizing cloud algorithms and imbuing
them with AI, there are also cases where processing data
locally is the most logical choice. Reasons for this may
include minimizing end-user latency, providing functionality
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even when connections to the cloud fail, privacy issues with
sending data to the cloud (e.g. GDPR), or various other legal
requirements or user preferences. As such, it is unavoidable
to increasingly use decentralized intelligent algorithms to
manage any and all aspects of organization and orchestration
in the edge. Combining this infrastructural intelligence with
AI applications featuring direct user interaction results in the
Intelligent Edge, opening up the way to concepts such as Smart
Cities [39]. Smart Cities have various application areas where
AI can be useful. There are general Smart City applications,
as well as Smart Homes, Industry 4.0, Internet of Vehicles
(IoV) and Smart Health Care. Each of these domains will be
further explained in Section V-A.

E. Standards

Several recent IEEE standards and active projects focus on
various aspects of EI, or can be taken into account when
creating EI solutions. For example, IEEE 1934-2018 [40]
adopts the OpenFog architecture as a standard, providing a
framework for distributed computing, control and networking
functions in an IoT environment on which EI can be built.
Sub-projects of P2805 aim to establish intelligent protocols
for self-managing edge computing nodes [41] and cloud-edge
collaboration for machine learning [42], while P2961 [43] is
to provide a framework for distributed, collaborative machine
learning in an edge-cloud environment. Finally, there are also
projects explicitly aimed at Smart Cities applications, e.g.
P2979 [44] which aims to provide a framework for intelligent
cooperation of edge devices in various IoV use cases.

IV. MOTIVATION AND RELATED WORK

Although the use of AI in the edge is relatively new, a vast
body of work is related to it directly or indirectly. Existing
surveys and reviews often focus on an extremely narrow
aspect of AI in the edge (e.g. specific enabling hardware, only
deep learning applications), without providing a larger context
and assuming advanced knowledge of the reader in all the
discussed topics. While such works are undeniably useful, the
continued expansion of the research field and the divergence
of its constituent topics make it ever more difficult to form a
high-level overview.

This work aims to provide a holistic overview of what
constitutes, and is necessary for, the Intelligent Edge, and
to provide a variety of useful, recent studies in this wide
area of research. However, this article does not include an
exhaustive list of studies for each topic discussed, preferring
instead to provide a high-level summary of the state of the art.
The topics in this article require a deep understanding of AI,
cloud technology, and fog and edge networking. As such, all
these concepts are first introduced to the required degree, and
references are provided for further exploration. Furthermore,
the concept of the Intelligent Edge, being based on two large
and rapidly-changing fields of research, is itself volatile and
constantly progressing. Therefore, periodical reviews can aid
in the continued discovery of research in the field.

The rest of this section presents related work, starting with
general reviews and surveys of AI in the edge and contin-
uing with more specific areas of research, such as enabling
technology and Smart City AI applications.

A. Edge Intelligence

The work of Deng et al. [45] provides a taxonomy of AI
in the edge which focuses mostly on AI for wireless network-
ing, improving service placement using AI and enabling AI,
specifically in the context of DNNs. Other aspects of AI in
the edge, such as security and reliability, are only summarily
explored in favor of a more in-depth technical explanation of
the main topics.

A survey by Shi et al. [46] considers the communication
efficiency of AI in the edge. The premise of the study is
that AI algorithms on edge devices should sparingly use the
limited bandwidth available. As such, they present studies
ranging from the training of communication efficient models
to optimizing communication between algorithms on different
nodes during inference.

Zhou et al. [2] provide a broad overview of studies related to
both the training and inference stages of deep learning for EI.
In addition, they also provide a rating system for the amount
of integration of intelligence in the edge, ranging from cloud-
only AI to edge-only AI.

In their survey on Artificial Intelligence of Things, Zhang
et al. [47] present a detailed taxonomy on enabling, design-
ing and using intelligence for edge IoT sensors. The article
provides a wide range of relevant studies, mostly related to
the main topic of learning methods and perception models for
IoT.

Wang et al. [48] provide a taxonomy and works related
to the various stages of enabling and using deep learning
models in the edge, ranging from hardware innovations to
actual inference on the edge and relevant applications.

A comparison of these works is found in Table II.

B. Enabling AI in the Edge

Much effort has gone into enabling DNNs on edge hard-
ware. CNNs in particular have very deep and computationally
intensive architectures, but the operations involved are highly
modular and repetitive, making them excellent candidates for
acceleration through custom hardware. A survey by Véstias et
al. [49] focuses specifically on accelerating CNNs using recon-
figurable computing hardware, while another from Véstias [50]
focuses on hardware acceleration of deep learning in general.

In a more general study, Zou et al. [51] list various hardware
technologies that enable or accelerate specific types of AI in
the edge. Most of these are designed for CNNs or deep learn-
ing in general, but some are aimed at Support Vector Machines
(SVM). For each technology, the envisioned machine learning
tasks and energy efficiency are reported.

In a survey by Nazir et al. [52], a holistic pipeline model for
the compression and distribution of deep learning tasks in the
edge is presented. As an introduction, this study lists various
types of neural networks commonly used in the edge, and
links to studies with concrete applications of each type. For
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TABLE II: Comparison of scope of general Edge Intelligence surveys.

Article AI types Focus Additional features
Deng et al., 2020 Deep learning Wireless networking Taxonomy
Shi et al., 2020 Neural networks Communication /

Zhou et al., 2019 Deep learning Enabling/integrating AI EI rating
Zhang et al., 2020 General IoT sensors Taxonomy
Wang et al., 2020 Deep learning General Taxonomy

This work General Organization/applications Taxonomy

the main part, it provides selected studies for each of the stages
of the presented pipeline: model compression, (hardware) ac-
celeration and parallelization. Importantly, the authors discuss
the various types of model, data, and architectural parallelism
that can be exploited to run complex neural networks in the
edge.

C. Organizing the Edge through AI

The importance of AI for security in the edge is highlighted
in a survey by Mohanta et al. [53]. In this study, they list
potential attacks on IoT devices, and refer to studies showing
how AI can be applied to prevent attacks (e.g. intrusion
detection, malicious app code). Additionally, studies are cited
that show how blockchain technology can be used to enable
distributed intelligence and ensuring smart contracts.

The use of AI in vehicle-to-everything (V2X) networks
is highlighted by Rihan et al. [54]. In their survey, they
provide an overview of the potential of AI to both enable next-
generation V2X networks, and the future applications utilizing
those networks.

More applications of AI for edge networks are provided by
Wang et al. [55]. In this article, studies are listed that use
AI to enable or improve various aspects of 5G and Beyond-
5G (B5G) networks. The authors argue that AI can be used
to solve currently intractable problems in the design and
optimization of wireless edge networks.

The importance of AI for reliable edge networks is covered
by Gupta et al. [56], specifically arguing for the synergy
of EI and next-generation 6G networks to enable advanced,
low-latency, ultra-reliable applications (e.g. IoV, drones, holo-
graphic communication).

D. End-user Applications using AI

In a general survey of the application domains of AI in the
edge, Huh et al. [57] provide a number of studies related to
often-referenced domains such as Smart Homes, autonomous
vehicles, Smart Factory and Smart City, but also cite studies
related to the more general domains of cloud offloading, video
content analysis and Mobile Edge Computing (MEC).

An overview of AI applications in the Smart City is pro-
vided in a survey by Ullah et al. [58]. This article considers
AI in Intelligent Transport Systems (ITS), Smart power grids,
and cyber-security of Smart City systems. Additionally, the
topic of UAV-based communication in 5G and B5G networks
is discussed.

In their Smart Grid review, Gilbert et al. [59] list various
studies in three distinct categories: the current requirements

and uses for smart grid applications, which smart grid appli-
cations benefit from edge computing, and the future challenges
for smart grid applications in the edge.

A survey by Sepasgozar et al. [60] provides an overview of
AI in Smart Homes and Energy Management Systems. The
article presents a deep statistical analysis of the studies found,
including co-author connectivity and lexical analysis. Selected
papers for each domain vary greatly, but are discussed in detail.

The potential of AI in Internet of Medical Things (IoMT)
based health care is illustrated in a survey by Greco et al.
[61]. Examples of IoMT-specific devices are health monitoring
wearables and field sensor networks, which can be organized
in edge networks. Greco et al. provide studies that combine
AI and IoT in a wide range of medical aspects, including
physiological monitoring, rehabilitation, dietary assessment
and epidemic diseases.

In their survey, Angelopoulos et al. [62] provide studies
related to the use of AI in Industry 4.0 and Industrial Internet
of Things (IIoT). The article provides a taxonomy for AI in
Industry 4.0, listing studies for each category with a focus on
the link between functionality and the type of AI algorithm
used.

E. Blockchain

A survey by Singh et al. [63] provides the required
background knowledge on blockchains as distributed, public
databases in the context of Smart Cities. A number of studies
are provided that combine AI with blockchain for security
aspects of Smart Cities, while discussing how blockchains can
improve privacy and trust, and analyzing potential issues with
blockchain solutions.

In their survey, Yang et al. [64] provide a complete roadmap
to the integration of blockchain and edge computing, starting
with the motivation for the integration of both technolo-
gies, and moving on to frameworks, potential functions of
blockchain in the edge, and challenges to the widespread
adoption of blockchain technology.

Mohanta et al. [53] list various studies that show how
blockchain technology can be used to enable distributed in-
telligence and ensuring smart contracts.

A more specific survey by Wu et al. [65] considers the
combination of blockchain and edge computing to improve the
security and scalability of IIoT. This survey identifies potential
issues with critical infrastructures in Industry 4.0, and argues
for the convergence of blockchain and edge computing to
tackle these issues, providing various supporting studies.

Finally, Nguyen et al. [66] discuss the potential of the
blockchain combined with FL (FLchain) for edge computing,
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listing opportunities and challenges for various edge applica-
tions such as crowdsensing and edge content caching.

V. METHODOLOGY

This section describes the methodology used in constructing
a taxonomy and discovering the relevant subcategories for each
top-level category. Note that while many of the individual low-
level aspects may be applicable to other forms of computing,
including general cloud computing, the taxonomy concerns
only how they affect AI-related edge computing specifically.
This section also elaborates how queries are formed from
taxonomy-related parameters to find relevant studies, and how
studies are categorized based on current research trends.

A. Taxonomy

Fig. 4 show the taxonomy used for this review. Although
the main focus of the article is the “Organization” category,
both “Enabling Technology” and “Applications” are useful
to include because they are closely related to, and often
mesh with, proposed frameworks and solutions to organize
the Intelligent Edge.

The subcategories are discovered by performing searches
on Google Scholar with various relevant keywords, and then
grouping the results by recurring subjects. The keywords and
subcategories are refined iteratively, until each subcategory
contains at least 3 sample studies, but no more than 10, prefer-
ably with one recent, dedicated review or survey indicating
further research. Table III shows the final list of keywords,
which are also used to construct queries to find the individual
studies and articles listed in Sections VI through VIII. Al-
though each (sub)category is elaborated in those sections, a
short introduction to each is given here to fully explain the
taxonomy.

1) Enabling Technology
In the context of this article, enabling technology is defined

as any hardware or software improvement that enables or
improves the use of AI on an edge device. In other words,
this category entails improvements to AI itself, rather than im-
provements in edge networks achieved through the application
of AI.

There are four popular areas of research in this category:
• Hardware improvements or new specialized types of

hardware generally increase the performance of AI, al-
though they also indirectly result in new functionality
and the ability to use more accurate AI models. Ex-
amples of this are the Neural Processing Unit (NPU)
[67], which can be optimized for the type of repetitive
calculation used in ANNs, and Field Programmable Grid
Arrays (FPGA), which in their most basic version can
be modified at the hardware level to quickly execute any
algorithm without the need for software programming.
Any edge device is capable of running neural networks
without an NPU, but such a specialized processor can
increase performance and practical model size by orders
of magnitude without increasing the power requirements
of a device.

• Offloading is not strictly an enabling factor of AI in
the edge, but improves it nonetheless. Its original intent
was to move certain well-delineated tasks from the cloud
to the edge or vice versa. As such, a lot of research in
offloading is related to being able to run AI in the edge
in the first place.

• Model flexibility relates to different factors that allow the
modification of AI models for low-resource edge devices.
For example, model compression is used to reduce the
size of a model, and to improve its performance, at the
cost of a small loss in accuracy. Other approaches involve
creating incrementally smaller but less accurate models
for different classes of hardware, or using modular mod-
els, although the latter is closely related to offloading.

• Training and inference phases are often split up, as
training a model is very computationally intensive and
usually done in the cloud. Because all training data has
to be gathered in the cloud, this approach is not scalable.
Moreover, it enforces a single model for all devices,
even if individual, localized learning may result in more
accurate results. Existing techniques such as FL aim to
solve this issue by integrating the changes learned by each
device into a central model, but training in the edge is still
affected by energy efficiency, scalability and processing
power.

2) Organization
This category entails studies that use AI to improve the

infrastructure of the fog and edge. More specifically, this
includes organizing software services, data and (software
defined) networks, and ensuring their security and reliability.
Note that many of the aspects of “Organization” are closely
related. For example, a study may involve a novel method of
combining service scheduling and aspects of SDN to improve
service reliability or scalability.

There are a number of subcategories that studies can con-
tribute to:

• Orchestration is the optimization of service scheduling
and deployment, and the study of various parameters in-
volved. Many studies focused on this involve optimizing
QoS or end-user experience, balanced against a number
of other factors such as energy efficiency, or minimization
of resource use or network traffic. Effective algorithms for
orchestration in the cloud exist, but in the fog and edge
they are complicated by scale, heterogeneous hardware
and the need for real-time adjustments due to mobile
nodes. This problem can be further complicated by also
taking data placement into account, although most studies
focus on either data placement or service placement
alone.

• Scalability focuses specifically on the problems imposed
on service and network management by the geographical
scale of the edge, and the sheer number of devices in
it. Scalability can be achieved by decentralizing frame-
works or algorithms, but also by organizing them hier-
archically or through modularization. In the first case,
self-organizing networks and service architectures can
be designed, while in the others the cloud is usually
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Fig. 4: Taxonomy of the review.

employed as the highest, centralized level of the service
architecture. Offloading, as discussed in “Enabling Tech-
nology”, can be used to move parts of cloud workloads
to the edge, and as such represents a limited form of
scalability. Finally, automated discovery of nodes and
(service) resources is an important step in effective and
efficient self-organization on the scale of edge networks.

• Security of data and network traffic in the edge is
complicated by the increased exposure compared to cloud
data centers, and because of the scale of the edge.
Research into adversarial attacks attempts to solve se-
curity issues with AI itself, in particular DNNs which
can be “tricked” into incorrect classification. Anomaly
detection and intrusion detection using AI are popular
research topics in the security of edge networks, although
there are other aspects in securing networks. Similarly,
blockchain technologies are gaining a lot of attention for
scalable and secure transaction systems, and where data
in the edge is concerned, privacy is the most significant
aspect of security. Finally, AI can also be used to secure
connections through authentication or authorization.

• Reliability of software, networks and data (integrity)
ensures the continued and seamless functioning of fog
and edge services from an end-user viewpoint. Reliability
of software includes seamlessly failing over to other
service instances when any instance becomes unreach-
able, in addition to taking steps that services do not end
up in invalid states to begin with. Network reliability
involves finding new routes around unreachable nodes or
subnetworks, and discovering and maintaining redundant
routes. Both network and service reliability require real-

time monitoring of nodes and services to enable AI
optimization, and they are often used in combination to
ensure QoS targets. For data, reliability means not only
availability and redundancy, but also the integrity of the
data itself. This is different from data security in that data
may become unintentionally corrupted due to hardware
or software errors. The latter case can also be caused by
problems with AI systems, in which case redundancy and
correction are needed.

• Network organization in the edge is usually done through
SDNs, imposing a virtual, software-controlled layer of IP
addresses and network functions (e.g. NFV) on top of the
physical networks comprising the fog and edge. Apart
from SDNs, many studies focus on network resource
discovery and application traffic routing in the edge,
either as NFV or as part of a holistic approach to edge
networking. Finally, 6G networking has recently emerged
as a research topic, aiming to integrate AI directly into
various aspects of next-generation network management
and operation.

3) Applications
“Applications” in the Intelligent Edge differ from the topics

listed in “Organization” in that they are AI applications that
interact with end-users, running on top of the AI-organized
edge. As such, these applications represent the end goal of
creating the Intelligent Edge: intelligent applications running
autonomously on AI-managed infrastructure, enabled by AI
specific technology.

The Intelligent Edge applications discussed in this review
are:

• Smart City is a collective term for all applications using
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AI in the context of cities. In this article, only applications
that employ EI are considered, although many can also
be realized through AI in the cloud, albeit at the cost of
increased communication overhead and higher response
times. There are a number of popular research topics in
this area, such as inner-city traffic and parking manage-
ment. Other topics include public health monitoring (e.g.
fall detection), and security (e.g. surveillance of specific
areas). Scaling Smart City applications to manage entire
cities poses challenges in terms of service deployment,
traffic routing, resource monitoring and real-time reac-
tion to changes in service and network topology (e.g.
movement of nodes, redistributing load).

• Smart Home applications aim to gradually improve
all aspects of homes, from basic automation to fully
AI-assisted living. Similar to Smart City applications,
many recent Smart Home studies also focus on health
monitoring and security, although there is less need for
scaling and more focus on privacy and personalization.
Scalability is also an important requirement, but only to
be able to deploy the appropriate services to individual
homes when required, rather than forming a collaborative
service mesh across an entire city.

• Industry 4.0 aims to improve various aspects of industry
and manufacturing through AI. For example, blockchain
and AI combinations can reliably log information, which
can later be used to track down production chain issues
related to faulty manufactured items. Other technologies
such as digital twins promise to optimize manufacturing
processes by setting up virtual duplicates and searching
for ideal settings and parameters, either for each step or
holistically.

• Internet of Vehicles or IoV has a wide range of ap-
plications. Some studies involve the detection of traffic
problems and proactively managing the flow of traffic
around affected areas, often using dedicated roadside
units as computational nodes. Others focus on inter-
vehicle communications for optimized traffic flow, or
other network-related aspects of autonomous vehicles. In
almost all cases, IoV applications need to work with large
numbers of fast-moving, unpredictable vehicles, combin-
ing the latest in extremely low-latency communication
(e.g. 5G or 6G) with highly flexible network and service
management.

• Smart Health Care aims to combine IoT and AI for
various health related purposes, most importantly pre-
ventive health care and efficient, personalized patient
monitoring. Applications include, but are not limited
to, fall prediction, general elderly care, preventive and
chronic health care through monitoring, and epidemic
monitoring.

B. Query parameters

The results of this review include both numbers on recent re-
search trends, and selected studies, both of which are gathered
by querying Google Scholar. This source is chosen because it
is a well-maintained meta-index, linking to studies found in

TABLE III: Query keywords per taxonomy (sub)category.

(Sub)category Keywords
Enabling
Technology

GPU, NPU, FPGA, hardware acceleration, par-
titioning, inference, offloading

Orchestration deployment, provisioning, scheduling, optimiza-
tion, energy efficient

Scalability scalability, decentralized, hierarchical, discov-
ery, offloading

Security security, anomaly detection, intrusion detection,
adversarial, blockchain security

Reliability reliability, resilience, fault tolerant
Network networking, discovery, SDN, routing, 6G
Applications smart city, smart home, industry, iiov, iov, vanet,

iomt, health care

TABLE IV: Query keywords for types of AI.

AI type Keywords
Regression regression
Genetic algorithm evolutionary, genetic
Unsupervised learning unsupervised
Supervised learning supervised
Neural network neural
Federated learning federated
Distributed learning distributed learning
Swarm intelligence swarm

various other indexes. For trends, the following base query is
used:

(”edge network” OR ”edge computing” OR ”fog com-
puting” OR ”fog network”) AND ”(keyword(s))” AND
”artificial intelligence”

where (keyword) is replaced by the keywords from Table
III. Note that the keywords are not always directly mapped
to taxonomy categories. Rather, they are considered relevant
topics which may yield studies that can be mapped onto the
taxonomy. The query is crafted to return almost no false
positives, and as little false negatives as possible. However,
many keywords are mentioned only in passing in loosely
related studies, especially as the popularity of any subject
increases, so the apparent interest in some topics will be
inflated compared to the actual interest.

Historical trends are given from 2015 to 2020. Before
2015, most keywords yield either unreliable results (e.g. less
than 5 studies, keywords not yet coined) or irrelevant results,
and 2021 is excluded from the trends because extrapolating
numbers from an incomplete year is unreliable. In all searches,
the Google Scholar options “include patents” and “include
citations” are disabled so that the results represent only studies
in which the keywords were actually used in the text.

The trends are presented in Sections VI through VIII. Some
keywords are inevitably more popular than others, either due
to a focus of interest in their specific direction, or due to being
often-quoted concepts in studies on EI. Because of this, the
results will be presented in two forms; the absolute numbers
to indicate the amount of research interest per keyword, and
normalized numbers to determine the growth of research
interest. In the latter case, the results are normalized to the
amount of research interest in 2015 for each keyword. Finally,
in the charts for relatively research interest, a “General” trend
is added representing the average interest growth in EI.

In addition to the popularity of AI in research topics, the
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popularity of the types of AI used in the edge, as discussed
in Section II, is determined by compiling interest trends using
the same methodology as for research topics. The keywords
used to gather the data for these trends are shown in Table IV.
The results are presented in Section VII.

Further requirements are introduced for the selection of
referenced studies from the base query. The studies included
in this review range only from 2019 to 2021, and their topics
must explicitly relate to a novel application of AI in one or
more aspects of edge computing as detailed in the taxonomy.
They must also be effectively published in a peer-reviewed
journal, barring a limited number of accepted studies from
2021 for which pre-print versions are used.

VI. ENABLING THE INTELLIGENT EDGE

This section discusses recent work related to the “En-
abling Technology” category of the taxonomy presented in
section V-A, including novel hardware solutions, innovations
in offloading, AI model flexibility and important progress in
(distributed) training and inference algorithms for EI.

Although this article aims to cover all types of AI, (deep)
neural networks are currently the most computationally in-
tensive type of AI, and the least suitable to run on general
purpose low-resource edge devices. As such, most of this
section covers technologies to improve the inference stage of
DNNs in the edge.

Fig. 5a shows the number of studies that mention key-
words related to enabling AI in the edge since 2015. In
absolute terms, the most popular topics are offloading and
optimization of inference in the edge, followed closely by GPU
acceleration. Considering relative interest, various hardware
acceleration methods have gained a lot of interest since 2018,
keeping pace with or outpacing interest growth for other
keywords.

Various dedicated PUs aim to improve the performance of
AI inference on low-powered edge devices. Commercial PUs
include Google Edge TPU [68] and Nvidia Jetson Nano, both
of which are designed for running DNNs in the edge. FPGAs
are often used for the acceleration of repetitive but computa-
tionally intensive tasks. As an example, the use of an FPGA
System-on-Chip (SoC) with OpenStack [69] allows the ARM
CPU of the SoC to run a customized OpenStack worker and
task planning, while the FPGA itself executes DNN inference.
This particular solution uses Dynamic Partial Reconfiguration
(DPR) to continually update the FPGA programming, enabling
OpenStack to run a virtual machine on the FPGA. Memory is
shared between the CPU and FPGA for performance reasons.
This solution manages to run a YOLO implementation at 8fps
using merely 6.57W of power, coming close to real-time video
stream processing.

At the level of single devices, efficient management of
different PUs can significantly improve AI performance. In
particular, NeuroPipe [70] is aimed at improving the energy
efficiency of DNN inference on edge devices by slicing
each layer into chunks suited for the processing capacity of
each available PU, and pipelining them independently. By
parallelizing execution like this, NeuroPipe manages to reduce

energy consumption by 11% compared to a normal inference
run.

Moving up to the level of edge networks, efficiency and
responsiveness can be improved by intelligent cooperation
between devices. In an example of client-server cooperation,
Edgent [71] aims to improve the performance of DNN infer-
ence on end-user devices by offloading to edge servers, while
maintaining a high responsiveness through co-inference. Dur-
ing an offline stage, Edgent partitions a DNN using right-sizing
to optimally divide the workload between devices, after which
the partitions can be run on-demand on their respective target
machines. The framework is optimized for communication
efficiency to reduce the required traffic between edge device
and server as they run their respective workloads. Another
approach to this problem finds the optimal partitioning point
in a DNN by considering latencies between devices and
the amount of communication between each pair of layers
[72]. The algorithm is evaluated using several CNN models,
showing that its offloading results in better performance than
local inference, given a sufficiently powerful edge server and
at least 16Kbps of network traffic.

Instead of two-part co-inference, DNNs can also be divided
into (sub)layer tasks. However, the distributed deployment of
such tasks is an intractable scheduling problem (NP-hard).
One possibility is to optimize task deployment for minimal
total task completion delays using Solution Space Tree Pruning
(SSTP) [73]. This approach is shown to produce significantly
lower delays than Edgent, while both perform better than a
cloud-only inference model. The addition of partial execution
of the inference phase to layer-wise partitioning and offloading
of DNNs can result in lower overall inference delays and lower
processing requirements, at the cost of reduced classification
accuracy. However, this approach significantly improves the
performance of real-time applications (e.g. video analysis) on
resource-constrained embedded devices [74]. Another solution
is to partition not only into layers, but into sub-units of layers,
while using a scalable, distributed algorithm to handle the
offloading [75]. The Matching Game-based DINA-O offloads
each individual piece to different fog nodes based on factors
such as queue length, communication delays and processing
delays. This approach is shown to have 2.6 to 4.2 times lower
total inference latencies than comparable algorithms.

The learning phase of DNNs is far more computationally in-
tensive than inference, and thus more challenging to efficiently
realize in the edge. The offloading of learning tasks from the
cloud to the edge can be achieved using a graph-based task
representation of a DNN [76]. In this approach, the learning
task graph is requested on-demand from the cloud, and divided
among nearby, suitable edge servers by the edge server that
initiated the learning task using NSGA-II. The result is a
collaborative learning scheme for DNNs in the edge with feed-
back of learned parameters to the cloud. Another solution is to
remove the need for a cloud server entirely, by using a voting
process to select an appropriate edge node as coordinator for
a collaborative learning process [77]. The coordinator node
is elected by all nodes through a democratic voting strategy,
based on computational capacity and distance from the actual
deployments. The learning process itself is twofold: a first
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Fig. 5: Research interest in AI enabling technology in the edge, compared to general interest in edge AI.
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Fig. 7: Research interest in high-level organizational aspects of the Intelligent Edge. In the case of “Orchestration”, the more
common search term “deployment” is used.

training batch is executed on the coordinator node, after which
the preliminary model is distributed to all other nodes for
further training. The computational and energetic impact of the
learning algorithm itself can be optimized by using a ternarized
gradient [78]. Ternarized BackPropagation (TBP) uses only
the signs of weight differences to update the model weights,
rather than calculating whole integer values. Additionally, this
method uses L2 regularization and a mutation rate for weight
updates during the training process. The result is increased
performance without reducing the accuracy of the resulting
trained model, and evaluations show that compared to default
backpropagation using 16 bit integers, this method is more
energy efficient by two orders of magnitude.

VII. ORGANIZING THE INTELLIGENT EDGE

Fig. 6a shows the interest in various types of AI since 2016.
This chart does not include 2015 due to unreliable results for
several categories. Neural networks are by far the most popular
topic, being mentioned or used in around 50% of the studies in
2020. Around 30% of the studies mention genetic algorithms
(“Genetic” + “Evolutionary”), while regression methods re-
ceive 20% of the total attention. Although neural networks
are Turing complete [79], and can thus technically perform any
type of calculation, the use of other AI methods makes sense
in many situations, for example when the problem is more
easily modeled for a different approach, or when hardware
requirements are too stringent to run a neural network. The
interest in various types of distributed AI is shown in Fig.
6b. The number of mentions of all keywords has increased
over 10 times in just 4 years, showing a strong interest in
decentralized AI in the edge, although specific interest in FL
and SI significantly outpaces general distributed algorithms.

General research trends are presented in Fig. 7, showing
that while there is some spread in the numbers of studies
mentioning various aspects of organizing the Intelligent Edge,
the relative growth is more or less equal for all keywords. The
only exception is “scalability”, which lags in both absolute and
relative interest.

A. Orchestration

Fig. 8 shows the number of studies and relative interest
in edge orchestration for AI, or using AI. Optimization and
energy efficiency attract the most research interest, while
provisioning is least mentioned. Despite significant differences
in absolute interest, all keywords have a comparable growth
in relative interest, indicating significant research potential in
any topic.

An example of decentralized AI task orchestration
is Cognition-Centric Fog Computing Resource Balancing
(CFCRB) [80], which uses a node exploration algorithm and
distributed Q-learning to find the optimal nodes to offload
computational tasks to. CFCRB consists of three main con-
cepts; sensing involves knowledge of node resources and IoT
data acquisition, interacting involves efficient communication
and coordination, and learning finds the optimal strategies for
dividing workloads over resources.

Self-Optimizing Swirly (SoSwirly) [81] is another dis-
tributed edge-oriented orchestrator, using SI to let edge nodes
and fog nodes find their own optimal service providers. Nodes
run a discovery algorithm to find other nodes in their neigh-
bourhoods, requesting services from other nodes based on their
available resources and distance. Services are redeployed on-
demand in real-time as node positions and resources change,
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Fig. 8: Research interest in software orchestration in the Intelligent Edge.

and performance is shown to be two orders of magnitude faster
than evolutionary algorithms (NSGA-II).

For a more fine-grained demand-oriented deployment strat-
egy, MDPs and a Dueling-Deep Q-network can be combined
[82] to orchestrate services in mobile edge networks based
on patterns in end-user service requests. Additionally, the
algorithm also decides whether to let an edge service instance
handle any request, or to forward it to the cloud. The approach
is compared to various other deep learning solutions, showing
an improvement in both total response time, and the number
of requests executed in the edge rather than forwarded to the
cloud.

The decision of whether or not to offload tasks from an
edge device to a computational node can also be modeled
as an MDP, and optimized using ε-greedy Q-learning [83].
This approach takes into account available resources on nodes,
as well as communication channel properties and task queue
lengths. Evaluations indicate execution times in line with those
of offloading everything to edge servers, but higher power
requirements than computing everything locally.

Fuzzy Clustering Algorithm with PSO (FCAP) [84] is a
combined algorithm in which both fog nodes and computa-
tional tasks are represented as standardized resource vectors.
In a preliminary phase, Fuzzy Clustering is used to divide
fog nodes into computational, storage and network nodes
depending on their resources. PSO is used to avoid local
optima during this clustering phase. In the scheduling phase,
the task resource vector is used to find the best matching class,
and the most suitable node to run the task on from that class.

A similar approach, I-FASC [85], clusters the tasks into
categories rather than the computational nodes, using the same
classes as FCAP. The tasks of each class are scheduled using
a modified Fireworks Algorithm (FA), a crossbreed between

SI and evolutionary algorithms. Evaluations show that I-FASC
has lower execution times than comparable algorithms, while
also providing a more stable load across nodes as the number
of tasks increases.

Rather than using AI to directly determine the nodes to of-
fload tasks to, AI-Based Task Distribution Algorithm (AITDA)
[86] uses a neural network on each computational node to
predict the execution time for potential tasks. The predictions
are based on task type and task input data, and the results are
combined with policies to determine if a task should be run
on a fog node or in the cloud. The example policy optimizes
both response time and network traffic, and results show a
significant advantage over either completely cloud-based or
completely-fog based processing.

The use of dual neural networks with RL aims to provide
an integral cloud to edge optimization [87]. In this approach,
the first network predicts if a specified task is suitable for
execution in the fog, while the second distributes fog-allocated
tasks among computational nodes. The second network opti-
mizes task placement for evenly distributed resource use and
minimal communication, with the explicit goal of clustering
interdependent tasks on the same nodes to further reduce
network traffic.

LATA, an approach to jointly optimizing communication
efficiency and end-user latency specifically for fog nodes con-
nected by a wireless SDN [88], aims to balance the workloads
of fog nodes to achieve better global response times. The
algorithm itself is distributed over the SDN controller and the
fog nodes, and evaluations show consistently lower latencies
than comparable solutions.

Rather than focusing only on the optimization of latency
versus communication efficiency, FairTS [89] uses a resource-
centered approach to online task scheduling in the fog. This
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solution is based on Dominant Resource Fairness (DRF) to
ensure that all types of resources are divided fairly among
running tasks, using RL to learn the optimal assignments.
Comparison to a greedy strategy shows similar average task
completion times, but more stable execution times and thus
potential QoS guarantees.

Applying a fairness policy to computational nodes rather
than resource allocations, Fairness Cooperation Algorithm
(FCA) [90] aims to fairly divide tasks between fog nodes
based on their available resources, for the joint optimization
of global minimal energy consumption and task processing
time. To train FCA, an algorithm is presented which converges
slower than either Newton Descent or Steepest Descent in
early rounds, but results in smaller error rates after only 75
rounds.

In their work, Yang et al. [91] present an MDP-based model
which attempts to optimize the use of FL in EI. Arguing
that while FL preserves privacy, it also has a negative effect
on battery-powered and low-resource devices, their algorithm
aims to jointly optimize both privacy gains from FL, and
resource use on edge devices.

Distributed Artificial Intelligence-as-a-Service (DAIaaS) is
a different take on distributed AI task orchestration [92],
aiming to provide a standardized framework for distributed
intelligent services in Internet of Everything (IoE) environ-
ments. Deployment parameters considered by this framework
are CPU requirements, network traffic and link latencies, and
it is evaluated in terms of energy and financial costs for three
distinct use cases.

FogBus [93] provides a Platform-as-a-Service (PaaS) ap-
proach to cloud-fog-IoT integration, allowing platform in-
dependent deployment of software services. A multi-tiered
architecture is used to standardize communication and appli-
cation behavior, separating IoT devices from communication
gateways, computational nodes and the cloud. A blockchain
implementation is added in addition to other security features
to ensure data integrity when transferring confidential data
between nodes. The platform is evaluated in terms of energy
efficiency, latency and resource use.

Some orchestrators are designed for specific domains, for
example in Mobile Crowdsensing [94] using DRL with a
CNN to organize the execution of tasks. The orchestrator
is designed to schedule divisible computing tasks generated
by edge devices, deploying each subtask in the fog or cloud
depending on computational requirements. The scheduler aims
to guarantee QoS for each task, and to minimize processing
time and network traffic for each task.

Other orchestrators are aimed at databases rather than com-
putational tasks [95], using MDP as a probabilistic method
to determine database placement and to guarantee freely
definable QoS requirements for application developers. This
database orchestrator is evaluated using a Kubernetes-based
implementation, and compared to Analytic Hierarchy Process
(AHP) in terms of QoS violations.

B. Scalability
The research interest in scalability in the Intelligent Edge

is shown in Fig. 9. All keywords are more or less equally

mentioned, with the umbrella term “Scalable” occurring more
often, although interest in “Discovery” feathers off slightly in
2020. As growth in relative interest is concerned, “Offloading”
and “Decentralized” have the fastest growing interest, while
“Discovery” again lags.

Scalability and efficient orchestration have largely overlap-
ping requirements. As a result, many of the studies listed in
this section are similar to the ones discussed for “Orchestra-
tion”, they have been specifically selected to illustrate one or
more aspects of scalability for EI.

While offloading is mostly an enabling technology and
requires new organizational algorithms, it can also be used
as a tool for scalable AIoT (Artificial Intelligence of Things).
Splitting neural networks layer-wise and offloading the initial
layers to IoT devices [96] has the advantage of not only scaling
part of the training process with the number of edge devices,
but also that training occurs where the IoT sensor data is most
readily available. For the higher layers, less data intensive
learned features are communicated to the cloud for further
training.

On the level of a single neural network model, scalability
can be achieved through the offloading of each layer to
different devices. Accelerated Artificial Intelligence for IoT
(AAIoT) [97] is one such approach, optimizing the response
time of inference versus network traffic and computational
effort through dynamic programming. Furthermore, the algo-
rithm can operate in multi-layer IoT architectures, rather than
a two-layer cloud-fog architecture.

Intelligent service discovery and integration are an essential
part of functionality scaling, providing new functions without
the need for manual implementation of suitable interfaces.
One approach using Generative Adversarial Networks (GANs)
[98] shows the potential of this type of neural network for
self-learning service discovery in the edge, specifically in
the context of 6G networks. The generators in this approach
are trained to produce synthetic data associated with distinct
service classes, based on captured data. The discriminators
have the dual tasks of recognizing real data from fake data,
and associating it with a specific generator. As such, specific
traffic flows are discovered by adding generators, whereas the
discriminator identifies and classifies them.

Decentralization is an important aspect of scaling EI, as
no centralized or offloaded algorithm can scale to the load of
exponentially growing edge networks. One approach enables
distributed, cloud-cooperative intelligence by combining a
Task Model Offloading Algorithm (TMOA) and Adaptive Task
Scheduling Algorithm (ATSA) based on Ant Colony [99].
The former assigns nodes to tasks based on computational
capacity, latency and energy efficiency, while the latter ensures
load balancing of AI tasks between nodes. However, in this
approach the scheduler algorithm itself remains a centralized
instance. Evaluations show performance comparable to or
better than state of the art alternatives.

A study by Lim et al. [100] considers the scale limiting
bottleneck of communication inefficiency in FL, and resource
allocation problems in the more efficient Hierarchical Feder-
ated Learning (HFL). They propose a two-level resource allo-
cation solution for HFL. In the lower level, evolutionary game
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Fig. 9: Research interest in scalability in the Intelligent Edge.

theory is used to model the process of data owners joining
cluster heads, based on rewards given for data participation.
In the upper level, a deep learning-based auction mechanism
is used for cluster heads to service model owners. This added
level of indirection is shown by evaluations to lead to stable
resource allocation.

SoSwirly [81] uses an approach based on SI to distribute
the task and service orchestration process itself. Each end-
user device is responsible for finding the nearest suitable fog
node for the services it requires, switching to other fog nodes
in real-time if QoS requirements are violated. Furthermore,
SoSwirly can be layered for a hierarchical architecture, from
the IoT sensors through various layers to the cloud.

Recently, the network edge has been used to distribute Data
Stream Processing (DSP) [101] for intelligent applications,
parallelizing stream processing and increasing scalability. For
example, Aggregate End-to-End Latency Strategy with Region
Patterns and Latency Awareness (AELS+RP+LA) [102] aims
to decrease the processing latency of DSP applications in
geo-distributed cloud-edge architectures. The solution analyses
DSP application graphs to determine the optimal offloading
strategy, and is shown to scale up to 250.000 edge resources
(edge nodes and IoT devices). Another edge DSP framework
[103] optimizes energy efficiency by reducing network traffic
in real-time through two components. The first is an energy-
aware IoT data gathering component, using adaptive sampling
to reduce its network traffic, while the second is a data
prediction model which calculates future data for multiple
sensor IoT environments. The data prediction model uses
clustering to filter outliers and to generate reliable data, and the
framework is shown to be up to 60% more energy efficient for
IoT devices than continuous data streams. Finally, Processing

Intelligent Agent Running on Fog Infrastructure (PIAF) [104]
uses Time Petri Nets to model time-critical DSP in the context
of industrial settings, using intelligent agents to distribute
DSPs among the available edge nodes.

Another solution for the distributed management of cloud
and edge resources for intelligent applications uses modified
Virtual Infrastructure Managers (VIMs), specifically Open-
Stack in the cloud and Docker in the edge [105]. Both
OpenStack and Docker are extended with a custom resource
management API (DARK), and a Network Function Virtu-
alization Orchestrator (MORCH). The scheduling algorithm
in DARK works in real-time, mapping incoming requests
in the form of service graphs onto available resources and
nodes using a greedy heuristic, taking into account network
conditions between nodes. The MORCH component enables
network-awareness for a multi-layer architecture.

The goal of scalability studies can also be limited to a
single aspect of EI. For example, a scalable Intrusion Detection
System (IDS) for Smart Cities [106] based on the distributed
training and inference of neural networks. Two workflows
are presented, a semi-distributed approach in which feature
selection is distributed but final classification is performed by
a central instance in the fog, and a fully distributed version.
While the accuracy of the distributed approach is about 2%
less than a centralized algorithm, the Time To Build Model
(TTBM) is 64.82 times faster.

C. Security
The research interest in various aspects of security in

the Intelligent Edge is shown in Fig. 10. While there is a
great interest in security itself, more specific keywords are
mentioned far less, possibly indicating that most studies focus



OJCOMS-00673-2021 19

2015 2016 2017 2018 2019 2020
0

2,000

4,000

6,000

Year

St
ud

ie
s

(#
)

Security Anomaly Det. Intrusion Det.
Adversarial Blockchain Sec.

(a) Number of studies mentioning AI security in the Intelli-
gent Edge.

2015 2016 2017 2018 2019 2020
0

100

200

300

400

500

Year

R
el

at
iv

e
in

te
re

st

Security Anomaly Det. Intrusion Det.
Adversarial Blockchain Sec. General

(b) Time-relative interest in security in the Intelligent Edge,
normalized to 2015.

Fig. 10: Research interest in security in the Intelligent Edge.

on one specific topic, or that general security concerns are a
secondary topic of many loosely related studies. While there is
a significant interest in challenges such as anomaly detection
and intrusion detection, there has been an explosive growth
in interest related to adversarial attacks and blockchain-based
solutions since 2018.

SecOFF-FCIoT [107] is aimed specifically at secure of-
floading of computational tasks. The data is secured at the
sensor level using a Neuro-Fuzzy Model which predicts device
sensitivity to malicious data injection, and offloaded to appro-
priate fog nodes using PSO, taking into account the processing
capacity and energy levels of nodes. Although some tasks are
offloaded to the cloud, RL is used to ensure data privacy by
offloading tasks with sensitive data only to private clouds.
Evaluations show this approach has a significantly lower
energy consumption and response latency than comparable
solutions.

Secure Mobile Crowdsensing Protocol (SMCP) [108] pro-
vides a framework to secure data and ensure privacy for
crowdsensing applications in the edge. The framework uses a
cloud server to act as a registry for fog and edge nodes, using
Extended Triple Diffie–Hellman Key Agreement (X3DHKA)
and Advanced Encryption Standard (AES) as lightweight al-
gorithms to secure traffic and enable the mutual authentication
of nodes.

A general approach to anomaly detection in the fog is
provided by Yang et al. [109], along with a concrete example
of a Deep Network Analyzer (DNA) for 5G networks.

An unnamed holistic framework by Jararweh et al. [110]
offers a distributed approach for trustworthy and reliable
edge services. This framework incorporates custom algorithms
which deploy services in the edge and guarantee user privacy.

To ensure data and network traffic integrity, a neural network-
based IDS is integrated. Evaluations show that the accuracy
of this IDS is up to 99.3%, and that response times can be
significantly reduced by scaling the number of edge servers.

Another solution for anomaly detection uses a collabo-
rative/transfer learning approach in the fog, using Principal
Component Analysis (PCA) for initial feature engineering and
using a variety of models (e.g. RL, DNN, SVM) for each node,
selecting the optimal one [111]. The fog enabled infrastructure
supporting this distributed AI consists of standard software
such as Hadoop and Spark, using both batch and streaming
modes.

SeArch [112] is a hierarchical IDS for SDN-based cloud
IoT, deployed on edge gateways, fog SDN controllers and as
a cloud application. Communication channels are restricted
to the same level or one level higher in the architecture. The
algorithms at each level are restricted by computational power;
SVM for node-level detection in the edge, Self-Organizing
Maps (SOE) for network-level detection in the fog, and deep
learning in the cloud. Evaluations to alternative solutions
show that SeArch has similar accuracy, but significantly lower
detection times.

In another approach to IDS, a framework using TA-Edge
[113] uses Trusted Authority edge nodes to certify other edge
devices in their domains, securing communication between
them. The second component of the framework, SDN-ADS,
is an SDN/Openflow based anomaly detection system which
first discovers the topology and SDN data flows of the entire
network. This topology is used by a malicious traffic detector
to find packets with invalid properties or routed through
anomalous flows.

In the context of Smart Homes, AI can be used to monitor
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smart devices, and to authenticate and authorize them to
interact with the cloud [114]. This approach learns the specific
behaviors of devices in the home network, which allows the
creation of device profiles that can be authorized by end-users.

Adversarial attacks exploit the modeling properties of deep
learning networks to cause misclassification or incorrect out-
puts. Small, but intentional perturbations in the input can
reliably cause misclassification, whereas accidental, seemingly
random input can sometimes be misinterpreted by a DNN,
with high probability outputs. DeSVig [115] is a decentralized
approach to correct such problems within milliseconds in
Industrial AI systems, using Conditional GANs (CGAN) to
verify the inputs and outputs of DNNs against attacks. The
CGAN is trained to generate copies of the inputs supplied by
DNNs, while a separate discriminator compares the generated
copy against the actual input to determine whether it contains
signals that indicate an attack. Evaluations indicate 96-99%
accuracies for several datasets, and detection within 62ms.

Another strategy aims to construct and execute DNNs safely
by ensuring data integrity during both the training (poison-
ing/backdoor attack) and inference (adversarial) phases, and
the security and privacy of data transfers during training
[116]. Secure training is achieved by simultaneously using
active, pending and secure models for each application to
detect suspected hostile data. These data are stored in a
“hostile” dataset and used to update the pending model, while
eventually a separate detector DNN will recognize the hostile
features and integrate them into a new secure model. Security
during inference is enforced through a punishment mechanism
derived from a game model.

Blockchain technology is often used in conjunction with
AI for the secure processing and distributed storage of
transaction-like data in edge networks. For example, in Smart
Healthcare [117] AI on edge devices can be leveraged for
biometric data analysis and feature extraction, the results of
which are stored in a blockchain, or enable the execution
of smart contracts in the edge. A concrete implementation
considers arrhythmia detection with a CNN in the edge,
storing the resulting output along with device ID and other
transactional metadata in an Ethereum chain.

Similarly, blockchain applications can aid with privacy
concerning sensitive data in the edge by processing data
locally using AI, and keeping track of all parties accessing
the resulting features by using an Ethereum chain [118].

A different application combines blockchain-based smart
contracts with trustless smart oracles for trust management
in the fog computing platform of DECENTER [119]. This
particular framework uses blockchains to register trusted com-
ponents and users, while smart contracts use data provided by
the smart oracles to verify QoS and trust requirements.

Finally, BlockSecIoTNet [120] provides an example of
using blockchain technology as part of an IDS. An SDN
based IoT network is used to continually monitor node traffic,
allowing ubiquitous and decentralized IDS, while a blockchain
ensures decentralized, trusted data storage and logging of the
transactions between components. A similar approach can be
applied to traffic in Vehicular Ad-Hoc Networks (VANETs)
[121], in which the blockchain provides trust between actors

and components.

D. Reliability

Fig. 11 shows the research interest in reliability in the
Intelligent Edge. The trends presented here are similar to those
for the security; great interest in reliability in general, but
far less interest in specific aspects, especially fault tolerance.
However, the interest in reliability keeps almost perfect pace
with the general interest in EI, indicating that it is consistently
an important and pervasive topic in studies whose primary
subject does not necessarily concern reliability.

As the reliability of systems starts with their input, reliable
IoT sensor data is an important enabling factor of EI. One
approach towards reliable sensor data uses fog-based valida-
tion by combining the output of several physically clustered
sensors of different types to detect unreliable outputs [122].
The algorithm is applied to a scenario in which AI detects
people through a security camera, showing that false negatives
of the AI can be corrected through sensory substitution.

Moving up to the level of reliable AI using IoT data, deep-
FogGuard [123] is a DNN augmentation scheme which makes
distributed inference resilient to failure. The main feature of
this scheme is that it relies on skip hyperconnections, which
function like residual connections in DNNs, except that they
skip entire nodes rather than simply layers. By ensuring at
least a minimal data flow from lower layers on node failure,
deepFogGuard is shown to significantly improve inference
accuracy over default DNN inference, especially for high
node failure rates. The mobility of vehicles in IoV can be a
detriment to timely and reliable inference, but the application
of AI and coded computing can instead exploit this mobility
through opportunistic offloading [124]. This solution uses a
modified Multi-Armed Bandit (MAB) approach to learn the
delay behavior of nodes in real-time, while coded computing
is used for redundant offloading, accepting whichever results
are received first.

Finally, on the scope of networks, work by Radanliev et al.
[125] develops a risk-assessment framework for the purpose of
creating secure and reliable networks in extreme environments,
specifically in the context of edge computing and AI.

For holistic solutions aiming to enhance overall reliability,
Elastic Intelligent Fog (EiF) [126] is a general, AI-enabled
fog computing framework designed to enable distributed and
reliable IoT systems. The approach is similar to offloading,
but implemented as PaaS, offering APIs for network, IoT and
AI functions for edge deployments. The framework itself uses
real-time monitoring to enable Follow-me Moving Edge Cloud
functionality, in which services “follow” users in the edge,
employing FL to update the deployment strategy.

E. Networking

The interest in network-related aspects of the Intelligent
Edge is shown in Fig. 12. In absolute terms, discovery and
routing have attracted the most interest since 2015, although
interest in 6G has skyrocketed since 2018 as the concept of
the Intelligent Edge has grown, and at the current growth rate
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it will become one of the most discussed topics in EI within
2 years.

Work by Xia et al. [127] illustrates the effects of AI and
Fog Radio Access Networks (F-RANs) on each other. It
discusses how the deployment of distributed and hierarchical
AI, especially DNNs, is enabled by the properties of F-RANs,
while F-RANs themselves are organized more efficiently by
AI. A concrete example is given through the use of MAB to
solve a caching problem with unknown content popularity.

Offloading can be used to optimize network performance,
for example by minimizing communication power consump-
tion in wireless networks [128]. Unlike most similar ap-
proaches, this framework uses statistical learning, specifically
iteratively reweighted L1 minimization with difference-of-
convex functions regularization. Evaluations show that this
approach results in a significantly lower power consumption
than comparable algorithms.

By dividing large networks into cells and applying a
CNNs, cell outages and congestion can be detected and traffic
rerouted. The scalability and reliability of this approach can
be increased by distributing the CNN over edge servers,
each managing 100 cells [129]. Evaluations indicate that this
distributed anomaly detection has up to 96% accuracy.

Inductive Content Augmented Network Embedding
(ICANE) [130] uses a network embedding which preserves
higher order (multi-hop) node proximity, aimed to facilitate
service deployment in edge networks. The embedding is
learned by sampling network nodes for neighbours up to k
hops, and transforming proximities and node resources into
feature vectors, which are fed to an LSTM based network.
Evaluations show that ICANE has significantly higher F1
scores [131] than similar algorithms for various learning
datasets.

Because of its virtual nature, SDN allows for new possi-
bilities in ad-hoc network organization. For example, a self-
adaptive SDN based solution can organize virtual topologies
based on application demands, available resources and physi-
cal topologies [132]. A practical implementation uses ONOS
SDN controllers and OpenFlow switches, deployed by a self-
adaptive framework, to organize the SDN. While this particular
approach does not yet employ AI, the authors plan to use
machine learning to improve the organizational algorithm.

Another framework combines the flexibility of SDN with
extra security [133], with a focus on Smart Healthcare. IoT
devices are authenticated by edge servers using a lightweight
probabilistic k-nearest neighbour (p-KNN) based algorithm.
The edge servers are used for collaborative intelligence,
offloading tasks to each other, while the SDN controller
is responsible for load balancing and network optimization
between them. The offloading algorithm uses a form of SI,
with each edge server using Beacons to alert nearby servers
if their task queue grows too long.

Intelligent real-time routing decisions can greatly improve
network performance. As an example, Smart Edge Broker
(SEB) [134] has a dual purpose. Its main purpose is routing
Smart Home traffic in edge networks, acting as a broker to
organize direct communication between edge nodes instead
of routing through the cloud. By keeping all communication

between nodes in the edge network, latency and traffic over-
head are reduced. It also acts as an edge server, filtering and
processing any incoming data instead of forwarding it to the
cloud.

AI plays a critical role in most research on next-generation
6G networks. One architecture [135] defines four layers of
AI in 6G; intelligent sensing, analytics, intelligent control and
smart applications, examining which types of AI would be
suitable for each purpose. Further topics discussed include
communication spectrum management, AI-empowered MEC,
and intelligent mobility management.

VIII. APPLICATIONS IN THE INTELLIGENT EDGE

Fig. 13 shows the research interest in Intelligent Edge
applications. In absolute numbers most domains are equally
popular, but the relatively few and variable mentions of
related abbreviations (e.g. IoMT, IIoT) indicate an uneven
terminology. However, the recent relative growth of “IoMT”
and “IIoT” may simply indicate some time is required for
their widespread adoption. In relative terms, the interest in
industrial applications is rising explosively, even compared to
the significant growth of other domains.

A. Smart City

Apart from the specific domains of health care, IoV, IIoT
and Smart Homes, the Smart City comprises a large number
of topics and potential AI applications. This section discusses
only some of the most recent, AI-based applications as an
introduction.

Smart Grids, often regulated by Energy Management Sys-
tems (EMSs), play an important role in an ever more fine-
grained energy grid, optimizing for demand and minimizing
losses and overproduction. Improving EI paves the way for
the decentralization of Smart Grid functionality to the edge,
such as an AI-oriented Smart Power Meter with edge analytics
for use in a cloud-assisted EMS [136]. Another Smart Grid
application is the detection of energy fraud using edge-based
AI [137]. In this work, data from smart appliances and
distributed power sources (e.g. solar panels) is pre-processed
using Principal Component Analysis (PCA) and Missing Com-
pletely At Random (MCAR), and evaluations show that neural
network-based regression shows promise for the classification
phase.

Another popular Smart City topic is parking surveillance.
The advent of deep learning on edge hardware has enabled
real-time intelligent surveillance systems based in the edge.
Such systems can combine processing power of IoT devices
and edge servers [138], optimizing for performance while
minimizing network traffic. The work in this study combines
background subtraction with a Single Shot Detector (SSD)
on IoT devices, and a tracking algorithm on edge servers to
efficiently track multiple vehicles in poor lighting conditions.
The work of Mittal et al. [139] summarizes the use of and
challenges of deep learning in the edge for more general
surveillance applications in the Smart City.
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Fig. 13: Research interest in Intelligent Edge applications.

B. Smart Home
Edge-based surveillance systems similar to those in Smart

Cities can be applied to crime prevention in Smart Home
environments [140]. This work uses an event-driven approach,
where edge devices use background subtraction for quick,
naive motion detection. Upon motion detection, an edge device
forwards video data to fog nodes, which use a CNN (VGGNet)
to classify crime objects (e.g. guns). When an object is
detected, labeled images tagged with location information can
be forwarded to the relevant authorities.

ImPeRIum is a general, fog-enabled Smart Home solution
[141]. In its architecture, data is gathered by sensor nodes
and forwarded to nearby computation capable devices (defined
as fog nodes, e.g. Smart TV, gateway device) for decision
making. The decision process uses both an ensemble method
and MLP, and the models are distributed over all fog nodes
to avoid a single point of failure. Efficient dissemination of
data to other devices is achieved through a Publish/Subscribe
mechanism (MQTT), only publishing an event when it is
dissimilar enough to the previously sent one.

The next section discusses some AI applications in Smart
Health Care. Some of these can overlap with Smart Homes,
for example a fog-based framework for predictive veterinary
health care [142]. This framework uses FogBus [93] as a base
platform, along with a WiSense mesh and a health sensor belt.
The Probability of Health Vulnerability (PoHV) is calculated
in the fog using sensory, environmental, behavioral and dietary
data. The PoHV is further processed by a temporal ANN (t-
ANN) which predicts a Temporal Sensitivity Measure (TSM),
classified into alert levels. Finally, a Self Organized Map is
used to create day-to-day visualizations for caregivers.

C. Smart Health Care
Fall detection is an example IoMT application which can

benefit greatly from running in the edge [143]. This type of
real-time application requires pervasive sensor and wireless
networks, although these are often low-powered and have
limited bandwidth. In the proposed architecture, sensor data
is sent to a local edge gateway over low-power Bluetooth,
where an LSTM RNN performs fall detection in real-time. In
case a fall is detected, an event is sent over LoRa to a fog
server, which sends the required notifications to caregivers.

One Smart Health Care framework is based on collaborative
learning, distributing AI over the edge and fog [144]. A case
study on arrhythmia detection has edge devices performing
ECG signal pre-processing, feature extraction, and classifi-
cation with a shallow neural network. If the probability of
the classification is too low, a CNN in the fog layer takes
over, using the full ECG image as input. Finally, ECG data is
also streamed to the cloud, where it is combined with health
provider data to train and improve (personalized) models. A
similar application [145] uses EEG data to predict seizures in
patients, but this approach uses Discrete Wavelet Transform
(DWT) as an additional de-noising step and a Kriging model
(Gaussian regression) as a classifier. Finally, deep learning can
also be used for disease prediction. For example, biometric
data from IoMT sensors combined with medical metadata,
processed by a Deep Factorization Machine (DeepFM), can
predict the presence of hepatitis [146].

D. Industry 4.0
A general study on distributed AI in IIoT by Queiroz et al.

[147] lists key concerns for the synergy of distributed AI and
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Cyber-Physical Systems (CPS) in industrial settings. These
concerns are fine-grained, covering every aspect from network-
ing and embedded hardware to human-machine interaction,
identifying cross-concerns for the successful cooperation of
AI and CPS.

Infrastructurally, IIoT can use the same multi-tier architec-
ture as used in various other applications of AI in the edge,
with the edge interfacing with humans and machinery. One
such architecture uses a cloud tier for training, fog/edge tiers
for distributed inference and an SDN layer to seamlessly con-
nect all devices [148]. An IIoT AI task scheduling algorithm
is implemented on top of this architecture, optimizing for
latency by taking into account computational capacity and
the proximity of edge servers to manufacturing equipment.
Evaluations show this approach is significantly more efficient
than either cloud computing or ad-hoc, in-place execution.

Similar work also uses a multi-tier architecture, arguing how
it solves latency, bandwidth and security problems compared
to a purely cloud-based IIoT approach [149]. This approach
uses the edge as an interfacing and control layer, and the
fog as an information integration layer. The potential for a
multi-tier approach to enable Digital Twin Shop-floor (DTS)
is discussed, in which the virtual representation of the physical
shop-floor can be used to intelligently manage and improve
manufacturing processes.

A blockchain-edge framework for IIoT by Kumar et al.
[150] does not directly involve AI, but is aimed at facilitating
AI applications, and the potential for integrating FL into the
blockchain is discussed.

Fogsy [151] is a holistic system for the training, deployment
and management of AI in industrial settings. It operates as
a fog/edge cluster management system, with facilities for
data procurement and management in addition to AI model
management. It also features AI pipeline management, and
explainability of models through causal graphs.

A study from the Smart Maintenance Living Lab presents an
approach for Smart Predictive/Preventive Maintenance [152],
using a three-tiered platform based on Obelisk, a fog- and
cloud-based Smart City framework. Data from IIoT sensors
is gathered in the Edge tier and pre-processed (e.g. feature
extraction) by gateways, after which it is sent to Obelisk in the
Platform tier for ingestion. A collection of machine learning
algorithms act on the ingested data to generate dashboard data
for a centralized Enterprise tier.

An example AI application in IIoT is smoke detection
in foggy environments [153]. This approach uses an energy
efficient residual CNN based on MobileNet V2, designed
for deployment in Smart City and IIoT settings. Evaluations
indicate both higher accuracy and better performance than
state of the art solutions.

Another concrete application of AI in IIoT is real-time
poultry monitoring using EI [154]. Data from sensors monitor-
ing the atmospheric concentration of gases such as ammonia,
methane, and carbon (di)oxide is fed into an RNN with GRUs
on an Nvidia Jetson Nano, predicting the evolution of air
quality around the poultry farm.

E. Internet of Vehicles

In F-RANs in an IoV context, the increased wireless
network traffic caused by intelligent applications can cause
interference on wireless channels. RIMMA (Reliable and
Interference-free Mobility Management Algorithm) [155]
solves this problem by managing channels based on their
characteristics, over AI-driven F-RANs. Furthermore, RIMMA
is combined with fog computing to optimize for mobility,
reliability and packet loss.

A similar problem on a topological level is efficient caching
and communication management in quickly changing topolo-
gies with moving nodes (cars) and RSUs (Road-Side Units),
especially considering the severe latency constraints on IoV
applications. One solution to this problem uses twin timescales
for mobility-aware offloading/content requests [156]; a long-
term strategy determined by PSO, and a short term strategy
determined by deep Q-learning. These strategies consider not
only resource use, but also hard deadlines for requests.

Another approach considers the energy efficiency of work-
load deployment in fog-cloud IoV applications [157]. The
algorithm uses a Learning Classifier System (specifically XCS,
genetic-based machine learning), optimizing for energy use
and workload delay, taking into account battery status of
battery powered nodes. Evaluations show that the approach
generally results in higher average battery levels than compa-
rable algorithms, and significantly lower execution times.

There is much untapped potential for higher-level IoV
applications. For example, Seal et al. [158] recognize that in an
IoV context, the flood of data from vehicles will soon outstrip
the ability of the cloud alone to process it. They develop a
benchmark for real-time traffic incidence identification and
traffic control, and using a multi-tier testbed, determine that
a deep learning approach using (tiny)YOLOv3 is up to 80%
faster in an edge-cloud architecture than in the cloud alone.

IX. CHALLENGES AND VISION

In this section, future research directions and challenges are
presented for each of the main topics of this review. For a
high-level vision, we can look at the highly cyclical history
of computing [159], [160], which shows that eventually all
functionality will end up as close to end-users as possible. The
last decades have seen ever more functionality deployed closer
to end-users on increasingly pervasive network infrastructures.
As such, it is safe to assume that AI and other resource-
intensive tasks will continue to move to the edge. Additionally,
the next wave of innovation might very well emerge in a cen-
tralized form, but quickly take advantage of the infrastructure
provided by the Intelligent Edge. Such next-generation appli-
cations could be highly tailored to ubiquitous user interaction,
and their concepts far removed from physical systems due to
increased virtualization and intelligent management.

A. Enabling Technology

While common AI frameworks such as TensorFlow are
capable of offloading calculations to dedicated hardware, they
only offload to one PU per task. In the edge, where there
may be many nearby PUs, layer-based slicing provides better
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overall results, offloading individual layers to different PUs
based on their capabilities. This approach can be further
optimized through intelligent management of PUs, monitoring
their performance for several types of AI tasks. At the local
network level, computational tasks are often offloaded to
individual devices. A synergy with PU level offloading, either
hierarchical or by peer-to-peer sharing of PU details, could
provide better performance. Another challenge at this level is
the efficient integration of new types of PUs with computing
frameworks. Considering the highly customized nature of most
hardware (e.g. FPGAs), this will likely remain in the realm of
manual work, rather than automated discovery.

Significant progress has been made in low-power inference
in the edge, although improvements are still likely due to
incremental gains in hardware performance and model effi-
ciency. AI training however still requires immense amounts
of computation and power, often beyond the reach of individ-
ual devices in the edge, and increasing as neural networks
grow deeper. To combat this issue, computational efforts
can be offloaded to more powerful layers in the fog, multi-
mode AI models can be deployed which trade accuracy for
performance on resource-constrained devices, or the training
workload can be spread out over many devices through FL
or other cooperative strategies. While further research into
truly distributed, cooperative strategies will certainly yield
better performance for years to come, the learning process can
also be greatly improved by reducing the amount of training
required. Contributing factors for this may include improved
regularization, fast-converging gradient descent strategies, and
zero-shot learning.

B. Organizing the Edge
In terms of orchestration, important challenges are real-time

redeployment of (AI) services in volatile network environ-
ments, and opening up new classes of devices for the flexible
deployment of services and AI. For the former challenge, the
ideal is to achieve optimal QoS (e.g. availability, latency) for
all users at all times, while optimizing any number of other
factors (e.g. resource use, network traffic). The latter ensures
that more devices can contribute their processing power, and
help optimize the general functionality of the Intelligent Edge.
This can be partially solved through better hardware, but
also through lightweight operating systems capable of suitable
virtualization (e.g. containers, unikernels). Energy efficiency
is of particular importance, as edge applications increasingly
push intelligence to even the most limited IoT devices. Some
devices have extremely restricted power supplies, while others
are battery powered and may not be (easily) rechargeable.
Challenges consist of optimizing network traffic and response
times over low-powered protocols, and reducing total CPU
use over the lifecycle of a device. As for strategies, some
may involve offloading of workloads generated by the devices,
while others try to divide a known workload over a pool of
devices before their batteries run out.

Significant open challenges for scalable systems are true
decentralization of orchestration, and self-organizing service
meshes. Almost all recent work relies on a multi-tier archi-
tecture, using the cloud as a critical infrastructural component

to some degree. However, a truly scalable and flexible archi-
tecture can not be dependent on any centralized, resource-
bound component (e.g. the cloud) to support an unbounded
collection of devices (e.g. the edge). Likely factors to enable
new architectures are peer-to-peer weight updates for AI
models, local discovery of functionality and resources, and
inverted deployment in the sense that an edge node primarily
decides where to request/deploy a service, rather than being
directed to an instance by load balancers or load balancing
(distributed) DNS. As a combination of these factors, an
Intelligent Edge could be envisioned in which (AI) services
simply “follow” users through nearby computational nodes,
pre-emptively moving to other nodes as they learn user be-
havioral patterns.

While progress in anomaly and intrusion detection is likely
to continue, improvements are more likely to be in terms
of performance and response time than accuracy, considering
the high accuracy of current systems. Recent solutions for
adversarial attacks are similarly effective, especially when
combined with redundant systems, but adversarial attacks
could be severely diminished by studying the fundamental
properties of state of the art neural networks that give rise to
these vulnerabilities in the first place. The increased popularity
of blockchain solutions for distributed, secure transactional
storage and smart contracts indicates their usefulness, but
widespread adoption requires solving fundamental problems
of blockchain technology related to energy consumption, fast
consensus protocols, and security in privacy-sensitive applica-
tions. Privacy is a significant driving factor for the Intelligent
Edge; if data is locally processed it can not be intercepted.
However, privacy mechanisms are still important for processed
data which is sent to the cloud, and for distributed archi-
tectures, particularly the aforementioned blockchain solutions.
Some privacy concerns may be alleviated by using different
types of sensors (e.g. environmental instead of cameras), en-
couraging (AI) services based purely on actions and behavior
rather than learning properties of individuals.

The latter solution to privacy can aid with reliability; if
several types of non-visual sensors are involved in a single
decision, a system may be able to detect when a malfunction
occurs in one of them. Network reliability in itself is important
for many Smart applications, especially in IoV settings where
extremely low latencies are required, despite fast-moving net-
work nodes. Solutions to this challenge may include redundant
offloading, more effective predictive offloading, and improving
the reliability of layer-wise offloaded AI models. Similarly,
the resilience of distributed neural networks can be improved
through various means, leading to an indirect improvement in
overall reliability of EI.

There are many opportunities for network-oriented research
using AI in the edge. An important topic is intelligent network
management through NFV and SDN to consolidate large edge
networks, forming a logical, reliable topology for edge appli-
cations. Subtopics include automated discovery and integration
of network resources, and redundant routing which adapts in
real-time to discover optimal routes. Furthermore, initial work
on 6G envisions the integration of AI into every aspect of
networking from hardware through connection management
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to support for applications. The wide-scoped, long-term effort
required to form a new, EI oriented, next-generation set of
networking standards will undoubtedly provide great opportu-
nities for new forms of intelligent network management.

C. Applications

While there are many innovative AI-based applications in
the edge, this aspect of the Intelligent Edge is still in its
inception, with true Smart Cities still in the distant future.
Most studies focus on a single, narrow application within their
domain, using little in the way of standards and rarely consid-
ering future integration with other applications, but providing
valuable proof of the potential of the Intelligent Edge. This is
partly due to the constantly changing underlying technologies,
which cause rapid obsolescence of existing applications, and
give rise to many others. In such a rapidly changing area of
research, there are many opportunities. For example, some
studies present basic Smart City/Home/Industry EI manage-
ment frameworks, but standards and integrated, greater scope
frameworks (e.g. what TensorFlow did for neural networks) are
mostly absent. Existing Smart City frameworks such as FiWare
[161] and Obelisk [162] are mostly cloud-based, offering a
broad support of IoT communication protocols and scalable
data processing, but do not explicitly contain edge-oriented
intelligent features. Ongoing IEEE standardization efforts, as
presented in Section III-E, are very likely to significantly
improve this situation in the near future. However, because
of the limited scope of most Smart setting applications, they
can be deployed modularly, and this challenge poses no
immediate restriction on future innovation. Smart Cities in a
broad sense offer many interesting research topics, but traffic
and security aspects are likely to receive most attention in the
coming years, as they can drastically improve the safety and
quality of life in cities through intelligent management. Other
topics, such as Smart Grids, are driven by the necessity for
intelligent management because of rapidly changing energy
grid conditions. In Smart Homes, an interesting topic is the
discovery and integration of services and devices, and imbuing
discovered devices with (partial, co-operative) AI. Such AI
capable networks can then form a solid basis on which
to run Smart Home applications that improve the security
(e.g. intruder/weapon detection), health (e.g. fall detection,
IoMT monitoring at home) and general quality of life of
inhabitants. While there are many opportunities in IoV, the
research potential in this area is likely to shift from road-
side monitoring and traffic flow management in the fog, to
inter-vehicle communication and self-organizing traffic flows
as vehicles are outfitted with more powerful computational
hardware. However, roadside monitoring and city-wide traffic
management in the fog will remain important practical top-
ics, especially as self-organizing traffic will remain largely
impossible until intelligent, autonomous vehicles outnumber
the rest. Smart Healthcare features many highly specialized
applications for the prevention or monitoring of diseases and
conditions. As such, an interesting challenge is to create a
general monitoring and alerting framework, with AI plugins
for any number of conditions and diseases. Such a framework

could be integrated into the sensory network of hospitals
or Smart Homes, taking into account the different types of
sensors and networks present in both settings. AI models
designed for this architecture should be able to flexibly handle
partial or missing sensory information. Smart applications
in industrial settings are, more than in any other Smart
setting, highly dependent on the situation. However, digital
twins are an interesting research topic, especially in terms
of automated discovery and digital representation of physical
industrial settings, and the subsequent optimization. Finally,
human interaction with Smart applications can be used to
augment AI, creating Social Edge Intelligence (SEI) [163].
SEI can drastically improve applications in which AI is used
to analyze gathered data, but in which some steps benefit from
higher cognitive abilities than the state of the art currently
offers.

X. CONCLUSION

The use of AI in Smart applications and in the organization
of the edge presents a rapidly advancing research field, with
a great variety of opportunities. In this article, an introduction
is given to the technologies required to understand the state
of the art in Edge Intelligence (EI), and the concept of EI
is elaborated using a taxonomy with “Enabling Technology”,
“Organization” and “Applications” as its main topics. Research
trend data from 2015 to 2020 is gathered from Google Scholar
for subdivisions of these topics, and presented to show both
absolute and relative interest in each subtopic. The “Organiza-
tion” aspect, being the main focus of this article, has a more
fine-grained subdivision, explaining all contributing factors in
detail. Related work is presented, comparing it to the work in
this article, and for each subdivision of the taxonomy a number
of selected studies are gathered to illustrate the state of the art
as completely as possible at a high level. From the research
trends and selected studies, a number of short-term challenges
and high-level visions for EI are formulated, providing a basis
for future work.
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tion of FIWARE: A cloud-based IoT platform for smart cities,” Journal
of Parallel and Distributed Computing, vol. 132, pp. 250–261, oct
2019.

[162] V. Bracke, M. Sebrechts, B. Moons, J. Hoebeke, F. D. Turck, and
B. Volckaert, “Design and evaluation of a scalable internet of things
backend for smart ports,” Software: Practice and Experience, apr 2021.

[163] D. Wang, D. Zhang, Y. Zhang, M. T. Rashid, L. Shang, and N. Wei,
“Social edge intelligence: Integrating human and artificial intelligence
at the edge,” in 2019 IEEE First International Conference on Cognitive
Machine Intelligence (CogMI). IEEE, dec 2019.

Tom Goethals received the master’s degree in In-
formation Engineering Technology from University
College Ghent, Belgium in 2013. After several years
as a software engineer, he joined IDLab at Ghent
University in 2018 to pursue a Ph.D, during which
he has received multiple best paper awards. His
current research deals with scalable and reliable soft-
ware systems for Smart Cities, working on various
projects in cooperation with industry partners.

Filip De Turck leads the network and service
management research group at Ghent University,
Belgium and imec. He (co-) authored over 700 peer
reviewed papers and his research interests include
design of efficient softwarized network and cloud
systems. He is involved in several research projects
with industry and academia, serves as chair of the
IEEE Technical Committee on Network Operations
and Management (CNOM), and steering committee
member of the IM, NOMS, CNSM and NetSoft
conferences. Prof. Filip De Turck serves as Editor-

in-Chief of IEEE Transactions on Network and Service Management (TNSM),
and was recently elevated as an IEEE Fellow.

Bruno Volckaert is professor advanced program-
ming and software engineering at IDLab (Ghent
University) and senior researcher at imec. In 2006
he obtained a PhD on Grid resource management.
Current research deals with reliable high perfor-
mance distributed software systems for Smart Cities,
scalable cybersecurity detection and autonomous op-
timization of cloud-based applications.


