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ABSTRACT
Time-relaxed sports timetables utilize (many) more time slots than there are games
per team, and therefore offer the flexibility to take into account player and venue
availability. However, time-relaxed tournaments also have the drawback that the
difference in games played per team and the rest period between teams’ consecutive
games can vary considerably. In addition, organisers may want to avoid consecutive
home and away games (i.e., breaks). To construct fair timetables, we propose relax-
and-fix (R&F) and fix-and-optimize (F&O) heuristics that make use of team- and
time-based variable partitioning schemes. While the team-based R&F constructs a
timetable by gradually taking into account the integrality constraints related to all
home games of a subset of teams, the time-based R&F maintains a rolling horizon of
time intervals in which the integrality constraints of all games scheduled within the
time interval are activated. The F&O heuristics use the same variable partitioning
schemes, but they never relax the integrality constraints and allow to recover from
mistakes by making a small number of changes with respect to the variables opti-
mized in previous iterations. For numerous real-life instances, our heuristics generate
high-quality timetables using only a fraction of the computational resources used by
monolithic integer programming solvers.
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1. Introduction

Sports are an important aspect of our daily life: millions of fans attend sporting events,
follow their favourite players on social media, or participate in sports themselves. The
success of these events heavily depends on the sports timetable that must be fair, prof-
itable, thrilling, or simply convenient. Double round-robin tournaments, in which each
team meets each other team exactly once at home and once away, are of particular
interest due to their omnipresence in real life. Existing round-robin timetabling litera-
ture can be categorized either as time-constrained or as time-relaxed (for an overview,
see e.g. Kendall et al. (2010) and Van Bulck et al. (2020)). Time-constrained timetables
contain a minimal number of time slots to play all games: for a double round-robin
tournament with n teams this number is 2(n−1) if n is even and 2n if n is odd. Time-
relaxed timetables, on the other hand, contain (many) more time slots than games per
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team and hence a team regularly has a bye meaning that it does not play any game
during a particular time slot.

In this paper, we will focus on the so-called time-relaxed availability-constrained
double round-robin problem (RAC-2RR). The input of this problem consists of a set
of arbitrarily many time slots S (e.g. one slot for each day in the season), a set
of teams T , and for each team i ∈ T a team and venue availability set. The team
availability set Ai ⊆ S contains the time slots during which team i can play a game.
In non-professional competitions, players can use this set to exclude time slots on
which they are not available due to work or family. In professional competitions, the
team availability set is used to exclude time slots on which a team has a game in an
international competition and hence cannot be scheduled for its national tournament.
Similarly, the venue availability set Hi ⊆ S contains the time slots during which team
i can play home, and is particularly useful when i’s venue is frequently used for other
events. Since time slots in Hi can only be used if there are also in Ai, we assume that
Hi ⊆ Ai for each i ∈ T . If we denote with triple (i, j, s) ∈ T × T × S a home game of
team i against team j (i.e., game (i, j)) on time slot s, a feasible solution consists of
an assignment of games to time slots such that:

(C1) each team plays exactly one home game against each other team,
(C2) the venue availability Hi (i ∈ T ) is respected (i.e., no triple (i, j, s) with

s /∈ Hi, j ∈ T \ {i}),
(C3) the team availability Ai (i ∈ T ) is respected (i.e., no triple (i, j, s) or (j, i, s)

with s /∈ Ai, j ∈ T \ {i}), and
(C4) each team plays at most one game per time slot s ∈ S.

Problem RAC-2RR and variants thereof have been studied by several researchers.
Schönberger et al. (2004) study a non-professional table-tennis competition and pro-
pose a constraint programming formulation and a memetic algorithm. Knust (2010)
models the problem as a multi-mode resource-constrained project scheduling prob-
lem for which a two-stage heuristic algorithm is proposed. Moreover, Knust (2010)
tries to minimize the total number of breaks; a team has a break if it plays two con-
secutive games with the same home-away status. Van Bulck et al. (2019) study a
non-professional indoor football league where the objective is to develop a schedule in
which each team has a balanced spread of their games over the season. They propose
a novel move operator that schedules or reschedules all home games of a team by
solving a transportation problem. Van Bulck and Goossens (2020) prove that RAC-2RR
is NP-complete, even if venues are always available (i.e., Hi = Ai ∀i ∈ T ). Moreover,
they propose an integer programming (IP) formulation and two heuristics (an adap-
tive large neighbourhood search and a memetic algorithm) to deal with several fairness
issues related to rest time, differences in games played, and breaks. Finally, Yi (2021)
proposes proactive and reactive strategies to deal with postponed games in RAC-2RR.

Instead of solving a challenging IP formulation at once, a popular (heuristic) ap-
proach in the scheduling literature is to break down the monolithic IP formulation into
a series of formulations that are simple enough to be solved one after another (see e.g.
Dorneles et al. (2014), Oliveira et al. (2014)). A first approach, known as relax-and-fix
(R&F), partitions the decision variables into different subsets and initially relaxes all
integrality constraints. Subsequently, it selects one of the subsets for which it reacti-
vates the integrality constraints, optimizes the updated model, and fixes the variables
in the subset to their (near-)optimal value. A second approach is known as fix-and-
optimize (F&O) and never relaxes the integrality constraints. Instead, it optimizes the
variable subsets one by one by initially fixing all variables to an initial solution and

This is a preprint of an article that has been accepted for publication in Information Systems and

Operational Research (INFOR), published by Taylor & Francis. The Version of Record of this article is
available online at doi.org/10.1080/03155986.2021.1985902.



Van Bulck, Goossens 3

allowing only a small number of changes with regard to the variables optimized in pre-
vious iterations. The contribution of this paper is to show how to solve RAC-2RR with
R&F and F&O by means of a team- and time-based variable partitioning scheme.
Although time-based R&F and F&O techniques have been used before in a sports
context (see Chandrasekharan et al. (2019); de Oliveira et al. (2014); Kim (2019)),
as far as we are aware, this is the first application employing a team-based variable
partitioning. In addition, we show how to avoid infeasible solutions in early iterations,
use parameter tuning tools to analyse the impact of algorithm parameter choices, and
investigate when each variable partitioning scheme and heuristic approach works best.

The remainder of this paper is as follows. First, Section 2 provides an integer pro-
gramming model for RAC-2RR and shows how to extend it to cope with several fairness
issues. Section 3 then proposes the R&F and F&O heuristics, and Section 4 presents
computational results. Conclusions follow in Section 5.

2. IP formulation and fairness issues

Equations (1)-(4) provide the monolithic IP formulation proposed by Van Bulck and
Goossens (2020) to solve RAC-2RR. In this model, the variable xi,j,s is 1 if team i ∈ T
and team j ∈ T \ {i} meet at the venue of i on time slot s. The first set of constraints
ensures that a team meets each other team exactly once in a home game; this makes
that all games of the double round robin are scheduled (C1). The next set of constraints
enforces that a team plays at most once per time slot (C4). Constraints (3) reduce
the number of variables in the system by explicitly stating that two teams can meet
only when they are both available (C2,C3); when implementing this formulation these
variables need not be created. Finally, constraints (4) are the binary constraints on
the x variables.

Base model∑
s∈Hi∩Aj

xi,j,s = 1 ∀i, j ∈ T : i 6= j (1)

∑
j∈T\{i}

(xi,j,s + xj,i,s) 6 1 ∀i ∈ T, s ∈ Ai (2)

xi,j,s = 0 ∀i, j ∈ T, i 6= j, s ∈ S \ {Hi ∩Aj} (3)

xi,j,s ∈ {0, 1} ∀i, j ∈ T : i 6= j, s ∈ Hi ∩Aj (4)

Clearly, RAC-2RR remains difficult when we additionally include an objective func-
tion. The remainder of this section explains how Van Bulck and Goossens (2020)
extend the base model to handle several fairness issues.

Aggregated rest time penalty A first fairness measure is related to rest time, i.e.,
the number of byes between two consecutive games of a team. In particular, to avoid
injuries and reduce the impact of a team not being fully rested from the previous game,
we minimize the aggregated rest time penalty (ARTP), that ‘penalizes a timetable with
a value pr each time a team has only r < τ time slots between two consecutive games
(Van Bulck and Goossens 2020)’. The parameter τ reflects a period which allows any
team to fully recover from its previous games. We assume that the penalties pr are
positive and non-increasing in r, that is pr ≥ pr+1 ≥ 0. Ideally, a team thus has at least
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τ time slots of rest between any two consecutive games in which case the ARTP is zero.
Unfortunately, the availability constraints make it unlikely that such timetable exists.
To avoid injuries, Van Bulck and Goossens (2020) propose to minimize the ARTP
while additionally requiring that a team plays at most twice per τ + 1 time slots (refer
to this constraint with the symbol (A1)). To minimize the ARTP of a timetable, they
use an auxiliary variable yi,s,t which is 1 if team i plays a game on time slot s followed
by its next game on time slot t, and 0 otherwise. Constraints (5) regulate the value
of these auxiliary variables. Additionally, constraints (6) enforce (A1). We note that
it follows from (A1) that the games are consecutive if team i plays on time slot s
and t and |t− s| ≤ τ . In the presence of constraint (A1), we can therefore strengthen
the formulation by dropping the negative summation term of Equation (5). Finally,
constraints (7) state that the y-variables are non-negative; integrality follows from the
objective function and the integrality of the x variables.

ARTP model

minimize
∑
i∈T

∑
s∈Ai

s+τ∑
t=s+1

p(t−s−1)yist

subject to

(1)− (4)∑
j∈T\{i}

(xi,j,s + xj,i,s + xi,j,t + xj,i,t

−
t−1∑

k=s+1

(xi,j,k + xj,i,k))− 1 6 yi,s,t ∀i ∈ T, s, t ∈ Ai : s < t, t− s 6 τ (5)

∑
j∈T\{i}

s+τ∑
k=s

(xi,j,k + xj,i,k) ≤ 2 ∀i ∈ T, s ∈ Ai (6)

yi,s,t ≥ 0 ∀i ∈ T, s, t ∈ Ai : s < t, t− s 6 τ (7)

Games played difference index In a time-constrained timetable with an even num-
ber of teams, each team has played the same number of games at the end of each time
slot. This is different in time-relaxed timetables in which one team may have played
considerably more games than other teams at a given moment in time. Suksompong
(2016) defines the games played difference index (GPDI) as ‘the minimum integer p
such that at any point in the timetable, the difference between the number of games
played by any two teams is at most p’. Van Bulck and Goossens (2020) propose to
use variables gi,s to represent the number of games played by team i ∈ T up to and
including time slot s ∈ S. Equations (8), (9) and (10) recursively model these auxiliary
variables. Next, equations (11) calculate the GPDI value which is minimized by the
objective function.
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GPDI model

minimize GPDI

subject to

(1)− (4)

gi,1 =
∑

j∈T\{i}

(xi,j,1 + xj,i,1) ∀i ∈ T (8)

gi,s = gi,s−1 +
∑

j∈T\{i}

(xi,j,s + xj,i,s) ∀i ∈ T, s ∈ Ai : s > 1 (9)

gi,s = gi,s−1 ∀i ∈ T, s ∈ S \Ai : s > 1 (10)

gi,s − gj,s 6 GPDI ∀i, j ∈ T : i 6= j, s ∈ S (11)

Total number of breaks A team has a break whenever it plays two consecutive
games with the same home-away status. Even though in most competitions, teams
return home after each away game, there are (professional) competitions like the NBA
or NHL where travel minimization plays an important role. Minimizing a team’s total
travel distance is typically done by scheduling two (or more) consecutive away games
against opponents that are close to each other, such that the team can travel from one
opponent to the next without returning home in between. In such a setting, (away)
breaks can be favourable. In general though, it is common practice to let teams al-
ternate as much as possible between home and away games, since breaks negatively
impact game attendance (Forrest and Simmons 2006) and may be considered unfair
as breaks imply (not) having the advantage related to home games for two consecutive
games (Durán et al. 2017).

As proposed by Knust (2010), the model below uses a binary variable bi,s that is
one if team i has a break on time slot s, and 0 otherwise. Constraints (12) model the
home breaks of a team, whereas constraints (13) model the away breaks of a team.
Constraints (14) reduce the number of break variables by stating that a team cannot
have a break on time slots during which it is unavailable. Finally, constraints (15) are
the non-negativity constraints; integrality follows from the objective function and the
integrality of the x variables.

Break model

minimize
∑
i∈T

∑
s∈Ai

bi,s

subject to

(1)− (4)∑
j∈T\{i}

(xi,j,s + xi,j,t −
∑
u∈S:
s<u<t

(xi,j,u + xj,i,u))− bi,t 6 1 ∀i ∈ T, s, t ∈ Hi : s < t (12)

∑
j∈T\{i}

(xj,i,s + xj,i,t −
∑
u∈S:
s<u<t

(xi,j,u + xj,i,u))− bi,t 6 1 ∀i ∈ T, s, t ∈ Ai : s < t (13)

bi,s = 0 ∀i ∈ T, s ∈ S \Ai (14)

bi,s ≥ 0 ∀i ∈ T, s ∈ Ai (15)
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3. Relax-fix-optimize heuristics

Since the IP formulations in Section 2 require a considerable amount of computational
resources using a state-of-the-art IP solver (see Section 4), this section proposes time-
and team-based relax-and-fix and fix-and-optimize approaches. For an introduction
to these heuristic approaches, we refer to Pochet and Wolsey (2006) where fix-and-
optimize is called ‘exchange’.

3.1. Relax-and-fix

The proposed R&F approach works on the level of the x variables: once the x variables
are fixed, the value of all other variables can be easily inferred. To partition the x
variables into a sequence of subsets, we consider a time- and team-based approach.
The ‘time-based’ approach (time R&F) partitions the time horizon into K equal-sized
intervals in which a variable subset consists of all x variables belonging to the same
interval. These intervals are constructed randomly, chronologically, or in function of
the cost induced by all games scheduled in an interval in the initial solution (parameter
O). The motivation for the time-based groupings follows from their frequent use in
the related timetabling literature (e.g., Oliveira et al. (2014); de Oliveira et al. (2014);
Chandrasekharan et al. (2019)). Similarly, the ‘team-based’ approach (team R&F)
partitions the teams into K groups: a subset of variables now constitutes all x variables
for which the home teams are in the same group. These subsets are either created
randomly or in function of the total cost induced by a team in the initial solution.
The motivation for the team-based grouping follows from the structure of the ARTP
and number of breaks objective function which is mainly determined by the interplay
of games of the same team.

In the relax-and-fix heuristic, decision variables are always in one of the following
three states: integer, relaxed, or fixed. In contrast to integer variables for which the
integrality constraints are activated, relaxed variables can take on fractional values.
Similarly, it is not allowed to modify the value of fixed variables. Initially, the relax-
and-fix framework turns on the integrality constraints for the first L < K variable
subsets in the sequence, relaxes all other variables, and solves the resulting model.
In the next iteration, the integer subset with the lowest index becomes fixed and the
integrality constraints for the relaxed subset with the lowest index are activated. This
method is repeated until all variables are either fixed or integer (see Figure 1).

A potential drawback of R&F is to end without any solution because integrality
constraints are only gradually taken into account and subproblems may thus become
infeasible after fixing the value of variables optimized in earlier iterations. For this rea-
son, we use a state-of-the-art IP solver to construct an initial solution by neglecting
the optimization criteria and solving the associated feasibility problem with all inte-
grality constraints. If we do not find a solution for an iteration, we reset the value of
all fixed and integer values to their value in the initial solution and proceed to the next

Iteration 1 Iteration 2 Iteration 3

Integer Fixed Relaxed

Figure 1. Illustration of the relax-and-fix method for K = 5 and L = 3.
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iteration. In practice, resetting is extremely rare: in the computational experiments of
Section 4 it was never observed for ARTP and break optimization and only 6 times
for GPDI optimization.

Initial experiments revealed that the relax-and-fix framework made many expensive
assignments in the final iterations. This may be a consequence of the IP solver ex-
ploiting the fractional structure of the relaxed variables to improve the objective value
in early iterations. Inspired by a technique used in Oliveira et al. (2014), we mitigate
this problem by adding constraint (16) at the beginning of each iteration.

|B| −
∑

{i,j,s}∈B

xi,j,s 6 α (16)

In this constraint, parameter α controls for the size of the search space. Moreover
B represents the set of triples {i, j, s} for which xi,j,s belongs to the relaxed variable
subsets and xi,j,s = 1 in the solution of the previous iteration, or in the initial solution
for the first iteration. Intuitively, this constraint tries to preserve the integrality of some
variables in early iterations, which is however not guaranteed since the x variables can
be fractional, and thereby also limits the search space.

3.2. Fix-and-optimize

Section 3.1 argued that the R&F method without constraint (16) makes many expen-
sive assignments towards the last iterations because it seems to exploit the fractional
variable structure in early iterations. This section therefore proposes an F&O heuris-
tic which considers all integrality constraints at every iteration and which is able to
(partially) recover from mistakes made in previous iterations.

Just like the R&F approach, the F&O approach starts with the construction of
an initial solution by solving the associated feasibility problem with all integrality
constraints enabled, after which it partitions the x variables in time- (time F&O) or
team-based (team F&O) groups. Next, it sequentially optimizes the IP model with all
integrality constraints (but without constraint (16)), modifying an arbitrary number
of values of the first L < K different variable subsets but at most β values of variables
in the other subsets. In the next iteration, the approach optimizes variable subset 2
to L + 1; this approach is repeated until all variable subsets have been optimized.
Variables in the F&O heuristic can thus only be in two states: free or β-fixed (see
Figure 2). We implement this technique by adding ‘local-branching’ constraint (17) at
the beginning of each iteration (see also Fischetti and Lodi (2003)).

|C| −
∑

{i,j,s}∈C

xi,j,s 6 β (17)

In this constraint, C represents the set of triples {i, j, s} for which xi,j,s does not
belong to a variable subset currently being optimized and xi,j,s = 1 in the solution of

Iteration 1 Iteration 2 Iteration 3

Free β-Fixed

Figure 2. Illustration of the fix-and-optimize method for K = 5 and L = 3.
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the previous iteration, or in the initial solution for the first iteration.

4. Computational experiments

This section experimentally evaluates the IP models from Section 2 and the relax-and-
fix and fix-and-optimize heuristics from Section 3. The goal of our experiments is to
answer the following four research questions.

(i) What type of heuristic (R&F or F&O) is most promising for RAC-2RR?
(ii) What type of variable partitioning (time- or team-based) is most promising for

RAC-2RR?
(iii) Is the quality of the solutions generated with R&F and F&O comparable to

those generated with an off-the-shelf IP solver?
(iv) Is the quality of the solutions generated with R&F and F&O comparable to

those generated with other state-of-the-art metaheuristics?

The R&F heuristics were implemented in C++, compiled with g++ 4.8.5. All integer
formulations and the subproblems of the R&F and F&O heuristics were solved using
Gurobi Optimizer 7.5.2 on a CentOS 7.4 GNU/Linux based system with an Intel
E5-2680 processor, running at 2.5 GHz and provided with one thread and 8 GB of
RAM.

The remainder of this section is as follows. First, Section 4.1 describes the problem
instance benchmark. Section 4.2 then explains how we tuned the different parame-
ters of the heuristics and derives some insights from the parameter space. Finally,
Section 4.3 compares the performance of the R&F and F&O heuristics with a state-
of-the-art IP solver and the adaptive large neighbourhood (ALNS) and memetic algo-
rithm proposed by Van Bulck and Goossens (2020).

4.1. Real-life problem instances

The problem instance set consists of 53 problem instances originating from a real-life
non-professional indoor football competition in Belgium (see Van Bulck et al. (2019)).
These instances have between 13 and 15 teams and contain 273 or 274 time slots. On
average teams can play home during 4.5 time slots more than the number of opponents
in the tournament and cannot play any game during 14.8 time slots. For the ARTP
objective, we set τ = 9 for the instances with 13 or 14 teams, and τ = 8 for the
instances with 15 teams. The penalty values for playing two consecutive games within
r < τ time slots were set to pr = 2τ−r−1.

Van Bulck and Goossens (2020) show that it is NP-complete to decide whether
a feasible solution respecting all availability constraints exists. Nevertheless, for all
real-life instances, a state-of-the-art IP solver was able to solve the base model from
(1)-(4) within less than a second. In total, there were 9 infeasible instances. These in-
stances were discarded, leaving us with 44 feasible real-life double round-robin problem
instances.

4.2. Parameter tuning and analysis

The heuristics from Section 3 together feature six parameters that need to be set
to define a search strategy. The parameters K and L respectively control the total
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Parameter Explanation Range ARTP GPDI Breaks

Team based
K Total number of variable subsets 1, . . . , 13 10 3 4
L Initial number of variable subsets 1, . . . , 7 4 1 2
D Conditional variable α-constraint {0, 1} 1 1 1
α Upper bound relaxed modifications 0, . . . , 20 0 11 0
O Grouping order teams {rand, weight} w w w

Time based
K Total number of variable subsets 1, . . . , 40 30 19 6
L Initial number of variable subsets 1, . . . , 20 13 17 3
D Conditional variable α-constraint {0, 1} 1 1 1
α Upper bound relaxed modifications 0, . . . , 20 0 0 0
O Grouping order time slots {rand, weight, chr.} r w r

Table 1. Overview of the parameters for the relax-and-fix heuristic.

number of variable subsets and the total number of subsets that are simultaneously
integer (R&F) or free (F&O). Since the total number of subproblems equals K−L+1,
increasing L for fixed K results in fewer but larger subproblems whereas increasing K
for fixed L results in more but smaller subproblems. For the objectives that are hard
to optimize, we therefore expect a high ratio of K over L. The parameter α and β
influence the size of the search space and thereby influences the trade-off between ex-
ploitation and exploration. For the relax-and-fix heuristic, α is subordinate to variable
D which is activated when Equation (16) is included. Finally, parameter O determines
in which order we solve the different subproblems. Tables 1-2 summarize the different
parameters and the range of values that were considered.

Algorithmic parameters were tuned for best performance using the irace package
proposed by López-Ibáñez et al. (2016). The irace package implements an advanced
iterated racing procedure that mainly consists of the following three steps. First, a
number of parameter configurations are sampled from a particular distribution. Sec-
ond, the best configurations are determined by means of racing: at each step of the
race the candidate solutions are tested on a single instance, after which the candidate
configurations that perform statistically worse are discarded. Third, the parameter
configurations that survived after the last step of the race are used to update the
sampling distributions.

We independently tuned the parameters for each heuristic and each objective on the
first 10 problem instances using a training budget of 5,000 experiments. The last three
columns of Tables 1-2 display the best-found values. To get a better understanding
of the parameter space of the different heuristics, Figure 3 plots the frequency of the
algorithmic parameters as sampled by irace during tuning for the ARTP objective.
Due to space limitations, the plots for the variable D were omitted: for both the team
and time R&F the frequency of enabling constraint (16) was three times higher than
the frequency of not activating this constraint. This constraint was also enabled in all
best-found configurations of Table 1, hinting that constraint (16) helps to improve the
performance of the relax-and-fix method. When comparing the two different variable
partitioning schemes, it is interesting to note that the values of K and L are generally
higher in the time-based partitioning. We also observe that the ratio of K over L
in the F&O heuristic is higher than that in the F&R heuristic for ARTP optimiza-
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Parameter Explanation Range ARTP GPDI Breaks

Team based
K Total number of variable subsets 1, . . . , 13 11 4 2
L Initial number of variable subsets 1, . . . , 7 1 1 1
β Upper bound modifications 0, . . . , 40 21 28 0
O Grouping order teams {rand, weight} w w r

Time based
K Total number of variable subsets 1, . . . , 40 21 12 14
L Initial number of variable subsets 1, . . . , 20 1 11 13
β Upper bound modifications 0, . . . , 40 17 36 28
O Grouping order time slots {rand, weight, chr.} w c r

Table 2. Overview of the parameters for the fix-and-optimize heuristic.

tion. Intuitively, this can be explained by the fact that the subproblems in the F&O
heuristic tend to be more challenging as all integrality constraints are considered at
every iteration. Finally, Figure 3 hints that the order given by parameter O is rather
unimportant when using a team-based variable partitioning.

4.3. Performance analysis

For each heuristic, the best configuration found by irace was run 10 times on each
of the 44 feasible problem instances, each time using a different random seed and
granted 2 minutes of computation time. To compare the performance of the R&F and
F&O heuristics, we also solved the IP formulations (strongest versions) of Section 2
using Gurobi with a time limit of 60 and 180 minutes. In addition, we implemented
the Adaptive Large Neighbourhood Search (ALNS) and memetic algorithm proposed
by Van Bulck and Goossens (2020). The ALNS heuristic essentially tries to improve
an incumbent solution by repeatedly selecting one of multiple destroy operator and
repairing this solution with Gurobi. To escape local optima, the ALNS heuristic addi-
tionally requires that the returned solution is different from the incumbent solution.
The memetic algorithm is a genetic algorithm backed by a local improvement heuristic
that schedules or reschedules all home games of a team. These two algorithms were
granted 2 minutes of computation time and were run on the same machine as the R&F
and F&O heuristics.

Figure 4 displays the absolute gaps for the various algorithms defined as the best
solution found by the algorithm minus the best lower bound found by Gurobi run
with a time limit of 180 minutes. When comparing the performance of the algorithms
on the ARTP objective, it is remarkable to see that the proposed heuristics perform
similar or even better than Gurobi, despite being given considerably less computational
resources. When comparing the absolute GPDI gap, Figure 4 hints that the time-based
F&O heuristic performs slightly worse than the other algorithms. The figure also
reveals that Gurobi typically cannot improve its best found solution when run with
a time limit of three hours instead of one hour. Finally, Figure 4 shows that Gurobi,
the team F&O, and the memetic algorithm regularly find the optimal solution value
when minimizing the total number of breaks in the timetable. The other heuristics,
in contrast, seem less suitable to minimize breaks as the absolute gap values and the
variance thereof are higher.
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Figure 3. Frequency of parameters as sampled by irace to tune the heuristics for the ARTP objective. From

top to bottom: team R&F, time R&F, team F&O, and time F&O.

Table 3 provides a more detailed overview of the absolute gap values for the different
solution methods. The first column in this table displays the mean of the best lower
bounds found by Gurobi run with three hours of computation time. The low values for
the GPDI and break measures explain why the table shows the absolute gap instead
of the more popular relative gap. The second column represents the mean absolute
gap when solving the IP model without considering any objective and thus gives the
quality of the initial solutions used in the R&F and F&O heuristics. The remaining
columns display the average gap for each solution approach.

To verify the null hypothesis stating that the population mean of the absolute gap
differs between two solution methods, Table 4 reports the p-values resulting from a
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Figure 4. Boxplots of the absolute ARTP gap (top), GPDI gap (middle), and number of breaks gaps (bottom).
Boxes represent the three quartiles, whiskers are drawn at 1.5 times the interquartile range, grey dots represent

the solution quality for each solution, and black circles represent outliers.

Gurobi R&F F&O

LB No obj. 1h 3h Team Time Team Time ALNS Memetic

ARTP 761 9,856 1,180 958 814 980 534 975 324 286
GPDI 1.15 7.84 0.86 0.86 1.00 1.13 0.97 1.28 0.87 1.11

Breaks 0.11 144.59 1.13 0.14 9.49 48.50 1.67 71.14 11.55 0.14

Table 3. Mean absolute gaps for the different solution methods. Gaps are based on the best lower bound

found by Gurobi run with 3 hours of computation time (see column ‘LB’).

pairwise Wilcoxon rank sum test with Bonferonni’s correction for multiple testing. The
p-value gives the smallest level of significance at which the null hypothesis would be
rejected. A small p-value therefore indicates strong evidence that one solution method
systematically performs better in terms of the mean absolute gap; a large p-value, on
the contrary, hints that the two solutions methods perform equally well.

Our computational experiments show that for all considered objectives the team-
based variable partitioning methods score significantly better than the time-based
variable partitioning methods. When comparing the team-based R&F and F&O, we
find that F&O scores significantly better on the ARTP and breaks objective while there
is no significant difference for the GPDI objective. With regard to the comparison of
the R&F and F&O heuristics and the monolithic IP formulation solved with Gurobi, we
find that the team-based R&F and F&O heuristic respectively outperform Gurobi run
with one and three hours of computation time on the ARTP objective. While Gurobi
outperforms the proposed heuristics on the GPDI and breaks objective, the differences
are small despite the fact that the R&F and F&O heuristics are given considerably
less computation time than Gurobi (2 minutes vs. 1 or 3 hours). When comparing the
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Gur. 1h Gur. 3h Team R&F Time R&F Team F&O Time F&O ALNS

ARTP
Gurobi 3h. < 2e-16 - - - - - -
Team R&F < 2e-16 0.11379 - - - - -
Time R&F 0.00091 0.08576 3.8e-15 - - - -
Team F&O < 2e-16 < 2e-16 < 2e-16 < 2e-16 - - -
Time F&O 0.00111 0.14026 5.3e-16 1.00000 < 2e-16 - -

ALNS < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 -
Memetic < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16

GPDI
Gurobi 3h. - - - - - - -
Team R&F 1.0e-07 1.0e-07 - - - - -
Time R&F < 2e-16 < 2e-16 2.8e-05 - - - -
Team F&O 4.8e-09 4.8e-09 1 2.9e-05 - - -
Time F&O < 2e-16 < 2e-16 < 2e-16 7.4e-06 < 2e-16 - -

ALNS 1 1 1.9e-06 < 2e-16 7.1e-08 < 2e-16 -
Memetic < 2e-16 < 2e-16 2.2e-07 1 2.4e-07 4.1e-07 < 2e-16

Breaks
Gurobi 3h. < 2e-16 - - - - - -
Team R&F < 2e-16 < 2e-16 - - - - -
Time R&F < 2e-16 < 2e-16 < 2e-16 - - - -
Team F&O 5.2e-09 < 2e-16 < 2e-16 < 2e-16 - - -
Time F&O < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 - -

ALNS < 2e-16 < 2e-16 4.8e-05 < 2e-16 < 2e-16 < 2e-16 -
Memetic < 2e-16 1 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16

Table 4. Pairwise Wilcoxon signed rank values for the mean objective values of Table 3. For the GPDI

objective, no p-value is available (n/a) comparing Gurobi 1h with Gurobi 3h as the objective value for each
instance was exactly the same.

performance of the proposed heuristics with the ALNS and memetic algorithm, we
see that the team-based F&O heuristic scores slightly worse on the ARTP objective
but it statistically outperforms the memetic algorithm on the GPDI objective and the
ALNS heuristic on the breaks objective. An overview of the recommended heuristics
for each of the objective functions is given in Table 5.

5. Conclusion

This study proposes relax-and-fix and fix-and-optimize heuristics to tackle fairness-
related issues that occur in time-relaxed timetables. Our computational results show
that these heuristics only use a fraction of the computational resources used by a mono-
lithic integer programming solver, and that the quality of the timetables is comparable
to those generated by other state-of-the-art heuristics. With regard to optimizing rest
times and breaks, we find that fix-and-optimize works better than relax-and-fix and
that a team-based variable partitioning works better than a time-based variable parti-
tioning. The latter observation is likely due to the structure of the objective function
which is mainly determined by the interplay of games of the same team. This is
interesting since many methods in related research fields use a time-based variable
partitioning.
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Objective Recommended heuristics

ARTP ALNS, Memetic
GPDI Team R&F, Team F&O, ALNS

Breaks Team F&O, Memetic

Table 5. Overview of recommended heuristics for each of the objective functions.
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