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Abstract. As Knowledge Graphs are symbolic constructs, specialized
techniques have to be applied in order to make them compatible with
data mining techniques. RDF2Vec is an unsupervised technique that
can create task-agnostic numerical representations of the nodes in a KG
by extending successful language modeling techniques. The original work
proposed the Weisfeiler-Lehman kernel to improve the quality of the rep-
resentations. However, in this work, we show that the Weisfeiler-Lehman
kernel does little to improve walk embeddings in the context of a sin-
gle Knowledge Graph. As an alternative, we examined five alternative
strategies to extract information complementary to basic random walks
and compare them on several benchmark datasets to show that research
within this field is still relevant for node classification tasks.
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1 Introduction

As a result of the recent data deluge, the Semantic Web’s (SW) Linked Open
Data (LOD) initiative is used more and more to interlink various data sources
and unite them under a common queryable interface. The product of such a con-
solidation effort is often called a Knowledge Graph (KG). In addition to unifying
information from various sources, KGs are able to enrich classical data formats
by explicitly encoding relations between different data points in the form of
edges.

Using these KGs to enhance traditional data mining techniques with background
knowledge is a relatively recent endeavour [28]. Because KGs are symbolic con-
structs, they provide the background information in a more graphical repre-
sentation. Data mining techniques usually require inputs to be presented as
numerical feature vectors and are thus unable to process KGs directly. With
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this in mind, some of the earliest knowledge-enhanced data mining approaches
proceeded by extracting custom features from specific and generic relations in-
side the graph [16]. These approaches produce human-interpretable variables,
but they have to be tailored to the task at hand and therefore require extensive
effort. As an alternative, techniques can be applied to learn vector representa-
tions, called embeddings, for each of the entities inside a graph based on a limited
set of global latent features [12,6]. These techniques are task-agnostic, allowing
them to be used for different downstream tasks, such as predicting missing links
inside a graph or categorizing different nodes [17].

Natural language and graphs often share similarities. Node2Vec [5] and other re-
lated techniques were among the first to leverage these similarities, by extending
successful language modeling techniques, such as Word2Vec [11], to deal with
graph-based data. Their proposed techniques rely on the extraction of sequences
of graph vertices, which are then fed as sentences to language models. Similarly,
work on (deep) graph kernels also relies on language modeling to learn the latent
representations of graph substructures [24,29,8]. RDF2Vec is a technique that
builds on the progress made by these previous two types of techniques by adapt-
ing random walks and the Weisfeiler-Lehman (WL) subtree kernel to directed
graphs with labeled edges, i.e. KGs [18].

In this work, we show that this WL kernel, while effective for measuring sim-
ilarities between nodes or when working with regular graphs, offers little im-
provements in the context of a single KG with respect to walk embeddings. In
response to this observation, we broadened our search and examined alternative
walk strategies for RDF data. Some were designed for regular graphs but in
this paper, we show their applicability on KGs and compare them against the
random and WL strategies on different benchmark datasets.

The remainder of this paper is structured as follows. In Section 2, background
information is provided on KGs and walk embeddings. Next, Section 3 discusses
five possible alternative walk strategies, including pseudo-code listings for each
algorithm. Section 4 then describes the datasets used to evaluate these alterna-
tive strategies and lists the corresponding results. These results are subsequently
discussed in Section 5. Finally, in Section 6 we conclude this work with a general
reflection.

2 Background

A knowledge graph is a multi-relational directed graph, G = (V, E, `), where
V are the vertices or entities in our graph, E the edges or predicates and ` a
labeling function that maps each vertex or edge onto its corresponding label. We
can simplify any further analysis by applying a transformation to the knowledge
graph which removes the multi-relational aspect, as done by de Vries et al. [26].
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Machine learning algorithms cannot work directly on this graph-based data,
as they require numerical vectors as input. RDF2Vec is an unsupervised, task-
agnostic approach that solves this problem by transforming the information of
the nodes in the graph into numerical data, which are called latent representa-
tions or embeddings [18]. The goal is to capture as much of the semantics as
possible in the numerical representation, e.g. entities that are semantically re-
lated should be close to each other in the embedded space. RDF2Vec builds on
word embedding techniques, which have shown great success in the domain of
natural language processing. These word embedding techniques take a corpus of
sentences as input, and learn a latent representation for each of the unique words
within the corpus. Learning this latent representation can be done, for example,
by learning to predict a word based on its context (continuous bag-of-words) or
predicting the context based on a target word (skip-gram) [4,11].

In the context of (knowledge) graphs, we can construct an input corpus by
extracting walks. A walk is a sequence of vertices that can be found in the
graph by traversing the directed links. We can notate a walk of length n and the
labeling function to create a sentence as follows:

v0 → v1 → . . .→ vn−1 (1)

`(v0)→ `(v1)→ . . .→ `(vn−1) (2)

The most straightforward strategy to extract walks is by doing a breadth-first
traversal of the graph starting from the nodes of interest. Since the total number
of walks that can be extracted grows exponentially in function of the depth, sam-
pling can be applied after each iteration of breadth-first traversal. This sampling
can either be guided by some metric, resulting in a collection of biased walks [2],
or can be performed at random which results in random walks.

2.1 Weisfeiler-Lehman kernel for Knowledge Graphs

Ristoski et al. proposed to use the wl kernel in order to relabel nodes as an
alternative to extracting random walks [18]. The WL kernel was proposed as an
extension to the labelling function and is originally an algorithm to test whether
two graphs were isomorphic in polynomial time [27]. The intuition behind the
algorithm was to assign new labels to each of the nodes, where each of the newly
assigned labels captured the information of an entire subgraph up to a certain
depth. This algorithm was later adapted to serve as a kernel, or similarity mea-
sure, between graphs [25,22], by counting the number of WL labels two graphs
had in common. However, we argue that the wl kernel provides no additional
information with respect to entity representations when extracting a fixed num-
ber of random walks from a knowledge graph. Entities in rdf are represented
by Uniform Resource Identifiers (uri), which need to be unique1. As such:

`(x) = `(y) ⇐⇒ x = y (3)

1 https://www.w3.org/DesignIssues/Axioms.html

https://www.w3.org/DesignIssues/Axioms.html
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Due to this property, wl relabeling, when applied on rdf data, is nothing more
than a bijection from the hops in random walks to the hops in the walks obtained
through wl relabeling. This relabelling task compresses a subtree into a new
string label. There are no situations where a certain fixed label, present in the
random walks, is mapped onto different labels in the wl walks or vice versa,
multiple labels within the random walks that get mapped onto the same single
label in the wl walks. As Word2Vec simply uses a bag-of-words representation
internally, it does not make any difference if the original labels or the compressed
wl labels were used. This means that wl relabeling does not add any useful
additional information in the context of rdf data.

3 Custom walk extraction strategies

Five different strategies were adapted to work with rdf data:
Community hops: As opposed to iteratively extending the walk with neigh-
bors of a vertex, we could, with a certain probability, allow for teleportation
to a node that has properties similar to a certain neighbor. The idea of intro-
ducing community hops is to capture implicit relations between nodes that are
not explicitly modeled in the KG, and to allow for including related pieces of
knowledge in the walks which are otherwise out of reach. In order to group
nodes with similar properties together, unsupervised community detection can
be applied [3]. In this work, we use the Louvain method [1] due to its excellent
trade-off between speed and clustering quality. We provide pseudo-code for this
strategy in Algorithm 1. We will refer to this strategy as community.

Alg. 1: community walk(G, v, depth, p, hop prob)

# List of comm and vertex->comm dict
com, com map = com detection(G)
walks = { (v) }
for d in range(depth):

new = set()
for walk in walks:

for n in get neighbors(G, v):
# Sample neighborhood
if random() < p:

new.add(walk + (n))

# Hop to community
if random() < hop prob:

c n = com[com map[n]]
hop = choice(c n)
new.add(walk + (hop))

walks = new
return walks

Hierarchical random walk (HALK): The frequency of entities in a knowl-
edge graph often follows a long-tailed distribution, similar to natural language.
Entities rarely occurring often carry little information, and increase the number
of hops between the root and potentially more interesting entities. As such, the
removal of rare entities from the random walks can increase the quality of the
generated embeddings while decreasing the memory usage [20]. Pseudo-code for
this strategy is provided in Algorithm 2. We will refer to this strategy as HALK.
N-grams: Another approach that defines a one-to-many mapping is relabeling
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n-grams in the random walks. The intuition behind this is that the predecessor
nodes two different walks have in common can be different. Additionally, we
can inject wildcards into the walk before relabeling n-grams [23]. This injection
allows subsequences with small differences to be mapped onto the same label.
Pseudo-code for this strategy is provided in Algorithm 3. We will refer to this
strategy as n-gram.

Alg. 2: halk(walks, thresholds)

# Count nr. of walks a hop occurs
counts = { }
for i in range(|walk|):

for hop in walks[i]:
if hop not in counts:

counts[hop] = [i]
else:

counts[hop].append(i)

# Skip rare hops
halk walks = [ ]
for thresh in thresholds:

for walk in walks:
new = [ walk[0] ]
for hop in walk[1:]:

if
|counts[hop]|

|walks| ≥ thresh:

new.append(hop)
halk walks.append(new)

return halk walks

Alg. 3: ngram(walks, n, n wild)

# Introduce wildcards in the walks
extended walks = walks
for walk in walks:

idx = range(1, |walk|)
combs = combinations(idx, n wild)
for comb in combs:

new = walk
for i in comb:

new[i] = ‘*’
extended walks.append(new)

# Relabel ngrams in the walk
ngram walks = [ ]
map = { }
for walk in extended walks:

new = walk[:n]
for i in range(n, |walk|):

ngram = walk[i-n:i]
if ngram not in map:

map[ngram] = |map|
new.append(map[ngram])

ngram walks.append(new)
return ngram walks

Alg. 4: anonymize(walks)

anon walks = [ ]
for walk in walks:

new = [ walk[0] ]
for hop in walk[1:]:

new.append(walk.index(hop))
anon walks.append(new)

return anon walks

Alg. 5: walklets(walks)

walklets = set()
for walk in walks:

for i in range(1, |walk|):
walklets.add((walk[0], walk[i]))

return walklets

Anonymous walks: Random walks can be anonymized by transforming the
label information into positional information. More formally, a walk w = v0 →
v1 → . . . → vn, is transformed into f(v0) → f(v1) → . . . → f(vn) with
f(vi) = min({i | w[i] = vi}), which corresponds to the first index where vi
can be found in the walk w [7]. Local graph structures often bear enough in-
formation for encoding and reconstructing a graph, even when anonymizing the
node labels. Ignoring the labels, on the other hand, allows for computationally
efficient generation of the walks. We present pseudo-code for this transformation
in Algorithm 4. We will refer to this strategy as anonymous.
Walklets: Walks can be transformed into walklets, which are walks of length
two consisting of the root of the original walk and one of the hops. Provided a
walk w = v0 → v1 → . . . → vn, we can construct sets of walklets {(v0, vi) | 1 ≤
i ≤ n} [14]. While standard RDF2vec does not consider the distance between
two nodes in a walk, walklets are explicitly created for different scales. Hence,
they allow for such a distinction between a direct neighbor and a node which is
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further away. Pseudocode for this approach is provided in Algorithm 5. We will
refer to this strategy as walklet.

4 Results

To evaluate the impact of custom walking strategies, we measure the predictive
performance on different datasets and various tasks.

4.1 Datasets

Four datasets, each describing knowledge graphs, serve as benchmarks for node
classification and are available from a public repository set up by Ristoski et
al. [15]. The names of these benchmark datasets are AIFB, MUTAG, BGS and
AM. For each of these data sets, we remove triples with specific predicates that
would leak the target from our knowledge graph, as provided by the original
authors. Moreover, a predefined split into train and test set, with the corre-
sponding ground truth, is provided by the authors, which we used in our exper-
iments. Three citation networks [21] were converted to knowledge graphs. These
citation networks describe scientific papers and the goal is to categorize each of
the papers into the correct research domain. Finally, the English version of the
2016-10 DBpedia dataset [10] was used to obtain embeddings for multiple dif-
ferent downstream tasks: 5 different classification tasks (AAUP, Cities, Forbes,
Albums and Movies), document similarity and entity relatedness. More details
on each of these tasks can be found in the original RDF2Vec paper [18].

4.2 Setup

For each of the entities in all of the datasets, walks of depth 4 are extracted.
Only for the entities of DBpedia, the maximum number of walks per entity is
limited to 500. These walks are then provided to a Word2Vec model to create
500-dimensional embeddings. Skip-Gram is used with a window size equal to
5 and the maximum number of iterations is set to 10 with negative sampling
set to 25. These configurations are identical to the original RDF2Vec study.
For node classification tasks, embeddings are fed to a Support Vector Machine
(SVM) classifier with Radial Basis Function (RBF) kernel. The regularization
strength of the SVM is tuned to be one of 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0.
For tasks other than node classification, an evaluation framework is used [13].
For document similarity, we measure the Pearson’s linear correlation coefficient,
Spearman’s rank correlation and their harmonic mean. For entity relatedness, we
measure the Kendall’s rank correlation coefficient. For the benchmark datasets
and citation networks, a pre-defined train/test split is used and experiments are
repeated 5 times in order to report a corresponding standard deviation. For the
tasks involving DBpedia data, 10-fold cross-validation is used and experiments
are only repeated once for timing reasons. Moreover, the community strategy was
excluded from the DBpedia experiments, as it cannot be efficiently performed on
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large knowledge graphs. For each of the walking strategies, we used the following
configurations:

– The random, anonymous and walklet walkers are parameter-free.
– For the n-gram walker, we tune n ∈ [1, 2, 3] and the number of introduced

wildcards to be either 0 or 1.
– For the community walker, we set the resolution of the Louvain algorithm

to 1.0 [9] and the probability to teleport to a community node to 10%.
– For the WL walker, we use the original algorithm used by Ristoski et al. [18].

We set the number of iterations of the WL kernel to 4 and extract walks of
fixed depth for each of the iterations, including zero.

– For the HALK strategy, we extract sets of walks using different thresholds:
[0.0, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001].

4.3 Evaluation Results

The results for the various classification tasks are provided in Table 1. The results
for the document similarity and entity relatedness task are provided in Table 2.

Table 1: The accuracy scores obtained by various techniques on different datasets.

Random WL Walkets Anonym. HALK N-Gram Commun.

AIFB 86.11±2.48 91.67±0.00 63.89±0.00 41.67±0.00 86.11±0.00 88.33±1.11 88.89±1.76
MUTAG 76.76±0.59 75.00±2.46 72.06±0.00 66.18±0.00 75.00±0.00 77.65±2.85 74.71±3.99
BGS 79.31±0.00 80.69±6.40 65.52±0.00 65.52±0.00 80.00±4.57 83.45±4.02 84.14±3.52
AM 75.56±2.70 82.53±1.68 47.47±0.00 34.85±0.00 80.10±0.88 84.44±2.22 73.94±2.70

CORA 77.20±0.00 74.32±1.56 58.20±0.00 14.30±0.00 76.62±0.36 76.46±0.78 67.92±1.22
CITESEER 64.68±1.58 64.02±1.46 38.40±0.00 16.00±0.00 66.90±0.00 65.38±1.22 58.66±0.50
PUBMED 75.66±1.36 73.70±2.87 68.30±0.00 24.20±0.00 75.56±0.08 78.48±0.35 54.64±2.40

DB:AAUP 67.94 69.88 69.27 54.73 60.08 66.96 /
DB:Cities 79.07 79.12 79.08 55.34 73.34 79.79 /
DB:Forbes 63.73 64.60 62.28 55.16 60.98 63.65 /
DB:Albums 75.24 79.31 79.99 54.45 66.89 79.38 /
DB:Movies 80.06 80.48 78.89 59.40 68.11 78.84 /

Table 2: Document similarity and entity relatedness results
Strategy Pears. r Spear. ρ µ
Random 0.578 0.390 0.466
Anonymous 0.321 0.324 0.322
Walklets 0.528 0.372 0.437
HALK 0.455 0.376 0.412
N-grams 0.551 0.353 0.431
WL 0.576 0.412 0.480

Strategy Kendall τ
Random 0.523
Anonymous 0.243
Walklets 0.520
HALK 0.424
N-grams 0.483
WL 0.516

5 Discussion

Based on the provided results, several observations can be made. The random
and WL strategies were already evaluated in the original RDF2Vec study [18].
As such, the results reported in this study can be seen as a reproduction of
those results. It is important to note here that the only reason why the results
obtained by the WL and random strategy differ in this and the original work, is
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because originally the walks are extracted after each iteration of the WL rela-
belling algorithm. This results in k times as many walks, with k the number of
iterations in the relabelling algorithm. If walks from only one of the iterations
would be used, the results would be identical to those of the random strategy. We
hypothesize that this is due to more weight being given, internally in Word2Vec,
to the entities where many walks can be extracted from. While the original
WL and random strategies result in very strong performances, especially on all
downstream tasks of DBpedia, they are in this evaluation often outperformed
by custom strategies proposed in this work.

The results indicate that there is currently no one-size-fits-all walking strategy
for all tasks and datasets. It seems that the n-gram strategy results in the best
predictive performances on average for node classification tasks. The average
rank of the n-gram strategy on the four node classification and three citation
network datasets, using all seven techniques, is equal to 1.86, followed by 3 of the
HALK strategy and 3.07 of both the random and WL strategy. An average rank
of 1 would mean that the technique outperforms all others on each dataset. The
average rank of the n-gram strategy on all the node classification tasks, excluding
the community strategy, is equal to 2.08, followed by 2.375, 2.875 and 3.67 by
random, WL and HALK respectively. The performance of the community strat-
egy varies a lot. On some datasets, such as AIFB and BGS, its performance is
among the best while it performs a lot worse than random walks on others. This
is due to the fact that the quality of the walks is highly dependent on the quality
of the community detection. If the groups of nodes, clustered by the community
detection, do not align well with the downstream task, the performance worsens.

Some limitations of this study can be identified. Firstly, no comparisons with
other techniques are performed. RDF2Vec is an unsupervised and task-agnostic
technique. As such, comparisons with supervised techniques, specifically tailored
to the task, such as Relational Graph Convolutional Networks [19] can hold
unfair results. In the original work of Ristoski et al. [18] it was already shown
that RDF2Vec outperforms other unsupervised variants such as TransE, TransH
and TransR. Second, a fixed depth and fixed hyper-parameters for the Word2Vec
model were used within this study. While tuning these hyper-parameters could
possibly result in increased predictive performances, it should be noted that the
number of hyper-parameters and the range of a Word2Vec model are very large
and that the time required to generate the embedding is significant.

6 Conclusion and future work

In this work, five walk strategies that can serve as an alternative to the basic
random walk approach are evaluated as a response to the observation that the
WL kernel offers little improvement in the context of a single KG. Results in-
dicate that there is no one-size-fits-all strategy for all datasets and tasks, and
that tuning the strategy to use, as opposed to simple using the random walk
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approach, can result in increased predictive performances.

There are several future directions that we deem interesting. First, a formal
proof is required to show the non-applicability of the Weisfeiler-Lehman kernel
on KGs. Second, it would be interesting to study what the impact on the perfor-
mance is when the strategies are combined with different biased walk strategies.
Third, all of the strategies evaluated in this work are unsupervised, but super-
vised approaches could be evaluated that sacrifice generality to gain predictive
performance. At last, as already mentioned, each of the walking strategies are
complementary to each other. Combining different strategies together will po-
tentially result in increased predictive performances.

Code availability:
We provide a Python implementation of RDF2Vec which can be combined with
any of the walking strategies discussed in this work2. Moreover, we provide all
code required to reproduce the reported results3.
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