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Abstract — The influence of barrier thickness variability on 

the charge transfer characteristics of an InP/InAs/InP nanowire 

resonant-tunneling diode is studied. The transmission 

probability through the diode is calculated by solving the time-

dependent effective-mass Schrödinger equation with the 

Alternating-Direction Hybrid Implicit-Explicit (ADHIE) Finite-

Difference Time-Domain (FDTD) method.  This recently 

developed method is tailored towards multiscale problems and 

thus allows for a much faster evaluation of the transmission 

probability compared to the commonly used leapfrog FDTD 

method. Accurate and efficient modeling of small geometric 

features with the ADHIE-FDTD method now facilitates the 

development of a robust Monte Carlo method to assess the 

significant influence of the thickness of the barriers on the 

transmission probability and the current-voltage characteristic.  
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I. INTRODUCTION  

Electronic devices are being scaled down to the 

nanoscale. As part of their design, they are using components 

such as quantum wires [14] and quantum waveguides [57] 

that rely on quantum confinement. To better understand, 

model and design these devices, it is not sufficient that 

analytical solutions are found for relatively easy geometries. 

Instead, it is imperative that we develop numerical techniques 

able to efficiently simulate the behavior of more complex and 

multiscale nanodevices. 

Charge transport through these components can be 

described with the time-dependent Schrödinger equation. 

This equation – among many others – is regularly solved by 

adopting a Finite-Difference Time-Domain (FDTD) 

method [813] which iterates the wave function from one 

point in time to the next. However, this method is hindered 

by severe restrictions on the time step between iterations 

when applied to highly multiscale quantum devices. To 

alleviate these restrictions, an improvement was recently 

developed: the Alternating-Direction Hybrid Implicit-

Explicit (ADHIE) FDTD method [14, 15]. 

Another challenge is related to uncertainty introduced 

into these devices due to imperfect production processes or 

variable operating conditions [16]. To ensure the proper 

working of a device, it is crucial to assess how strongly 

manufacturing variability influences its behavior. This 

uncertainty quantification (UQ) can be done by constructing 

a stochastic model. One such approach is to use a brute-force 

Monte Carlo (MC) method [17], which is essentially a 

sampling technique. It is a popular method as it is robust, 

reliable and easy to implement. Unfortunately, it requires a 

large number of samples, thus necessitating very efficient 

methods to obtain these samples. 

In this work, the effect of variability in the barrier 

thickness of an InP/InAs/InP nanowire resonant-tunneling 

diode (RTD) is studied. Thereto, the time-dependent 

effective-mass Schrödinger equation is solved using the 

ADHIE-FDTD method. From this time-domain simulation, 

the transmission probability as a function of energy for a 

specific applied voltage is obtained. From the transmission 

probability, the IV-characteristic of the device is determined. 

Next, an MC method is implemented to build a stochastic 

model of the nanowire RTD. As will be shown, thanks to the 

much increased efficiency of ADHIE-FDTD compared to 

leapfrog FDTD, it becomes feasible to use the MC approach 

and reveal the critical influence of the variability on the 

RTD’s operation. 

II. AN INP/INAS/INP NANOWIRE RESONANT-TUNNELING 

DIODE 

The geometry of the InP/InAs/InP nanowire resonant-

tunneling diode (RTD) under study is shown in Fig. 1. This 

structure is similar to the one discussed in [18, 19] and 

constructed in [3]. The nanowire has a square cross-section 

with a 40 nm side length and is assumed infinite in the x-

direction. The RTD is defined by two InP barriers of height 

V  0.6 eV. The effective masses in InAs and InP are 

mInAs  0.023 me and mInP  0.077 me, respectively. Due to the 

 

Fig. 1. Geometry of the InP/InAs/InP nanowire resonant-tunneling 
diode. The nanowire is assumed infinite in the x-direction and has a 

square cross-section with equal sides of 40 nm. A voltage VCE is applied 

across the double barrier structure, resulting in a linear decresase of the 
potential energy surface. The two InP barriers have a height of 0.6 eV and 

a width a and c for the left and right barrier, respectively. The middle 

InAs region has a width b. The effective mass of an electron in InAs and 

InP are mInAs  0.023 me and mInP  0.077 me, respectively. 
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fabrication process there is an inherent uncertainty in the 

width of the barriers. Therefore, the width a of the left barrier 

and the width c of the right barrier are modeled as correlated 

random variables (RVs). The middle region’s width is given 

by b  20 nm  a  c  2. 

In [18, 19] it is argued – based on a self-consistent 3-D 

Poisson-Schrödinger calculation – that the “top hat” potential 

profile, illustrated in Fig. 1, is a very good approximation to 

the true potential profile. It was also shown that only the 

lowest transversal eigenstate contributes to the conduction 

and that the Fermi-level is only 2 meV above this lowest 1-D 

sub-band. These results were in correspondence with the 

experimental results in [3]. In this work, the lowest 

transversal eigenstate corresponds to a particle-in-a-2-D-box 

with ground state energy: 

 E0   meV. (1) 

III. NUMERICAL METHOD 

The transmission probability and the corresponding IV-

characteristic of the device is calculated by solving the time-

dependent effective-mass Schrödinger equation: 

 

 

(2) 

Here, 𝚥  is the imaginary unit, ħ the reduced Planck’s 

constant,  the wave function, m the effective mass and V the 

background potential. 

A. The Alternating-Direction Hybrid Implicit-Explicit 

Finite-Difference Time-Domain Method 

To solve the Schrödinger equation, the recently developed 

ADHIE-FDTD method is used [14]. For a mass varying along 

a single direction (here, the x-direction), this method 

discretizes the wave function on a rectilinear grid containing 

N = nx  ny  nz cells and propagates it from time t  nt to 

time t  (n  1)t by solving the following discretized linear 

system: 

 
 

(3) 

The vector x|n+1 stacks the row-major vectorized real and 

imaginary parts of the wave function at time steps 

t  n  t and t  n  t, respectively. The 

normalized time-step is given by   t/ħ. The matrices 

G and H are defined as: 

 

 
(4) 

 
 (5) 

where In is the unit matrix of size n, ⊗ is the Kronecker 

product, V contains the potential surface and the matrices Sx, 

Tx, Ty, and Tz are given by: 
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The diagonal matrices x and x
* contain the nx primary 

and nx dual grid steps in the x-direction, and similarly for y 

and z. The discrete differentiator Dx is defined as: 

 

 

(10) 

and similarly for the y- and z-directions. The diagonal 

matrix m contains the variable mass in the x-direction on the 

vertices of the grid, excluding the edge of the grid. The matrix 

m* contains the harmonically averaged mass. 

The strength of the novel method stems from the diagonal 

matrix Px which determines the method’s HIE character [14]. 

While the traditional leapfrog FDTD method [12, 20] is fast, 

easy to implement and memory efficient, it is also hindered 

by a strict condition on the time step. The maximum allowed 

time step is determined by the minimum cell size. In highly 

multiscale set-ups where fine geometric details have to 

resolved locally, this limit becomes detrimental to the 

efficiency. In contrast, the ADHIE-FDTD method can 

exclude small cells from the stability criterion at will. In 

particular, the diagonal projection matrix Px contains a 1 

instead of a 0 at position i if xi should be excluded from the 

stability criterion, and thus treated implicitly. This increases 

the cost per iteration only slightly while increasing the overall 

efficiency dramatically. In this work, we fully exploit this 

property: to accurately resolve the wave phenomena at and 

between the barriers, we discretize them finely but solve them 

implicitly. As such, the efficiency is not compromised. 

A wave packet is inserted into the computational domain 

by using a Total-Field Scattered-Field (TFSF) boundary [7] 

and the computational domain is terminated by Perfectly 

Matched Layers (PML) [2123].  

B. Transmission probability and current 

The transmission probability T of a wave packet through 

the double barrier structure is dependent on both the 

incoming energy E of the wave packet and the applied 

voltage VCE. It is determined by calculating the average of the 

outgoing wave function over the transversal direction, taking 

the Fourier transform of this signal and dividing it by the 

analytical signal when no barrier or bias is present: 

 

 

(11) 

To resolve the extremely narrow transmission peaks, the 

time-domain signal is extrapolated using the matrix-pencil 

method [24]. The current is calculated from the transmission 

probability as in [25], by taking Fermi-Dirac statistics for the 

occupation levels at the terminals and the 1-D density of 

states into account: 
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where e is the electron charge, kB is the Boltzmann 

constant and T is the temperature, chosen to be 4.2 K as 

in [3, 18, 19, 25]. 

To calculate the IV-characteristic via (12), the 

Schrödinger equation (2) is solved by means of the ADHIE-

FDTD method for every applied voltage VCE. 

IV. VARIABILITY ANALYSIS 

The calculation of the transmission (11) over a broad 

range of applied voltages VCE and for many variations of the 

barrier widths a and c would not be possible with the 

traditional leapfrog FDTD method due to the multiscale 

device dimensions and the consequent small time steps. The 

ADHIE-FDTD method now allows faster evaluation of the 

transmission and facilitates the variability analysis of the 

influence of barrier thickness by means of stochastic 

modeling. This UQ is implemented using the MC method.   

A. Dimensioning of the barriers and simulation set-up. 

Consider the nanowire RTD in Fig. 1. An MC run is 

performed for 4000 samples of the RVs a and c. The RVs 

were picked from a bivariate normal distribution with means 

a c   nm and standard deviations a  c   nm 

with a correlation coefficient   . The rather high 

correlation coefficient reflects that uncertainties in the 

production process result in similar deviations from the 

nominal value for both barriers. Note that the UQ method 

presented in this work is in no way restricted to this specific 

probability distribution of a and c. Other distributions, e.g., 

acquired by measuring the physical dimensions of many 

manufactured RTDs, can be dealt with too. 

The device is discretized in the x-direction from  nm 

to  nm with the active region of the device centered 

at  nm. From  nm to  nm and from  nm to 

 nm the grid has relatively large, uniform cells of width 

x   nm. The narrow InP barriers, however, are very 

finely discretized with 20 cells each and the intermediate 

InAs region is discretized with 60 cells. The cells from 

 nm to the left side of the first barrier are scaled with a 

constant grading ratio and similarly for the right side of the 

device. The computational domain is terminated by a  nm 

thick PML on both sides. The y- and z-directions are 

discretized with 20 cells of widthx   nm. A Gaussian 

wave packet is inserted into the computational domain with 

central energy E   eV and a width of    nm using a 

TFSF boundary. 

The cells in the x-direction between  nm and  nm 

are solved implicitly while the other parts are solved 

explicitly. As such, the spatial refinement around the active 

region of the device does not influence the maximum allowed 

time step. The resulting time step is t   as. If instead no 

implicitization was applied, as in leapfrog FDTD, the 

maximum time step would be t   as, rendering an MC 

analysis intractable. Thanks to the HIE approach, however, 

the single-core time to perform one ADHIE-FDTD 

simulation on a laptop with an Intel® Core™ i7-8650U CPU 

@ 1.90 GHz with 16.0 GB of RAM is 167 s. 

B. Results 

The transmission probability as a function of the energy 

for 100 out of the 4000 samples is shown in Fig. 2 for three 

different applied voltages VCE  50 mV, 60 mV and 70 mV. 

It is seen that the transmission exhibits very fine peaks due to 

a very sharp resonance and that the position of these peaks is 

very sensitive to the dimensions of the barriers. The 

probability density function (PDF) of the position of the peak 

is shown in Fig. 3 for an applied voltage of VCE  50 mV. The 

distribution is approximately Gaussian with a mean of 

  33.12 meV and standard deviation   0.37 meV. 

Increasing the applied voltage by 1 mV shifts the mean value 

of the peak by approximately 0.5 meV. This implies that the 

  regions for two applied voltages differing by 1 mV 

partially overlap. Consequently, the device cannot be 

expected to reliably operate within 1 mV of accuracy. 

To assess the convergence of the MC analysis, the relative 

error of the mean T and standard deviation T, for an applied 

voltage of 50 mV, is shown in Fig. 4 as a function of N, i.e., 

the number of MC samples. The expected decrease of the 

 

Fig. 2. The position of the transmission peaks exhibits a large 

variability. Specifically, the transmission probability T as function of 

energy E for VCE at 50 mV, 60 mV and 70 mV for 100 out of the 4000 
MC samples is shown. The tick marks on the abcissa represent the mean 

peak position T for the different applied voltages. A change in applied 

voltage of approximately 10 mV results in a shift in the transmission peak 

of approximately 5 meV. 
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Fig. 3. The position of the transmission peak as a function of energy has 

a Gaussian PDF for an applied voltage of VCE  50 meV. The mean 

position for the transmission peak is   33.12 meV with a standard 

deviation of   0.37 meV. The fitted curve is a Gaussian with the same 

mean and standard deviation. A similar graph is obtained for other applied 

voltages. 
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error as 1/√𝑁 is clearly observed. Note that many samples, 

here 4000, are needed to have an error of less than 1% on the 

standard deviation.  

The resulting current-voltage characteristics of the device 

for 100 samples are shown in Fig. 5. The mean IV-curve 

shows a strong peak at 72 mV followed by a region of 

negative differential resistance, characteristic of an RTD. It is 

also seen that there is a large variance in the position of the 

current peak and the region of negative differential resistance. 

These are two very important quantities for obtaining a 

correctly functioning device. As such, it is crucial that we 

assess how much fabrication uncertainties affect device 

operation. Moreover, there is also a large variance in the 

amplitude of the current at any given voltage VCE. In Fig. 6, 

the PDF for the current at applied voltages of (a) 50 mV and 

(b) 70 mV are shown. Both distributions are very skew, with 

rather long tails towards high currents. For example, in 10% 

of the cases, the current for an applied voltage of 70 mV will 

exceed approximately triple the mean value of the current. 

Hence it is clear that, instead of merely estimating the mean 

and standard deviation, the full quantification of the statistics, 

including the distribution’s tail, is essential for a design 

engineer. It allows to assess in how many cases, the device 

will carry too much current, possibly leading to failure of 

other components. As such, the advocated approach may be 

used for yield analysis. 

V. CONCLUSION 

In this work, uncertainty quantification of an 

InP/InAs/InP nanowire resonant-tunneling diode was 

performed leveraging an ADHIE-FDTD method for the 

numerical solution of the pertaining Schrödinger equation. 

Specifically, a stochastic model was built to investigate the 

influence of the barrier width on charge transport with a 

Monte Carlo approach. It was shown that, thanks to the 

ADHIE-FDTD method, this kind of UQ becomes tractable, 

paving the way for performing variability analysis on more 

advanced nanoscale devices. Moreover, it was demonstrated 

that, to assess the robustness of a design, it is crucial to have 

knowledge of the full statistics of the device’s behavior, 

described, e.g., by means of the PDF of critical output 

parameters. 
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