
PHYSICAL REVIEW RESEARCH 3, 033267 (2021)

Optical lattice experiments at unobserved conditions with generative adversarial deep learning
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Optical lattice experiments with ultracold atoms allow for the experimental realization of contemporary
problems in many-body physics. Yet, devising models that faithfully describe experimental observables is often
difficult and problem dependent; there is currently no theoretical method which accounts for all experimental
observations. Leveraging the large data volume and presence of strong correlations, machine learning provides
a novel avenue for the study of such systems. It has recently been proven successful in analyzing properties
of experimental data of ultracold quantum gases. Here we show that generative deep learning succeeds in the
challenging task of modeling such an experimental data distribution. Our method is able to produce synthetic
experimental snapshots of a doped two-dimensional Fermi-Hubbard model that are indistinguishable from
previously reported experimental realizations. We demonstrate how our generative model interprets physical
conditions such as temperature at the level of individual configurations. We use our approach to predict snapshots
at conditions and scales which are currently experimentally inaccessible, mapping the large-scale behavior of
optical lattices at unseen conditions.

DOI: 10.1103/PhysRevResearch.3.033267

I. INTRODUCTION

Ultracold atoms provide a controlled environment for
the study of emergent phenomena in many-body physi-
cal systems—including high-temperature superconductivity,
many-body localization, and topological quantum phases—
and also have applications in fields such as cosmology and
quantum chemistry [1–4]. Finding a unifying theoretical or
numerical model able to create configurations with statistics
that conform to experimental observations allows one to make
predictions for conditions that currently cannot be experimen-
tally realized. Here we propose using generative deep learning
to create such a model, which learns to produce configura-
tions indistinguishable from those experimentally obtained
and can also make predictions for configurations at larger
scale or at unobserved control parameter values. The capa-
bility of discriminative machine learning to analyze physical
systems has been well established, both for data obtained
through numerical simulations [5–12], and for experimental
observations through electronic quantum matter visualization
[13], quantum gas microscopy [14,15], or momentum-space
density images [16]. In these machine learning applica-
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tions, a neural network is trained to predict properties y of
configurations x, i.e., learn the conditional probability p(y|x).
Examples include the characterization of phases of matter, and
efficiently calculating properties of individual microstates.
The use of generative machine learning is relatively unex-
plored for experimental data; it is a more complex problem
as it requires the modeling and sampling of a probability
distribution p(x, y) not known a priori. Yet, generative learn-
ing provides a particularly attractive approach as it relies on
automatic pattern recognition—and hence does not focus on
the reproduction of a specific physical quantity. The latter
can introduce bias, or require prior knowledge about the sys-
tem. Recently, Boltzmann generators [17] were trained on the
energy functional of many-body systems to directly gener-
ate low-energy equilibrium configurations and were shown
to overcome rare-event sampling problems in simulations. A
particular class of generative models, namely restricted Boltz-
mann machines, has seen use as efficient variational ansätze
for quantum many-body wave functions [18–24].

Here we show that generative deep learning can be used
to represent and sample the distribution of snapshots of an
experimental realization of the Fermi-Hubbard model with
ultracold atoms in an optical lattice. We show that our gen-
erative model is able to generalize in two ways: (i) it can
create microstates with properties for which no training data
is available, and (ii) it is able to create samples at a much
larger scale (or “upscale”) than the training examples. The
former is relevant for systems where obtaining configura-
tions is only numerically or experimentally feasible for a
limited set of system properties. As only small-scale sam-
ples are required for training, the latter generalization enables
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efficient sampling of configurations at scales inaccessible to
traditional methods, either due to excessive computational
cost or experimental limitations on the imageable system
size.

In Sec. II we describe the Fermi-Hubbard model and theo-
retical frameworks to which we compare our predictions. The
developed generative model is introduced in Sec. III. Sec. IV
contains the results obtained with this method, where we focus
on its generalization properties. A conclusion and perspective
is offered in Sec. V. Appendix A contains details on the
architecture and optimization of our generative model, where
we also discuss some of its limitations. Additional results
on the experimental Fermi-Hubbard data set are provided in
Appendix B; we also demonstrate how our approach works
for simulated data in Appendix C. Appendix D describes the
theoretical frameworks to which we compare our results.

II. FERMI-HUBBARD MODEL

The Fermi-Hubbard model is of particular interest as it is
suggested to hold the key to understanding high-temperature
superconductivity [3,27,28]. The Fermi-Hubbard model is de-
scribed by the Hamiltonian

Ĥ = −t
∑
〈i,j〉,σ

(ĉ†
i,σ ĉj,σ + H.c.) + U

∑
i

ĉ†
i,↑ĉi,↑ĉ†

i,↓ĉi,↓, (1)

where ĉ†
i,σ (ĉi,σ ) is the creation (annihilation) operator of a

spin σ ∈ {↑,↓} on site i. The first term corresponds to tun-
neling between neighboring lattice sites i and j. The second
term accounts for the onsite interaction between fermions
with opposite spin. Here we consider the strongly corre-
lated regime, where U/t � 1. The Fermi-Hubbard model can
be experimentally realized with ultracold atoms trapped in
an optical lattice [Fig. 1(a)] [1–3,29,30]. Quantum gas mi-
croscopy provides site-resolved snapshots of these quantum
states, imaging either the total atom distribution or that of a
single spin species. Holes and doubly occupied sites (dou-
blons) are detected as empty sites [Fig. 1(b)]. Recently, the use
of discriminative machine learning for classifying snapshots
of ultracold atomic gases has been investigated [14,15]; we
use the same data set [31] as in Ref. [14] to train our generative
model. We first only consider the low-temperature data, which
are obtained at temperature T = (0.65 ± 0.04)J , where J =
4t2/U , and the ratio U/t = 8.1(2). Here, a mixture of the two
lowest hyperfine states of 6Li is trapped in a two-dimensional
optical lattice. Site-resolved measurements of the occupation
in the optical lattice are obtained with high-resolution quan-
tum gas microscopy [32]. The experimental snapshots of the
atomic distributions consist of a circular region of 80 sites.
In total, 8 822 images of the atomic distributions with both
spin components present and 17 233 with one spin compo-
nent removed are available. We augment the data set by also
including these samples rotated by multiples of 90◦.

At half filling, the Fermi-Hubbard model is theoreti-
cally relatively well understood and maps to the Heisenberg
model with superexchange coupling J = 4t2/U . In this case,
long-range antiferromagnetic (AFM) correlations are present
throughout finite-size systems for temperatures T 	 J . The
Fermi-Hubbard model is not as well understood when straying

FIG. 1. (a) Experimental realization of the Fermi-Hubbard
model with ultracold atoms in a two-dimensional square optical
lattice. (b) Our generative model is trained on site-resolved snapshots
of quantum states, obtained at a fixed temperature and for a range
of hole doping values δ. (c) Sign-corrected spin correlations Cs(r)
of Eq. (2) as a function of the hole doping δ for nearest neigh-
bors (r = 1). The correlations obtained with our generative model
“RUGAN” (blue squares, 1000 snapshots generated for each doping
as to obtain statistics similar to the experiment) are consistent with
experiment (orange circles). We also show results obtained through
sprinkled holes (dashed line) and geometric string theory (solid line).
Our generative model is not optimized on data corresponding to δ �
0.24 (shaded area). The calculation of this observable is described
in Appendix D. (d) Same as in panel (c) but now for next-nearest
neighbors (r = √

2).

from the half-filling regime through the addition of holes. The
motion of these holes displaces strings of spins and hence
hides the AFM order observed at half filling; this has recently
been experimentally observed [26]. These observations can
be partially explained in the framework of geometric string
theory, in which strings of displaced spins are added to a
background of experimental snapshots produced at half filling
[33] (see Appendix D for a detailed definition of the geometric
strings, and the inset of Fig. 2(d) for a graphical depiction).

Note that considering the motion of the holes is crucial to
describe experimentally observed hidden order, as this is not
correctly accounted for by randomly adding holes to a state
obtained at half filling (“sprinkled holes”).
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FIG. 2. (a) Through a series of residual convolutional layers, the generative neural network transforms a latent sample to a new snapshot of
a single spin species at a prescribed value of the doping δ. (b) The distribution of snapshots created by the RUGAN (blue, color online) cannot
be distinguished from the experimental snapshots (orange) with other unsupervised machine learning methods. Here, we show a dimensionality
reduction with the UMAP algorithm [25] of an equal number of synthetic and experimental snapshots for three different values of δ. (c) The
number of strings exceeding a length of 2 per system site and (d) the average length (sites) of the string patterns detected by the algorithm
described in Ref. [26], as a function of the doping δ. The string statistics obtained with RUGAN (with which 1000 snapshots were created
for each doping value) are consistent with experimental observations. The intermediate doping values 0.09 � δ � 0.23 in the shaded area are
not included during training of the generative model. (Inset) Illustration of the string pattern formation due to a hole moving through an AFM
ordered state, which leaves behind a trail of displaced spins. (e) and (f) Same as in (c) and (d) but now the RUGAN is not provided with
data corresponding to large doping values δ � 0.24 during training and is required to extrapolate to unseen values of δ. For the extrapolation
regime, we show the statistics obtained by two independently trained RUGANs.

III. GENERATIVE MODELING

Here, we develop a generative model which allows
for efficient augmentation of the experimental data set at
requested doping values δ and offers predictions for observ-
ables at conditions where no experimental data is available.
Our generative approach, called “regressive upscaling gener-
ative adversarial network” (RUGAN), allows for the direct
generation of new microstates at any given scale and with
desired properties after being shown a training data set of
small-scale configurations. RUGAN is based on generative
adversarial networks (GANs) [34–36], which are the combi-
nation of two neural networks competing against each other
as adversaries. One network, G, acts as a generator, taking
samples z randomly drawn from a latent space as input and
transforming these to create new samples with distribution
Pg ∼ G(z). The other network works as a critic, learning to
discern between samples coming from the generator and the
example data set with distribution Pr . These networks are
trained simultaneously such that the distance between Pr and
Pg is minimized, at which point the critic cannot tell the
generated samples from the reference training set. The gen-
erator and critic of a GAN can be conditioned on additional
information such as known properties of individual samples
[35]. This allows one to control the region of configuration
space from which the generator produces new configurations.
GANs are typically used in image processing such as super-
resolution [37] or cross-domain pairings [38]. They have also
been applied to the Ising model [39,40], scalar field theories

[41,42], inverse molecular design [43], in particle physics
[44] and in studies of transport phenomena [45]. To allow
the RUGAN to create samples of arbitrary size, our genera-
tor is designed such that it consists solely of translationally
equivariant operations that can be applied to latent inputs of
any size. Along with technical details on the design, training
and upscaling capability of the RUGAN in Appendix A, we
give a simple illustration and results on classical spin models
in Appendix C.

IV. RESULTS

A. Antiferromagnetic Correlations

We now demonstrate to the use of generative deep learning
to tackle the challenging task of modeling an experimentally
obtained sample distribution. To this aim, we first train a RU-
GAN on experimental snapshots of a doped two-dimensional
Fermi-Hubbard model on a square lattice, and condition it
on the doping ratio δ. The output of RUGAN is a series of
synthetic snapshots at prescribed doping values [Fig. 2(a)].
Alternate unsupervised machine learning methods, such as
dimensionality reduction, are not capable of discriminat-
ing between the experimental samples and those created by
RUGAN [see Fig. 2(b)]. We then apply the same analysis
procedure to these samples as the experimentally obtained
snapshots [26]. We first consider the decay of AFM correla-
tions upon increasing the doping value at low temperatures
[26,32,46,47] in snapshots created by our model by evalu-
ating the sign-corrected spin correlation for sites at relative
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displacement r with r = ‖r‖2 and ‖ · ‖p denoting the p-norm:

Cs(r) = 4(−1)‖r‖1
(〈

Ŝz
i Ŝz

i+r

〉 − 〈
Ŝz

i

〉〈
Ŝz

i+r

〉)
. (2)

Correlations between nearest neighbors (r = 1) and next-
nearest neighbors (r = √

2) measured on snapshots created
by our generative model are shown in Figs. 1(c) and 1(d)
along with the theoretical predictions by both the geomet-
ric string theory [33] and sprinkled holes [26] (longer-range
correlations for r >

√
2 are discussed in Appendix B). A

RUGAN can produce synthetic snapshots with high AFM spin
correlations Cs(r) at small hole doping values δ, and correctly
models the decay of Cs(r) in the snapshots upon increasing
δ. Unlike these theoretical models, our generative model is
able to accurately capture correlations across all hole-doping
values—even at values for which it is not optimized.

B. String statistics

We now show that the synthetic configurations generated
by a RUGAN also capture the more intricate hidden order
present in the experimental snapshots, quantified by the num-
ber and average length of strings of spins displaced by hole
motion as a function of δ. More information on the deter-
mination of these observables can be found in Appendix D.
These statistics are shown in Fig. 2 for the synthetic sam-
ples, along with the experimentally determined values, and
the predictions made by the theoretical frameworks developed
in Refs. [26,33]. Importantly, RUGAN is not tasked with re-
producing specific experimental observables during training,
but rather only attempts to minimize the distance between
the experimental and synthetic data distributions, without our
intervention. Hence, we do not introduce any bias during
the optimization of our model, which explains why RUGAN
generally succeeds in providing excellent agreement with all
experimental observables shown here; rather than only a re-
stricted set of observables as for the theoretical frameworks.
Remarkably, the RUGAN is able to accurately generate snap-
shots that exhibit the correct string statistics even at values of
δ on which it is not optimized. In Figs. 2(c) and 2(d) we show
that when the RUGAN is trained on a subset of the experi-
mental snapshots restricted to the extrema of experimentally
available doping values, it still succeeds in generating configu-
rations at intermediate δ with string statistics matching closely
with those observed in experiment. Exploiting this feature
dramatically reduces the small number of experimental obser-
vations required to train the RUGAN. Excluding the largest
δ from the training set allows us to assess the RUGAN’s
ability to extrapolate its learned knowledge of configurations
with smaller δ. The observation in Figs. 2(e) and 2(f) that
the string statistics obtained with this extrapolation procedure
again match closely with experimental results, showcases the
RUGAN’s capability to predict complex correlation patterns,
and indicates that the synthetic configurations can serve as a
benchmark for quantitative comparison with theoretical devel-
opments at conditions where no experimental data is available.
We stress that, though still performing better than theoretical
frameworks for doping values not included in training, the
reliability of extrapolated predictions does of course eventu-
ally decrease as predictions are made at doping values further
away from those used during training. In Figs. 2(e) and 2(f),

we show an example of the variation in extrapolated values
that occurs far from training conditions. We give a more
detailed analysis of the extent to which extrapolation is found
to work in Appendix A, and provide additional results in
Appendix B.

C. Temperature conditioning

Additionally, we investigate how our generative neural net-
work models the physical conditioning values. By keeping the
random latent channels fixed, the effect of the conditioning
label on the generation of configurations can be singled out
and visualized. We use this feature to explore how a RUGAN
models the transition between an AFM ordered and disordered
phase by training it on data obtained at half filling (δ = 0)
for a range of temperatures while conditioning it on the tem-
perature T . After training, we synthesize new configurations
at these temperatures and calculate the AFM correlations to
verify that the crossover between both phases is correctly
represented [Figs. 3(a) and 3(b)]. Then, selecting a fixed noise
configuration z while varying the temperature conditioning
label allows us to visualize how our RUGAN distinguishes the
effect of temperature on the level of individual configurations.
In Figs. 3(c)– 3(f), we show that it achieves this by altering
a small number of disconnected sites, as indicated by the
shading—which causes the AFM correlations to correctly de-
crease upon raising the temperature—rather than performing
large-scale changes.

D. Upscaling

A current limitation in experiments with quantum gas
microscopy on ultracold atoms is the number of sites that
can be imaged. Experimental snapshots of the optical lat-
tices currently typically consist of less than 100 sites. The
upscaling ability of the RUGAN provides a useful precursor
of what could be observed at large scale while experimental
realizations containing more lattice sites are still unavailable.
Given the success in performing this upscaling for classical
spin models (see Appendix C), and the excellent agreement
with experimental data for small-scale samples, these con-
figurations can serve as a benchmark for future experimental
observations of larger optical lattices. In Fig. 4(a), we show
such configurations obtained by our RUGAN consisting of
approximately four times as many sites as the experimental
examples. As RUGAN enables us to synthesize a distribu-
tion of large-scale snapshots, we can use these to predict the
behavior of physical observables at scales that are experi-
mentally inaccessible. In Fig. 4(b) we show the string count
per site and average string length as a function of doping δ,
measured on snapshots created by the same RUGAN as in
Figs. 2(e) and 2(f). The limitations of the upscaling procedure
are discussed in Appendix A.

V. CONCLUSION

In this paper, we have demonstrated the great potential of
generative learning with RUGAN on experimental snapshots
of a doped Fermi-Hubbard model. Whereas current theoretical
frameworks of this model often focus on the description of
a number of specified observables, such as spin-spin corre-
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FIG. 3. (a) Decay of sign-corrected spin correlations Cs(r) of
Eq. (2) with temperature T for nearest neighbors (r = 1) for configu-
rations obtained through experiment and with RUGAN. (b) Same as
panel (a) but now for next-nearest neighbors (r = √

2). (c–f) Snap-
shots generated at the temperatures indicated in panel (a). Each row is
created with the same noise instance z, and the marked sites indicate
the change in a configuration upon increasing the temperature.

lators or hidden order, the power of generative learning lies
in its unbiased learning procedure. Especially at large doping
values, the synthetic snapshots created by RUGAN provide
a better match with experimental observations than alternate
theoretical predictions. On top of that, the RUGAN provides
the ability to sample snapshots at experimentally unobserved
doping values or at larger spatial scales, and thus opens the
door for quantitative testing of new phenomenological, analyt-
ical, and numerical models on synthetic data under conditions
where no experimental data is available. We can also visu-
alize how RUGAN chooses to represent concepts such as
temperature. Due to its expressive power, we plan to apply
RUGAN to even more complex strongly correlated systems
where theoretical descriptions pose real challenges and are
less developed than for the Fermi-Hubbard model.

FIG. 4. (a) Example snapshots of a doped Fermi-Hubbard model
created at a scale that has approximately four times as many sites as
the training examples (orange line) in Fig. 1(b). (b) The number of
strings exceeding a length of 2 per system site (circles) and the av-
erage length (sites) of the strings (squares), for large-scale snapshots
created with the RUGAN. For each value of δ, we use the RUGAN
of Figs. 2(e) and 2(f) to create 1000 large-scale snapshots.
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APPENDIX A: MODEL AND OPTIMIZATION

1. Generative adversarial networks

A generative adversarial network [34] consists of a gener-
ator, which maps latent samples to new configurations, and a
critic, which measures the distance between the distributions
of the real samples Pr and the generated samples Pg. The dis-
tance metric used by the critic in our work is the Wasserstein-1
or Earth-Mover distance (WGAN), which allows for stable
training [36]. The Wasserstein-1 distance W between Pr and
Pg is given by

W (Pr,Pg) = inf
γ∈�(Pr ,Pg)

E(x,y)∼γ [‖x − y‖2], (A1)

with �(Pr,Pg) the set of joint distributions whose marginals
are Pr and Pg. As the infimum in Eq. (A1) is intractable, the
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Kantorovich-Rubinstein duality is used to write

W (Pr,Pg) = sup
‖ f ‖L�1

Ex∼Pr [ f (x)] − Ex̃∼Pg[ f (x̃)], (A2)

with the supremum taken over all 1-Lipschitz continuous
functions. The training objective can now be formulated as
a minimax game between two neural networks, the critic C
and generator G:

min
G

max
‖C‖L�1

L(C, G), (A3)

where

L(C, G) = Ex∼Pr [C(x)] − Ex̃∼Pg[C(x̃)]. (A4)

During training, the critic is optimized to maximize L, and
thus finds an estimate for W (Pr,Pg). The generator then
learns to minimize this distance, so that its sampled distribu-
tion Pg is similar to Pr [Fig. 8(a)].

The critic in the WGAN construction needs to be 1-
Lipschitz continuous over the whole domain to find a correct
estimate for the Wasserstein distance. While enforcing this
constraint everywhere is impracticable, a good approximation
can be obtained by adding two regularizing terms to the loss
function of Eq. (A4):

L′ = Ex∼Pr [C(x)] − Ex̃∼Pg[C(x̃)] (A5a)

+ λ1Ex̂∼Px̂ [(‖∇x̂C(x̂)‖2 − 1)2] (A5b)

+λ2Ex∼Pr [‖C(x + δ1) − C(x + δ2)‖2], (A5c)

and as new objective,

min
G

max
C

L′(C, G). (A6)

A differentiable function is 1-Lipschitz continuous if it
has gradients with at most unit norm over the whole domain.
Hence, the first of these regularizing terms [Eq. (A5b)] penal-
izes the critic such that the norm of the gradient equals one
for samples x̂ sampled from Px̂ [48]. As enforcing this over
the whole support domain is intractable, the distribution Px̂ is
sampled uniformly on straight lines between data points in the
training distribution Pr and generated distribution Pg.

The limitation on how Px̂ is sampled leaves much of the
domain unconstrained. In particular, Lipschitz continuity over
the manifold that supports the training distribution Pr is not
properly enforced until the distribution Pg lies close to Pr . To
alleviate the lack of Lipschitz-constraint on the training man-
ifold, the term [Eq. (A5c)] is added to the loss function that
explicitly enforces Lipschitz continuity close to it [49]. Lip-
schitz continuity requires that for two points x′ and x′′ close
to one another, the distance ‖C(x′) − C(x′′)‖2 is bounded by
a constant. Enforcing this criterion is accomplished by per-
turbing every training data point twice, with small random
perturbations (δ1, δ2), and minimizing the distance between
the critic output of these configurations. In practice, the pertur-
bation of samples is achieved by adding dropout [50], which
disables nodes in a layer with a specified probability, to several
layers of the critic and feeding it the same data point twice.

2. Conditioning and upscaling

To condition the generator on system properties, we pro-
vide it with both a random sample from the latent space

and labels describing the desired properties (e.g., the energy,
magnetization, or doping of configurations) as input [35].
Meanwhile, the critic is shown this same label for the gen-
erated configurations, while receiving the exact label for real
samples. The critic uses this additional label during its estima-
tion of the Wasserstein distance, prompting the generator to
adapt by creating configurations that have features accurately
described by their label. Note that since the critic and gener-
ator find efficient internal representations of these quantities
through training, they are never explicitly evaluated during
training. This implies that upon conditioning the generation
on expensive operators, the majority of computational effort is
devoted to the generation of training data for the small-scale
samples.

A generator built with translationally equivariant layers can
be applied to latent samples of any size and hence allows for
upscaling by applying it to larger inputs. Motivated by the
locality of the interactions in the models studied here, the gen-
erator is designed as a convolutional network. By construction
convolutional neural networks have a limited receptive field
defined by the size of the convolutional kernels and the depth
of the network, and can not account for arbitrary-range in-
teractions. Hence, the network depth required to accurately
model a physical data set is a proxy for the typical correla-
tion lengths present in the individual configurations. However,
long-range interactions could also be efficiently included by
making use of attention layers [51]. Once optimized on the
training data, such a generator can then efficiently create con-
figurations containing a substantially larger number of sites.
The creation of new large configurations only requires a single
pass through a convolutional neural network and hence comes
at a small cost. The validity of the upscaling procedure is
heavily dependent on whether the physical length scales of
the upscaled configurations and the smaller training samples
are identical. This also means that the failure of creating con-
figurations at a larger scale (i.e., resulting in different statistics
than computationally or experimentally obtained) is indicative
of the appearance of physics at a new, larger length scale—a
typical example is the divergence of the correlation length at
a critical point which cannot easily be captured by RUGAN.
Another advantage of the fully convolutional design of the
RUGAN is that it provides an optimized starting point for the
training of larger systems. Additionally, making generative
models interpretable, i.e., understanding how it models the
interactions between the degrees of freedom [52–54], would
lead to new insight for further theoretical developments.

3. Architecture and training

With the eye on stable training [55], both the critic and gen-
erator are implemented as deep residual convolutional neural
networks, where residual functions with respect to the layer
inputs are learned. We add a hyperbolic tangent activation
function to the last layer of the generator to obtain a valid
output representation. As we want to generate configurations
with an approximately circular shape for the optical lattice
data set, we manually apply a mask that sets the borders to
zero after creating a square configuration with the generative
network. For the hyperparameters in our WGAN implemen-
tation, we use λ1 = 10 and λ2 = 2 in Eq. (A5) [48,49]. The
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FIG. 5. Relative error on the average string length for RUGANs
trained on different subsets of the data. For the green line, the doping
values on which we train are cut off to only include the 12 lowest
values [same as in Fig. 2(f)]; this is 9 and 7 for the blue and orange
line, respectively.

dropout rate is set to 25% for two layers in the critic to
evaluate Eq. (A5c). The weights of the neural networks are
optimized with the ADAM optimizer [56], with learning rate
α = 10−4 and the exponential decay rates for the first and
second moment estimates to β1 = 0 and β2 = 0.9. To gain
a more reliable estimate of the Wasserstein distance before
updating the generator’s weights, we train the critic on 20
batches for every generator training iteration. For the classical
spin models we use a 10:1 ratio of critic updates to generator
updates. Each model is trained for 2000 epochs.

4. Model selection

Once training is complete, we use each model epoch to
generate a number of configurations for every conditioning
label. As the Wasserstein distance quickly stabilizes (after a
couple of epochs) during training, we resort to a different
selection criterion to decide on which model is ultimately
deployed. Here, we evaluate the relative squared deviation
for the four experimental observables shown in the main text
(weighted by the experimental error) and select the model that
minimizes this deviation. Naturally, when data corresponding
to certain conditioning labels is not shown during training
(i.e., for the demonstration of interpolation and extrapolation),
data generated at these labels is also not used for model selec-
tion, and we select the model that performs best on the training
regime. The results obtained when interpolating between the
lowest and highest doping values [Figs. 2(c) and 2(d) of the
main text] consistently match well with experimental val-
ues across the model epochs. As anticipated, extrapolation
to doping values substantially larger than those used during
training leads to less robust results [see Figs. 2(e) and 2(f)].
We also demonstrate this in Fig. 5, where we provide the RU-
GAN with even smaller subsets of the available doping values
than in Figs. 2(e) and 2(f). Though again more accurate than
theoretical predictions, the string statistics measured on the
synthetic configurations start to deviate from the experimental

FIG. 6. Sign-corrected spin correlations Cs(r) as in Figs. 1(c) and
1(d), but now for (a) r = 2 and (b) r = 4.

observations for the highest doping values, even for the model
epochs that perform best on the training set. Details on the
network architectures (e.g., number of layers and channels)
can be found in our open-source implementation at Ref. [57].

APPENDIX B: ADDITIONAL RESULTS

In Fig. 6, we show the AFM correlations Cs(r), similar
to Figs. 1(c) and 1(d), but now for larger distances r = 2
and r = 4. This indicates that RUGAN is also able to cap-
ture longer-range correlations. In Fig. 7, we have trained a

FIG. 7. (a) The average length (sites) of the string patterns, and
(b) the number of strings exceeding a length of 2 per system site as a
function of the doping δ. The RUGAN results are obtained with 1000
generated spin configurations for each δ. The doping values δ � 0.09
in the shaded area are not included during training of the generative
model.
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FIG. 8. (a) The setup of the RUGAN method. The generator G (blue) transforms latent samples of size l , and optionally labels {λ},
to proposed configurations of size 4l . The critic C (pink) is used to measure the distance between the distributions of generated and real
configurations. This information is used to update both neural networks. (b) The generator consists of translationally equivariant convolutional
operations and therefore can be applied to inputs of arbitrary size, allowing for the creation of configurations at different spatial scales. (c) The
lth hidden layer of the residual convolutional networks transforms an input xl into xl+1, which can have a different spatial scale than the input.
When reducing the spatial scale, the rescaling operation is an average-pooling layer with kernel size 2 and stride 2. When increasing the spatial
scale, the rescaling consists of nearest-neighbor interpolation with a scale factor of 2. The convolutional operations with their corresponding
kernel sizes are shown in blue. Note that we do not use batch normalization in the critic [48]. (d) Ising configurations created by a RUGAN,
trained on L = 64 configurations, at different spatial scales. The training size is shown in red on the larger configurations.

RUGAN model on a data set of configurations where the
smallest doping values are excluded. Note that the vast major-
ity of the data is obtained at low doping. Hence, these results
are obtained with much fewer training samples, demonstrat-
ing that our model works well with a few thousand training
examples. The RUGAN results in the training region match
very well with experimental observations. The average string
length in the extrapolation region δ < 0.09 is well reproduced
by the RUGAN. Although the RUGAN models the string
count per site excellently in the training regime, it appears
that the geometric string model describes the data better than
RUGAN in the extrapolation regime. We stress that this model
works better at small doping by construction, as it alters
the experimental configurations obtained at zero doping and
hence has to make relatively few changes at small δ. The
reduced quality in performance of this particular RUGAN
model in extrapolating towards low doping is possibly due to
the much smaller training data set size.

APPENDIX C: TRAINING ON SYNTHETIC DATA

1. Classical Ising model

We now give a detailed illustration of our frame-
work on the prototypical classical Ising model on a two-
dimensional square lattice of length L with Hamiltonian H =
−J

∑
〈i,j〉 sisj, where the sum runs over nearest-neighbor spins

and set J = 1. For N binary spins s ∈ {−1,+1}, the con-
figuration space of the Ising model has a dimension of 2N ;
sampling configurations with desired properties directly from
this space is intractable for all but small system sizes. Here
we show that this task can be accomplished with a RUGAN
[Fig. 8(a)] by training it on data of small-scale Ising configu-
rations, and conditioning it on the energy and magnetization
density m = ∑

i si/N of each training example. The condi-
tioning allows for the efficient creation of microstates with
desired properties from the high-dimensional configuration
space as well as the creation of microstates with condition-
ing labels for which no training examples are available. We

implemented a modified form of umbrella sampling called
“targeted sampling” [10] to obtain a training set with a uni-
form energy distribution. This sampling method resembles
the Metropolis-Hastings algorithm in structure, but instead
of seeking low-energy states, we target specific energies, ac-
cepting configurations that move toward the target energy,
and rejecting ones (with a Gaussian probability) that move
away. In doing this, we efficiently collect examples across the
energy spectrum. For the results of Figs. 9(a)–9(d), we have
trained a RUGAN on a data set of Ising microstates restricted
to high and low energy values and magnetizations near zero,
and use it to sample the entire space of possible energy and
magnetization combinations. The generator only makes large
errors on the conditioning label combinations with a relatively
small density of states. Note that spin-flip symmetry is not
enforced, which could potentially decrease the errors shown
here. The accuracy in this conditioning is retained when using
the upscaling property [Fig. 8(b)] to create configurations at
much larger scales [Figs. 8(d), 9(e)–9(h)]. This implies that
we can greatly accelerate sampling of uncorrelated large scale
synthetic configurations, as costly simulations are only needed
for a small subset of the configuration space and only of
small-scale microstates.

2. Transverse-field Ising model

Additionally, we trained a RUGAN on a data set of a
one-dimensional transverse-field Ising (TFI) model. The cor-
responding Hamiltonian reads

Ĥ = −J
∑
〈i, j〉

σ z
i σ z

j − h
∑

i

σ x
i , (C1)

where the first sum runs over nearest-neighbor sites. We
sample configurations of this model using path-integral quan-
tum Monte Carlo, where we decompose the thermal density
matrix using a Trotter decomposition. The resulting configu-
rations are (1 + 1)-dimensional, where the second dimension
is along imaginary time. We sampled the (1 + 1)-dimensional
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FIG. 9. (a) During training of a RUGAN on classical Ising model
data, we condition the RUGAN on the energy and magnetization of
each configuration, and only show it examples with labels in the
regions enclosed by dashed lines. After training, it is requested to
create configurations with all possible labels; we show the median
absolute error in the magnetization. The results are obtained by
sampling 100 configurations at possible combinations of the energy
and magnetization per site with energy spacing 	E/L2 = 1/64 and
magnetization spacing 	m = 1/1024. Results shown here are for
the training system size L = 64. (b) Same as panel (a), but now
showing the median absolute error in the energy. (c) Average error
and its standard deviation at fixed energy [indicated by the blue line
in panel (a)] made by the RUGAN for generating configurations with
a requested value of the magnetization. (d) Average error and its
standard deviation at fixed magnetization [indicated by the blue line
in panel (b)] made by the RUGAN for generating configurations with
a requested value of the energy. (e–h) Same as panels (a–d), but now
with configurations created at a larger scale L = 256, containing 16
times more spins than the training examples.

configurations using a local Markov-chain Monte Carlo
model. The TFI was simulated for 10 spins at J = 1
and a range of 11 values for the transverse field h ∈
{0.5, 0.6, · · · , 1.4, 1.5}, and an inverse temperature set to β =
4. The time step of the Trotter decomposition is set to 0.1,
resulting in configurations of 10 × 40 spins. We generated
10 000 samples for each value of h and trained a RUGAN
conditioned on h on a data set which only includes the three
highest and three lowest values of h. Once trained, we use the
RUGAN to generate data both at the values of the transverse
field included in training, as well as those intermediate values
on which the RUGAN was not trained. As shown in Fig. 10,
the RUGAN and QMC data are indistinguishably distributed
according to a dimensionality reduction—even for the inter-
polation regime in h.

APPENDIX D: HIDDEN ORDER IN THE
TWO-DIMENSIONAL FERMI-HUBBARD MODEL

To benchmark the string patterns in the experimental data
and our RUGAN, we compare them to the predictions of the
frameworks of sprinkled holes and geometric string theory
[33]. Thereby we apply an analysis procedure identical to the
one used to describe experimental observations [26]. For the
sake of completeness, we here briefly describe those models
but refer to Refs. [26,33] for more detailed information.

1. Sprinkled holes and geometric string theory

Sprinkled holes is a model for the doped Fermi-Hubbard
model in the limit of noninteracting holes. To obtain snapshots
at different dopings, we start from experimentally obtained
snapshots at half filling and add holes on random positions
until the doping matches the requested one.

In geometric string theory holes do not interact with each
other but do interact with the surrounding spins. First, a single
hole is placed at a random position on the lattice. The dynam-
ics of the hole can be described by introducing an effective
Hamiltonian and an effective Hilbert space for a single string
[26,33]. The Hilbert space consists of string patterns, which
can be viewed as paths without loops on a Cayley tree with
coordination number z = 4. Using the frozen spin approxima-
tion and U � t , the strings can be modeled by the effective
Schrödinger equation

t
z−1∑

s

ψl+1,s + tψl−1 + Vlψl = Eψl , (D1)

where ψl is a shorthand notation for a path on the Cayley
tree of length l , and ψl+1,s denotes the string obtained by
continuing the string ψl along one of the z − 1 directions
on the Cayley tree. The parameter t is the coupling constant
for tunneling between string lengths (equal to t in the Fermi-
Hubbard Hamiltonian) and Vl is an effective potential. The
effective potential Vl = (dE/dl )l + gδl,0 consists of a linear
tension with magnitude dE/dl and an attractive term with
magnitude g. Solving this string model for finite temperature
yields a string length distribution p(l ). The snapshots are then
created by starting from experimental snapshots at half filling
and adding strings on random positions in the lattice—with a
length according to the string length distribution p(l )—until
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FIG. 10. The distribution of configurations of an L = 10 TFI created by RUGAN (blue) cannot be distinguished from the training examples
with other unsupervised machine learning methods. Here, we show a dimensionality reduction with the UMAP algorithm [25] of an equal
number of RUGAN and QMC configurations. Note that the RUGAN was not trained on h = 1.1.

the desired doping is reached. More details can be found in
Refs. [26,33].

2. String detection algorithm

In Fig. 2 the number of strings and their average length
as a function of doping are compared between the RUGAN,
experiment and the theories explained above. The detection
algorithm of these strings is applied to snapshots where one
of the two spin species and doublons are removed, and is per-
formed in multiple steps [26]. The geometric strings describe
the deviation between the doped Fermi-Hubbard snapshots
and a checkerboard state. Hence, the first step involves select-
ing a window (here with a diameter of seven sites) for each
configuration with the highest staggered magnetization. Using
a window with a diameter smaller than the configuration itself
negates some of the finite temperature effects. For a given
doping, 60% of the resulting windows with the highest stag-
gered magnetization are kept for further analysis. In the next
step, each of these windows is compared to a checkerboard
state. The strings are then identified as deviations from this
checkerboard, and the string-pattern length distribution pδ (l )
is measured.

As for the string count shown in Fig. 2, only those patterns
of length greater than two are included as to negate the contri-
bution from quantum fluctuations such as doublon-hole pairs

[26]. The average string lengths l̄ (δ) are calculated from the
string length histograms as l̄ (δ) = ∑

l l pδ (l )/
∑

l pδ (l ).

3. Spin-spin correlators

One way to assert the validity of the snapshots created by
the RUGAN described is to verify whether the sign-corrected
two-point spin correlator [Eq. (2)] matches well with exper-
imental results. Here, Ŝz

i = 1
2 (n̂↑

i − n̂↓
i ) with n̂σ

i the number
operator for spin σ on site i. The spin correlator can be
calculated from the experimental snapshots as [46]

Cs(r) = (−1)‖r‖1

[
2

∑
σ∈{↑,↓}

(〈pp〉Rσ − 〈p〉2
Rσ

)

− (〈pp〉NR − 〈p〉2
NR

)]
,

(D2)

where the spatial indices are dropped for simplicity. Here, p
denotes a singly occupied site, the expectation value 〈·〉NR is
taken over images where neither spin species was removed,
and 〈·〉Rσ over images where the spin state σ was removed.
To calculate the expectation values 〈·〉NR, we train a second
RUGAN on a data set of snapshots containing both spin
species, and also condition it on the doping. Here, the doping
conditioning can be explicitly checked, as the doping δ ≈
1.22(0.905 − ns), where ns is the density of singly occupied
sites [26].
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