
1 
 

Advancing root developmental research through single-cell technologies 1 

 2 

Max Minne1,2,# , Yuji Ke1,2,#, Maite Saura-Sanchez1,2,#, and Bert De Rybel1,2,* 3 

 4 

1 Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 5 

71, 9052 Ghent, Belgium 6 

2 VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium 7 

# These authors contributed equally 8 

* Correspondence to: Bert De Rybel (beryb@psb.vib-ugent.be) 9 

  10 

Abstract 11 

Single-cell RNA-sequencing has greatly increased the spatiotemporal resolution of root 12 

transcriptomics data, but we are still only scratching the surface of its full potential. Despite 13 

the challenges that remain in the field, the orderly aligned structure of the Arabidopsis root 14 

meristem makes it specifically suitable for lineage tracing and trajectory analysis. These 15 

methods will become even more potent by increasing resolution and specificity using tissue 16 

specific scRNA-seq and spatial transcriptomics. Feeding multiple single-cell omics datasets 17 

into single-cell gene regulatory networks will accelerate the discovery of regulators of root 18 

development in multiple species. By providing transcriptome atlases for virtually any species, 19 

single-cell technologies could tempt many root developmental biologists to move beyond the 20 

comfort of the well-known Arabidopsis root meristem. 21 

 22 

 Highlights 23 

o Plant root meristems are uniquely suitable for lineage tracing and trajectory analysis. 24 

o Spatial transcriptomics will initially assist in validation of scRNA-seq data but might soon 25 

become the main tool for transcriptomic profiling in plants. 26 

o Gene regulatory networks obtained at single-cell level in multiple species will be an 27 

invaluable tool to identify conserved regulators of root development. 28 

 29 
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Abbreviations 32 

CITE-seq Cellular Indexing of Transcriptomes and Epitopes by Sequencing 33 

CRE  Cis-Regulatory Element 34 

FACS  Fluorescence-Activated Cell Sorting 35 

FANS  Fluorescence-Activated Nuclei Sorting 36 

GRN  Gene Regulatory Network 37 

GWAS  Genome-Wide Association Study 38 

IACS  Intelligent Image-Activated Cell Sorting 39 

ISH  In Situ Hybridization 40 

LR  Lateral Root 41 

scATAC-seq Single-cell Assay for Transposase-Accessible Chromatin sequencing  42 

scRNA-seq Single-cell RNA-sequencing 43 

SNP  Single-Nucleotide Polymorphism 44 

snRNA-seq Single-nucleus RNA-sequencing 45 

TF  Transcription factor 46 

  47 
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Introduction 48 

Despite having joined the single-cell RNA-sequencing (scRNA-seq) party somewhat later 49 

compared to mammalian and medical research colleagues, the plant field pioneered in 50 

generating tissue specific transcriptomic data sets on Arabidopsis root apical meristems by 51 

combining fluorescence-activated cell sorting (FACS) and microarray analysis or bulk RNA-52 

seq as early as 2003. These atlases became increasingly more detailed over the years as 53 

technology advanced and even included cell-type level responses to a spectrum of abiotic and 54 

biotic stresses [1–7]. Although the importance of these datasets for the entire plant community 55 

cannot be stressed enough, the introduction of droplet-based scRNA-seq has undoubtedly 56 

provided a massive increase in resolution of transcriptome maps in the Arabidopsis root apical 57 

meristem [8–17]; and in other organs [18–24]. As this technology is not based on the 58 

availability of tissue specific marker lines, it is quickly becoming a very important technology 59 

in other plant species as well [25–35]. Despite being fully embraced by the plant community, 60 

scRNA-seq technology is mostly being used to query gene expression in a spatiotemporal way, 61 

similar to the FACS based data that has been around for almost 20 years [1–4]. There are 62 

however clear examples of how the increase in spatiotemporal resolution has advanced our 63 

understanding of root development [10,15,23,27], but scRNA-seq technology and the available 64 

datasets have much more potential (Fig. 1). We are thus only scratching the proverbial surface 65 

of what is already possible and will become possible in the very near future. 66 

The blessing and the curse of using plants for single-cell analyses 67 

It does not come as a surprise that the Arabidopsis root apical meristem was the first organ to 68 

be studied using scRNA-seq, as individual cells can easily be generated by enzymatic digestion 69 

of the cell wall in a process called protoplasting [1,36]. The capacity to generate single cells 70 

has however been and will continue to be a main bottleneck for the plant community [37–40]. 71 

Besides potentially introducing an unwanted transcriptional response while generating 72 

protoplasts, commercial systems based on microfluidics technology limit the size of captured 73 

cells to about 30-50 µm. This poses a real problem as plant cells range from 10 µm to 100 µm 74 

in size [41]. Although larger cells up to 125 µm can be captured using specific assays, this was 75 

shown to introduce a bias in the relative abundance of subpopulations of large cells [42,43]. 76 

Furthermore, certain cell types might fail to be digested or specific cells might burst during the 77 

procedure. Because of these reasons, some studies have resorted to nuclei isolation instead of 78 

whole cells [29,31,44–51]. This approach is theoretically applicable to any organ and any plant 79 

species, including frozen samples, and might prevent inherent capture biases associated with 80 

generating single cells [47]. The main disadvantage is capturing fewer mRNAs compared to 81 

whole cells, although single-nucleus RNA-sequencing (snRNA-seq) generally performs 82 

equally well for sensitivity and classification of cell types [47,49,52–54]. 83 

Despite these and other pitfalls in applying single-cell technologies to plant samples, the plant 84 

field also has distinct advantages compared to other fields of research which merit more 85 

exploitation. For example, linking cell states across periods of time in mammalian systems is 86 

very challenging and is currently approached by tracking cell clones via sequencing of inherited 87 

barcode sequences [55]. In contrast, every root meristem contains cells at all differentiation 88 
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stages, orderly aligned in cell files and fixed within their tissue context. The Arabidopsis root 89 

apical meristem is thus highly suitable for lineage tracing and developmental trajectory 90 

analysis, eliminating the need for time-series experiments in whole tissues and the associated 91 

batch effects, though care must be taken to avoid possible confounding effects due to positional 92 

information [56]. So far, pseudotime trajectories have mostly been used to interpret 93 

developmental time in scRNA-seq datasets and affirm known cell lineages [8,15,24]. They can 94 

however be used to address more complex developmental processes in root biology such as 95 

cell ontogeny and specification events. Indeed, trajectory analysis of protophloem cells 96 

revealed a differentiation gradient that mediates cellular specification [17] and analysis of the 97 

first stages of lateral root (LR) formation led to the identification of a group of precursor cells 98 

that rapidly reprograms and splits into various LR cell fates [23]. Furthermore, trajectory 99 

analysis can provide insights into the mode and speed of cell state transitions (gradual or 100 

switch-like), reveal bifurcations in ontogeny, and discover new regulators of these processes. 101 

As the Arabidopsis root meristem is very well studied, trajectory analysis is most likely to 102 

reveal novel insights in less characterized species [27,33]. Although its potential is clear, 103 

trajectory analysis and gene discovery require sufficient cells at each step of the pseudotime 104 

and high data content per cell. At the moment, achieving such high-resolution data using whole 105 

organ datasets presents a major financial burden. Thus, until sequencing technologies becomes 106 

more affordable, dedicated tissue specific data sets, which contain much fewer cells but with 107 

higher sequence coverage per cell will prove useful in studying root development and might 108 

allow re-visiting of the text-book concept of tissue identities by e.g. defining functional units 109 

of cells that span different tissue types. 110 

Increasing specificity in single-cell experiments 111 

Although scRNA-seq is capable of capturing rare cells or cell types, their occurrence in whole 112 

organ atlases might still be insufficient to infer good statistical power or advance to gene 113 

discovery and functional characterization studies. Although this issue can be partially solved 114 

by profiling a larger number of cells [14], this comes with an unrealistic financial cost if high 115 

data content per cell is required or many samples are involved. As mentioned above, this issue 116 

can be resolved by enriching these rare cell states or tissues, resulting in more specific datasets. 117 

In mammalian systems, this is achieved by using combinatorial antibody staining in e.g. CITE-118 

seq approaches [57–60]. Although large collections of antibodies and tissue-specific epitopes 119 

are not readily available in the plant field, increased specificity can be facilitated by manually 120 

removing unwanted tissues [20,21] or specific cell enrichment using FACS/Fluorescence-121 

activated nuclei sorting (FANS) on fluorescent protein tagged reporter lines whose expression 122 

represent a spatiotemporal domain within the tissue of interest. The fact that increased 123 

specificity leads to novel biological insights was elegantly shown by profiling the sieve element 124 

lineage from cell birth to terminal differentiation [17], the Arabidopsis inflorescence [61], and 125 

the first four stages of LR formation [23]. The major drawback of this method is obviously its 126 

reliance on a priori knowledge and the availability of specific marker lines, which are rare or 127 

absent for most plant species. Alternatives to purify cell types without resorting to specific 128 

antibodies or transgenes have been suggested in the form of intelligent image-activated cell 129 

sorting (IACS), which performs real-time high-throughput cell microscopy analysis prior to 130 
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sorting based on a range of morphological features [62]. Other computational methods combine 131 

single-cell transcriptomics with FACS index sorting to set non intuitive sorting gates to purify 132 

cell types based on scRNA-seq data [63]. Successful application of these technologies would 133 

allow for smooth integration of other single-cell omics and streamline the identification of 134 

molecular morphometric phenotypes. However, these methods require accurate training of 135 

deep learning algorithms, so other unbiased methods that also do not require markers or 136 

antibodies will be needed.  137 

Seeing is believing 138 

In all cases, predictions derived from scRNA-seq data should be validated experimentally, as 139 

conclusions drawn from scRNA-seq data analyses can be skewed by biases generated during 140 

sample or library preparation and the downstream computational analysis. This can be achieved 141 

by generating reporter lines [8,15,17,20] or by performing in situ hybridization (ISH) 142 

[24,27,33]. However, constructing reporter lines is limited to species that are amenable to 143 

transformation and  in situ hybridization is labour intensive and can be hindered by the lack of 144 

robust probes in many plant species [64]. Fortunately, rapid progress is being made in the 145 

development of spatial transcriptomics [65–70]. This technology theoretically enables all genes 146 

at low spatial resolution (untargeted) or a subset of genes at high spatial resolution (targeted) 147 

to be visualized in situ, without the need of marker genes or reporter lines and is applicable to 148 

any species and tissue. Nevertheless, its application to the plant field is currently still hampered 149 

by technical difficulties (see also [71]).  150 

Combining the complementary advantages of single-cell and spatial transcriptomics will 151 

revolutionize both fundamental and applied research. Indeed, linking scRNA-seq data with its 152 

natural spatial context enables instant cell identity mapping, which is of particular use in non-153 

model organisms. Moreover, it provides unprecedented resolution to study structure-function 154 

relationship, cell-cell interactions, plant pathogen interactions and environmental responses in 155 

general. If the resolution and accessibility of untargeted spatial transcriptomics increases 156 

further, it can even be envisioned that this technology will largely replace scRNA-seq in plant 157 

research. Besides advancing basic root biology research in Arabidopsis, spatial transcriptomics 158 

is expected to accelerate the establishment of new species for molecular biology applications. 159 

No doubt, this technology will also be rapidly adopted to study crops and species which are 160 

difficult to transform. 161 

From off-the-shelf to out-of-the-box 162 

Coordinated growth and development in a changing environment requires interplay among 163 

many components in complex gene regulatory networks (GRNs), where transcription factors 164 

(TFs) and non-coding functional cis-regulatory elements (CREs) cooperatively regulate gene 165 

expression and as such determine the final cell differentiation start and phenotypical response. 166 

Due to the high spatiotemporal resolution, single-cell data is able to deconstruct tissue 167 

heterogeneity, making it highly suited for GRN analysis [72]. For example, environmental 168 

GRNs have been constructed for Arabidopsis roots where heat-shock treatment led to drastic 169 

transcriptional changes in the three outermost cell layers of the root [9]. In another study, 170 
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sucrose induced enrichment of root hairs and gene expression changes were highly tissue-171 

specific [11]. However, precise GRN predictions require CREs or TF-binding site information 172 

with matching spatiotemporal resolution. This can be achieved by complementing scRNA-seq 173 

data with profiling accessible chromatin regions through scATAC-seq [27,50,73]. As such, our 174 

understanding of the regulatory networks governing root growth and development can be 175 

achieved by pairing scRNA-seq with scATAC-seq across critical growth and developmental 176 

transition stages or under a spectrum of environmental stresses. 177 

Apart from answering fundamental research questions using off-the-shelf single-cell 178 

applications, the high spatiotemporal resolution embedded in scRNA-seq data can be used in 179 

more surprising ways to modulate complex traits in crop species. For example, scRNA-seq 180 

data was linked with genome-wide association (GWAS) data in developing maize ears where 181 

significant single-nucleotide polymorphisms (SNPs) were found within scRNA-seq marker 182 

genes that are associated with yield-related traits [35]. As such, the high-resolution GRNs 183 

constructed through scRNA-seq and scATAC-seq will help to pinpoint key regulators 184 

underlying traits of interest together with corresponding CREs. SNPs within these CREs can 185 

then potentially serve as targets for genome editing to precisely deliver targeted phenotypic 186 

changes. Also, such high-resolution SNPs could facilitate applications like GWAS and marker-187 

assisted selection in plant breeding. 188 

Conclusion 189 

In the few years since they have been adopted by the plant field, single cell applications are 190 

revolutionizing the way we study root development. Although they are still mostly increasing 191 

our spatiotemporal resolution and identifying specific developmental regulators; soon, they 192 

might tempt many root biologists to move beyond the well-studied Arabidopsis root 193 

meristems and quickly prepare other species for molecular biology applications by providing 194 

fully annotated transcriptome atlases. The applications are perhaps even more promising for 195 

studying complex systems such as plant-pathogen interactions or cell-cell interactions, but 196 

will for sure also be readily adopted in crop species.  197 
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 212 

Figure 1. New opportunities for understanding root development using single-cell 213 

technologies. The use of RNA-seq applied to individual cells or nuclei allows reconstructing 214 

developmental trajectories in root tissues. The resolution can be increased using FACS/FANS 215 

to study a specific tissue or cell type of interest. scRNA-seq data will be soon complemented 216 

with spatial transcriptomics technology. Combining the transcriptome information with the 217 

chromatin accessibility and proteome studies at single cell level could be used to create gene 218 

regulatory networks (GRN) with an unprecedent spatiotemporal detail. Root development 219 

research will benefit from these technologies to e.g. study non-model plant species, find new 220 

functional cell types, or discover target genes for plant breeding. 221 

222 
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