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Abstract—The growth of vehicle mobility in the past 

decades and increased traffic complexity leads to a need for 

traffic management systems, especially in large-scale urban 

traffic networks. The erroneous data problems are common 

problems that affect traffic management systems. The traffic 

management systems also relied on traffic prediction 

particularly in traffic signal control and route guidance. This 

paper investigated probabilistic principal component analysis 

(PPCA) methods to impute missing traffic count data and 

predict future data. We also investigated the resulting principal 

components' significance in urban traffic analysis. These 

methods are applied to traffic count data from vehicle detectors 

in the urban network of Surabaya city, Indonesia. The results 

show that the PPCA-based data imputation method is able to 

impute missing data with imputation error under 20% 

WMAPE. The resulting principal components analysis 

demonstrates that 1st principal component scores can be seen as 

a fundamental temporal pattern of the Surabaya urban network 

while the characteristic of the link can be derived from the 1st 

principal component coefficient. We also demonstrate that 1st 

principal component coefficient of the link might detect outliers 

or anomalies such as detector malfunction and unique temporal 

pattern. PPCA can also be used to predict future data based on 

observed data, but experiments show that even though the 

majority of the links can be predicted accurately, some links are 

having large errors that might be caused by different temporal 

patterns between future data and observed data. 

Keywords—PPCA, traffic count data, missing data, data 

quality, anomalies detection, prediction, traffic analysis. 

I. INTRODUCTION 

The growth of vehicle mobility in the past decades and the 
increased complexity of traffic over heterogeneous large-scale 
networks especially in urban traffic has brought tremendous 
pressure on urban transport. In order to improve this situation, 
a traffic management system in urban transport has become a 
necessity, especially in large-scale networks. However, most 
traffic management systems require complete and reliable 
traffic data. For example, intelligent traffic control systems 
such as SCATS [1] and max pressure control [2,13] require 
sufficient traffic flow data (i.e., headway, volumes, and 
speeds) to work effectively. However, a lot of traffic 
management systems are suffering from erroneous data 
problems that lead to difficulties to control and predict traffic 
flow which makes traffic analysis and management becoming 
less accurate. 

The erroneous data problems are a common problem and 
can be caused by various reasons such as detector faults and 

connection problems that lead to loss of data. These reasons 
lead to two different main types of errors, missing data error 
and incorrect data error. 

Missing data error is a common challenge that face many 
data driven systems. The reasons for this can be manyfold, 
sensing device malfunction, powering issues, communication 
error, occlusion, etc. For instance, for the traffic management 
system that is in the development phase, such as in Surabaya, 
Indonesia the ratio of missing data from vehicle detectors 
measuring traffic volume is around 18.3%. Some vehicle 
detectors do not generate traffic data at all for period of time. 
These problems are huge obstacles for research in traffic 
management systems that requires complete and valid 
data.  Several approaches for traffic data imputation have been 
proposed for missing data error and compiled in survey papers 
such as Chang & Ge [3] and Li, Li, & Li. [4]. However, traffic 
data imputation methods failed to solve incorrect data errors. 

Incorrect data errors are less common compared to missing 
data errors, but they are also more challenging to detect. 
However, their detection is a crucial part for intelligent traffic 
control systems since the failure to detect might lead to 
incorrect control strategies. In this context, the incorrect data 
error can be considered as an anomaly, or an outlier, in traffic 
data where the observed data is inconsistent with the traffic 
condition. 

Traffic prediction is an important part of traffic 
management, particularly for route guidance and traffic 
control. For example, the optimization of traffic signal control 
can be improved by inputting the prediction of traffic 
conditions in near future to the traffic signal control system. 
Similarly, route guidance information can be more accurate if 
the input involves prediction data in addition to data from 
current traffic conditions. A problem of traffic prediction in 
traffic management system, especially in large-scale network, 
is that it requires methods that are efficient and scalable. Most 
prediction methods approaches that we found in the literature 
are univariate prediction methods [14,15]. Such approaches 
are usually demanding in terms of computation and not 
scalable for large-scale networks. 

In the past years, Principal Component Analysis (PCA) [6] 
and its maximum likelihood reformulation, Probabilistic 
Principal Component Analysis (PPCA) [5], are considered as 
a potential method for both data imputation and traffic 
prediction in large-scale networks. A study of PPCA-based 
missing data imputation method is shown by Li & Li [7] and 
it shows promising results in imputing traffic flow volume 



data in Beijing, China, which covers 50 loop detectors and 17 
intersections with root-mean-square imputation error reduced 
by at least 25% compared to conventional methods. Coogan, 
Flores, & Varaiya [9] proposes traffic predictive control based 
on low-rank structures which are identified using PCA that 
reduces delay around 7.8 veh⋅hr per day on a test site in 
Beaufort, South Carolina. Jenelius and Koutsopoulos [10] 
propose a PPCA-based network travel time prediction on the 
road network of Shenzhen, China, and shows a good 
performance with the assumption that PPCA has multivariate 
normal distributed variables. The resulting principal 
components from PCA can also be utilized for traffic analysis 
such as variability in traffic flow over a network, as done by 
Tsekeris and Stathopoulos [8]. 

In this paper, we applied both the PPCA-based data 
imputation method and PPCA-based network-wide prediction 
methods to the urban network of Surabaya, Indonesia, using 
two months of traffic count data from vehicle detectors in the 
network. The performance of both imputation methods against 
missing data and network-wide prediction is evaluated. The 
contribution of this paper is the analysis of the resulting 
principal component from PPCA model, especially in 
detecting anomalies from the resulting principal component 
coefficients. 

The rest of this paper is organized as follows: Section II 
describes the PPCA-based imputation and prediction method. 
Section III describes the application to traffic count data in 
Surabaya, Indonesia, with results presented in Section IV. 
Section V concludes this paper and discusses potential future 
research from these early results. 

II. METHODOLOGY 

A. PPCA-based Data Imputation  

PCA [6] is a standard tool in exploratory data analysis 
commonly used for dimensionality reduction, data 
compression, feature extraction, and factor analysis. It can be 
seen as the orthogonal projection of data to a lower 
dimensional linear space, called principal subspace, such that 
the variance in the projected space is maximized. These 
subspaces are ordered by the variance that is captured in the 
data so that the first one has the maximum variance that is 
possible to represent a subspace. 

PPCA is a formulation of PCA as a maximum-likelihood 
procedure based on a probability density model of the data that 
gives several advantages such as the ability to deal with 
missing data and better scalability. Multiple PCA models can 
also be combined as mixtures of PPCA. This PPCA 
formulation was proposed by Tipping and Bishop [5]. 

The idea behind imputation using PPCA is that we treat 
missing data as random variables that have never been 
observed. If we can estimate the likelihood function from 
observed data, then we can estimate missing data from the 
obtained likelihood function. 

PPCA, like PCA, defines a relation between observed data 
with its principal component. Suppose that the observed data 
is generated from PPCA and the relation between observed 
data and the principal component described as standard factor 
analysis mapping [11] 

𝐲 = 𝐖𝐱 + 𝝁 + 𝝐 (1) 

where 𝐲 is a 𝑝 × 𝑛 matrix of observed data with 𝑝 represents 
number of time intervals and 𝑛 represents number of vehicle 
detectors,  𝐱~𝒩(𝟎, 𝐈)  is the 𝑘 × 𝑛  matrix of principal 
component coefficients with 𝑘 < 𝑝 and assumed to be i.i.d.  
𝐖   is a 𝑝 × 𝑘  principal component scores matrix that 
represents linear mapping between observed data 𝐲  and 
principal component coefficients 𝐱 . 𝝁  is a 𝑝 × 𝑛  matrix of 
mean value of each variable thus allows the model to have 
nonzero mean 𝝐 is a 𝑝 × 𝑛 matrix represents isotropic noise 
assumed to be i.i.d. normal with zero mean and 𝜎2 variance. 
This noise represents errors in the observed data that are 
caused by measurement noises. 

 The number of principal components 𝑘  is a design 
parameter in PPCA. Generally, the larger the number of 𝑘, the 
more variance of the observed data is preserved. Larger 
number of 𝑘 tends to have better accuracy, however it also 
leads to model overfit.  In order to balance between accuracy 
and generality, the number of 𝑘  is calibrated by cross-
validation. 

 The resulting model have following distribution: 

𝒚~𝒩(𝝁, 𝑾𝑾T + 𝜎2 ∗ 𝐈(𝑘)) (2) 

There is no closed-form analytical solution for 𝑾 and 𝜎2, so 

their estimates are determined by iterative maximization of 

the corresponding log likelihood using an expectation-

maximization (EM) algorithm. An efficient EM algorithm of 

PPCA that estimates 𝝁, 𝑾, and 𝜎2 in the presence of missing 

data has been derived in [12]. The interested reader can refer 

to that paper in detail. 

B. PPCA-based Network-Wide Prediction 

Let 𝒕𝒊  be the 1 × 𝑛  vector of traffic count data for all 
vehicle detectors in time interval 𝑖  in current day. All time 
intervals in current day are stacked in a 𝑝 × 𝑛 vector 𝑡. Matrix 
𝑡 is assumed to be generated from PPCA model (1), same as 
the observed data. 

Let 𝑗 be the current time interval. At time interval 𝑗, only 
the observed data at time interval {𝑗 − 𝑃 + 1, … , 𝑗}  are 
available while the rest of data at time interval {𝑗 + 1, … , 𝑗 +
𝐹} need to be predicted. The matrix 𝑡 then can be split into 
observed data 𝒕𝑃 and future data 𝒕𝐹. 

𝒕𝑃 = (

𝒕𝑗−𝑃+1

⋮
𝒕𝑗

) 𝒕𝐹 = (

𝒕𝑗−𝑃+1

⋮
𝒕𝑗

) (3) 

The principal component scores matrix 𝑾 and the mean value 
matrix 𝝁 then can be split similarly into 𝑾𝑃, 𝑾𝐹, 𝝁𝑃, and 𝝁𝐹. 

 Jenelius and Koutsopoulos [10] derived network-wide 
prediction based on the conditional distribution of the future 

data 𝒕𝐹  given observed data 𝒕𝑃 , 𝒕𝐹|𝒕𝑃~𝒩(𝒕̂𝐹|𝑃, 𝚺𝐹|𝑃), from 

the properties of multivariate normal distributed variables and 
the matrix inversion lemma where 

𝒕̂𝐹|𝑃 = 𝝁𝐹 + 𝑾𝐹(𝑾𝑃
𝑇𝑾𝑃 + 𝜎2𝑰)−1𝑾𝑃

𝑇(𝒕𝑃 − 𝝁𝑃) (4) 

𝚺𝐹|𝑃 = 𝜎2𝑾𝐹(𝑾𝑃
𝑇𝑾𝑃 + 𝜎2𝑰)−1𝑾𝐹

𝑇 + 𝜎2𝑰 (5) 

 The 𝒕̂𝐹|𝑃  matrix represents the point predictor for future 

data, while the covariance matrix 𝚺𝐹|𝑃  represents variability 

around the point predictions. This normal distribution assumes 
that the variables have almost the same mean and variance and 
this is indicated by a similar flow profile. 



III. CASE STUDY 

Both data imputation and network-wide prediction 
methodology are applied to traffic count data of the urban 
network of Surabaya, Indonesia. The traffic count data used in 
this paper are the number of vehicles passing vehicle detectors 
aggregated every 15 minutes. There are 285 vehicle detectors 
counting vehicles that leave a link in an intersection and 
located at 115 intersections around the urban network of 
Surabaya, Indonesia, covering an area around 200 km2 as 
shown in Fig. 1(a). The placement of the vehicle detectors are 
denoted by yellow squares in Fig. 1(b). These real-time traffic 
count data are collected from 1 January 2020 to 29 February 
2020. 

   

(a)              (b) 

Fig. 1. Vehicle detectors in Surabaya, Indonesia. Every traffic light symbol 

in (a) represents one intersection. The placement of vehicle detectors in an 
intersection is shown in (b) where each yellow square represents one vehicle 

detector. 

To ensure that the traffic count data has a similar pattern 
on a day-to-day basis, we only use traffic count data collected 
during Monday from eight different weeks. Each day has 96 
data points, so the total number of data points used is 768 data 
points for each of the 285 vehicle detectors which leads to 
218,880 traffic count data. The resulting traffic count data 
used for estimating the PPCA model is 768 × 285 matrix of 
observed data 𝒚. 

In this case study, we compare how different numbers of 
𝑘  effect to data imputation performance. We also compare 
three different scenarios of missing data as follows: 

• Original traffic count data with 1.4% missing data; 

• Traffic count data with 8 hours data omitted (4% 
missing data); and 

• Traffic count data with 64 hours data omitted (33% 
missing data). 

We evaluate our PPCA model by cross-validation to 
determine the number of principal components 𝑘 . The 
resulting 𝑘 are then applied to the PPCA-based network-wide 
prediction method. The resulting principal components are 
also investigated for traffic analysis especially in detecting 
outliers or anomalies. 

IV. RESULTS 

A. Imputation Performance Evaluation Criteria 

Generally, the better the imputation method performance 
leads to a closer value between imputed data and missing data. 
The most common performance criteria for such case is the 
mean error, which is the average value of error between 
imputed data and missing data in every time interval. The 
following mean error are used to determine imputation 
performance: 

1) Mean absolute error (MAE) 

MAE =
∑ ∑ |

𝑝
𝑗=1

𝑛
𝑖=1 𝑦̂𝑖𝑗 − 𝑦𝑖𝑗|

𝑝 × 𝑛
 (6) 

2) Root mean square error (RMSE) 

RMSE = √
∑ ∑ (𝑦̂𝑖𝑗 − 𝑦𝑖𝑗)

2𝑝
𝑗=1

𝑛
𝑖=1

𝑝 × 𝑛
 (7) 

3) Weighted mean absolute percentage error (WMAPE) 

WMAPE =
∑ ∑ |

𝑝
𝑗=1

𝑛
𝑖=1 𝑦̂𝑖𝑗 − 𝑦𝑖𝑗|

∑ ∑ 𝑦𝑖𝑗
𝑝
𝑗=1

𝑛
𝑖=1

× 100% (8) 

B. PPCA-Based Data Imputation Performance  

Fig. 2 summarizes the imputation errors in terms of mean 
absolute error (MAE), root mean square error (RMSE), and 
weighted mean absolute percentage error (WMAPE) across 
eight days of data. 

 

(a) 

 

(b) 

 

(c) 

Fig. 2. PPCA-based data imputation performance in terms of (a) MAE, (b) 

RMSE, and (c) WMAPE 

Fig. 2 shows that a higher missing ratio leads to larger 
error but the difference between original data that have 1.4 % 
missing data and data that have 33% missing data is only 1% 
WMAPE. The largest WMAPE, out of all cases, is for the case 
with 𝑘 = 4 and 33% missing data and equals 15.34%, which 
is under the acceptable error margin of 20%. Although the 
error is still acceptable, the error of the original data (without 
omitted data) is still high. Hence, the error might be affected 
by the similarity among traffic flow patterns of all the links in 
the network. In this case study, the location of the vehicle 
detectors covers areas that have different land use 
characteristics, such as business districts and residential areas. 



The PPCA-model error might be reduced by clustering areas 
with similar characteristics and constructing the PPCA model 
for each area separately. 

It should be noted that the observed data should cover the 
time-of-day of the missing data for PPCA to be able to 
reconstruct missing data from observed data. 

A higher number of principal components tends to give 
better accuracy because more variance of the observed data is 
preserved. But it is also known that it tends to overfit the 
PPCA model. Fig. 3 compares the results of data imputation 
for training data and validation data sets. 

 

(a) 

 

(b) 

 

(c) 

Fig. 3. PPCA-based data imputation performance comparison for training 

data and validation data in terms of (a) MAE, (b) RMSE, and (c) WMAPE 

 Fig. 3 shows that the error of the PPCA model tested on 
training data is lower for the higher number of principal 
components (𝑘) while the error of the PPCA model tested on 
validation data is higher for the higher number of principal 
components (𝑘), especially RMSE. This finding means that 
the higher number of principal components (𝑘) tends to overfit 
the PPCA model because it doesn’t perform better for the 
higher number of principal components 𝑘 for validation data. 

C. PPCA for Traffic Analysis  

One advantage of the PPCA compared to other data 
imputation methods is the ability to get principal component 
score and coefficient of the observed data that help analysis of 
traffic conditions. For clarity, we only show principal 
components of the PPCA model for link number 109-2 on 20 
January 2020 for the case with 𝑘 = 4 and 8 hours omitted data 
(4% missing data) in Fig. 4. 

 

(a) 

 

(b) 

 

(c) 

Fig. 4. Plot of (a) principal component scores (𝑾), (b) principal component 

coefficients (𝒙), and (c) principal component variances of link number 109-

2 on 20 January 2020 for the case with 𝑘=4 and 8 hours omitted data (4% 

missing data) 

 Tsekeris and Stathopoulos [8] presented that PCA can 
show temporal patterns of traffic data. Fig. 4 shows that the 1st 
principal component score (blue line) is similar to the common 
traffic flow pattern that has two peaks, during morning rush 
hour and evening rush hour, relatively large traffic count 
during noon while having minimum value during midnight 
and dawn. The 1st principal component variance is very 
dominant compared to the rest of the principal components 
with almost 90% variance out of the total variance of other 
principal components. This finding shows that the 1st principal 
component’s score can be seen as the fundamental temporal 
patterns of all links observed in the Surabaya network while 
the rest of the principal components are minor temporal 
patterns that show the differences between links. 

Fig. 5 shows the comparison of coefficients of the 1st 
principal components for all links. Most links in the Surabaya 
network are having a positive value coefficient for 1st principal 
component which means that most links in the networks 
possess a similar fundamental temporal pattern. We will 
analyze two categories of the value of the 1st principal 
component: the large value of the 1st principal component 
coefficient and the negative value of the 1st principal 
component coefficient. 

 Fig. 6 highlights links that have a large value of 1st 
principal component such as links number 73, 116, 151, and 
158. All the mentioned links are having the same 
characteristic which is a relatively large mean ( 𝜇 > 500 ) 
compared to the mean of the network (𝜇 = 164.5) . This 
finding is useful for clustering links based on the 1st principal 



component coefficient, assuming that the 1st principal 
component variance is dominant. 

 

Fig. 5. Comparison of coefficients of the 1st principal components for all 

links 

 

Fig. 6. Comparison of coefficients of the 1st principal components for all 

links and links that have large coefficient value of the 1st principal component 

highlighted 

 Fig. 7 highlights links that have a negative value of 1st 
principal component such as links number 50, 64, 69, 89, 133, 
139, 180, and 227. These links can be considered as anomalies 
because they do not follow the fundamental temporal pattern 
and from our findings, it can be caused by links that have 
unique temporal patterns or events.  

 

Fig. 7. Comparison of coefficients of the 1st principal components for all 

links and links that have a negative coefficient value of the 1st principal 

component highlighted 

 An example of a link that has a unique temporal pattern is 
link number 64. From Fig. 8, we can see that this link has a 
low traffic count during noon as opposed to the relatively large 
traffic count found in the fundamental temporal pattern. It also 
has a relatively large traffic count during nighttime. This 
pattern is consistent over all observed eight weeks of data, 
which shows that it is not caused by events and can be 
considered as anomalies in the form of a unique temporal 
pattern. 

 Link number 50 is an example of a link that is affected by 
events. For our case, we consider two events, vehicle detector 
malfunction, and events such as holiday, road closure, etc. The 
plot of traffic count data in link number 50 is shown in Fig. 9. 
In link number 50 case, the event is caused by a detector 
malfunction where traffic count data from this link number is 
suddenly dropped to zero during morning rush hour until 
evening. The vehicle detectors only show a non-zero values 
during midnight and dawn. 

 

Fig. 8. Traffic count data from vehicle detectors at link number 64 on 20 

January 2020. This link is considered as anomalies that caused by a unique 

temporal pattern. 

 

Fig. 9. Traffic count data from vehicle detectors at link number 50 on 20 

January 2020. This link is considered as anomaly caused by detector 

malfunction. 

 These findings show that the 1st principal component score 
has the potential to detect anomalies caused by events such as 
detector malfunction or other events.  

D. PPCA-based Network-Wide Prediction Performance 

For PPCA-based prediction, we try to predict 3 hours of 
traffic count data (12 data points from 21.00-24.00) on every 
link, on 27 January 2020, using data from both 20 January 
2020 (21.00-24.00) and 27 January 2020 (00.00-21.00). We 
choose 𝑘 = 4  for this method based on cross-validation 
results. Fig. 10 summarizes the prediction errors in terms of 
mean absolute error (MAE), root mean square error (RMSE), 
and weighted mean absolute percentage error (WMAPE). 

  

        (a)               (b) 

 

(c) 

Fig. 10. PPCA-based network-wide prediction performance histogram plot 
in terms of (a) MAE, (b) RMSE, and (c) WMAPE. Frequency shows how 

many links have similar errors. 

Fig. 10 shows that the majority of the links have WMAPE 
lower than 30% which means the majority of the links can be 
predicted relatively accurately, but some minorities of the 
links have huge errors. To show why some links are predicted 



accurately and some links are predicted poorly, we will plot 
both cases in Fig. 11. 

 

(a) 

 

(b) 

Fig. 11. PPCA-based prediction results compared to observed data for (a) 
link number 42 and (b) link number 6. Link number 42 is an example of 

accurate prediction (WMAPE = 5.446%) and link number 6 is an example 

of poor prediction (WMAPE = 74.77%) 

From Fig. 11 we can see that link number 42 has a similar 
temporal pattern and mean between data on 20 January 2020 
and 27 January 2020, while link number 6 has a different 
pattern and large offset between those two dates. This finding 
means that to be able to predict accurately using PPCA-based 
prediction methods, the temporal pattern and mean between 
historical data and predicted data should be similar to some 
extent. 

V. CONCLUSIONS 

In this paper, a PPCA-based data imputation method, a 
PPCA-based network-wide prediction method, and urban 
traffic analysis based on principal components have been 
applied for traffic count data collected from 285 vehicle 
detectors in Surabaya, Indonesia. The following conclusions 
can be drawn from this paper: 

• PPCA-based data imputation method is able to impute 
missing traffic count data with error under 20% using 
traffic count data consists of 33% missing data. 

• The resulting PPCA model, especially the 1st principal 
components, can be used as traffic analysis tools, such 
as analyzing characteristics of links in a network and 
finding anomalies in terms of unique temporal pattern 
or detector faults. 

• PPCA-based network-wide prediction show some 
promising results with the majority of the links 
prediction errors under 30% WMAPE, but some links 
show large prediction error which might be caused by 
the limitation of the PPCA model to predict data with 
different temporal pattern. 

We propose some related future research regarding these 
early results are as follows: 

• The error of both PPCA-based data imputation and 
network-wide prediction might be reduced by 
clustering the network into sub-network to ensure that 
the principal components obtained are able to 
reconstruct the original observed data and minimize 
outlier in each sub network data. 

• Alternatively, PPCA-based models can be improved to 
Mixtures of PPCA-based models so different clusters 
are covered by multiple different Gaussian 
distributions, similarly to how multiple PCA models 
are used for different clusters. 
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