
Neural Probabilistic Logic Programming in
DeepProbLogI

Robin Manhaevea,∗, Sebastijan Dumančića, Angelika Kimmiga, Thomas
Demeesterb,1, Luc De Raedta,1

aKU Leuven
bGhent University - imec

Abstract

We introduce DeepProbLog, a neural probabilistic logic programming language
that incorporates deep learning by means of neural predicates. We show how
existing inference and learning techniques of the underlying probabilistic logic
programming language ProbLog can be adapted for the new language. We the-
oretically and experimentally demonstrate that DeepProbLog supports (i) both
symbolic and subsymbolic representations and inference, (ii) program induction,
(iii) probabilistic (logic) programming, and (iv) (deep) learning from examples.
To the best of our knowledge, this work is the first to propose a framework where
general-purpose neural networks and expressive probabilistic-logical modeling
and reasoning are integrated in a way that exploits the full expressiveness and
strengths of both worlds and can be trained end-to-end based on examples.

Keywords: logic, probability, neural networks, probabilistic logic
programming, neuro-symbolic integration, learning and reasoning

1. Introduction

Many tasks in AI can be divided into roughly two categories: those that
require low-level perception, and those that require high-level reasoning. At the
same time, there is a growing consensus that being capable of tackling both
types of tasks is essential to achieve true (artificial) intelligence [2]. Deep learn-
ing is empowering a new generation of intelligent systems that excel at low-level
perception, where it is used to interpret images, text and speech with unprece-
dented accuracy. The success of deep learning has caused a lot of excitement
and has also created the impression that deep learning can solve any problem in
artificial intelligence. However, there is a growing awareness of the limitations of

IThis is an extended and revised version of work previously published at NeurIPS 2018 [1].
∗Corresponding author
Email address: robin.manhaeve@cs.kuleuven.be (Robin Manhaeve)

1Joint last authors.

Preprint submitted to Elsevier September 22, 2021

deep learning: deep learning requires large amounts of (the right kind of) data
to train the network, it provides neither justifications nor explanations, and the
models are black-boxes that can neither be understood nor modified by domain
experts. Although there have been attempts to demonstrate reasoning-like be-
haviour with deep learning [3], their current reasoning abilities are nowhere close
to what is possible with typical high-level reasoning approaches. The two most
prominent frameworks for reasoning are logic and probability theory. While in
the past, these were studied by separate communities in artificial intelligence,
many researchers are working towards their integration, and aim at combin-
ing probability with logic and statistical learning; cf. the areas of statistical
relational artificial intelligence [4, 5] and probabilistic logic programming [6].

The abilities of deep learning and statistical relational artificial intelligence
approaches are complementary. While deep learning excels at low-level per-
ception, probabilistic logics excel at high-level reasoning. As such, an integra-
tion of the two would have very promising properties. Recently, a number of
researchers have revisited and modernized ideas originating from the field of
neural-symbolic integration [7], searching for ways to combine the best of both
worlds [8, 9, 10, 3], for example, by designing neural architectures representing
differentiable counterparts of symbolic operations in classical reasoning tools.
Yet, joining the full flexibility of high-level probabilistic and logical reasoning
with the representational power of deep neural networks is still an open prob-
lem. Elsewhere [11], we have argued that neuro-symbolic integration should: 1)
integrate neural networks with the two most prominent methods for reasoning,
that is, logic and probability, and 2) that neuro-symbolic integrated methods
should have the pure neural, logical and probabilistic methods as special cases.

With DeepProbLog, we tackle the neuro-symbolic challenge from this per-
spective. Furthermore, instead of integrating reasoning capabilities into a com-
plex neural network architecture, we proceed the other way round. We start
from an existing probabilistic logic programming language, ProbLog [12], and
introduce the smallest extension that allows us to integrate neural networks: the
neural predicate. The idea is simple: in a probabilistic logic, atomic expressions
of the form q(t1, ..., tn) (aka tuples in a relational database) have a probability
p. We extend this idea by allowing atomic expressions to be labeled with neu-
ral networks whose outputs can be considered probability distributions. This
simple idea is appealing as it allows us to retain all the essential components of
the ProbLog language: the semantics, the inference mechanism, as well as the
implementation.

Therefore, one should not only integrate logic with neural networks in neuro-
symbolic computation, but also probability.

This effectively leads to an integration of probabilistic logics (hence statisti-
cal relational AI) with neural networks and opens up new abilities. Furthermore,
although at first sight, this may appear as a complication, it actually can greatly
simplify the integration of neural networks with logic. The reason for this is that
the probabilistic framework provides a clear optimisation criterion, namely the
probability of the training examples. Real-valued probabilistic quantities are
also well-suited for gradient-based training procedures, as opposed to discrete

2

logic quantities.

Example 1
Before going into further detail, the following example illustrates the pos-
sibilities of this approach. Consider the predicate addition(X, Y, Z), where
X and Y are images of handwritten digits from the MNIST dataset [13],
and Z is the natural number corresponding to the sum of these digits. The
goal is that after training, DeepProbLog allows us to make a probabilistic
estimate on the validity of, for example, addition(, , 8). While such
a predicate can be learned directly by a standard neural classifier, such an
approach cannot incorporate background knowledge such as the definition
of the addition of two natural numbers. In DeepProbLog such knowledge
can easily be encoded in rules such as

addition(IX, IY, NZ) :− digit(IX, NX), digit(IY, NY), NZ is NX + NY

with is the standard operator of logic programming to evaluate arithmetic
expressions. All that needs to be learned in this case is the neural predi-
cate digit which maps an image of a digit ID to the corresponding natural
number ND. The trained network can then be reused for arbitrary tasks
involving digits. Our experiments show that this leads not only to new ca-
pabilities but also to significant performance improvements. An important
advantage of this approach compared to standard image classification set-
tings is that it can be extended to multi-digit numbers without additional
training. We note that the single digit classifier (i.e., the neural predicate)
is not explicitly trained by itself: its output can be considered a latent
representation, as we only use training data with pairwise sums of digits.

To summarize, we introduce DeepProbLog which has a unique set of features:
(i) it is a programming language that supports neural networks and machine
learning and has a well-defined semantics (ii) it integrates logical reasoning
with neural networks; so both symbolic and subsymbolic representations and
inference; (iii) it integrates probabilistic modeling, programming and reasoning
with neural networks (as DeepProbLog extends the probabilistic programming
language ProbLog, which can be regarded as a very expressive directed graphical
modeling language [4]); (iv) it can be used to learn a wide range of probabilistic
logical neural models from examples, including inductive programming.

This paper is a significantly extended and completed version of our previous
work [1]. This extended version now contains the necessary deep learning and
probabilistic logic programming background and a more in depth theoretical ex-
planation. It also contains additional experiments (see Section 6): the MNIST
addition experiments from the short version are completed with the new exper-
iments T3 and T4, and we designed new experiments (T8 and T9) to further
investigate the use of DeepProbLog on combined probabilistic learning and deep
learning. We have added a new experiment introducing embeddings that shows
that DeepProblog really provides an interface between the neural and the prob-
abilistic logic part that is wide and powerful (T10). Finally, we have also added

3

an experiment on the CLUTRR dataset (T11).
The code is available at https://bitbucket.org/problog/deepproblog.

2. Background

2.1. Logic programming concepts
In this section, we briefly summarize basic logic programming concepts; see

e.g., Lloyd [14] for more details. Atoms are expressions of the form q(t1, ..., tn)
where q is a predicate (of arity n, or q/n in shorthand notation) and the ti are
terms. A literal is an atom or the negation ¬q(t1, ..., tn) of an atom. A term t is
either a constant c, a variable V , or a structured term of the form f(u1, ..., uk)
where f is a functor and the ui are terms. We follow the Prolog convention
and let constants, functors and predicates start with a lower case character and
variables with an upper case. A rule is an expression of the form h :– b1, ..., bn
where h is an atom, the bi are literals, and all variables are universally quantified.
Informally, the meaning of such a rule is that h holds whenever the conjunction
of the bi holds. Thus :– represents logical implication (←), and the comma (,)
represents conjunction (∧). Rules with an empty body n = 0 are called facts.
A logic program is a finite set of rules.

A substitution θ = {V1 = t1, ..., Vn = tn} is an assignment of terms ti to vari-
ables Vi. When applying a substitution θ to an expression e we simultaneously
replace all occurrences of Vi by ti and denote the resulting expression as eθ.
Expressions that do not contain any variables are called ground. The Herbrand
base of a logic program is the set of ground atoms that can be constructed using
the predicates, functors and constants occurring in the program.2 Subsets of the
Herbrand base are called Herbrand interpretations. A Herbrand interpretation
is a model of a clause h :– b1, . . . , bn. if for every substitution θ such that the
conjunction (b1, . . . , bn)θ holds in the interpretation, hθ is in the interpretation.
It is a model of a logic program if it is a model of all clauses in the program.

For negation-free programs, the semantics is given by the minimal such
model, known as the least Herbrand model, which is unique. General logic
programs use the notion of negation as failure, that is, the negation of an atom
is true exactly if the atom cannot be derived from the program. These programs
are not guaranteed to have a unique minimal Herbrand model, and several ways
to define a canonical model have been studied. We follow the well-founded
semantics here [15].

The main inference task in logic programming is to determine whether a
given atom q, also called query (or goal), is true in the canonical model of a
logic program P , denoted by P |= q. If the answer is yes (or no), we also say
that the query succeeds (or fails). If such a query is not ground, inference asks
for the existence of an answer substitution, that is, a substitution that grounds
the query into an atom that is part of the canonical model.

2If the program does not contain constants, one arbitrary constant is added.

4

2.2. Deep Learning
The following paragraphs introduce some key concepts in the field of deep

learning, needed for understanding the training mechanism of DeepProbLog.
We however do not provide details on standard architectural building blocks
such as convolutional or recurrent neural networks which are used in some of
the experiments in Section 6; instead, we refer the reader to excellent texts such
as [16].

An artificial neural network is a highly parameterized and therefore very flex-
ible non-linear mathematical function that can be ‘trained’ towards a particular
desired behavior, by suitably adjusting its parameters. During training, the
model learns to capture from the input data the most informative ‘features’ for
the task at hand. The need for ‘feature engineering’ in classical (or rather, non-
neural) machine learning methods has therefore been replaced by ‘architecture
engineering’, since a wide variety of neural network components are available to
be composed into a suitable model.

Deep neural networks are often designed and trained in an ‘end-to-end’ fash-
ion, whereby only the raw input and the final target are known during training,
and all components of the model are jointly trained. For example, for the task
of hand-written digit recognition, an input instance consists of a pixel image of
a hand-written digit, whereas its target denotes the actual digit.

Consider a supervised learning problem, with a training set {(xi,yi)}Ni=1

containing N i.i.d. input instances xi and corresponding outputs yi. A model
represented by a mapping functionM with parameters Θ, maps an input item
x to the corresponding predicted output P (Y |X = x) =M(x|Θ).

To quantify how strongly the predicted output P (Y |X = x) deviates from
the target output y, a loss function L(P (Y |X = x),y) is defined. Training the
model then comes down to minimizing the expected loss

L̄ =
1

N

∑
i

L
(
M(xi|Θ),yi

)
over the training set. In the specific setting of multiclass classification, each
input instance corresponds to one out of a fixed set of M output categories.
The target vectors y are typically represented as one-hot vectors: all compo-
nents are zero, except at index m of the corresponding category. The predicted
counterpart P (Y |X = x) at the model’s output is often obtained by applying a
so-called softmax output function to intermediate real-valued scores s obtained
at the output of the neural network.

The i-th component of the softmax is defined as

softmax(s)i = ŷi =
esi∑
j e
sj

The softmax outputs are well-suited to model a probability distribution (i.e.,
0 < ŷi < 1 and

∑
i ŷi = 1). The standard corresponding loss function is the

cross-entropy loss, which quantifies the deviation between the empirical output

5

distribution ŷ (i.e., the softmax outputs) and the ground truth distribution (i.e.,
the one-hot target vector y) defined as

L = −
∑
j

yj log ŷj

The neural network models we will focus on in this work, are discriminative
classifiers, which directly model the probability distribution P (Y |X = xi) of
the target classes, given the input feature representation xi of the i-th example.
We will show how these can be used to build neural predicates as a probabilistic
logic programming component (see Section 3). We currently do not consider
generative classification models. These would also allow modeling the output
labels given the inputs, by applying Bayes’ law on the prior class probabilities
and the inputs distribution given the labels. Yet, we argue that taking into ac-
count background information such as prior class probabilities is more naturally
handled by the reasoning component, and that modeling the inputs distribu-
tion may be overly complex and is not needed for the purpose of these neural
predicates.

The most widely used optimization approaches for neural networks are varia-
tions of the gradient descent algorithm, in which the parameters Θ are iteratively
updated by taking small steps along the negative gradient of the loss. An esti-
mate Θn at iteration n is updated as Θn+1 = Θn − λ∇Θ L̄, in which the step
size is controlled by the learning rate λ. Typically, training is not performed
by averaging over the entire dataset per iteration, but instead over a smaller
‘mini-batch’ of instances. This is computationally more efficient and allows for
a better exploration of parameter space. Importantly, the loss gradient can only
be calculated if all components of the neural network are differentiable.

A deep neural network typically has a layer-wise architecture: the different
layers correspond to nested differentiable functions in the overall mapping func-
tionM. The ‘forward pass’ through the network corresponds to consecutively
applying these layer functions to a given input to the network. The intermediate
representations obtained by evaluating these layer functions are called hidden
states. After a forward pass, the gradient with respect to all parameters can
then be calculated by applying the chain rule. This happens during the so-called
‘backward pass’: the gradients are calculated from the output back to the first
layer. As an illustration of how the chain rule is applied, consider the network
functionM(x|Θ) = g

(
f(x, θf), θg

)
, which contains a first layer represented by

the vector function f , and a second layer g. For simplicity, say each layer has
one trainable parameter, respectively written as θf and θg. The derivative with
respect to these parameters of a scalar loss function applied to the network
output, becomes

∇ΘL
(
M(x|Θ)

)
=

[
dL
dθf

,
dL
dθg

]
=

[∑
i

∂L
∂gi

∑
j

∂gi
∂fj

∂fj
∂θf

,
∑
i

∂L
∂gi

∂gi
∂θg

]
in which the individual derivatives are evaluated based on the considered input
x and current value of the parameters. The entire procedure to calculate the

6

gradients is called the backpropagation algorithm. It requires a forward pass
to calculate all intermediate representations up to the value of the loss. After
that, in the backward pass, the gradients corresponding to all operations applied
during the forward pass, are iteratively calculated, starting at the loss (i.e., with
∂L/∂gi in the example). As such, the gradients with respect to parameters at
a given layer can be calculated as soon as the gradients due to all operations
further in the network are known, as governed by the chain rule.

To summarize, a single iteration in the optimization happens as follows: 1)
A minibatch is sampled from the training data. 2) The output of the neural
network is calculated during the forward pass. 3) The loss is calculated based
on that output and the target. 4) The gradients for the parameters in the neural
network are calculated using backpropagation. 5) The parameters are updated
using a gradient-based optimizer.

3. Introducing DeepProbLog

We now recall the basics of probabilistic logic programming using ProbLog
(see De Raedt and Kimmig [6] for more details), and then introduce our new
language DeepProbLog.

3.1. ProbLog
Definition 1 (ProbLog program)
A ProbLog program consists of a set of probabilistic facts F of the form p :: f
where p is a probability and f an atom, and a set of rules R. /

For instance, the following ProbLog program models a variant of the well-known
alarm Bayesian network [17]:

0.1 :: burglary.

0.5 :: at_home(mary).

0.2 :: earthquake.

0.4 :: at_home(john).

alarm :– earthquake.

alarm :– burglary.

calls(X) :– alarm, at_home(X).

Each ground instance fθ of a probabilistic fact f corresponds to an inde-
pendent Boolean random variable that is true with probability p and false with
probability 1 − p. Let us denote the set of all ground instances of probabilis-
tic facts in F as FΘ. Every subset F ⊆ FΘ defines a possible world wF =

7

F ∪ {hθ|R ∪ F |= hθ and hθ is ground}, that is, the world wF is the canonical
model of the logic program obtained by adding F to the set of rules R, e.g.,

w{burglary,at_home(mary)} = {burglary, at_home(mary)} ∪ {alarm, calls(mary)}

To keep the presentation simple, we focus on the case of finitely many ground
probabilistic facts, but note that the semantics is also well-defined for the count-
ably infinite case. The probability P (wF) of such a possible world wF is given
by the product of the probabilities of the truth values of the probabilistic facts:

P (wF) =
∏
fi∈F

pi
∏

fi∈FΘ\F

(1− pi) (1)

For instance,

P (w{burglary,at_home(mary)}) = 0.1× 0.5× (1− 0.2)× (1− 0.4) = 0.024

The probability of a ground atom q, also called success probability of q, is then
defined as the sum of the probabilities of all worlds containing q, i.e.,

P (q) =
∑

F⊆FΘ:q∈wF

P (wF) (2)

The probability of a query is also equal to the weighted model count (WMC,
see [18] for more details) of the worlds where this query is true.

For ease of modeling, ProbLog supports non-ground probabilistic facts as a
shortcut for introducing a set of ground probabilistic facts, as well as annotated
disjunctions (ADs), which are expressions of the form

p1 ::h1 ; ... ; pn ::hn :– b1, ..., bm.

where the pi are probabilities that sum to at most one, the hi are atoms, and
the bj are literals. The meaning of an AD is that whenever all bi hold, the AD
causes one of the heads hj to be true, or none of them with probability 1−

∑
pi.

Note that several of the hi may be true at the same time if they also appear
as heads of other rules or ADs. This is convenient to model choices between
different categorical variables, e.g. different severities of the earthquake:

0.4 :: no_earthquake ; 0.4 :: mild_earthquake ; 0.2 :: severe_earthquake.

or without explicitly representing the event of no earthquake:

0.4 :: mild_earthquake ; 0.2 :: severe_earthquake.

In which neither mild_earthquake nor severe_earthquake will be true with
probability 0.4. Annotated disjunctions do not change the expressivity of ProbLog,
as they can alternatively be modeled through independent facts and logical rules;
we refer to De Raedt and Kimmig [6] for technical details.

To obtain some intuitions about the probabilistic logic program representa-
tion, it is instructive to show how they can represent Bayesian networks. Let

8

us show this for Bayesian networks involving Boolean random variables. Each
node without a parent then corresponds to a probabilistic fact. Observe that
both nodes without any parents in a Bayesian network and probabilistic facts in
ProbLog are marginally independent. Furthermore, each entry in a conditional
probability table would be mapped onto an annotated disjunction. Assume the
parents of the node n are x and y. Then there would be four annotated disjunc-
tions of the form pi ::n :– xv, yv, where xv and yv are the positive or negative
literals corresponding to x, resp. y. This shows that annotated disjunctions can
be used to specify conditional probabilities.

3.2. DeepProbLog
In ProbLog, the probabilities of all random choices are explicitly specified

as part of probabilistic facts or annotated disjunctions. DeepProbLog extends
ProbLog to basic random choices whose probabilities are specified through ex-
ternal functions implemented as neural networks.

Definition 2 (Neural annotated disjunction)
A neural annotated disjunction (nAD) is an expression of the form

nn(mr, [X1, ..., Xk], O, [y1, ..., yn]) :: r(X1, ..., Xk, O)

where nn is a reserved functor, mr uniquely identifies a neural network model
(i.e., its architecture as well as its trainable parameters) that defines a probabil-
ity distribution pmr

(O|X = x) over the domain O ∈ {y1, ..., yn} given the input
x = [x1, .., xk], X1, ..., Xk are variables representing the inputs to the neural
network, O is the output variable, the ground terms y1, ..., yn define the domain
of the output distribution, and r is a predicate symbol. Note that the arguments
of predicate r can be in an arbitrary order.

Formally, such a neural AD represents a set of ground neural ADs of the
following form, one for every sequence of ground terms x1, ..., xk representing
inputs to the neural network:

pmr (O = y1|X1 = x1, . . . , Xk = xk) :: r(x1, ..., xk, y1) ;

... ;

pmr (O = yn|X1 = x1, . . . , Xk = xk) :: r(x1, ..., xk, yn)

The neural network thus represents a discriminative classifier, which naturally
maps onto an annotated disjunction for each input. For instance, in the MNIST
addition example, we would specify the nAD

nn(m_digit, [X], Y, [0, . . . , 9]) :: digit(X, Y).

where m_digit is a network that classifies MNIST digits. For input image ,
the ground nAD is

pm_digit(Y = 0|X =) :: digit(, 0) ; . . . ; pm_digit(Y = 9|X =) :: digit(, 9).

9

The neural network could take any shape, e.g., a convolutional network for
image encoding, a recurrent network for sequence encoding, etc. However, its
output layer, which feeds the corresponding neural predicate, needs to be nor-
malized.

We consider an output domain size of two as a special case. Instead of the
neural network having two probabilities at the output that sum to one, we can
simplify this to a single probability, with the second one the complement of that
probability. This difference coincides with the difference between a softmax and
single-neuron sigmoid layer in a neural network. We call such an expression a
neural fact.
Definition 3 (Neural fact)
A neural fact is an expression of the form

nn(mr, [X1, ..., Xk]) :: r(X1, ..., Xk).

where nn is a reserved functor, mr uniquely identifies a neural network model
that defines a probability distribution pmr (O|X = x) over the Boolean domain
{1, 0}, given the input x = [x1, .., xk], X1, ..., Xk are variables representing the
inputs to the neural network, and r is a predicate symbol. Note that the argu-
ments of predicate r can be in an arbitrary order.

Formally, such a neural fact represents a set of ground neural facts of the follow-
ing form, one for every sequence of ground terms x1, ..., xk representing inputs
to the neural network:

pmr
(O = 1|X1 = x1, ..., Xk = xk) :: r(x1, ..., xk).

The neural network can be viewed as a discriminative classifier that determines
the truth value of the fact.

To exemplify, we use a neural network that gives a measure of the similarity
between two input images. We can encode this with the following neural fact:

nn(m, [X1, X2]) :: similar(X1, X2).

For input and , the ground neural fact is

pm(O = 1|X1 = , X2 =) :: similar(,).

Definition 4 (DeepProbLog Program)
A DeepProbLog program consists of a set of probabilistic facts F , a set of neural
facts Nf , a set of neural ADs Nad, and a set of rules R. /

The semantics of a DeepProbLog program with respect to a fixed set of possible
inputs to every neural network used in the neural facts and neural ADs is the
semantics of the ProbLog program that replaces each neural fact and neural
AD by the corresponding sets of ground neural facts and ground neural ADs for
these inputs.

10

It is worth elaborating on the fact that this includes the inputs to the neural
networks, such as MNIST images, into the Herbrand domain of the program.
We discuss two possible ways to view neural inputs and outputs (e.g. MNIST
images). Both explicitly introduce neural inputs through type predicates, but
they differ on how the inputs are represented. For instance, we could add MNIST
images through the type image:

nn(m, [X1, X2]) :: similar(X1, X2) : −image(X1), image(X2).

In the first view, the image predicate simply introduces one constant per in-
put. This implies, however, that neural inputs, just like other constants in the
Herbrand domain, are part of the program, and have to be specified upfront.
Furthermore, the possible worlds are then, so to speak, conditioned on the possi-
ble inputs to the neural networks and the possible worlds will only contain these
neural inputs and no other ones. This perspective is in line with the discrim-
inative training that we propose in Section 5. This excludes the possibility of
using neural networks in a generative fashion where "new" images or constants
could be generated.

In the second view, neural inputs are represented as structured terms that
provide an abstract language to define the possible inputs, rather than enu-
merating them explicitly. For instance, an image is just a matrix of numbers.
Under this view, the predicate image could simply allow for lists containing
exactly 28 × 28 numbers between 0 and 255, which would include all possible
images in the Herbrand domain. This view would also allow one to represent
generative neural networks as neural predicates, and would consider possible
worlds that contain all possible images. One approach going in that direction is
that of SPLog [19], which combines DeepProbLog with Sum-Product networks
to represent variational and probabilistic auto-encoders as neural predicates.

4. Inference

This section explains how a DeepProbLog model is used for a given query at
prediction time. First, we provide more detail on ProbLog inference [20]. Next,
we describe how ProbLog inference is adapted in DeepProbLog.

4.1. ProbLog Inference
ProbLog inference proceeds in four steps. The first step is the grounding

step, in which the logic program is grounded with respect to the query. This
step uses backward reasoning to determine which ground rules are relevant to
derive the truth value of the query, and may perform additional logical simpli-
fications that do not affect the query’s probability.

The second step rewrites the ground logic program into a formula in propo-
sitional logic that defines the truth value of the query in terms of the truth
values of probabilistic facts. We can calculate the query success probability by
performing weighted model counting (WMC) on this logic formula (cfr. Fierens

11

et al. [20]). However, performing WMC on this logical formula directly is not
efficient.

The third step is knowledge compilation [21]. During this step, the logic formula
is transformed into a form that allows for efficient weighted model counting. The
current ProbLog system uses Sentential Decision Diagrams (SDDs, Darwiche
[22]), the most succinct suitable representation available today. SDDs, being a
subset of deterministic decomposable negational normal forms (d-DNNFs) al-
low for polytime model counting ([21]). However, they also support polytime
conjunction, disjunction and negation while being more succinct than OBDDs
(Darwiche [22]).

The fourth and final step transforms the SDD into an arithmetic circuit
(AC). This is done by putting the probabilities of the probabilistic facts or their
negations on the leaves, replacing the OR nodes with addition and the AND
nodes by multiplication. The WMC is then calculated with an evaluation of the
AC.

Example 2
In Figure 1, we apply the four steps of ProbLog inference on the earthquake
example with query calls(mary).
In the first step, the non-ground program (Figure 1a) is grounded with
respect to the query calls(mary). The result is shown in Figure 1b: the
irrelevant fact at_home(john) is omitted and the variable X in the calls
rule is substituted with the constant mary. The resulting formula in the
second step is

calls(mary)↔ at_home(mary) ∧ (burglary ∨ earthquake)

The WMC of this formula is shown in Figure 1c. However, it is not cal-
culated by enumeration as shown here, but an AC is used instead. The
AC derived in step four is shown in Figure 1d, where rounded grey rectan-
gles depict variables corresponding to probabilistic facts, and the rounded
red rectangle denotes the query atom defined by the formula. The white
rectangles correspond to logical operators applied to their children. The
intermediate results are shown in black next to the nodes in Figure 1d.

4.2. DeepProbLog Inference
The only change required for DeepProbLog inference is that we need to

instantiate nADs and neural facts to regular ADs and probabilistic facts. This is
done in two steps. During grounding, we obtain ground nADs and ground neural
facts with a symbolic representation of the probabilities. In a separate step after
grounding, the concrete parameters are determined by making a forward pass
on the relevant neural network with the ground input.

12

0.2::earthquake.
0.1::burglary.
0.5::at_home(mary).
0.4::at_home(john).
alarm :- earthquake.
alarm :- burglary.
calls(X):-alarm,at_home(X).

(a) The ProbLog program.

0.2::earthquake.
0.1::burglary.
0.5::at_home(mary).

alarm :- earthquake.
alarm :- burglary.
calls(mary):-alarm,at_home(mary).

(b) The relevant ground program.

Models of calls(mary) ↔ at_home(mary) ∧ (burglary ∨ earthquake) w
{} 0.36
{at_home(mary)} 0.36
{earthquake} 0.09
{earthquake, at_home(mary),calls(mary)} 0.09
{burglary} 0.04
{burglary, at_home(mary),calls(mary)} 0.04
{burglary, earthquake} 0.01
{burglary, earthquake, at_home(mary),calls(mary)} 0.01∑

calls(mary)∈model 0.14

(c) The weighted count of the models where calls(mary) is true.

AND AND

AND

OR

calls(mary)

￢earthquake

0.8

earthquake

0.2

burglary

0.1

at_home(mary)

0.5

0.08 0.1

0.04

0.14

(d) The AC for query calls(mary).

Figure 1: Inference in ProbLog using query calls(mary) and the program in (a). (Example 2)

13

Example 3
We illustrate this by evaluating the MNIST addition example (Figure 2a).
The DeepProbLog program requires two lines: the first line defining the
neural predicate, and the second line defining the addition. We evaluate it
on the query addition(, , 1). In the first step, the DeepProbLog pro-
gram is grounded into a ground DeepProbLog Program (Figure 2b). Note
that the nADs are now all ground. As ProbLog only grounds the relevant
part of the program, i.e. the part that can be used to prove the query, only
the digits 0 and 1 are retained as the larger digits cannot sum to 1. The
next step is the only difference between ProbLog and DeepProbLog infer-
ence: instantiating the ground nADs into regular ground ADs, which could,
for instance, produce an AD as shown in Figure 2c. The probabilities in the
instantiated ADs do not sum to one, as the irrelevant terms (digit(, 2),
...,digit(, 9) and digit(, 2), ..., digit(, 9)) have been dropped in
the grounding process, although the neural network still assigns probabil-
ity mass to them. Inference then proceeds identically to that of ProbLog:
the ground program is rewritten into a logical formula, this formula is com-
piled and transformed into an AC. Finally, this AC is evaluated to calculate
the query probability.

14

nn(m_digit, [X], Y, [0...9]) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.

nn(m_digit,[],0)::digit(,0);nn(m_digit,[], 1)::digit(,1).
nn(m_digit,[],0)::digit(,0);nn(m_digit,[], 1)::digit(,1).
addition(, ,1) :- digit(,0), digit(,1).
addition(, ,1) :- digit(,1), digit(,0).

(b) The ground DeepProbLog program.

0.8 :: digit(,0); 0.1 :: digit(,1).
0.2 :: digit(,0); 0.6 :: digit(,1).
addition(, ,1) :- digit(,0), digit(,1).
addition(, ,1) :- digit(,1), digit(,0).

(c) The ground ProbLog program.

⨂

addition(, ,1)

0.8 0.6

⨂

⨁

0.1 0.2

0.48 0.02

0.5

digit(,0) digit(,1) digit(,1) digit(,0)

(d) The AC for query addition(, , 1).

Figure 2: Inference in DeepProbLog (Example 3)

15

5. Learning in DeepProbLog

We now introduce our approach to learn the parameters in DeepProbLog
programs. The parameters include the learnable parameters of the neural net-
work (which we will call neural parameters from now on) and the learnable
parameters in the logic program (which we will refer to as probabilistic param-
eters).

ProbLog, just like any other statistical relational AI model such as Markov
Logic [4, 23], can be trained discriminatively as well as a generatively. In the
generative setting, the examples are (partial) possible worlds or interpretations,
while in the discriminative setting they correspond to facts for a specific target
predicate with the evidence residing in the background theory. In the present
paper, we use the discriminative training setting, which is called zw4zwlearning
from entailment [24] in ProbLog.

Definition 5
Learning from entailment Given a DeepProbLog program with parameters Θ,
a set Q of tuples (q,X , p) with q a query, X the neural input for this query and
p its desired success probability , and a loss function L, compute:

arg min
Θ

1

|Q|
∑

(q,X ,p)∈Q

L(P (q|X ,Θ), p)

In most of the experiments, unless mentioned otherwise, we only use positive
examples for training (i.e., with desired success probability p = 1). The model
then needs to adjust the weights to maximize query probabilities PΘ(q|X) for all
training examples. This can be expressed by minimizing the average negative
log likelihood of the query, whereby Definition 5 reduces to:

arg min
Θ

1

|Q|
∑

(q,p)∈Q

− logPΘ(q|X)

The presented method however works for other choices in the loss function. For
example, in experiment T9 (Section 6.3) the mean squared error (MSE) is used.

5.1. Gradient-based learning in ProbLog
In contrast to the earlier approach for ProbLog parameter learning in this

setting by Gutmann et al. [25], we use gradient based learning instead of EM.
This allows for seamless integration with neural network training. The key
insight here is that we can use the same AC that ProbLog uses for inference
for gradient computations as well. This AC is a differentiable structure, as it is
composed of addition and multiplication operations.

In this work, we rely on the automatic differentiation capabilities already
available in ProbLog to derive these gradients. More specifically, to compute
the gradient with respect to the probabilistic logic program part, we rely on Al-
gebraic ProbLog (aProbLog [26]), a generalization of the ProbLog language and
inference to arbitrary commutative semirings, including the gradient semiring

16

[27]. Whereas ProbLog is confined to only calculating probabilities, the use of
this gradient semiring in aProbLog allows the system to calculate the gradient
alongside the probabilities. In the following, we provide the necessary back-
ground on aProbLog, discuss how to use it to compute gradients with respect
to ProbLog parameters and extend the approach to DeepProbLog.

aProbLog and the gradient semiring. ProbLog annotates each probabilistic fact
f with the probability p that f is true, which implicitly also defines the probabil-
ity 1− p that its negation ¬f is true. It then uses the probability semiring with
regular addition and multiplication as operators to compute the probability of
a query on the AC constructed for this query, cf. Figure 1d. The probability
semiring is defined as follows:

a⊕ b = a+ b (3)
a⊗ b = ab (4)

e⊕ = 0 (5)

e⊗ = 1 (6)

And the accompanying labeling function as:

L(f) = p for p :: f (7)
L(¬f) = 1− p with L(f) = p (8)

This idea is generalized in aProbLog to compute such values based on arbitrary
commutative semirings. Instead of probability labels on facts, aProbLog uses a
labeling function that explicitly associates values from the chosen semiring with
both facts and their negations, and combines these using semiring addition ⊕
and multiplication ⊗ on the AC. We use the gradient semiring, whose elements
are tuples (p, ∂p∂θ), where p is a probability (as in ProbLog), and ∂p

∂θ is the
partial derivative of that probability with respect to a parameter θ, that is,
the probability pi of a probabilistic fact with learnable probability, written as
t(pi) :: fi. This is easily extended to a vector of parameters ~θ = [θ1, . . . , θN]T ,
the concatenation of all N probabilistic parameters in the ground program, as it
is easier and faster to process all gradients in one vector. Semiring addition ⊕,
multiplication ⊗ and the neutral elements with respect to these operations are
defined as follows:

(a1, ~a2)⊕ (b1, ~b2) = (a1 + b1, ~a2 + ~b2) (9)

(a1, ~a2)⊗ (b1, ~b2) = (a1b1, b1 ~a2 + a1
~b2) (10)

e⊕ = (0,~0) (11)

e⊗ = (1,~0) (12)

Note that the first element of the tuple mimics ProbLog’s probability com-
putation, whereas the second simply computes gradients of these probabilities
using derivative rules.

17

AND AND

AND

OR

calls(mary)

￢earthquake

0.8, [-1,0]

0.08, [-0.1,0.8]

burglary

0.1, [0,1]

at_home(mary)

0.5, [0,0]

earthquake

0.2, [1,0]

0.1, [0.5,0]

0.04, [-0.05,0.4]

0.14, [0.45,0.4]

Figure 3: The AC evaluated using the gradient semiring. (Example 4)

Gradient-based learning with aProbLog. To use the gradient semiring for gra-
dient based parameter learning in ProbLog, we first transform the ProbLog
program into an aProbLog program by extending the label of each probabilistic
fact p :: f to include the probability p as well as the gradient vector of p with
respect to the probabilities of all probabilistic facts and ADs in the program,
i.e.,

L(f) = (p,~0) for p :: f with fixed p (13)
L(fi) = (pi, ei) for t(pi) :: fi with learnable pi (14)
L(¬f) = (1− p,−∇p) with L(f) = (p,∇p) (15)

where the vector ei has a 1 in the i-th position and 0 in all others. For fixed
probabilities, the gradient does not depend on any parameters and thus is 0.
Note that after each update step, the probabilistic parameters are clipped to
the [0, 1] range, and the parameters of an AD are re-normalized to ensure that
they sum to one. For the other cases, we use the semiring labels as introduced
above.

Example 4
Assume we want to learn the probabilities of earthquake and burglary
in the example of Figure 1, while keeping those of the other facts fixed.
Figure 3 shows the evaluation of the same AC as in Figure 1d, but with the
gradient semiring. The nodes in the AC now also contain the gradient (the
second element of the tuple). The result on the top node shows that the
partial derivative of the query is 0.45 and 0.4 with respect to the earthquake
and burglary parameters respectively.

5.2. Gradient-based learning for DeepProbLog
Just as the only difference between inference in ProbLog and DeepProbLog

is the evaluation of the neural facts and nADs, the only difference between
gradient-based learning in ProbLog and DeepProbLog is optimizing the neural
parameters alongside the probabilistic parameters. As mentioned in the previous
section, the probabilistic parameters pi in the logic program can be optimized

18

by using the gradient semiring, which allows us to calculate ∂P (q)/∂pi. This
gradient is then used to perform the update by using gradient-based learning.
Note that since the outputs of the neural networks are used as probabilistic
facts in the logic program, they are leafs in the AC. Conceptually, it might
be easiest to think of the AC being connected with the differentiable structure
of the neural network at these leaves (cfr. Figure 4c). This creates a single
differentiable structure in which standard differentiation techniques can be used
to derive gradients.

However, in this work, we do not explicitly join the AC and neural networks.
Instead, we rely on the aProbLog method as described above. This makes the
joint learning of probabilistic and neural parameters more straightforward. Note
however, that the gradients for the internal parameters inside of the neural
networks are still derived using backpropagation. The outputs of the neural
networks can be considered abstract parameters. Although we can derive a
gradient for these abstract parameters, we cannot optimize them directly, as
the logic is unaware of the neural parameters that determine the value of these
abstract parameters. Recall from Equation (1) that the gradient of the internal
(neural) parameters in standard supervised learning can be derived using the
chain rule in backpropagation. Below, we show how we can derive the gradient
for these neural parameters of the loss applied to P (q|X) (Definition 5), rather
than a loss function defined directly on the output of the neural network.

Specifically, consider the case of a single neural annotated disjunction, with
probabilities p̂i (i.e., the aforementioned abstract parameters), calculated by
evaluating a neural network with softmax output. The predicted probability
that the query holds true, based on the current values of the neural and prob-
abilistic parameters, is written P (q|X). While training, true examples should
yield a predicted query probability close to the expected query probability, which
is expressed by means of a loss function L as introduced in Definition 5.

Application of the chain rule leads to
dL
dθk

=
∂L

∂P (q|X)

∑
i

∂P (q|X)

∂p̂i

∂p̂i
∂θk

where the derivative of the loss with respect to any trainable parameter θk in
the neural network is decomposed into the partial derivative of the loss with re-
spect to the predicted output P (q|X), the latter’s derivative ∂P (q|X)/∂p̂i with
respect to each head in the annotated disjunction as obtained with the gradi-
ent semiring, and finally ∂p̂i/∂θk, the derivative of the neural network’s output
components with respect to the considered parameter. The latter is obtained
by the standard application of the chain rule in the neural network. The back-
propagation procedure in the neural network can thus be started by providing
∂P (q|X)/∂p̂i, to systematically obtain the loss gradients for all neural parame-
ters.
Extending this approach to the situation of multiple neural predicates is straight-
forward. If the same neural network is used for different neural predicates (e.g.
in Example 3), the final derivative is obtained by summing over the contribu-
tions of each neural predicate.

19

Then, standard gradient-based optimizers (e.g. SGD, Adam [?], ...) are
used to update the parameters of the network. During gradient computation
with aProbLog, the probabilities of neural ADs are kept constant. Furthermore,
updates on neural ADs come from the neural network part of the model, where
the use of a softmax output layer ensures a normalized distribution, hence not
requiring the additional normalization as for non-neural ADs.

To extend the gradient semiring to DeepProbLog programs, we define it for
nADs and neural facts. The label for the nAD is defined as:

L(fi) = (p̂j , ej) for nn(m, [x1, .., xk], yj) :: r(x1, .., xk, yj) a ground nAD head
(16)

Where yj is the j-th domain element, p̂j , is the j-th element of the output of
the neural network m evaluated on input [x1, .., xk]. The label for a neural fact
is defined as:

L(fi) = (p̂, ej) for nn(m, [x1, .., xk]) :: r(x1, .., xk) a ground neural fact (17)

where p̂ is the output of the neural network m evaluated on input [x1, .., xk].
Since the first element of the tuple for nADs and neural facts is the evalua-
tion of the neural networks as in Section 4.2, this change remains semantically
equivalent.

Example 5
To demonstrate the learning pipeline (Figure 5), we will apply it on the
MNIST addition example show in Section 4.2 with a small extension: some
of the labels have been corrupted and are picked randomly from a uniform
distribution over [0, 18]. The goal is to also learn the fraction of noisy
examples. The DeepProbLog program is given in Figure 4a. Grounding on
the query addition(, , 1) results in the ground DeepProbLog program
shown in Figure 4b. The arithmetic circuit corresponding to the ground
program is shown in Figure 4c. As can be seen, the neural networks already
have a confident prediction for both images (being 0 and 1 respectively).
The top right shows how the different partial derivatives that are calculated:
one with respect to the noisy parameter, ten for the evaluation of the neural
network on input a and ten for the evaluation on input b.

20

nn(classifier, [X], Y, [0 .. 9]) :: digit(X,Y).
t(0.2) :: noisy.

1/19 :: uniform(X,Y,0) ; ... ; 1/19 :: uniform(X,Y,18).

addition(X,Y,Z) :- noisy, uniform(X,Y,Z).
addition(X,Y,Z) :- \+noisy, digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.

nn(classifier,[],0)::digit(,0); nn(classifier,[],1)::digit(,1).
nn(classifier,[],0)::digit(,0); nn(classifier,[],1)::digit(,1).
t(0.2)::noisy.

1/19::uniform(, ,1).
addition(, ,1) :- noisy, uniform(, ,1).

addition(, ,1) :- \+noisy, digit(,0), digit(,1).
addition(, ,1) :- \+noisy, digit(,1), digit(,0).

(b) The ground DeepProbLog program.

noisy

0.2,
[1,
 0,0,..
 0,0,..]

⨂

addition(, ,1)

⨁
p,

[∂p/∂pnoisy,
∂p/∂pdigit(a,0),...,∂p/∂pdigit(a,9),
∂p/∂pdigit(b,0),...,∂p/∂pdigit(b,9)]

¬noisy

0.8,
[-1,
 0,0,..
 0,0,..]

digit(,0)

0.8,
[0,
 1,0,..
 0,0,..]

digit(,1)

0.6,
[0,
 0,0,..
 0,1,..]

digit(,1)

0.1,
[0,
 0,1,..
 0,0,..]

digit(,0)

0.2,
[0,
 0,0,..
 1,0,..]

uniform(, ,1)

0.053,
[0,
 0,0,..
 0,0,..]

⨂ ⨂

⨁

⨂

0.011,
[0.053,
 0,0,..
 0,0,..]

0.02,
[0,
 0,0.2,..
 0.1,0,..]

0.48,
[0,
 0.6,0,..
 0,0.8,..]

0.5,
[0,
 0.6,0.2,..
 0.1,0.8,..]

0.4,
[-0.5,
 0.48,0.16,..
 0.08,0.64,..]

0.411,
[-0.447,
 0.48,0.16,..
 0.08,0.64,..]

Legend

(c) The AC for query addition(, , 1).

Figure 4: Parameter learning in DeepProbLog. (Example 5)

21

DeepProbLog Program

t(0.2) :: noisy.
nn(classifier,[X],…
…
addition(X,Y,Z):- …

Loss
L,∇L

grounding rewrite /
compilation

p,∇p

Query
addition(, ,1)

S
oftm

ax

digit(,N1)
digit(,N2)

0.8 :: digit(,0);
0.1 :: digit(,1);

… Ground
DeepProblog Program

t(0.2) :: noisy.
nn(classifier,[],0);…
nn(classifier,[],0);…
…
addition(, ,1):- …

Figure 5: The learning pipeline.

6. Experimental Evaluation

We perform four sets of experiments to demonstrate that DeepProbLog sup-
ports (i) logical reasoning and deep learning; (ii) program induction; (iii) proba-
bilistic inference and combined probabilistic and deep learning; and (iv) natural
language reasoning and embeddings

We provide implementation details at the end of this section and list all
programs in Appendix A.

6.1. Logical reasoning and deep learning
To show that DeepProbLog supports both logical reasoning and deep learn-

ing, we extend the classic learning task on the MNIST dataset [?] to four more
complex problems that require reasoning:

T1: addition(, , 8)
Instead of using labeled single digits, we train on pairs of images, labeled
with the sum of the individual labels. This is the same as Example 3. The
DeepProbLog program consists of the clause

addition(X, Y, Z):−digit(X, X2), digit(Y, Y2), Z is X2 + Y2

and a neural AD for the digit/2 predicate, which classifies an MNIST
image. We compare to a CNN baseline 3 classifying the two images into
the 19 possible sums.

Results. Figure 6 shows the learning curves for the baseline (orange) and
DeepProbLog (blue) on the single-digit addition. We evaluated on 3 levels
of data availability: 30 000 examples, 3 000 and 300 examples. As can be
seen in the figures, DeepProbLog converges faster and achieves a higher
accuracy than the baseline. In the case for N = 30 000 (Figure 6a), the
difference between the baseline and DeepProbLog is significant, but not
immense. However, for N = 3000 and especially N = 300, the difference

3We’d like to thank Paolo Frasconi for the interesting discussion and idea for a new baseline.

22

0 50000 100000 150000 200000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy 30000 examples

DeepProbLog
Baseline

(a) 30 000 examples

0 5000 10000 15000 20000 25000 30000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy 3000 examples

DeepProbLog
Baseline

(b) 3 000 examples

0 1000 2000 3000 4000 5000 6000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy 300 examples

DeepProbLog
Baseline

(c) 300 examples

Figure 6: MNIST Single-Digit Addition (T1). The graphs show the accuracy on the validation
set during training for different training set sizes.

Number of training examples

Model 30 000 3 000 300

Baseline 93.46± 0.49 78.32± 2.14 23.64± 1.75
DeepProbLog 97.20± 0.45 92.18± 1.57 67.19± 25.05

Table 1: The accuracy on the test set for T1.

becomes more apparent.
The reason behind this disparity is that the baseline needs to learn making
a decision for the combined input digits (and there are a 100 different
sums possible), whereas the DeepProbLog’s neural predicate only needs
to recognize individual digits (with only 10 possibilities). Table 1 shows
the average accuracy on the test set for the different models for different
training set sizes.

T2: addition([,], [,], 63)
The input consists of two lists of images, each element being a digit. Each
list represents a multi-digit number. The label is the sum of the two num-
bers. The neural predicate remains the same. Learning the new predicate
requires only a small change in the logic program. Because the CNN base-
line cannot handle numbers of varying size, we fixed the size of the input
to two-digit numbers.

Results. First, we perform an experiment where we take the neural net-
work trained in T1 and use it in this model without any further train-
ing. Evaluating it on the same test set, we achieve an accuracy that is
not significantly different from training on the full dataset of T2. This
demonstrates that the approach used in DeepProbLog causes it to gener-
alize well beyond training data. Figure 7 shows the learning curves for
the baseline (orange) and DeepProbLog (blue) on the multi-digit addition.
DeepProbLog achieves a somewhat lower accuracy compared to the single
digit problem due to the compounding effect of the classification error on

23

0 25000 50000 75000 100000125000150000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy 15000 examples

DeepProbLog
Baseline

(a) 15 000 examples

0 2000 4000 6000 8000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy 1500 examples

DeepProbLog
Baseline

(b) 1 500 examples

0 500 1000 1500 2000 2500
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy 150 examples

DeepProbLog
Baseline

(c) 150 examples

Figure 7: MNIST Multi-Digit Addition (T2). The graphs show the accuracy on the validation
set during training for different training set sizes.

Number of training examples

Model 15 000 1 500 150 T1 (30 000)

Baseline 60.85± 9.77 1.34± 0.53 0.80± 0.14 –
DeepProbLog 95.16± 1.70 87.21± 1.92 72.73± 3.03 93.36± 1.18

Table 2: The accuracy on the test set for T2.

the individual digits, but the model generalizes well. The baseline fails to
learn from few examples (150 and 1 500). It is able to learn with 15 000
examples, but converges very slowly. Table 2 shows the average accuracy
on the test set for the different models for different training set sizes.

T3: addition(, ,)
The input consists of 3 MNIST images such that the last is the sum of
the first two. This task demonstrates potential pitfalls of only providing
supervision on the logic level. Namely, without any regularization, the
neural network quickly learns to predict 0 for all digits, i.e., the model col-
lapses to always predicting 0 + 0 = 0, as it is a valid logical solution. To
avoid this, we add a regularisation term based on entropy maximization
(Equation 18, Section 6.5). The intuition behind this regularisation term
is that it penalizes mode collapse by requiring the entropy of the average
output distribution per batch to be high. As such, this term encourages
exploration, but is only necessary to start the training of the neural net-
works. If they are sufficiently trained, this term can be dropped. This
additional regularization loss is multiplied by a factor λ and added to the
cross-entropy loss. We run the experiment for different values of λ.

Results. Figure 8 shows the accuracy of the neural predicate on classifying
single digits for different levels of the regularization parameter. As can be
seen, for λ = 2, the neural predicate converges on the trivial solution. For
λ = 4, the neural predicate sometimes converges on the correct solution,
but can also converge on the wrong solution. For λ = 8, the neural network

24

0 250 500 750 1000 1250 1500
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy

= 8
= 4
= 2

Figure 8: The accuracy on the MNIST test set for individual digits while training on (T3).

Fraction of noisy labels
0.0 0.2 0.4 0.6 0.8 1.0

Baseline 93.46 87.85 82.49 52.67 8.79 5.87
DeepProbLog 97.20 95.78 94.50 92.90 46.42 0.88

DeepProbLog w/ explicit noise 96.64 95.96 95.58 94.12 73.22 2.92
noisy parameter 0.000 0.212 0.415 0.618 0.803 0.985

Table 3: The accuracy on the test set for T4.
.

consistently converges on the correct solution.

T4: addition(, , 14)
This experiment is the example shown in Figure 4. It is the same as T1,
but with noise introduced in the labels. Namely, a fraction of the labels is
replaced by a uniformly selected number between 0 and 18. We compare
three models: the CNN baseline from T1, the DeepProbLog model from
T1, and a DeepProbLog model where the noise is explicitly modeled as in
Figure 4. We train with different levels of noise.

Results. Table 3 shows the accuracy on the test set which has no noise.
The baseline is not tolerant to noisy labels, quickly dropping in accuracy
as the fraction of noisy labels increases. The DeepProbLog model from T1
is more tolerant, but also drops noticeably in accuracy as the fraction of
noise goes over 0.5. Explicitly modeling the noise makes the model very
noise tolerant, even retaining an accuracy of 73.2% with 80% noisy labels.
The last row shows the value of the learned noisy parameter, stating the
estimated likelihood of a noisy label. As shown in the last row of the table,
this value is close to the actual fraction of noisy labels. This shows that
the model is able to recognize which examples have noisy labels.

25

nn(m_result,[D1,D2,Carry],Y,[0,...,9])::result(D1,D2,Carry,Y).
nn(m_carry,[D1,D2,Carry],Y,[0,1])::carry(D1,D2,Carry,Y).

hole(I1,I2,Carry,NewCarry,Result) :-
result(I1,I2,Carry,Result),
carry(I1,I2,Carry,NewCarry).

add([],[],[C],C,[]).
add([H1|T1],[H2|T2],C,Carry,[Digit|Res]) :-

add(T1,T2,C,NewCarry,Res),
hole(H1,H2,NewCarry,Carry,Digit).

forth_addition(L1,L2,C,[Carry|Res]) :- add(L1,L2,C,Carry,Res).

Figure 9: The code for experiment T5.

6.2. Program Induction
The second set of problems demonstrates that DeepProbLog can perform

program induction. We follow the program sketching [28] setting of differentiable
Forth (∂4) [8], where holes in given programs need to be filled by neural networks
trained on input-output examples for the entire program. As in their work, we
consider three tasks: addition, sorting [29] and word algebra problems (WAPs)
[30]. Although T5 and T6 do not involve sub-symbolic inputs, they do show
the potential of neural networks to learn the behaviour needed to fill in holes in
the program.

T5: forth_addition([4], [8], 1, [1, 3])
The input consists of two numbers, represented as lists of digits, and a
carry. The output is the sum of the numbers and the carry. The program
(Figure 9) specifies the basic addition algorithm in which we go from right
to left over all digits (add/5), calculating the sum of two digits and taking
the carry over to the next pair. The hole in this program (hole/5) corre-
sponds to calculating the resulting digit (result/4) and carry (carry/4),
given two digits and the previous carry.

Results. The results are shown in Table 4. Similarly to ∂4 , DeepProbLog
achieves 100% on all training sizes.

T6: forth_sort([8, 2, 4], [2, 4, 8])
The input consists of a list of numbers, and the output is the sorted list.
The program implements bubble sort, but leaves open what to do on each
step in a bubble (i.e. whether to swap or not: swap/2).

Results. The results are shown in Table 5. Similarly to ∂4 , DeepProbLog
achieves 100% on training sizes 2 and 3. However, whereas ∂4 fails to
converge on training sizes larger than 3, DeepProbLog stills achieves 100%

26

Training length

Test length 2 4 8

∂4 [8] 8 100.0 100.0 100.0
64 100.0 100.0 100.0

DeepProbLog 8 100.0 100.0 100.0
64 100.0 100.0 100.0

Table 4: Accuracy on the addition (T5) problem (results for ∂4 reported by Bošnjak et al.
[8]).

Training length

Test length 2 3 4 5 6

∂4 [8] 8 100.0 100.0 49.22 – –
64 100.0 100.0 20.65 – –

DeepProbLog 8 100.0 100.0 100.0 100.0 100.0
64 100.0 100.0 100.0 100.0 100.0

Table 5: Accuracy on the sorting (T6) problem (results for ∂4 reported by Bošnjak et al. [8]).

accuracy. As Bošnjak et al. [8] mention, the failure of ∂4 is due to compu-
tational issues arising from the long program trace resulting from sorting
long lists. DeepProbLog does not suffer from these issues. As shown in Ta-
ble 6, DeepProbLog runs faster and scales better with increasing training
length.

T7: wap(‘Robert has 12 books How many does he have now ?’,12,3,1,10)
The input to the word algebra problems (WAPs) consists of a natural
language sentence describing a simple mathematical problem. These WAPs
always contain three numbers, which are extracted from the string and are
given as part of the input. The output is the solution to the question. Every
WAP can be solved by chaining the following 4 steps: permuting the three
numbers (permute/2), applying an operation on the first two numbers
(addition, subtraction or product operation_1/2), potentially swapping
the intermediate result and the last digit (swap/2), and performing a last
operation (operation_2/2). The hole in the program is in deciding which
of the alternatives should happen on each step.

Results. DeepProbLog reaches an accuracy of up to 96.5%, similar to the
results for ∂4 reported by Bošnjak et al. [8] (96%).

27

Training length

2 3 4 5 6

∂4 on GPU 42 s 160 s – – –
∂4 on CPU 61 s 390 s – – –
DeepProbLog 11 s 14 s 32 s 114 s 245 s

Table 6: Time until 100% accurate on test length 8 for the sorting (T6) problem.

6.3. Probabilistic programming and deep learning
In this section we introduce two experiments that show the intricacies in-

volved in combining probabilistic logic programming and deep learning.

T8: Coin classification and comparison
In this experiment we train two neural networks using distant supervision.
The input consists of a synthetic image containing two coins (an example is
shown in Figure 10). They are either heads or tails. The image is labeled
either with same or different. We train a neural network for each coin
to predict either heads or tails from the entire image. Solving this task
requires solving two problems. On the one hand, the neural networks have
to learn to recognize and separate the two different coins; on the other
hand, they also have to each classify a different coin as heads or tails.
The first question we ask is whether the neural networks can recover the
latent structure imposed by the logic program. We expect the two neural
networks to agree on which side of the coin is heads and which is tails,
however, this might be the inverse of what is generally considered heads
and tails. Furthermore, we expect the two neural networks to each pick
one coin to label, but which network classifies which coin will vary between
runs. As such, there are four possible solutions that the neural networks
can converge on. The second question we ask is how many additionally
labeled examples (with both the label for same/different and heads/tails
of one of the coins given) we need for the neural network to recover the
desired latent representation.

Results. We ran each experiment 100 times. The fraction of runs that con-
verged on either no solution, the expected solution or a logically equivalent
solution is shown in Table 7. We see that with no additionally labeled
examples, DeepProbLog does not converge on a satisfactory solution in
about half of all runs. When it does converge on a solution, it converges
on the expected solution 25% of the time, and on different solutions 75%
of the time, which is conform with our expectations. We can also see that
as the number of additionally labeled examples increases, DeepProbLog
converges more reliably, and more on the expected solution. Starting with
10 additionally labeled examples, DeepProbLog reliably converges on the
desired solution. Beyond 20 additionally labeled examples, we do not see
any further improvements.

28

Labeled examples Not solved Expected solution Other solution

0 56% 11% 33%
5 39% 40% 21%
10 7% 92% 1%
20 4% 96% 0%
50 3% 97% 0%
100 4% 96% 0%

Table 7: The fraction of runs that converged to different outcomes for the Coins experiment
(T8).

Figure 10: An example input image for the Coins (T8) experiment.

T9: 0.8::poker([Q♥, Q♦, A♦, K♣],loss).

In this experiment we demonstrate that DeepProbLog can perform com-
bined probabilistic reasoning, probabilistic learning and deep learning.

We do this by playing a simplified poker game: there are two players that
are dealt two cards from several decks. There is also one community card.
Each player then makes a poker hand (e.g. pair, straight, ...) with their
two cards and the community card. The best combination wins.

The task is to learn to correctly predict the probability that the first player
wins. To do this, the model also has to learn the distribution of the com-
munity card, which is not observed and is considered a latent variable. By
modelling the task with knowledge of its structure, we are able to construct
an interpretable model in which the distribution of this latent variable is
made explicit. This contrasts with a neural model, which, although it
might be able to perform the same regression, would not provide the user
with information of this distribution.

29

Distribution Jack Queen King Ace

Actual 0.2 0.4 0.15 0.25
Learned 0.203± 0.002 0.396± 0.002 0.155± 0.003 0.246± 0.002

Table 8: The results for the Poker experiment (T9).

For simplicity, we only use the jack, queen, king and ace. We also do not
consider the suits of the cards. The input consists of 4 images that show
the cards dealt to the two players. Additionally, every example is labeled
with the chance that the game is won, lost or ended in a draw, e.g.:

0.8 :: poker([Q♥, Q♦, A♦, K♣], loss)

We expect DeepProbLog to:

• train the neural network to recognize the four cards
• reason probabilistically about the non-observed card
• learn the distribution of the non-observed community card

To make DeepProbLog converge more reliably, we add some examples with
additional supervision. Namely, in 10% of the examples we additionally
specify the community card, i.e.

poker([Q♥, Q♦, A♦, K♣], A♦, loss).

This also showcases one of the strengths of DeepProbLog, namely, it can
make use of examples that have different levels of observability. The loss
function used in this experiment is the MSE between the predicted and
target probabilities.

Results. We ran the experiment 10 times. Out of these 10 runs, 4 did
not converge on the correct solution. The average values of the learned
parameters for the remaining 6 runs are shown in Table 8. As can be seen,
DeepProbLog is able to correctly learn the probabilistic parameters. In
these 6 runs, the neural network also correctly learned to classify all card
types, achieving a 100% accuracy. The other runs did not converge because
some of the classes were permuted (i.e., queens predicted as aces and vice
versa) or multiple classes mapped onto the same one (queens and kings
were both predicted as kings).

6.4. Embeddings and Natural Language Reasoning
T10: successor(, , 2)

In this experiment, we explore representing embeddings directly in Deep-
ProbLog programs, again using the MNIST images as data instances. A
straightforward way to obtain image embeddings, is by optimizing a cluster-
ing objective. That is, we minimize the distance between the embeddings

30

of images of the same number, while maximizing the distance between the
embedding of images of different numbers. As a similarity metric, the radial
basis function ϕ(x, y) (RBF) can be used, also used in the neural theorem
prover [9], which is defined as

ϕ(x, y) = e−||x−y||2

This can be included in DeepProbLog as a predicate rbf/2 that succeeds
with probability p = ϕ(x, y) where x and y are embeddings that are the
arguments of the predicate. The rbf/2 predicate provides DeepProbLog
with the power of soft unification from the Neural Theorem Prover (NTP)
[9]. With soft unification, literals can be unified if they are similar (e.g.
grandPa(abe,bart) can be unified with grandFather(abe,bart)), which
was proven to be a powerful concept in Rocktäschel and Riedel [9]. By
implementing it explicitly in DeepProbLog, we have additional control over
the soft unification, as we can decide to only apply it to parts of the logic
program, whereas in the NTP, it is applied to the entire program. For
example, here, soft unification is only applied to MNIST images, and the
remainder of the program uses standard reasoning and unification.
The corresponding DeepProbLog program is shown in Figure 11a, in which
cnn_encode/2 unifies the second argument with the embedding of the first
argument by using a convolutional neural network, and rbf/2 leads to
clustering in embedding space.
As a proof of concept of the wider possibilities of implicitly training em-
beddings through DeepProbLog, we extend the clustering objective towards
inducing an order relation in embedding space. The successor relationship
between two MNIST images is defined as successor(I1,I2,R) where I1
and I2 are MNIST images, and R is the difference of the digits represented
by the two images (e.g. successor(, ,−2)).
We model the successor relationship as a translation (cfr. TransE [31]).
That is, we learn an embedding rs of the successor relationship in this
embedding space such that we minimize the distance between ex + nrs
and ey, where ex and ey are the embeddings of the two images and n is
the difference of the image labels. If n = 0, then the successor/3 rela-
tionship (Figure 11b) becomes identical to the similarity/2 relationship
(Figure 11a). We also specify that rs should not be zero to avoid collapsing
on a trivial solution. Note that this constraint on the size of the embedding
can be seen as a form of regularization defined in the logic. We define a
predicate embed/2 that unifies the second argument with a learnable em-
bedding for the first argument. Here, rbf/2, cnn_encode/2 and embed/2
are as described above, mul/3 is the product between a scalar and a vector
and add/3 an element-wise addition. These create the mathematical defi-
nition of the successor relationship. The number 0 is used as a zero vector
of the same dimension as the embeddings.
We generate the dataset for this experiment by labeling each pair of sub-
sequent images in the original MNIST dataset with the correct successor

31

label, resulting in 30000 instances for training, and 5000 for testing. Al-
though the embedding dimensionality can be chosen freely, we know that
for the successor relation a single dimension should suffice. For the benefit
of visual interpretation, we therefore use an embedding size of 1.

similar(I1,I2) :-
%Encode images I1 and I2 into E1 and E2
cnn_encode(I1,E1), cnn_encode(I2,E2),
rbf(E1,E2).

(a) Similarity between MNIST images

successor(I1,I2,N) :-
%Encode images I1 and I2 into E1 and E2
cnn_encode(I1,E1), cnn_encode(I2,E2),
%Embed the successor relation into embedding S
embed(successor, S),
%The relation should not be trivial (i.e. 0)
\+rbf(S,0).
%E = E1 + N*S should be similar to E2
mul(S,N,S2), add(E1,S2,E),
rbf(E,E2).

(b) The code in the MNIST successor task (T10)

Figure 11: Embeddings in DeepProbLog

6 4 2 0 2 4 6

successor

0 1 2 3 4 5 6 7 8 9

Figure 12: The final embedding space for T10 after training the encoder and successor relation
embedding. Individual MNIST image embedding are shown in crosses, with the mean for each
label as a solid dot. The direction of the successor relation is marked by the arrow.

Result. Figure 12 shows the embeddings of the MNIST test set (crosses)
and the mean of each of these images, grouped by label (solid dots). It
shows that the model has learned to embed images into clusters corre-
sponding to the labels of these images, which are positioned sequentially

32

along the embedding dimension. As can be visually inspected, the cluster
centers can be (approximately) linearly mapped to the actual image labels.
This result confirms that, with the inclusion of embeddings, DeepProbLog
is able to learn structured embedding spaces and perform soft unification
(which can be considered one of the key strengths of the NTP[9]).

T11: Compositional language understanding and reasoning
The final experiment further demonstrates DeepProbLog’s ability to ma-
nipulate distributed representations (embeddings), effectively leading to
a wider interface between the neural and logic components. The aim is
to illustrate the framework’s potential for real-world applications beyond
the toy tasks in the previous examples. In particular, this experiment
explores to what extent the framework allows reasoning over natural lan-
guage sentences. For this purpose, we will use the Compositional Language
Understanding with Text-based Relational Reasoning (CLUTRR) dataset
[32].
The CLUTRR dataset consists of short natural language texts of several
sentences containing facts about family relations between people. The goal
is to infer the relation between two people mentioned in the text. These
relations are not directly mentioned, but have to be inferred from other
relations in the text. The task in this experiment is thus to train the
neural networks to perform relation extraction. That is, we have to extract
logical facts from natural language sentences, as shown in Figure 13. In
contrast to the original setup of the CLUTRR experiment, we do not solve
the rule learning aspect. Instead, we follow the idea that is central to
DeepProbLog that we can provide the model with background knowledge
when it is available, and only learn those parts that we cannot define easily
in logic. In this case, we provide the family relations shown in Listing 1,
and focus on the relation extraction task from the sentences. Thus, one
can expect good generalization capabilities in the model, if the individual
relations are extracted correctly.

“Alice has a son called Bob. Bob has a brother called Charlie.
Yesterday, Charlie and Bob went to visit Alice.”

child(alice,bob).
parent(bob,alice).

sibling(charlie,bob).
sibling(bob,charlie).

Relation
extraction

Background knowledge:

child(X,Y) :- child(X,Z), sibling(Z,Y).

child(alice,charlie)

Reasoning

Figure 13: An example inference task from the CLUTRR dataset.

Embeddings. In this experiment, we further explore the use of embeddings
in DeepProbLog. A simplified version of the code can be seen in Listing 2.

33

Alice has a son called Bob.

Bob has a brother called Charlie.

Yesterday, Charlie and Bob went to visit Alice.

[ENT1, has, a, son, called, ENT2]

[yesterday, ENT, and, ENT2, went, to, visit, ENT1]

Tokenize

LSTM MAX child(alice,bob). FC

Figure 14: The implementation of the neural predicate for relation extraction, illustrated on
the relation between Alice and Bob.

There are two ways to prove relations between entities: reasoning using
background knowledge, and extracting relations from the text. The rela-
tion extraction happens in the neural_relation/4 predicate. First, we
select all relevant sentences for the given entities, that is, the sentences
that contain both entities. Then we embed these using the embed/3 predi-
cate, which embeds a single sentence (e.g., encodes the sequence of tokens
into a vector) using a gated recurrent unit encoder (GRU [33], a recurrent
architecture similar to the LSTM) on top of randomly initialized token
embeddings. The final state of the GRU for each sentence is used as the
embedding. Afterwards, the max_tensor/2 predicate performs a max pool-
ing over the sequence of embeddings. The relations are predicted through
a logistic regression classifier (a single linear layer with a softmax acti-
vation function) on top of the final text representation (nn_rel/2). A
diagrammatic overview is given in Figure 14. A similar process happens
for the neural_gender/3 predicate that predicts the gender for a single
entity. The benefit of being able to manipulate embeddings inside of the
logic itself is that the neural model itself becomes simpler and the logic
becomes more expressive. This shows that DeepProbLog is more than a
simple pipeline where logical reasoning follows neural network evaluation.
Instead, DeepProbLog is an interface between the logic and neural sides.

The model as it is currently shown relies on the fact that all rules are
present. However, if this were not the case, we could replace the gaps in
the knowledge by a neural counterpart (i.e., a neural component that tries
to directly predict the missing relation directly from the entire text).

Experiments. The first experiment on the CLUTRR dataset investigates
the innate ability of DeepProbLog to generalize. There are several facts
that connect the two query entities. The number of facts needed to con-
nect the two will be called k (e.g. in the example in Figure 13, k = 2).
In particular, we show how the model generalizes to longer texts and an
increasing number of reasoning steps than seen during training. To do
this, it is trained for smaller k (e.g. k < 4) and evaluated on larger k (e.g.
k < 10). The model is trained until no further improvements occur for
two consecutive steps on the accuracy on a held-out set with k = 2. We

34

hypothesize that the neural network mainly needs to learn to recognize el-
ementary relations, whereas the logic component will tackle the reasoning
required to deal with larger k values.
The second experiment investigates the robustness of the reasoning com-
ponent. To test this, the CLUTRR dataset adds unnecessary sentences
and facts to the text. These include supporting facts, irrelevant facts and
disconnected facts. Supporting facts are facts that provide an alternate
explanation for (part of) the relation between the two query entities. Ir-
relevant facts are facts that mention relevant entities, but cannot be used
to explain the query relation. Disconnected facts are about entities and
relations that are not related at all to the query or other entities. In this
experiment, we train on clean data (k = 2, 3) and test how well it performs
on the other data (k = 3). We also see what the impact of training on
the supporting, irrelevant or disconnected data has on the accuracy. We
trained until we saw no further improvement for 2 steps on the accuracy
on the test set for k = 2.

grandchild(X,Y) :- child(X,Z), child(Z,Y).
grandchild(X,Y) :- so(X,Z), grandchild(Z,Y).
grandchild(X,Y) :- grandchild(X,Z), sibling(Z,Y).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).
grandparent(X,Y) :- sibling(X,Z), grandparent(Z,Y).
child(X,Y) :- child(X,Z), sibling(Z,Y).
child(X,Y) :- so(X,Z), child(Z,Y).
parent(X,Y) :- sibling(X,Z), parent(Z,Y).
parent(X,Y) :- child(X,Z), grandparent(Z,Y).
sibling(X,Y) :- child(X,Z), uncle(Z,Y).
sibling(X,Y) :- parent(X,Z), child(Z,Y).
sibling(X,Y) :- sibling(X,Z), sibling(Z,Y).
child_in_law(X,Y) :- child(X,Z),so(Z,Y).
parent_in_law(X,Y) :- so(X,Z), parent(Z,Y).
nephew(X,Y) :- sibling(X,Z), child(Z,Y).
uncle(X,Y) :- parent(X,Z), sibling(Z,Y).

Listing 1: The background knowledge used in T11

Results. Figure 15 shows the result for the systematic generalization exper-
iment. The DeepProbLog model shows strong generalization capabilities
for all three training datasets. This is in contrast with the results as shown
in Sinha et al. [32], where most methods have a steady decline in accuracy
beyond the dataset. This result shows the benefit of performing logical
reasoning with background knowledge. If the relation extraction is correct,
DeepProbLog has no problem generalizing to larger values of k.
Table 9 shows the result for the robust reasoning experiment. It shows that
the DeepProbLog model is indeed robust. This is in line with its observed

35

2 3 4 5 6 7 8 9
Relation depth

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy

k=2,3
k=2

Figure 15: Systematic generalization on the CLUTRR task for different training sets. It shows
the accuracy (y-axis) with respect to the number of relations needed to discover the query
relation (x-axis).

Training Testing Accuracy

Clean Clean 1.0
Supporting 0.99
Irrelevant 0.98
Disconnected 0.99

Supporting Supporting 1.0

Irrelevant Irrelevant 1.0

Disconnected Disconnected 0.94

Table 9: Robust reasoning on the CLUTRR task for different types of noise.

generalization capabilities. As long as the individual relations are predicted
correctly, the reasoning is also correct.

6.5. Implementation details
For the implementation we integrate ProbLog2 [34] with PyTorch [35]. All

programs are listed in Appendix A. In all experiments except T9, we optimize
the cross-entropy loss between the predicted and target query probabilities, as
we found that this works better to learn the probabilistic parameters. In ex-
periment T9 we optimize the MSE between the predicted and target query
probabilities as this proved to converge more reliably. This setting was previ-
ously used in Gutmann et al. [25]. We use Adam [?] optimization for the
neural networks, and SGD for the logic parameters. For T9, we add random
rotations (max 10 degrees) and shift the colors in the HSV by up to 5% to the

36

%Neural network that predicts relation for the given embedding
nn(net1,[E],R,[child,child_in_law,...]) :: nn_rel(E,R).
%Neural network that predicts the gender for a given embedding
nn(net2,[E],G,[male,female]) :: nn_gender(E,G).

%Predicate that proves the relation R between X and Y
query_rel(T,X,R,Y):-

%Determine the gender G for entity Y in text T
neural_gender(T,Y,G),
%Turn the gendered relation R into the un-gendered relation R2
gender_rel(R2,G,R),
%Prove relation R2 between entities X and Y
call(R2,T,X,Y).

%Predicate that predicts the gender G for entity E
neural_gender(T,E,G) :-

%E is an entity mentioned in the text T
entity(T,E),
%Only include relevant sentences (i.e. E is mentioned)
include(mentioned(E), T, Relevant),
%Map each relevant sentence onto its embedding
maplist(embed([E]),Mentioned,Embedded),
%Take the element-wise max of all embeddings
max_tensor(Embedded,Max),
%Classify the resulting embedding
nn_gender(Max,G).

%Predicate that predicts the relation R between entities X and Y
neural_relation(T,X,R,Y) :-

%X and Y are entities mentioned in the text T
entity(Sentences,X),
entity(Sentences,Y),
X \= Y,
%Only include relevant sentences (i.e. X and Y are mentioned)
include((mentioned(X),mentioned(Y)),Sentences,Mentioned),
%Map each relevant sentence onto its embedding
maplist(embed([Y,X]),Mentioned,Embedded),
%Take the element-wise max of all embeddings
max_tensor(Embedded,Max),
%Classify the resulting embedding

nn_rel(Max,R).

child(T,X,Y) :- neural(T,X,child,Y).
child_in_law(T,X,Y) :- neural(T,X,child_in_law,Y).
...

grandchild(T,X,Y) :- X\=Y, child(T,X,Z), child(T,Z,Y).
grandchild(T,X,Y) :- X\=Y, so(T,X,Z), grandchild(T,Z,Y).
grandchild(T,X,Y) :- X\=Y, grandchild(T,X,Z), sibling(T,Z,Y).

grandparent(T,X,Y) :- X\=Y, parent(T,X,Z), parent(T,Z,Y).
grandparent(T,X,Y) :- X\=Y, sibling(T,X,Z), grandparent(T,Z,Y).
...

Listing 2: Part of the code for the CLUTRR experiment (T11)

37

Number length Grounding (s) Compilation (s) Evaluation (s)

1 0.018± 0.00 0.004± 0.00 0.017± 0.01
2 1.39± 0.25 0.035± 0.02 0.158± 0.07
3 114± 5.23 0.140± 0.04 0.567± 0.08

Table 10: Mean and standard deviation of the duration in seconds of different inference steps
for 100 queries of the MNIST addition example for increasing number lengths (k).

images of the cards.
In T11 we use negative mining by proving the query for all possible relations
and using the correct label as a positive example and all other labels as nega-
tive examples. This prevents the model to predict incorrect labels for irrelevant
facts. We did not include the templates the authors collected using Amazon
Mechanical Turk and have generated the same datasets as in the original paper,
using the code provided by the authors.

The neural network architectures are summarized in Table 13. Conv(o,k)
denotes a convolutional layer with o output channels and kernel size k. Lin(n)
denotes a fully connected layer of size n. (Bi)GRU(h) denotes a single-layer
(bi-directional) GRU with a hidden size h. (layer)×2 means that there are two
identical layers in parallel that are concatenated. A layer in bold means it is
followed by a ReLU activation function. All neural networks end with a Softmax
layer, unless otherwise specified. The hyperparameters used in the experiments
are shown in Table 11. The sizes of the datasets used are specified in Table 12.

The regularisation term used in T3 is calculated per network and per batch
on the average of the neural network output. It is calculated as

1.0−Hn

(
1

N

n∑
i=1

Pi

)
(18)

where Pi is the i-th output of the neural network and Hn is the n-ary entropy
(i.e. entropy using the base-n logarithm).

6.6. Computation time
Due to the nature of the exact inference used in DeepProbLog, which it

inherits from aProbLog [26], the grounding and compilation steps can become
expensive as the problem size grows. Table 10 shows the mean time and standard
deviation for the different steps in inference for the MNIST addition task for
numbers of increasing length. As we can see, the time spent on grounding
increases steeply and quickly becomes the dominant factor.

It is important to note that when we evaluate an example a second time,
the structure of the AC, which is determined by the grounding and compilation,
remains the same. Only the learned probabilities in the nAD change. We make
use of this to improve the performance by caching the arithmetic circuits so that
we only have to perform the (potentially expensive) grounding and compilation

38

Task Batch size Learning rate Parameter learning rate Regularisation

T1-T3 2 1e-3
T4 2 1e-3 1e-3 2, 4, 8

T5 50 0.02
T6 16 1.0
T7 100 0.005

T8 5 1e-4 0.25
T9 50 1e-4 1e-3 0.5

T10 4 1e-3
T11 2 1e-3

Table 11: Overview of the hyperparameters used in the experiments.

Task Training set Validation Set Test set

T1 29 500, 3 000, 300 500 5 000
T2 14750, 1 500, 150 250 2 500
T3 16 000 2 000 3 000
T4 29 500 500 5 000

T5 512 256 1 024
T6 256 32 32
T7 300 100 200

T8 100 – 20
T9 500 – 25

T10 30 000 – 500
T11 1000 – 50

Table 12: Overview of the sizes of the datasets used in the experiments.

steps once. During evaluation, we only re-evaluate the neural networks and
evaluate the AC with the updated probabilities.

Note that this optimization can also be applied to, for example, the queries
addition(, , 8) and addition(, , 8), as both have the same structure.
To do this, we introduce placeholder constants and change both queries to the
single query addition(a, b, 8), which reduces all queries in T1 to 19 unique
queries, one for each different label. During the evaluation of the neural net-
works, we replace the constants with the correct input and use the resulting
probabilities in the cached ACs. We apply these optimizations to all experi-
ments.

39

Task Network Architecture

T1-T4 digit/2 MNISTConv, Lin(120), Lin(84), Lin(10)
T1,T3 baseline MNISTConv×2, Lin(120), Lin(84), Lin(19)
T2 baseline (MNISTConv×2, Lin(100))×2,Lin(128), Lin(199)

T5 result/4 Lin(50), TanH, Lin(10)
carry/4 Lin(10), TanH, Lin(2)

T6 swap/3 Lin(20), Lin(10)
T7 RNN Embedding(256), BiGRU(512), Dropout(0.5)*

perm/2 Lin(6)
op1/2 Lin(4)
swap/2 Lin(2)
op2/2 Lin(4)

T8 coin1/2 AlexNetConv, Lin(100), Lin(2)
coin2/2 AlexNetConv, Lin(100), Lin(2)

T9 rank/2 AlexNetConv, Lin(100), Lin(4)

T10 embed/2 Embed(2)
cnn_embed/2 MNISTConv, Lin(120), Lin(84), Lin(2)*

T11 embed/2 Embed(16), GRU(16)
nn_rel/2 Lin(11)
nn_gender/2 Lin(2)

MNISTConv: Conv(6,5), MP(2,2), Conv(16,5), MP(2,2)*
AlexNetConv: Conv(64, 11, 2,2), MP(3,2), Conv(192, 5, 2), MP(3,2),

Conv(384, 3, 1), Conv(256, 3, 1), Conv(256, 3, 1), MP(3,2)*
* Does not end with a Softmax layer.

Table 13: Overview of the neural network architectures used in the experiments.

7. Related Work

The integration of logical reasoning and neural networks is a field with a long
tradition that currently enjoys a lot of interest. Most of the work on combining
neural networks and logical reasoning comes from the neuro-symbolic reasoning
literature [7, 36]. These approaches typically focus on approximating logical
reasoning with neural networks by encoding logical terms in Euclidean space.
However, these approaches have to limit their expressivity to non-recursive and
acyclic logic programs [37] and do neither support probabilistic reasoning nor
perception.

The renewed interest in neuro-symbolic systems has introduced many new
perspectives that make the individual approaches difficult to compare. The re-
mainder of this section provides an overview of the main ideas present in the
field. Before we do that, we identify four dimensions that distinguish Deep-
ProbLog from other systems. Moreover, we argue that these dimensions are
important for understanding the capabilities and limitations of neuro-symbolic

40

systems in general. These dimensions (Table 14) are:

1. Logical, neural and probabilistic components. DeepProbLog has
a probabilistic, a logical, and a neural component, whereas most other
methods only have two. Though this may appear as a complication, our
work shows that it greatly simplifies the integration of neural networks
with logic. The probabilistic framework provides the semantics of Deep-
ProbLog programs. It also provides a clear optimization criterion, namely
the probability of the training example. Real-valued probabilistic quanti-
ties are also well-suited for gradient-based training procedures, as opposed
to discrete logic quantities.

2. Logic and neural networks as special cases. DeepProbLog has both
logic and neural networks as special cases. In our opinion, further elab-
orated in [38], the integration should preserve the original concepts it
integrates. If not, some of the power of the original methods is lost in the
integration.

3. Semantics. DeepProbLog has well defined semantics. This is important
as this allows us to specify exactly what is calculated by the DeepProbLog
framework and can be given a probabilistic interpretation. This is missing
from many other works where soft scores are used instead, which do not
have a clear, semantical meaning.

4. Logical or neural origin of a system. DeepProbLog originated from
probabilistic logic programming technology rather than neural network
technology. Due to its origins, DeepProbLog offers three benefits: (i)
DeepProbLog does neither sacrifice the expressivity of logic nor neural
networks; (ii) DeepProbLog incorporates probabilistic inference ’for free’,
alongside logical reasoning and neural predictions; (iii) DeepProbLog is a
Turing-complete programming language.

The three most prominent neuro-symbolic research lines are (1) pushing the
logic as regularisation, (2) templating neural networks, and (3) neural program
induction. Before we outline these prominent lines , we cover the two approaches
that relate the most to DeepProbLog: grounding-specific MLNs [50] and Deep
Probabilistic Logic [51].

7.1. The most comparable approaches
Grounding-specific MLNs [50] extend Markov logic networks (MLN) [52],

another popular StarAI framework, so that the weight of a formula can differ for
different groundings of the formula. The weights can be determined by neural
models, similar to how neural networks in DeepProbLog define probabilities.
In contrast to ProbLog, which assigns probabilities to facts, MLNs represent
uncertain knowledge with tuples of weighted formulas, {(wi, Fi)}. In standard
MLNs, every grounding of a formula Fi has the same associated weight wi; in
grounding-specific MLNs, the weight can change depending on the constants
present in the grounding.

41

Method Components Special cases Semantics Origin
(P)robabilistic
(L)ogic
(N)eural

(L)ogic
(N)eural

(P)robabilistic
(F)uzzy
(O)thers

(L)ogic
(N)eural

[39] L + N - F -
FSL[40] L + N - O -
ASR [41] L + N - O -
SBR[42] L + N - F -
LTN[43] L + N - F N
SL[44] P+L+N N P L

NTP [9] L+N - O L+N
NLProlog[45] L+N - O L+N
TensorLog[10] L+N L O L
NMN[46] N - - -

δ4 [8] N (L+)N O -
δILP[47] L+N L O L
LRNN[48] L+N - F
RelNN[49] L+P L P L

Table 14: An overview of related work across the four discussed concepts.

Deep Probabilistic Logic (DPL) [51] is a general framework for indirect su-
pervision of deep learning models: it treats the predictions of deep models as
latent variables that probabilistic logic models operate on, imposing the indi-
rect supervision in terms of (soft) constraints. DeepProbLog is a more general
framework, as the same setting that is shown in DPL, namely that of distant
supervision of neural networks, is used here in most experiments. However, as
we have shown in T10 and T11, DeepProbLog has a wider interface that allows
for bi-directional flow of information (i.e, the neural networks can influence the
logic.

7.2. Logic as regularisation
The main idea behind this line of research is to include the logic as a reg-

ularizer of the neural network, during the optimization or the learning of the
embeddings. This formalism encodes the logic into the weights of the network,
so that even when the logic is not explicitly present, the model still follows the
characteristics of the logic. [39, 40, 41, 42, 43, 44] all center around including
logical background knowledge as a regularizer during training. Rocktäschel et al.
[39] inject background knowledge into a matrix factorization model for relation
extraction, by adding differentiable loss terms for propositionalized first-order
rules. Demeester et al. [40] propose a more efficient alternative by inducing
order relations in embedding space, effectively leading to a lifted application of
the rules. This is further generalized by Minervini et al. [41], who investigate
injecting rules by minimizing an inconsistency loss on adversarially-generated

42

examples. Diligenti et al. [42] use first-order logic to specify constraints on the
output of the neural network. They use fuzzy logic to create a differentiable
way of measuring how much the output of the neural networks violates these
constraints. This term is then added as an additional loss term that acts as
a regularizer. More recent work by Xu et al. [44] introduces a similar method
that uses probabilistic logic instead of fuzzy logic, and is thus more similar to
DeepProbLog. They also compile the formulas to an SDD for efficiency.

The major difference between DeepProbLog and these regularization ap-
proaches is that DeepProbLog maintains explicit logical knowledge. In the
other approaches, the explicit logical knowledge is lost in the regularization
approaches as it is included as a penalty during training and not considered
during prediction. Another major difference is in the logic employed by the
systems: DeepProbLog is based on probabilistic logic programming, whereas
the regularization methods rely on (fuzzy) first-order logic. This is reminiscent
to the difference between ProbLog and Markov Logic [52] or PSL [53]. Deep-
ProbLog can be used on a wider variety of tasks than these systems. Because it
is also a programming language, it well suited to work with structured data, or
data of varying length. For example, in the multi-digit addition example T2,
DeepProbLog can deal with the varying input sizes naturally, while most neural
methods cannot cope with this.

7.3. Templating neural networks
The second line of work uses logic as a template for constructing the archi-

tecture of neural networks. This is reminiscent of the knowledge base model
construction approaches of statistical relational artificial intelligence [4].

Rocktäschel and Riedel [9] introduce a differentiable framework for theorem
proving. They re-implement Prolog’s theorem proving procedure (with bounded
proof depth) in a differentiable manner and enhance it with learning a subsym-
bolic representation of the existing symbols, which are used to handle noise
in data. Whereas Rocktäschel and Riedel use logic only to construct a neural
network and focus on learning subsymbolic representations, DeepProbLog fo-
cuses on tight interactions between the two and parameter learning for both
the neural and the logic components. In this way, DeepProbLog retains the
best abilities of both worlds. Recently, Weber et al. [45] extend the notion of
soft unification towards structured textual knowledge, i.e., unification can be
performed between sentences, not only symbols. In contrast to Rocktäschel and
Riedel [9], Weber et al. [45] retain the full ability of logical reasoning, and as
such is closer to DeepProbLog, but it is specialised for NLP tasks.

Cohen et al. [10] introduce a framework to compile a tractable subset of
logic programs into differentiable functions and to execute it with neural net-
works. It provides an alternative probabilistic logic but it has a different and
less developed semantics. Furthermore, to the best of our knowledge it has not
been applied to the kind of tasks tackled in the present paper. An idea similar
in spirit to ours is that of Andreas et al. [46], who introduce a neural network
for visual question answering composed out of smaller modules responsible for
individual tasks, such as object detection. Whereas the composition of modules

43

is determined by the linguistic structure of the questions, DeepProbLog uses
probabilistic logic programs to connect the neural networks.

7.4. Neural program induction.
The third line of work focuses on learning programs from data by combining

neural and symbolic approaches.

Neural execution. The first category captures a program behaviour with neural
networks and therefore focuses on program execution. This includes the works
such as ∂4 by Bošnjak et al. [8], in which neural networks are used to fill in holes
in a partially defined Forth program, and ∂ILP by Evans and Grefenstette [47],
in which neural networks learn a program by selecting a subset of clauses to
form the final program. In contrast to ∂4 which uses a procedural host language,
DeepProbLog uses ProbLog, and consequently Prolog, which results in native
support for both logical and probabilistic reasoning. ∂ILP focuses on program
induction with neural networks and not on the integration of the two approaches
like DeepProbLog.

Neurally guided search. The second category includes the work on incorporating
the neural components in search procedures for the symbolic program induction
techniques. As these methods are not logic-based, the comparison made in
Table 14 is not relevant, and is therefore omitted. The key principle these tech-
niques employ is to perform the search over programs in a systematic symbolic
way, but guide the search with a heuristic learned by a deep neural network.
For instance, Kalyan et al. [54] train a neural network to predict the scores of
branches during the branch-and-bound search procedure, Zhang et al. [55] train
a neural network to choose which candidate program to expand next while ex-
ploiting the constraints on the input-output examples, while Ellis et al. [56] use
a neural network to efficiently search over a well-designed DSL. DeepProbLog
currently supports only program induction by sketching and, thus, none of these
approaches are directly comparable to it.

Neural program construction. The final category involves techniques that de-
compose a problem into independent parts that can be individually solved by
either neural or symbolic components and synchronize the individual compo-
nents to solve the main problem. For instance, Yi et al. [57], Mao et al. [58]
propose a neuro-symbolic approach towards visual question answering by using
a neural network to generate a program computing the answer to the question
and executing the program symbolically. Ellis et al. [59] generate LATEX code
from a hand-drawn sketch by using a neural network to recognize basic shapes
within a sketch and symbolically inducing the program describing the sketch.

These approaches are close in spirit to DeepProbLog as they retain both
the neural and the symbolic component explicitly; however they focus on their
synchronization in which one components provides the input for the other, while
DeepProbLog tightly integrates them so that both components inter-operate.

44

7.5. Symbolic deep learning
The success of neural deep learning has inspired several works introduc-

ing symbolic deep learning methods which, instead of representing the logical
aspects in a vector space, retain the logical data representation in the latent
representation. These include the symbolic versions of deep neural networks:
Šourek et al. [48] treat symbolic rules expressed in first-order logic as a template
for constructing a neural network, while Kazemi and Poole [49] compose a re-
lational neural network by adding hidden layers to relational logistic regression
[60]. Another research direction focuses on task-agnostic discovery of relational
(symbolic) latent representations by exploiting approximate symmetries [61], a
symbolic extension of the auto-encoding principle [62], or self-play [63].

8. Limitations and future work

One of the current limitations is that DeepProbLog currently only supports
exact probabilistic inference. As a consequence, several steps in the inference
can become prohibitively expensive as the size of the program grows. This issue
is however not intrinsic to the proposed integration, but can be resolved in future
work by extending DeepProbLog with approximate inference. This is similar
to standard work in StarAI, where approximate inference is needed to scale up.
There has already been research into approximate inference in ProbLog [64, 65]
which could be adapted to the work presented here.

In the comparison with other methods, we discussed some features that were
available in DeepProbLog that are not in other methods, and vice versa. One
feature that stands out is the ability to use and explicitly manipulate embeddings
and tensors [43, 40, 39]. Although we have shown preliminary result of the
applicability of embeddings in experiments T10-T11, future work could look
into this more extensively.

Another feature that is present in other methods is structure learning. Al-
though we have shown some results in this (T5-T7), we have currently only
explored the sketching approach. There are however other approaches that are
worth investigating, such as inductive logic programming.

Finally, a problem that DeepProbLog faces is the problem where the de-
sired interpretation of the learned facts does not overlap with what is actually
learned. For example, in T3, DeepProbLog learns the trivial solution 0 + 0 = 0,
which, although logically correct, is not a desired solution. This was solved by
using additional regularization. In T8 we investigate whether the desired inter-
pretation (i.e., that the coins get correctly classified as heads and tails) can be
reliably achieved using additional supervision. Ideally, we would like to develop
a more principled approach to solving these issues.

9. Conclusion

We introduced DeepProbLog, a framework where neural networks and prob-
abilistic logic programming are integrated in a way that exploits the full expres-
siveness and strengths of both worlds and can be trained end-to-end based on

45

examples. This was accomplished by extending an existing probabilistic logic
programming language, ProbLog, with neural predicates. Learning is performed
by using aProbLog to calculate the gradient of the loss which is then used in
standard gradient based methods to optimize parameters in both the proba-
bilistic logic program and the neural networks. We evaluated our framework on
experiments that demonstrate its capabilities in combined symbolic and sub-
symbolic reasoning, program induction, probabilistic logic programming, em-
beddings and natural language processing. We showed that with the inclusion
of logic, DeepProbLog models can outperform neural networks in accuracy, data
efficiency, robustness and generalization. We also showed that embeddings can
be used directly in DeepProbLog, which illustrates the power of the interface
that DeepProbLog provides.

Acknowledgements

This research has been supported by the Research Foundation - Flanders,
and the European Research Council Advanced Grant project SYNTH (ERC
AdG-694980). It has also received funding from the Flemish Government un-
der the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” pro-
gramme.

[1] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, L. De Raedt, Deep-
problog: Neural probabilistic logic programming, in: Advances in Neural
Information Processing Systems, 2018, pp. 3749–3759.

[2] D. Kahneman, Thinking, fast and slow, Farrar, Straus and Giroux New
York, 2011.

[3] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu,
P. Battaglia, T. Lillicrap, A simple neural network module for relational
reasoning, in: Advances in Neural Information Processing Systems, vol-
ume 30, 2017, pp. 4974–4983.

[4] L. De Raedt, K. Kersting, S. Natarajan, D. Poole, Statistical relational
artificial intelligence: Logic, probability, and computation, Synthesis Lec-
tures on Artificial Intelligence and Machine Learning 10 (2016) 1–189.

[5] L. Getoor, B. Taskar, Introduction to statistical relational learning, MIT
press, 2007.

[6] L. De Raedt, A. Kimmig, Probabilistic (logic) programming concepts,
Machine Learning 100 (2015) 5–47.

[7] A. S. d. Garcez, K. B. Broda, D. M. Gabbay, Neural-symbolic learning
systems: foundations and applications, Springer Science & Business Media,
2012.

46

[8] M. Bošnjak, T. Rocktäschel, S. Riedel, Programming with a differentiable
forth interpreter, in: Proceedings of the 34th International Conference on
Machine Learning, volume 70, 2017, pp. 547–556.

[9] T. Rocktäschel, S. Riedel, End-to-end differentiable proving, in: Advances
in Neural Information Processing Systems, volume 30, 2017, pp. 3788–3800.

[10] W. W. Cohen, F. Yang, K. R. Mazaitis, Tensorlog: Deep learning meets
probabilistic databases, Journal of Artificial Intelligence Research 1 (2018)
1–15.

[11] L. De Raedt, R. Manhaeve, S. Dumancic, T. Demeester, A. Kimmig, Neuro-
symbolic= neural+ logical+ probabilistic, in: NeSy’19@ IJCAI, the 14th
International Workshop on Neural-Symbolic Learning and Reasoning, 2019,
pp. 1–4.

[12] L. De Raedt, A. Kimmig, H. Toivonen, ProbLog: A probabilistic Prolog
and its application in link discovery, in: IJCAI, 2007, pp. 2462–2467.

[13] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning ap-
plied to document recognition, Proceedings of the IEEE 86 (1998) 2278–
2324.

[14] J. W. Lloyd, Foundations of Logic Programming, 2. ed., Springer, 1989.

[15] A. Van Gelder, K. A. Ross, J. S. Schlipf, The well-founded semantics for
general logic programs, Journal of the ACM 38 (1991) 620–650.

[16] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
http://www.deeplearningbook.org.

[17] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausi-
ble inference, Morgan Kaufmann Publishers Inc., 1988.

[18] A. Kimmig, G. Van den Broeck, L. De Raedt, Algebraic model counting,
Journal of Applied Logic 22 (2017) 46–62.

[19] A. Skryagin, K. Stelzner, A. Molina, F. Ventola, Z. Yu, K. Kersting, Sum-
product logic: Integrating probabilistic circuits into deepproblog, in: Work-
ing Notes of the ICML 2020 Workshop on Bridge Between Perception and
Reasoning: Graph Neural Networks and Beyond, 2020.

[20] D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann,
I. Thon, G. Janssens, L. De Raedt, Inference and learning in probabilistic
logic programs using weighted Boolean formulas, Theory and Practice of
Logic Programming 15 (2015) 358–401.

[21] A. Darwiche, P. Marquis, A knowledge compilation map, Journal of Arti-
ficial Intelligence Research 17 (2002) 229–264.

47

[22] A. Darwiche, SDD: A new canonical representation of propositional knowl-
edge bases, in: Proceedings of the Twenty-Second International Joint Con-
ference on Artificial Intelligence, IJCAI-11, 2011, pp. 819–826.

[23] P. Domingos, D. Lowd, Markov logic: An interface layer for artificial intel-
ligence, Synthesis lectures on artificial intelligence and machine learning 3
(2009) 1–155.

[24] M. Frazier, L. Pitt, Learning from entailment: An application to proposi-
tional horn sentences, in: Machine Learning, Proceedings of the Tenth In-
ternational Conference, University of Massachusetts, Amherst, MA, USA,
June 27-29, 1993, 1993, pp. 120–127.

[25] B. Gutmann, A. Kimmig, K. Kersting, L. De Raedt, Parameter learning
in probabilistic databases: A least squares approach, in: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases,
Springer, 2008, pp. 473–488.

[26] A. Kimmig, G. Van den Broeck, L. De Raedt, An algebraic Prolog for
reasoning about possible worlds., in: AAAI, 2011.

[27] J. Eisner, Parameter estimation for probabilistic finite-state transducers,
in: Proceedings of the 40th annual meeting on Association for Compu-
tational Linguistics, Association for Computational Linguistics, 2002, pp.
1–8.

[28] A. Solar-Lezama, Program sketching, International Journal on Software
Tools for Technology Transfer 15 (2013) 475–495.

[29] S. Reed, N. de Freitas, Neural programmer-interpreters, in: International
Conference on Learning Representations (ICLR), 2016.

[30] S. Roy, D. Roth, Solving general arithmetic word problems, in: Proceed-
ings of the 2015 Conference on Empirical Methods in Natural Language
Processing, 2015, pp. 1743–1752.

[31] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, O. Yakhnenko, Trans-
lating embeddings for modeling multi-relational data, in: Advances in
neural information processing systems, 2013, pp. 2787–2795.

[32] K. Sinha, S. Sodhani, J. Dong, J. Pineau, W. L. Hamilton, Clutrr: A
diagnostic benchmark for inductive reasoning from text, Empirical Methods
of Natural Language Processing (EMNLP) (2019).

[33] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, Y. Bengio, Learning phrase representations using rnn encoder-
decoder for statistical machine translation, arXiv preprint arXiv:1406.1078
(2014).

48

[34] A. Dries, A. Kimmig, W. Meert, J. Renkens, G. Van den Broeck, J. Vlas-
selaer, L. De Raedt, Problog2: Probabilistic logic programming, in: Joint
European Conference on Machine Learning and Knowledge Discovery in
Databases, Springer, 2015, pp. 312–315.

[35] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch,
in: Proceedings of the Workshop on The future of gradient-based machine
learning software and techniques, co-located with the 31st Annual Confer-
ence on Neural Information Processing Systems (NIPS 2017), 2017.

[36] B. Hammer, P. Hitzler, Perspectives of neural-symbolic integration, vol-
ume 8, Springer Heidelberg:, 2007.

[37] S. Hölldobler, Y. Kalinke, H.-P. Störr, Approximating the semantics of
logic programs by recurrent neural networks, Applied Intelligence 11 (1999)
45–58.

[38] L. De Raedt, R. Manhaeve, S. Dumancic, T. Demeester, A. Kimmig, Neuro-
symbolic = neural + logical + probabilistic, in: NeSy’19@ IJCAI, the 14th
International Workshop on Neural-Symbolic Learning and Reasoning, 2019.

[39] T. Rocktäschel, S. Singh, S. Riedel, Injecting logical background knowledge
into embeddings for relation extraction, in: NAACL HLT 2015, The 2015
Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, 2015, pp. 1119–1129.

[40] T. Demeester, T. Rocktäschel, S. Riedel, Lifted rule injection for relation
embeddings, in: Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, 2016, pp. 1389–1399.

[41] P. Minervini, T. Demeester, T. Rocktäschel, S. Riedel, Adversarial sets for
regularised neural link predictors, in: Proceedings of the 33rd Conference
on Uncertainty in Artificial Intelligence (UAI), 2017.

[42] M. Diligenti, M. Gori, C. Sacca, Semantic-based regularization for learning
and inference, Artificial Intelligence 244 (2017) 143–165.

[43] I. Donadello, L. Serafini, A. S. d’Avila Garcez, Logic tensor networks for se-
mantic image interpretation, in: Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, 2017, pp. 1596–1602.

[44] J. Xu, Z. Zhang, T. Friedman, Y. Liang, G. V. den Broeck, A semantic
loss function for deep learning with symbolic knowledge, in: Proceedings
of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, 2018, pp. 5498–
5507.

49

[45] L. Weber, P. Minervini, J. Münchmeyer, U. Leser, T. Rocktäschel, Nl-
prolog: Reasoning with weak unification for question answering in natural
language, in: Proceedings of ACL 2018, Tutorial Abstracts, 2019.

[46] J. Andreas, M. Rohrbach, T. Darrell, D. Klein, Neural module networks,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 39–48.

[47] R. Evans, E. Grefenstette, Learning explanatory rules from noisy data,
Journal of Artificial Intelligence Research 61 (2018) 1–64.

[48] G. Šourek, V. Aschenbrenner, F. Železný, S. Schockaert, O. Kuželka, Lifted
relational neural networks: Efficient learning of latent relational structures,
Journal of Artificial Intelligence Research to appear (2018).

[49] S. M. Kazemi, D. Poole, RelNN: A deep neural model for relational learn-
ing, in: AAAI, 2018.

[50] M. Lippi, P. Frasconi, Prediction of protein β-residue contacts by Markov
logic networks with grounding-specific weights, Bioinformatics 25 (2009)
2326–2333.

[51] H. Wang, H. Poon, Deep probabilistic logic: A unifying framework for
indirect supervision, in: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels, Belgium, October 31 -
November 4, 2018, 2018, pp. 1891–1902.

[52] M. Richardson, P. Domingos, Markov logic networks, Machine learning 62
(2006) 107–136.

[53] S. H. Bach, M. Broecheler, B. Huang, L. Getoor, Hinge-loss markov random
fields and probabilistic soft logic, arXiv preprint arXiv:1505.04406 (2015).

[54] A. Kalyan, A. Mohta, O. Polozov, D. Batra, P. Jain, S. Gulwani, Neural-
guided deductive search for real-time program synthesis from examples, in:
ICLR, 2018.

[55] L. Zhang, G. Rosenblatt, E. Fetaya, R. Liao, W. E. Byrd, M. Might, R. Ur-
tasun, R. Zemel, Neural guided constraint logic programming for program
synthesis, in: NeurIPS, 2018.

[56] K. Ellis, L. Morales, M. Sablé-Meyer, A. Solar-Lezama, J. Tenenbaum,
Learning libraries of subroutines for neurally–guided bayesian program in-
duction, in: NeurIPS, 2018.

[57] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, J. B. Tenenbaum, Neural-
symbolic vqa: Disentangling reasoning from vision and language under-
standing, in: NeurIPS, 2018.

50

[58] J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, J. Wu, The neuro-symbolic
concept learner: Interpreting scenes, words, and sentences from natural
supervision, in: ICLR, 2019.

[59] K. Ellis, D. Ritchie, A. Solar-Lezama, J. Tenenbaum, Learning to in-
fer graphics programs from hand-drawn images, in: S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Ad-
vances in Neural Information Processing Systems 31, Curran Associates,
Inc., 2018, pp. 6059–6068.

[60] S. M. Kazemi, D. Buchman, K. Kersting, S. Natarajan, D. Poole, Rela-
tional logistic regression: The directed analog of markov logic networks,
in: Proceedings of the 13th AAAI Conference on Statistical Relational AI,
AAAIWS’14-13, AAAI Press, 2014, pp. 41–43.

[61] S. Dumančić, H. Blockeel, Clustering-based relational unsupervised rep-
resentation learning with an explicit distributed representation, in: Pro-
ceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, 2017, pp. 1631–1637.

[62] S. Dumančić, T. Guns, W. Meert, H. Blockeel, Learning relational represen-
tations with auto-encoding logic programs, in: Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-19,
2019, p. To appear.

[63] A. Cropper, Playgol: Learning programs through play, in: Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI-19, 2019, p. To appear.

[64] A. Kimmig, V. S. Costa, R. Rocha, B. Demoen, L. De Raedt, On the
efficient execution of problog programs, in: International Conference on
Logic Programming, Springer, 2008, pp. 175–189.

[65] J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, L. De Raedt,
Anytime inference in probabilistic logic programs with tp-compilation, in:
Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

51

Appendix A. DeepProbLog Programs

nn(m_digit,[X],Y,[0,...,9]) :: digit(X,Y).

addition(X,Y,Z) :- digit(X,X2), digit(Y,Y2), Z is X2+Y2.

Listing 3: Single-digit MNIST addition (T1)

In Listing 3, digit/2 is the neural predicate that classifies an MNIST image
into the integers 0 to 9. The addition/3 predicate’s first two arguments are
MNIST digits, and the last is the sum. It classifies both images using digit/2
and calculates the sum of the two results.

nn(m_digit,[X],Y,[0,...,9]) :: digit(X,Y).

number([],Result,Result).
number([H|T],Acc,Result) :-

digit(H,Nr),
Acc2 is Nr+10*Acc,
number(T,Acc2,Result).

number(X,Y) :- number(X,0,Y).

multi_addition(X,Y,Z) :- number(X,X2), number(Y,Y2), Z is X2+Y2.

Listing 4: Multi-digit MNIST addition (T2)

In Listing 4, the only difference with Listing 3 is that the multi_addition/3
predicate now uses the number/2 predicate instead of the digit/2 predicate.
The number/3 predicate’s first argument is a list of MNIST images. It uses
the digit/2 neural predicate on each image in the list, summing and multi-
plying by ten to calculate the number represented by the list of images (e.g.
number([,],38)).

nn(m_digit,[X],Y,[0,...,9]) :: digit(X,Y).

addition(X,Y,Z) :- digit(X,X2), digit(Y,Y2), digit(Z,Z2), Z2 is X2+Y2.

Listing 5: All-digit MNIST addition (T3)

In Listing 5, the only difference with Listing 3 is that all 3 inputs X,Y,Z are
images. As such, the digit/2 predicate is also used on the third input. The
sum is also redefined as Z2 is X2+Y2.

In Listing 6, an additional probabilistic fact (noisy/2) is added that encodes
the chance of an example being noisy. The addition/3 predicate is split into
two cases: when the noisy is true or when noisy is false. The latter is the same
as in Listing 3. If noisy is true, Z is considered to be drawn from the uniform
distribution (uniform/3).

52

nn(classifier, [X], Y, [0 .. 9]) :: digit(X,Y).
t(0.2) :: noisy.

1/19 :: uniform(X,Y,0) ; ... ; 1/19 :: uniform(X,Y,18).

addition(X,Y,Z) :- noisy, uniform(X,Y,Z).
addition(X,Y,Z) :- \+noisy, digit(X,N1), digit(Y,N2), Z is N1+N2.

Listing 6: Noisy MNIST addition (T4)

nn(m_result,[D1,D2,Carry],Y,[0,...,9])::result(D1,D2,Carry,Y).

nn(m_carry,[D1,D2,Carry],Y,[0,1])::carry(D1,D2,Carry,Y).

hole(I1,I2,Carry,NewCarry,Result) :-
result(I1,I2,Carry,Result),
carry(I1,I2,Carry,NewCarry).

add([],[],[C],C,[]).

add([H1|T1],[H2|T2],C,Carry,[Digit|Res]) :-
add(T1,T2,C,NewCarry,Res),
hole(H1,H2,NewCarry,Carry,Digit).

forth_addition(L1,L2,C,[Carry|Res]) :- add(L1,L2,C,Carry,Res).

Listing 7: Forth addition sketch (T5)

In Listing 7, there are two neural predicates: result/4 and carry/4. These
are used in the hole/4 predicate that corresponds to the hole in the Forth
program. The first three arguments are the two digits and the previous carry to
be summed. The next two arguments are the new carry and the new resulting
digit. The add/5 predicate’s arguments are: the two list of input digits, the
input carry, the resulting carry and the resulting sum. It recursively calls itself
to loop over both lists, calling the hole/5 predicate on each position, using the
carry from the previous step.

In Listing 8, there’s a single neural predicate: swap/3. Its first two arguments
are the numbers that are compared, the last argument is an indicator whether
to swap or not. The bubble/3 predicate performs a single step of bubble sort
on its first argument using the hole/4 predicate. The second argument is the
resulting list after the bubble step, but without its last element, which is the
third argument. The bubblesort/3 predicate uses the bubble/3 predicate, and
recursively calls itself on the remaining list, adding the last element on each step
to the front of the sorted list.

In Listing 9, there are four neural predicates: net1/2 to net4/2. Their first
argument is the input question, and the second argument are indicator variables
for the choice of respectively: one of six permutations, one of 4 operations, swap-
ping and one of 4 operations. These are implemented in the permute/7, swap/5
and operator/4 predicates. The wap/5 predicate then sequences these steps to

53

nn(m_swap, [X]) :: swap(X,Y,).

hole(X,Y,X,Y):-\+swap(X,Y).

hole(X,Y,Y,X):-swap(X,Y).

bubble([X],[],X).
bubble([H1,H2|T],[X1|T1],X):-

hole(H1,H2,X1,X2),
bubble([X2|T],T1,X).

bubblesort([],L,L).

bubblesort(L,L3,Sorted) :-
bubble(L,L2,X),
bubblesort(L2,[X|L3],Sorted).

forth_sort(L,L2) :- bubblesort(L,[],L2).

Listing 8: Forth sorting sketch (T6)

Figure A.16: Examples of cards used as input for the Poker without perturbations(T9) ex-
periment.

calculate the result.

In Listing 10, there are two neural predicates: coin1/2 and coin2/2. Their
input is the image of the two coins (e.g. Figure 10). The output is heads or
tails. The coins/2 classifies both coins using these two predicates and then
performs the comparison of the classes with the compare/3 predicate.

In Listing 11, there’s a single neural predicate rank/2 that takes as input the
image of a card and classifies it as either a jack, queen, king or ace. There’s also
an AD with learnable parameters that represents the distribution of the unseen
community card (house_rank/1). The hand/2 predicate’s first argument is a
list of 3 cards. It unifies the output with any of the valid hands that these cards
contain. The valid hands are: high card, pair (two cards have the same rank),
three of a kind (three cards have the same rank), low straight (jack, queen king)
and high straight(queen, king, ace). Each hand is assigned a rank with the

54

permute(0,A,B,C,A,B,C).
permute(1,A,B,C,A,C,B).
permute(2,A,B,C,B,A,C).
permute(3,A,B,C,B,C,A).
permute(4,A,B,C,C,A,B).
permute(5,A,B,C,C,B,A).

swap(0,X,Y,X,Y).
swap(1,X,Y,Y,X).

operator(0,X,Y,Z) :- Z is X+Y.
operator(1,X,Y,Z) :- Z is X-Y.
operator(2,X,Y,Z) :- Z is X*Y.
operator(3,X,Y,Z) :- Y > 0, 0 =:= X mod Y,Z is X//Y.

nn(m_net1,[Repr],Y,[0,...,5])::net1(Repr,Y).
nn(m_net2,[Repr],Y,[0,...,3])::net2(Repr,Y).
nn(m_net3,[Repr],Y,[0,1])::net3(Repr,Y).
nn(m_net4,[Repr],Y,[0,...,3])::net4(Repr,Y).

wap(Text,X1,X2,X3,Out) :-
net1(Text,Perm),
permute(Perm,X1,X2,X3,N1,N2,N3),
net2(Text,Op1),
operator(Op1,N1,N2,Res1),
net3(Text,Swap),
swap(Swap,Res1,N3,X,Y),
net4(Text,Op2),
operator(Op2,X,Y,Out).

Listing 9: Forth WAP sketch (T7)

hand_rank/2 predicate. The best_hand_rank/2 predicate takes as input a list
of cards, and unifies the second argument with the highest hand rank that is
possible with the three given cards. The outcome/3 predicate determines the
outcome by comparing the two ranks of the best hand. The game/3 predicate’s
first argument is a list of the 4 input images. Its second input is the labeled com-
munity card. It classifies the cards using the neural predicates, determines the
best rank, and then unifies the last argument with the outcome. The game/2 de-
termines the community card from the learned distribution house_rank/1, and
then determines the outcome using the game/3 predicate. The member/2 and
select/3 predicates are predicates from the lists library. member/2 is true if its
second argument is a list and the first argument appears in that list. select/3
is true if its second argument is a list and the first argument appears in that
list. It also unifies the last argument with the list that is the same as its second
argument, but with the first argument removed.

In Listing 13, the main predicate is the query_rel(T,X,R,Y) predicate that
will predict the relationship R that holds between entities X and Y in text
T. To simplify reasoning, all relations are reduced to a non-gendered version

55

nn(net1, [X], Y, [heads, tails]) :: coin1(X,Y).
nn(net2, [X], Y, [heads, tails]) :: coin2(X,Y).

compare(X,X,same).
compare(X,Y,different) :- \+compare(X,Y,same).

coins(X,Comparison) :-
coin1(X,C1),
coin2(X,C2),
compare(C1,C2,Comparison).

Listing 10: The coins experiment (T8)

(e.g., significant other instead of husband). The gender_rel/3 predicate pro-
vides information about all the possible relations, and ties the gendered version
to its non-gendered version (e.g., gender_rel(child,female,daughter). The
gender is determined separately using the neural_gender/3 predicate.

After this, a meta-call happens to try to prove the actual relation using the
call predicate. There are two ways to prove the relations: either directly using
the neural predicates, or through the logic that encodes the family relations.
Also note that we explicitly encode the depth D when proving recursively to
avoid cycles. Although DeepProbLog can deal with cycles, this was done to
improve performance. Note also that we pre-process the text by splitting it into
individual sentences, replacing the entity names with numbers, and keeping
track which entities are mentioned in each sentence. Although this could be
done inside of the logic, we did this in a separate step to keep the logic more
readable. In the neural/4 predicate, we first filter out any sentences that do
not mention the relevant entities we want to know the relation for. This is done
using the include/3 predicate. We then map every sentence onto its embedding
by using the maplist/3 predicate to loop over the list and the embed/3 predicate
to map the given sentence. The first argument is a list of entities that determine
how the entities should be encoded. The first entity in this list will be encoded
with the token ENT1, the second with ENT2, ... Any other entity will be
tokenized as ENT. We take the element-wise max of all these embeddings using
the max_tensor/2 predicate. Then the actual prediction is made using the
nn_rel/2 neural predicate.

56

t(1/4)::house_rank(jack);t(1/4)::house_rank(queen);
t(1/4)::house_rank(king);t(1/4)::house_rank(ace).

nn(net1,[X],Y,[jack,queen,king,ace]):: rank(X,Y).

hand(Cards,straight(low)) :-
member(card(jack),Cards),
member(card(queen),Cards),
member(card(king),Cards).

hand(Cards,straight(high)) :-
member(card(queen),Cards),
member(card(king),Cards),
member(card(ace),Cards).

hand([card(R), card(R), card(R)],threeofakind(R)).
hand(Cards,pair(R)) :-

select(card(R),Cards,Cards2),
member(card(R),Cards2).

hand(Cards,high(R)) :-
member(card(R),Cards).

hand_rank(high(jack),0).
...
hand_rank(straight(high),13).

best_hand_rank(Cards,R) :-
hand(Cards,H),
hand_rank(H,R),
\+(hand(Cards,H2),hand_rank(H2,R2),R2>R).

outcome(R1,R2,win) :- R1 > R2.
outcome(R1,R2,loss) :- R1 < R2.
outcome(R,R,draw).

cards(C1,C2,House,[card(R1), card(R2), House]) :-
rank(C1,R1),
rank(C2,R2).

game([C1,C2,C3,C4],House,Outcome) :-
cards(C1,C2,House,Hand1),
cards(C3,C4,House,Hand2),
best_hand_rank(C1,R1),
best_hand_rank(C2,R2),
outcome(R1,R2,Outcome).

game(Cards,Outcome) :-
house_rank(House),
game(Cards,House,Outcome).

Listing 11: The Poker experiment (T9)

57

successor(I1,I2,N) :-
%Encode images I1 and I2 into E1 and E2
cnn_encode(I1,E1), cnn_encode(I2,E2),
%Embed the successor relation into embedding S
embed(successor, S),
%E = E1 + N*S
mul(S,N,S2), add(E1,S2,E),
rbf(E,E2).

Listing 12: The MNIST successor task (T10)

58

:-use_module(library(apply)).

nn(net1,[T],R,[child,child_in_law,...]) :: nn_rel(T,R).
nn(net2,[T],G,[male,female]) :: nn_gender(T,G).

query_rel(T,X,R,Y):-gender_rel(R2,G,R),neural_gender(T,Y,G),call(R2,T,X,Y,3).

mentioned(X,s(E,_)) :- member(X,E).

neural_gender([Entities|Sentences], E, G) :-
member(E,Entities),
include(mentioned(E), Sentences, [H|Sentences2]),
maplist(embed([E]),[H|Sentences2],Embedded),
max_tensor(Embedded,Max),
nn_gender(Max,G).

neural([Entities|Sentences], X,R,Y) :-
member(X,Entities), member(Y,Entities), X \== Y,
include(mentioned(X),Sentences,Sentences2),
include(mentioned(Y),Sentences2,[H|Sentences3]),
maplist(embed([Y,X]),[H|Sentences3],Embedded),
max_tensor(Embedded,Max),
nn_rel(Max,R).

child(T,X,Y,_) :- neural(T,X,child,Y).
child_in_law(T,X,Y,_) :- neural(T,X,child_in_law,Y).
grandchild(T,X,Y,_) :- neural(T,X,grandchild,Y).
...

grandchild(T,X,Y,D) :- D>0,X\=Y, child(T,X,Z,D-1), child(T,Z,Y,D-1).
grandchild(T,X,Y,D) :- D>0,X\=Y, so(T,X,Z,D-1), grandchild(T,Z,Y,D-1).
grandchild(T,X,Y,D) :- D>0,X\=Y, grandchild(T,X,Z,D-1), sibling(T,Z,Y,D-1).
grandparent(T,X,Y,D) :- D>0,X\=Y, parent(T,X,Z,D-1), parent(T,Z,Y,D-1).
grandparent(T,X,Y,D) :- D>0,X\=Y, sibling(T,X,Z,D-1), grandparent(T,Z,Y,D-1).
child(T,X,Y,D) :- D>0,X\=Y, child(T,X,Z,D-1), sibling(T,Z,Y,D-1).
child(T,X,Y,D) :- D>0,X\=Y, so(T,X,Z,D-1), child(T,Z,Y,D-1).
parent(T,X,Y,D) :- D>0,X\=Y, sibling(T,X,Z,D-1), parent(T,Z,Y,D-1).
parent(T,X,Y,D) :- D>0,X\=Y, child(T,X,Z,D-1), grandparent(T,Z,Y,D-1).
sibling(T,X,Y,D) :- D>0,X\=Y, child(T,X,Z,D-1), uncle(T,Z,Y,D-1).
sibling(T,X,Y,D) :- D>0,X\=Y, parent(T,X,Z,D-1), child(T,Z,Y,D-1).
sibling(T,X,Y,D) :- D>0,X\=Y, sibling(T,X,Z,D-1), sibling(T,Z,Y,D-1).
child_in_law(T,X,Y,D) :- D>0,X\=Y, child(T,X,Z,D-1),so(T,Z,Y,D-1).
parent_in_law(T,X,Y,D) :- D>0,X\=Y, so(T,X,Z,D-1), parent(T,Z,Y,D-1).
nephew(T,X,Y,D) :-D>0,X\=Y, sibling(T,X,Z,D-1), child(T,Z,Y,D-1).
uncle(T,X,Y,D) :- D>0,X\=Y, parent(T,X,Z,D-1), sibling(T,Z,Y,D-1)

gender_rel(child,male,son).
gender_rel(child,female,daughter).
gender_rel(parent,male,father).
gender_rel(parent,female,mother).
...

Listing 13: The CLUTRR experiment (T11)

59

