
North Carolina macular dystrophy (NCMD/MCDR1) is 
an autosomal dominant, completely penetrant, congenital, 
non-progressive macular malformation first reported in 
a large family in North Carolina as described by Lefler, 
Wadsworth, and Sidbury 50 years ago, and later by Small 
30 years ago [1-3]. The disease was named after the location 
of the founder effect, in the western part of North Carolina 
[4]. Although rare, NCMD has been found worldwide in 
more than 50 families in the United States, Europe, Central 
America, Australia, New Zealand, South Korea, and China 
[3,5-21]. Therefore, North Carolina macular dystrophy is a 
misnomer.

One of the most striking clinical features of NCMD is the 
typical intrafamilial phenotypic variability and the relatively 
good vision despite severe-appearing macular malformations 
in some patients. It is important to mention that affected indi-
viduals have a particular grade of NCMD at birth and do not 
progress; therefore, individuals do not progress from grade 1 
to grade 2, or from grade 2 to grade 3, contrary to previous 
descriptions [20-22]. There can be some vision decline later in 
life secondary to the development of choroidal neovascular-
ization. However, patients who develop choroidal neovascular 
membranes (CNVMs) are the only ones who experience 
progressive moderate to severe vision loss and usually only 
in one eye [23]. CNVMs typically occur along the temporal 
edge of the coloboma where they do not affect the vision. 
When CNVMs occur in grade 2 or along the nasal edge of the 
grade 3 coloboma, in NCMD patients, anti-VEGF injections 
have been beneficial [23].
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Purpose: To clinically and molecularly investigate a new family with North Carolina macular dystrophy (NCMD) from 
Turkey, a previously unreported geographic origin for this phenotype.
Methods: Clinical ophthalmic examinations, including fundus imaging and spectral domain-optical coherence tomog-
raphy (SD-OCT), were performed on eight members of a two-generation non-consanguineous family from southern 
Turkey. Whole genome sequencing (WGS) was performed on two affected subjects, followed by variant filtering and 
copy number variant (CNV) analysis. Junction PCR and Sanger sequencing were used to confirm and characterize the 
duplication involving PRDM13 at the nucleotide level. The underlying mechanism was assessed with in silico analyses.
Results: The proband presented with lifelong bilateral vision impairment and displayed large grade 3 coloboma-like 
central macular lesions. Five of her six children showed similar macular malformations, consistent with autosomal domi-
nant NCMD. The severity grades in the six affected individuals from two generations are not evenly distributed. CNV 
analysis of WGS data of the two affected family members, followed by junction PCR and Sanger sequencing, revealed 
a novel 56.2 kb tandem duplication involving PRDM13 (chr6:99560265–99616492dup, hg38) at the MCDR1 locus. This 
duplication cosegregates with the NCMD phenotype in the five affected children. No other (likely) pathogenic variants in 
known inherited retinal disease genes were found in the WGS data. Bioinformatics analyses of the breakpoints suggest 
a replicative-based repair mechanism underlying the duplication.
Conclusions: We report a novel tandem duplication involving the PRDM13 gene in a family with NCMD from a previ-
ously unreported geographic region. The duplication size is the smallest that has been reported thus far and may correlate 
with the particular phenotype.
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Phenocopies of this disease include drusen of age-related 
macular degeneration, Stargardt macular dystrophy, Best 
macular dystrophy, torpedo maculopathy, and toxoplas-
mosis [24-26]. Since 1990, Small et al. hypothesized that 
the causative gene(s) for NCMD are involved in embryonic 
macular development based on congenital and non-progres-
sive clinical features. This would help explain why vision 
is relatively good considering the severe-appearing lesions 
present in some cases [11-20]. The electroretinogram (ERG) 
and electrooculogram (EOG) are typically normal, as is the 
color vision test. As expected, multifocal ERG recordings 
reveal significant amplitude reductions in the central retina 
in severely affected subjects only [27].

Small et al.’s genetic linkage analysis of this single family 
revealed a locus on chromosome 6q16 (MCDR1/NCMD; 
OMIM 136,550) [26-29]. Subsequent linkage analysis of addi-
tional families yielded a logarithm of the odds (LOD) score 
greater than 40 [28-31]. Targeted genomic sequencing of the 
880 kb linked region eventually identified three noncoding 
single nucleotide variants (SNVs) 12 kb from the nearest 
gene, located in a DNase I hypersensitivity site [14]. These 
SNVs potentially alter regulation of expression of the neigh-
boring gene encoding the PR/SET domain-containing zinc 
finger protein 13 (PRDM13; OMIM 616,741) [14]. Ellingford 
et al. later confirmed one of the SNVs in a small independent 
family with NCMD in the United Kingdom [32].

In addition, a duplication of 123 kb was found in the 
MCDR1 locus in a Mayan Belizean family, involving 
the same upstream DNase I hypersensitivity site and the 
PRDM13 gene [14]. Bowne et al. subsequently and indepen-
dently found a distinct large duplication involving the DNase 
I site and PRDM13 [33]. Another unique duplication in the 
same genomic region was found by Manes et al. in a family 
from northern Italy [34]. PRDM13 is expressed in the fetal 
retina and dorsal spinal columns and is not expressed in 
adult tissues [35]. The duplication in families with NCMD 
and overexpression experiments in Drosophila suggest that 
the malformation of the macula, including drusen, is due to 
overexpression of PRDM13 [14,33-35].

Rosenberg and colleagues had previously mapped 
a Danish family with the NCMD phenotype to a second 
locus on chromosome 5 (5p21, MCDR3), showing genetic 
heterogeneity [12]. Using this positional information, a large 
duplication involving another DNase I site and the IRX1 
(OMIM 606197; Gene ID: 79192) gene was found by Small 
et al. [14]. Subsequently, Cipriani et al. reported in several 
European families with NCMD, two different overlapping 
smaller tandem duplications located in a noncoding region 

791 kb downstream of the IRX1 gene, involving the same 
DNase I site [36].

In 1996, a large genomic region overlapping MCDR1 
was mapped in a single family, with nystagmus and severe 
congenital developmental anomaly/coloboma of the maculae, 
representing progressive bifocal retinochoroidal atrophy 
(PBRCA) [37,38]. Recently, Silva et al. found two distinct 
noncoding SNVs located in another DNase I site 7.8 kb 
upstream of PRDM13. This was found in three small unre-
lated families with congenital macular dystrophies, varying 
from NCMD to the more severe PBRCA [39]. Recently, 
another unique noncoding SNV within the same DNase I site 
as the original family with NCMD, upstream of PRDM13 
was reported. However, this was found in a small geneti-
cally isolated Georgian Jewish family with probable NCMD 
but also with diagnostic inconsistencies and molecular 
confounding factors with a CFH (OMIM 134370; Gene 
ID: 3075) duplication in some [40]. This discovery must be 
corroborated before any definitive conclusions can be made. 
We report a novel 56.2 kb tandem duplication at the MCDR1 
chromosome 6 site involving the PRDM13 gene in a family 
with NCMD from Turkey.

METHODS

Clinical assessment: Fundus photos were obtained using a 
Zeiss Visucam NM/FA (Glendale, AZ). Spectral domain-
optical coherence tomography (SD-OCT) was performed 
using a Zeiss Cirrus HD-OCT (Dublin, CA). Blood or saliva 
or both was collected from consenting family members. 
Institutional Review Board (IRB) approval was obtained (# 
94–07–241–21). Blood was drawn through a venipuncture 
procedure onto a sterile lavender tube and stored in a 2-8 
ºC fridge. Genomic DNA was isolated from whole blood 
utilizing the Qiagen (Germantown, MD) extraction method.

Genetic assessment: DNA was extracted using standard 
methods and banked with pseudonymous identifiers. For 
targeted testing of the known pathogenic variants (SNVs) 
implicated in NCMD (Table 1), PCR (3 min 95 °C, 15 sec 
95 °C, 10 sec 55 °C, 1 min 60 °C-repeat cycle 30 times 
then 1 min 72 °C, 10 min 4 °C) and Sanger sequencing was 
performed. Whole genome sequencing (WGS) was performed 
using standard protocols (NovaSeq 6000, Illumina, San 
Diego, CA), on DNA from two affected individuals (I:2 and 
II:7; pedigree represented in Figure 1) [41]. In short, after 
sample quality control (QC), sequencing libraries were 
prepared using the NEBNext® DNA Library Prep Kit (New 
England Biolabs, Ipswich, MA) according to the manufac-
turer’s recommendations. Libraries were then sequenced 
using paired-end 2×125 bp format at >30X (Illumina). After 
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adaptor and quality trimming, QC FASTQ files were used 
in alignment with Burrows-Wheeler Aligner (BWA) to the 
reference human genome (hg38) [41-44]. Final BAM files 
were obtained at this stage. At the John P. Hussman Insti-
tute for Human Genomics, Pindel analysis was performed 
on the final BAM files using default settings to detect large 
structural variants (SVs) [41-46]. To exclude the presence of 
pathogenic variants in the genes known to be associated with 
inherited retinal diseases, we analyzed the RetNet panel on 
the WGS data of the two affected family members (I:2 and 
II:7). Therefore, BWA was used for alignment to the refer-
ence human genome (hg38), and Alamut Batch was used for 
annotation of variants located in RetNet genes. Filters were 
applied based on population frequency (<0.02) and coding 
effect, and the remaining variants were eventually filtered 
based on associated phenotype, so that only those variants 
associated with a macular phenotype remained.

To confirm the presence of the identified duplication in 
the MCDR1 locus, primers were designed to amplify across 

the breakpoints identified in the WGS data (forward primer 
5′-AGT CAC CCA AGG GTC TGG AT-3′ and reverse primer 
5′-CCA TGA CAT CTT TCC CAA CTG-3′). Subsequent 
Sanger sequencing was performed to assess exact break-
points. The breakpoint regions were analyzed using multiple 
sequence alignment (ClustalW) and RepeatMasker (UCSC 
Genome Browser), respectively.

RESULTS

Clinical study: Clinical ophthalmic examinations were 
performed on eight members of a two-generation family 
(Figure 1), originating from Urfa in southeastern Turkey. 
There is no history of migration from the affected mother’s 
side of the family from elsewhere. There is no reported 
consanguinity between the proband (I:2) and her partner (I:1). 
A summary of the clinical status, gender, age at examina-
tion, and visual acuity of the examined family members is 
provided in Table 2.

Table 1. Known genetic defects in the PRDM13 and IRX1 regions found in NCMD and possibly related diseases.

Variant 
Number

Type of 
Variant

Chromosomal Position 
(hg19)

Chromosomal Posi-
tion (hg38)

Nucleotide 
Change

Phenotype Reference

MCDR1 locus (PRDM13), chromosome 6q16
V1 SNV chr6:100040906 chr6:99593030 G>T NCMD Small 2016 [13]
V2 SNV chr6:100040987 chr6:99593111 G>C NCMD Small 2016 [13]
V3 SNV chr6:100041040 chr6:99593164 C>T NCMD Small 2016 [13]

V4 Tandem 
DUP

chr6:100020205–
100143306

chr6:99572329–
99695430 123,101 bp DUP NCMD Small 2016 [13]

V6 Tandem 
DUP

chr6:99996226–
100065137

chr6:99548350–
99617261 69,912 bp DUP NCMD Bowne 2016 [33]

V7 Tandem 
DUP

chr6:99984309–
100082698

chr6:99536433–
99634822 98,389 bp DUP NCMD Manes 2017 [34]

V10 SNV chr6:100046804 chr6:99598907 T>C PBCRA Silva 2019 [38]

V11 SNV chr6:100046783 chr6:99598928 A>C NCMD 
PBCRA Silva 2019 [38]

V12 SNV chr6:100040974 chr6:99593098 A>C Possible 
NCMD

Namburi 2020 
[39]

V13 Tandem 
DUP

chr6:100008141–
100064368

chr6:99560265–
99616492 56,228 bp DUP NCMD This report

MCDR3 locus (IRX1), chromosome 5p21

V5 Tandem 
DUP chr5:3587901–4486027 chr5:3587787–4485914 898,126 bp 

DUP NCMD Small 2016 [13]

V8 Tandem 
DUP chr5:4391377–4436535 chr5:4391264–4436422 45,158 bp DUP NCMD Cipriani 2017 [35]

V9 Tandem 
DUP chr5:4396927–4440442 chr5:4396814–4440329 43,515 bp DUP NCMD Cipriani 2017 [35]

Abbreviations used: bp: base pair, chr: chromosome, DUP: duplication, SNV: single nucleotide variation. A: adenine, C: cytosine, G: 
guanine; T: thymine. NCMD: North Carolina Macular Dystrophy. PBCRA: progressive bifocal chorioretinal atrophy.
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The proband (I:2) is a 34-year-old woman presenting 
with lifelong bilateral vision impairment. Snellen visual 
acuity was 20/100 for the right eye (OD) and 20/100 for the 
left eye (OS). The anterior segments and the intraocular pres-
sure were normal. Fundus assessment and SD-OCT showed 
symmetric macular coloboma-like excavations. Both optic 
discs had a normal aspect. Overall, the clinical features were 
consistent with NCMD grade 3 (Figure 2).

The six living children were subsequently examined. 
Five (II:2, II:4, II:5, II:6, and II:7) were found to have similar 
coloboma-like macular malformations consistent with 
NCMD grade 3, and a variable degree of decreased visual 
acuity ranging from 20/100 to 20/25 (Table 2). Their father I:1 
was examined and found to be clinically unaffected.

Genetic study: The proband (I:2) underwent testing of 
known pathogenic variants previously reported in NCMD. 
This revealed no known pathogenic SNVs. CNV analysis of 
WGS data of affected family members I:2 and II:7 showed 
a 56.2 kb tandem duplication encompassing PRDM13 
(chr6:99560265–99616492dup, hg38) at the MCDR1 locus 
on chromosome 6. Sequencing across the breakpoint showed 
the duplication in all affected family members, confirming 
cosegregation of the duplication with the disease (Figure 3). 
The duplication is novel and not present in any of the public 
variant databases. The breakpoint regions were analyzed for 
the degree of microhomology and for the presence of repeti-
tive elements, showing 3-bp microhomology. Because of the 
absence of extensive homology and of repetitive elements, 
it was concluded that the nonrecurrent duplication may be 

Figure 1. Pedigree of family 780. Two-generation pedigree with affected individuals represented by black filled symbols.

Table 2. Clinical characteristics of the individuals of Turkish family 780.

Family members Gender Macular dystrophy 
(bilateral)

Age of examination 
(year)

Visual acuity (Snellen) 
(OD/OS)

I:1 M Unaffected 38 1.0/1.0
I:2 F Affected 34 0.2/0.2
II:1 M Unaffected 13 1.0/1.0
II:2 M Affected 12 0.2/0.2
II:4 M Affected 11 0.5/0.5
II:5 M Affected 9 0.2/0.3
II:6 F Affected 7 0.2/0.2
II:7 M Affected 4 0.8/0.8

Abbreviations used: M: male; F: female. OD: right eye. OS: left eye.
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caused either by nonhomologous end-joining or by a repli-

cative-based repair mechanism. The presence of the 3-bp 

microhomology (Figure 3) at the junction of the duplication 

and the absence of an information scar, typical of NHEJ, 

favors the latter hypothesis. These replicative-based repair 

mechanisms include fork stalling and template switching 

(FoSTeS), microhomology-mediated break-induced replica-

tion (MMBIR), and serial replication slippage (SRS) [47]. 

Finally, RetNet analysis of the available WGS data from the 

two affected family members (I:2 and II:7) did not reveal 

any other (likely) pathogenic variants that could explain the 

retinal phenotype in this family.

Figure 2. Fundus photo and SD-OCT of the proband (I:2). Fundus picture of the right (A) and left (B) eyes, showing normal optic discs and 
symmetric macular coloboma-like excavations, consistent with North Carolina macular dystrophy (NCMD) grade 3. Spectral domain-optical 
coherence tomography (SD-OCT) of the right eye (C) and of the left eye (D) illustrate a macular coloboma-like lesion with an absence of 
the RPE and intrachoroidal fluid representing a lacuna.

http://www.molvis.org/molvis/v27/518
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DISCUSSION

We clinically and genetically examined a two-generation 
Turkish family with NCMD that originates from a previously 
unreported geographic region for NCMD. As many families 
with NCMD are found outside North Carolina, the name of 
the disease is misleading. Most families with NCMD exam-
ined to date show considerable intrafamilial variable expres-
sivity. Clinically, the family with NCMD in this report is 
unique because of the lack of variable expressivity. All of the 
six affected individuals in this family have severe large grade 
3 coloboma-like lesions, while it would be expected that at 
least some family members would have one of the milder 
forms of NCMD. We cannot exclude unexamined branches 
of this family displaying milder phenotypes of NCMD, and 
an ascertainment bias favoring finding the more severe and 
symptomatic subjects.

Insight into the underlying genetic basis and a compar-
ison with other pathogenic variants of the PRDM13 region 
in NCMD and possibly related diseases such as PBRCA can 
help to explain this apparently unique clinical spectrum in 
this family. The identified 56.2 kb tandem duplication (Figure 
4 and Figure 5) in this Turkish family is novel and smaller 
than the three previously reported duplications [14,33,34]. 

It adds to a total number of ten distinct pathogenic variants 
of the PRDM13 region found in patients with NCMD and 
PBRCA. Six are unique noncoding SNVs located in two 
distinct DNase I sites, and four are unique tandem duplica-
tions overlapping the originally reported DNase I site and the 
PRDM13 gene [14,33,34]. Thus far, a common feature of these 
variants, SNVs and SVs, is that they all involve DNase I sites. 
Interestingly, this is also the case for the three overlapping 
duplications of the IRX1 region (MCDR3 locus) [14,36].

It can be hypothesized that the more severe grade pheno-
type observed in this family is caused by stronger dysregula-
tion of PRDM13 and its regulatory element caused by the 
smaller duplication, early in embryonic development of the 
macula. Disease severity may depend on spatiotemporal 
expression of PRDM13 during development rather than the 
PRDM13 dosage. This hypothesis is supported by the fact that 
PRDM13 is not expressed in the adult retina [35].

Moreover, it is known that SVs, such as duplications, 
affect not only gene dosage but also gene regulation. They 
can change the copy number of regulatory elements or 
alter the 3D genome by disrupting higher-order chromatin 
organization, such as topologically associating domains 
(TADs) [48]. The impact of SVs on the 3D genome and on 

Figure 3. Breakpoint junction PCR 
results for seven tested individuals 
of family 780. The expected junc-
tion PCR fragment size is 279 bp. 
All affected individuals in this 
family were positive for the new 
56.2 kb tandem duplication thus 
demonstrating segregation.

http://www.molvis.org/molvis/v27/518
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gene expression regulation has to be considered when inter-
preting the consequences of these variant types [48]. Potential 
pathomechanisms resulting from an SV, such as the formation 
of neo-TADs, can become apparent with high-throughput 
chromosome conformation capture (Hi-C) generated from 
cultured patient cells in comparison with a wild-type refer-
ence Hi-C map [48,49]. Although Hi-C can help interpret the 
possible pathogenic effects of the SVs in individuals with 

developmental diseases such as NCMD, it is difficult to have 
access to patient-derived material in the relevant spatiotem-
poral window (developmental macula in the case of NCMD). 
Specifically, we did not have access to patient-derived cells 
that could be reprogrammed into induced pluripotent stem 
cells (iPSCs) and differentiated to retinal organoids.

In general, an increasing number of coding and 
noncoding SVs have been shown to underlie inherited retinal 

Figure 4. Visualization of the 
breakpoint of the new 56.2 kb 
tandem duplication found in family 
780. Top: The 3-bp microhomology 
is represented in pink. Bottom: 
Sanger electropherogram spanning 
the duplication breakpoint.

Figure 5. UCSC tracks for the iden-
tified duplication. The duplication 
is represented by the blue bar. It 
overlaps with several DNase I sites 
(in gray) and multiple candidate cis-
regulatory elements (NCBI func-
tional elements and ORegAnno).
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diseases (IRDs) [50-55]. From reported noncoding SNVs, 
the majority have an effect on splicing. Only a handful of 
noncoding cis-regulatory variants have been identified in 
IRDs, however [51]. NCMD can be considered a model for 
noncoding regulatory SNVs and SVs in IRDs. Future studies 
in patient-derived cells may help elucidate the underlying 
mechanisms of this cis-regulatory disease.
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