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ABSTRACT

Automating the analysis of surveillance video footage is of great interest when urban environments
or industrial sites are monitored by a large number of cameras. As anomalies are often context-spe-
cific, it is hard to predefine events of interest and collect labelled training data. A purely unsupervised
approach for automated anomaly detection is much more suitable. For every camera, a separate algo-
rithm could then be deployed that learns over time a baseline model of appearance and motion related
features of the objects within the camera viewport. Anything that deviates from this baseline is flagged
as an anomaly for further analysis downstream. We propose a new neural network architecture that
learns the normal behavior in a purely unsupervised fashion. In contrast to previous work, we use
latent code predictions as our anomaly metric. We show that this outperforms reconstruction-based
and frame prediction-based methods on different benchmark datasets both in terms of accuracy and
robustness against changing lighting and weather conditions. By decoupling an appearance and a mo-
tion model, our model can also process 16 to 45 times more frames per second than related approaches
which makes our model suitable for deploying on the camera itself or on other edge devices.

c© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Rising concerns for public security and safety have increased
the number of surveillance cameras installed in our streets and
public places (Abati et al., 2019; Liu et al., 2018; Ionescu et al.,
2019; Chandola et al., 2009; Morais et al., 2019). Human oper-
ators in a control room continuously inspect these video streams
on a multi-screen video wall, looking for abnormal events that
may mandate further inspection. As human operators can only
process a few video streams at the same time, part of the surveil-
lance workflow must be automated when the number of cam-
eras grows. By automating the detection of anomalous events,
human operators can focus on the appropriate response to these
events, e.g. by requesting a police intervention.

Since anomalies are context-specific (Song et al., 2007), each
video stream requires a tailored anomaly detection algorithm.
A running person for example is considered an anomaly in a
busy shopping street but it might be normal in a train station as
people are often in a hurry to catch the train. In this work we
introduce a new neural network architecture that is able to rec-
ognize anomalous events in a surveillance camera stream using
only unsupervised training. We propose to decouple the learn-

ing of appearance and motion information which are the key
factors for determining anomalies in a surveillance video. We
first train an autoencoder by reconstructing individual frames
to capture high level appearance features such as the location,
shape and size of an object. Such features however can not
guarantee the detection of anomalies that are caused by motion
related features such as speed or trajectory. We therefore add
a second component that further exploits the spatiotemporal in-
formation of the frequently seen events by predicting the latent
code for a future frame using the stacked latent codes of the
previous k frames as the input. The underlying assumption is
that the anomalous events are rare occasions and will not be
modeled accurately by the networks. The predicted latent code
of anomalous frames will hence deviate significantly from the
observed latent codes.

Our approach is easy to implement and achieves state-of-the-
art performance on benchmark datasets. We however do not
only focus on detection accuracy but also address several other
obstacles for real-world deployment. Our model is much more
efficient than related approaches, which could make it possible
to evaluate our model at the network edge, on or nearby the
surveillance camera itself, as opposed to streaming all data to a



2

central point for analysis. Inference at the edge is also a more
privacy friendly paradigm since a human operator will not see
the camera data unless his intervention is needed. Lastly, our
experimental results indicate that detection performance based
on prediction of latent codes is more robust against changing
weather and lighting conditions.

The remainder of this paper is organized as follows: In sec-
tion 2 we give an overview of related anomaly detection meth-
ods. In section 3 we introduce our approach and we experimen-
tally validate it on different benchmark datasets in section 4. In
section 5 we show that our approach is more robust against dif-
ferent distortions. We conduct an ablation study in section 6
to analyze the role of different components of the model. We
conclude in section 7 and give a few pointers for future research
directions.

2. Related work

Deep learning is currently the state-of-the-art method for
many computer vision related tasks (Schmidhuber, 2015) and
is also the technique behind the state-of-the-art anomaly detec-
tion methods for video surveillance type data. We can differ-
entiate three different approaches to do anomaly detection with
deep learning: reconstruction based methods, prediction based
methods and methods that use characteristics of the latent code
to detect anomalies.

2.1. Reconstruction based methods

The most common approach is to build models that recon-
struct their input. These models are based on an autoencoder
architecture that contains a bottleneck for encoding high level
features, creating a compressed representation of the input data.
These compressed representations are then used to reconstruct
the input data. The assumption here is that the reconstruction
works fine for inputs that are similar to the data that was seen
during training but that anomalous inputs can not be modelled
accurately by the learned features, resulting in a poor recon-
struction. The reconstruction error is then used as a metric to
detect anomalies.

For our use case of anomaly detection in video surveillance,
it is not enough to only model spatial information by process-
ing individual frames, we also need to consider the temporal in-
formation to detect anomalies that are caused by motion, such
as high speed or irregular movement. Different approaches
have been explored to incorporate this information into the
model. Hasan et al. (2016) exploit the spatiotemporal infor-
mation by reconstructing multiple stacked frames using an au-
toencoder. Xu et al. (2017) apply a denoising autoencoder (Vin-
cent et al., 2008) to reconstruct frames. They use optical flow
maps to describe the motion information. Similar to Xu et al.
(2017), Nguyen and Meunier (2019) also encode motion infor-
mation with optical flow map. Another option is to use Re-
current Neural Networks (RNN) or Long Short-Term Memory
networks (LSTM) (Schmidhuber, 2015) to model the time di-
mension (Chong and Tay, 2017; Luo et al., 2017a; Zhou et al.,
2019). Finally, there is also work that explores the use of a 3D

convolutional networks (C3D) to model spatiotemporal repre-
sentations. Tran et al. (2015) show that C3D can encapsulate
information related to shapes and motions in video sequence
better than a 2D based model, thus boosting the anomaly detec-
tion accuracy.

2.2. Prediction based methods
Instead of reconstructing the input, it is also possible to pre-

dict future frames. This requires a better understanding of tem-
poral information. Liu et al. (2018) use a generative adversar-
ial network (GAN) (Goodfellow et al., 2014) that takes stacked
frames and optical flow features as input. Anomalies are de-
tected at test time by measuring the difference between the pre-
dicted and observed future frame. Any deviation from the ex-
pected frame is considered as an anomaly. For more specialized
applications we can also use domain specific features. Morais
et al. (2019) for example deal with human-related anomaly de-
tection by reconstructing and predicting the decomposed global
body movement and local body posture from the human skele-
ton movement. Differently from the above works, our method
i) works on the single frame instead of stacked frames, so we
only need to process each frame once ii) predicts the future in
the feature space, thus alleviate the blurry prediction problem of
using pixel-wise Mean Square Error (MSE) as objective func-
tion (Mathieu et al., 2015) iii) does not require any preprocess-
ing steps such as the computation of optical flow maps to apply
motion constraints in detecting anomalies.

2.3. Latent code based methods
Both lines of previous work generate expected frames and

detect anomalies by measuring the difference in pixel space
with the actual input frame. However, it is well known that
pixel-wise similarity measurements do not necessarily corre-
spond with human understanding of images (Larsen et al.,
2016; Mathieu et al., 2015) and are often very sensitive to minor
changes in brightness or color. On the other hand, the high level
features extracted by a neural network are shown to be less sen-
sitive to these distortions (Zhang et al., 2018). There are some
very recent approaches that extract high level features with an
autoencoder and then use a classifier such as a one-class SVM
on the extracted features (Bouindour et al., 2019; Ionescu et al.,
2019) to detect anomalies. The assumption is that the classifier
will distribute the anomalies outside of the learned manifold.
The work that is most similar to our approach is the Latent
Space Autoregression model from Abati et al. (2019). They
use features from a deep 3D convolutional autoencoder com-
bined with an autoregressive network to model the probability
distribution underlying the latent representation. They combine
the reconstruction error and the likelihood of the latent code
to identify the anomalies. Our approach is similar in that we
also extract features and work in a high level latent code. How-
ever, our approach uses a 2D autoencoder to extract features
which highly reduces the number of parameters and computa-
tional cost. We use a less complicated feed forward model to
do the prediction which does not make any assumptions on the
distribution family of the latent code. It allows us to directly
use the Mean Squared Error (MSE) between the predicted la-
tent code and the latent code that is extracted from the encoder
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as the anomaly score. Finally, we explicitly predict the latent
code of a future frame instead of relying on the reconstruction
of the current frame to capture the motion information.

3. Architecture

In this paper we propose a decoupled architecture to learn the
spatiotemporal information which is important for determining
anomalies in surveillance videos. We first train an autoencoder
to reconstruct individual input frames and aim to represent the
appearance information such as shape, location and outlook of
an object in the latent codes. Then to further stress the appear-
ance information for frequently seen events and the dynamical
aspects in a video, we stack these extracted latent codes from
the encoder for a sequence of k frames and use that as the in-
put for a second network to predict the latent code for a future
frame. The model is assumed to be only able to predict the la-
tent codes for frequently seen events with high accuracy. The
difference between the predicted and the observed latent codes
is then used as the anomaly metric. The following sections ex-
plain these in detail.

3.1. Learning appearance features

To learn high level features, we use a U-Net (Ronneberger
et al., 2015) type autoencoder that is trained to reconstruct in-
dividual input frames. To force the model to focus on the fore-
ground, we subtract a background frame from each input frame.
This background frame is calculated as a frame with per-pixel
mean RGB values over all training data. The encoder learns to
extract latent codes from a single frame and the decoder learns
to reconstruct the input based on the extracted features. The
original U-Net architecture has shortcut connections between
encoder and decoder. To avoid the trivial solution of copying
feature maps from the encoder to the decoder and to improve
the regularization power, we add a shortcut connection between
the previous frame Tk−1 and current frame Tk. In other words,
the feature maps that are calculated using frame Tk−1 are con-
catenated with the feature maps from frame Tk in the upsam-
pling path for reconstructing frame Tk. The detailed architec-
ture is shown in Figure 1 (a) and (b).

3.2. Learning motion features

Spatiotemporal information is important for detecting
anomalies in videos. However, the features that are extracted
by encoding a single frame as described above can only focus
on the spatial information such as shape, location and size of an
object and cannot guarantee the detection of the motion-related
anomalies. We thus include a second component that can attend
to both spatial and temporal dimension to further learn the dy-
namical aspects of video sequence. Previous work considered

learning the temporal information either by predicting optical
flows using a pretrained FlowNet (Hasan et al., 2016; Liu et al.,
2018; Xu et al., 2015; Zhou et al., 2019; Nguyen and Meu-
nier, 2019) or by predicting future frames in pixel space (Abati
et al., 2019; Liu et al., 2018). This however has three draw-
backs. First, the optical flow estimation is computationaly ex-
pensive as it requires around 0.1 seconds to evaluate a single
frame on a GPU machine (Ilg et al., 2017). Secondly, we need
to consider the interaction between appearance and motion in-
formation. For example, a vehicle driving with very high speed
is usually an anomaly except when it is an ambulance. Indepen-
dently encoding the appearance and motion information using a
pretrained optical flow model cannot take this into account. Fi-
nally, the pixel-wise Mean Square Error (MSE) objective func-
tion for predicting future often generates blurry frames (Math-
ieu et al., 2015; Zhang et al., 2018). Instead, we decide to pre-
dict the latent code of a future frame through a small motion
learning model as shown in Fig. 1 (c).

To predict the latent code of frame Tt, we extract latent codes
for k previous input frames T1...Tk. The extracted latent codes
z1...zk from the encoder for each of past frames T1...Tk are then
concatenated along the temporal dimension and used as the in-
put for the motion model to predict the latent code ẑt for a future
frame Tt. We use 3D convolutional layers in the motion model
since these can attend to both motion and appearance whereas
a 2D convolution layer is only able to work in the spatial di-
rection (Tran et al., 2015). Each convolutional block includes a
3D convolutional layer with kernel size 3x3x3, stride 2 on the
temporal dimension and stride 1 on the feature dimension. This
is followed by a BatchNormalization (Ioffe and Szegedy, 2015)
and a leaky-relu activation layer. We use three convolutional
blocks in the motion model.

3.3. Training

Our proposed framework consists of two parts: video frame
reconstruction and latent code prediction, so the objective func-
tion to train both components end-to-end can be formulated as:

L = λr

k∑
q=2

N∑
j=1

||T̂q, j −Tq, j||
2
2 +λp

M∑
m=1

||ẑt,m − zt,m||
2
2 + γ||W ||22 (1)

The first term measures the pixel-wise reconstruction loss
where N is the total number of pixels per frame and k is the
number of frames in a input sequence. We can only reconstruct
the last k − 1 frames if we input k frames since the reconstruc-
tion of one frame requires the features from its previous frame.
The second term is the MSE between the predicted and the ob-
served latent code where M is the number of elements in the
latent code. The last term is an L2 regularization term where
γ is kept to be 0.001. The model can be trained end-to-end
but to bootstrap the encoder with useful features, we first fo-
cus on training the autoencoder for reconstruction (λr = 1 and
λp = 0.001) until the training loss for reconstruction converges.
Then we focus on finetuning the weights of the motion model
(λr = 0.001, λp = 1.0) to use the motion information better.
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3.4. Inference

At inference time, we discard the decoder and use the differ-
ence between predicted and actual latent code as the metric to
determine whether a frame is an anomaly or not. The underly-
ing assumption is that the model can predict the latent code for
the normal frames with high accuracy but is not able to do so
for anomalous frames. We measure the distance between latent
codes with Mean Squared Error (MSE) as shown in Eq. 2.

st =

∑M
m=1 ||ẑt,m − zt,m||

2

M
(2)

After calculating the anomaly score for each frame, follow-
ing Mathieu et al. (2015), we normalize the score for each
frameset G to the range of [0,1] using Eq. 3. A frame that has
the anomalous score higher than a threshold is considered as
anomaly. Depending on the dataset, G contains all frames of a
video or just the frames in a sliding window for long videos.

st =
st − min j∈G(s j)

max j∈G(s j) − min j∈G(s j)
(3)

4. Experiments

In this section, we compare our methods to state-of-the-art
approaches on public benchmarks. We do not only focus on
detection accuracy but also compare the computational cost of
the models since this is often the bottleneck that limits the per-
formance in the real world. In addition, we also evaluate the
proposed anomaly detector on multiple distorted environments
and show that our method is more robust against changes in
lighting and weather that are common in the real world.

4.1. Experimental Setup

To evaluate the effectiveness of our proposed methods, we
use the same datasets as Liu et al. (2018), including the UCSD
Pedestrian dataset (Mahadevan et al., 2010), the CUHK Av-
enue dataset (Lu et al., 2013) and the ShanghaiTech dataset (Liu
et al., 2018). There are no anomalies in the training data for the
UCSD Pedestrian dataset (Mahadevan et al., 2010). The CUHK
Avenue dataset (Lu et al., 2013) is more realistic and challeng-
ing in that sense as it contains several outliers in the training
data, and some normal patterns that occur in the test data sel-
dom appear in the training data. As is common, we report the
Area Under Curve (AUC) score as the accuracy metric.

The experimental settings are shown in Table 1. We use 8
input frames for UCSDPed1 and UCSDPed2 datasets and 6 in-
put frames for the Avenue and ShanghaiTech datasets. More
frames are needed to encode the motion and appearance of the
much smaller objects in the UCSD Pedestrian datasets than in
the Avenue and ShanghaiTech datasets. The resolution of the
frames is reduced using bilinear interpolation, keeping the orig-
inal aspect ratio. As for the architecture, we use five encoder
blocks for the UCSDPed1 dataset and four encoder blocks for
the other datasets. This is done because the scenes in the UCS-
DPed1 dataset include more objects and we need to increase
the model’s capacity in order to encode the appearance- and
motion-related features.

We train the model for 50 epochs in an end-to-end fashion
with initial learning rate 1e − 4 which decays by 0.1 every 20
epochs. The ShanghaiTech dataset contains data from multi-
ple cameras. We trained individual models per camera and ob-
served no significant performance difference with a model that
is trained on data from all cameras. We train the model with
the Adam optimizer (Kingma and Ba, 2015) for all our experi-
ments. The code will be released on website.

For the evaluation, we use feature-wise MSE (Eq. 2) to cal-
culate the anomaly score for all the datasets. We normalize
the anomaly score in UCSDPed1 and UCSDPed2 dataset with
Eq. 3 using all the frames in a test video. For the ShanghaiTech
datasets, we use the same sliding-window approach as Abati
et al. (2019).

4.2. Results

Table 2 compares our results with those of other unsuper-
vised deep learning based methods for anomaly detection. Our
approach achieves similar and outperforms the existing meth-
ods in terms of frame-level AUC score. The decoupled mech-
anism and the combined learning of appearance and motion
information improves the training process and allows the ex-
tracted and predicted latent codes to be more representative for
the frequently seen events and thus improve the anomaly detec-
tion accuracy. We further investigate the role of decoupling, the
use of Conv3D layers in the motion model as well as different
anomaly metrics in section 6.

Table 1. Design choices for each evaluation dataset.
UCSDPed1 UCSDPed2 Avenue ShanghaiTech

Input Size 128x192 128x192 128x224 128x224
Num Input (k) 8 8 6 6
Encoder Block 5 4 4 4

The initial goal of our approach was to develop an architec-
ture that is more efficient than previous approaches. We bench-
mark our method with the approaches that have publicly avail-
able code on an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz
with an GeForce GTX 1080 Ti. We reimplemented the meth-
ods described by Hasan et al. (2016) in Tensorflow to allow for
a fair comparison1. The results are displayed in Table 3.

Our method outperforms the other approaches by a large
margin in terms of the number of frames that can be processed
per second. Compared to the Latent-Auto approach (Abati
et al., 2019) that also detects anomalies using latent code, we
can process 16∼45 times more frames per second. The main
reason our method is more efficient is because the model in-
dependently encodes appearance and motion information. We
extract the appearance information using a relatively efficient
2D convolutional network and process the combined features
using a small 3D convolutional network, whereas other ap-
proaches build the entire network around 3D convolutions mak-
ing it much more expensive. Because we extract latent codes
from individual frames, each frame only needs to be processed

1The benchmark code is also available at website
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Fig. 1. Overview of our approach. We use the same encoder to extract a latent code for each input frame, where k is the number of frames in per input
sequence and t is the frame that is 6 timesteps into the future (k + 6). In the training phase, these latent codes are used to (a) predict latent codes for future
frames with the motion model and (b) reconstruct current frames with the decoder. In the inference phase, we only use the encoder and the motion model.
(c) Conv3D layers are used in the motion model to learn spatiotemporal information.

once. We can save each of the last k latent codes that are needed
in the motion model and re-use them for the next k predictions.
In contrast, models that use 3D convolutions process each frame
k times, each time at a different position in the stack, predict-
ing a different frame, making it much more computationally
expensive. Since we predict future latent codes and use the pre-
diction error in latent space as our anomaly metric, we do not
need the decoder part at inference, again reducing the compu-
tational cost. Also, compared to other models that use anomaly
scoring metrics based on latent codes, we do not impose any
distribution constraint on the latent code, giving the model the
freedom to fit the data as best as possible.

A disadvantage of working with latent codes is that it is
harder to interpret the model. It is however possible to also use
the decoder at inference time to generate predicted frames and
to measure the pixel wise reconstruction metrics. This allows us
to localize the part of the frame that contains the anomaly. We
show these results in Figure 2. The red boxes in each frame are
the regions that have the prediction error larger than a threshold.
The green boxes show the ground-truth annotations for the Av-
enue and ShanghaiTech dataset (the UCSD pedestrian dataset
only has frame-level labels). These results empirically con-
firm that our model can detect motion- and appearance-related
anomalies, such as the skater, cyclist, car, running and gymnas-
tics events (first four columns). The last two columns of Figure
2 show false positives, frames that were labeled as normal but
that were flagged as anomalies by our model. Two of these
show noise or camera movements that were not seen during
training. It also shows that the model is more likely to incor-
rectly flag objects as anomalies if they are closer to the camera.

5. Robustness of the model

The datasets we used in the previous section are commonly
used datasets that allow us to compare anomaly detection tech-
niques quantitatively. They however all contain relatively clean
data, recorded at similar times during the day and under clear
weather conditions. These datasets are therefore not necessarily
representative of real world surveillance footage where external
factors such as weather and time of day will severely influence
the performance of the model. We argue that in addition to
their anomaly detection performance and computational cost,
we should also compare the robustness and generalization of
the models to these external factors. In this section we inves-
tigate three types of robustness and show that by working with
latent code anomaly metrics we are more robust than other ap-
proaches that use pixel-wise metrics.

5.1. Modelling long term temporal information

In section 4.2, we showed that our approach is by design
much more efficient than existing techniques. To reduce the
computational cost even further we could reduce the number of
times we activate the model. In surveillance video, anomalies
are typically in view of the camera during multiple seconds. It
should be enough to process only a few frames of this window
to detect the anomaly. If instead of running our model every
40 ms, we run it every 200 ms, then this obviously results in
a lower total computational cost but this also makes the task
much harder for the network since we now need to predict five
times further into the future. In this way, the model is forced
to encode longer term temporal information and the prediction
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Table 2. Frame-level AUC score with 95% confidence interval (4 runs) on
UCSDPed1, UCSDPed2, Avenue and ShanghaiTech datasets. We outper-
form most of the existing approaches on all the datasets.

UCSD
Ped1

UCSD
Ped2 Avenue

Shanghai
-Tech

MDT
(Mahadevan et al., 2010) 81.8 82.9 - -

ConvAE
(Hasan et al., 2016) 81.0 90.0 70.2 -

ConvLSTM
(Luo et al., 2017a) 75.5 88.1 77.0 -

Unmasking
(Ionescu et al., 2017) 68.4 82.2 80.6 -

Hinami
(Hinami et al., 2017) - 92.2 - -

StackRNN
(Luo et al., 2017b) - 92.2 81.7 -

FFP-MC
(Liu et al., 2018) 83.1 95.4 84.9 72.8

LatentAuto
(Abati et al., 2019) - 95.4 - 72.5

AnomalyNet
(Zhou et al., 2019) 83.5 94.9 86.1 -

AM-Corr
(Nguyen and Meunier, 2019) - 96.2 86.9 -

MEMAE
(Gong et al., 2019) - 94.1 83.3 71.2

DOR
(Pang et al., 2020) 71.7 83.2 - -

MNAD
(Park et al., 2020) - 97.0 88.5 70.5

ours 85.0±0.3 95.1±0.4 88.8±0.3 73.9±0.1

Table 3. FPS for different methods. Our method is more efficient than the
existing approaches

ConvAE
Hasan et al. (2016)

FFP+MC
Liu et al. (2018)

LatentAuto
Abati et al. (2019) Ours

UCSDPed1 75 63 2 81
UCSDPed2 75 63 2 90
Avenue 71 48 5 77
ShanghaiTech 71 48 5 77

task is more challenging since the future frame will differ sub-
stantially from the previous frames.

To explore this trade-off, we subsample the video sequence
and only keep every dth frame in our training and test data. Fig-
ure 3 shows how sensitive the latent code metric (red line) is
compared to the pixel-wise metric (green line). Both techniques
follow the same trend but the latent code metric consistently
performs better than the pixel-wise metric, especially when the
gap between input frames becomes large. This illustrates the
power of latent codes and their capability of modelling longer
term temporal information.

5.2. Generalization to other lightning conditions

The performance of anomaly detection in surveillance video
is impacted severely by factors such as varying illumination,
multiple weather conditions, on- and off-peak traffic profiles,
degradation of the camera and so on. Therefore, in this section,

we investigate the robustness of our proposed method to these
distortions. We train a model using original frames from the
Avenue dataset and then analyze the performance on distorted
test set frames. We adjust brightness, blur the image and add
rain to the test frames using the Automold toolkit2. Figure 4
shows some examples of the distorted frames using different
levels of rain and brightness.

Figure 5 shows the frame-level anomaly detection accuracy
for different distortion levels. The X-axis shows the relative
brightness compared to the original frame. The different curves
show the performance of using Mean Squared Error (MSE) in
pixel space (p) and in latent space (z) as our anomaly metrics
for different levels of rain added to the image. As expected the
model performance drops when the brightness decreases, but
our model is consistently more robust than the baseline model
that uses pixel wise metrics. Adding rain to the test frames
also reduces the detection performance but again, our feature-
wise latent code MSE performs significantly better as anomaly
scoring metric than the pixel-wise MSE. These results verify
that our proposed methods using feature-wise MSE in the latent
code to identify anomalies is more robust to different outdoor
situations than pixel-wise MSE measurements.

5.3. Robustness to already seen anomalies

Most anomaly detection techniques assume that there are no
or very few anomalies during training. To determine the im-
pact of anomalies in the training data, we performed an addi-
tional experiment where we randomly sample anomalies into
the training data. We have compared our results with FFP (Liu
et al., 2018) and MEMAE (Gong et al., 2019). We adopted the
official public available codes for methods FFP and MEMAE
and trained them on the dataset which contains both normal
frames and randomly sampled anomalies. The result is shown
in Figure 6. On the x-axis, we show the percentage of anomalies
in the training data, and on the y-axis, the obtained AUC score.
As the number of anomalies seen during training increases, the
AUC score goes down. Our approaches outperform the exist-
ing works when there are increasing numbers of anomalies in
the training dataset. Using the latent code seems more robust
to a noisy training dataset than using the pixel-wise difference
between reconstructions or predictions.

6. Ablation study

In section 3 we introduced our model together with some
design choices. In this section we look closer to these choices
and investigate how these contribute to our results.

6.1. Reconstruction loss

We first look at different loss functions for learning recon-
structions. We used pixel-wise Mean Square Error (MSE) as
the objective function in our experiments to learn reconstruc-
tions as it is commonly used and widely studied (Hasan et al.,

2https://github.com/UjjwalSaxena/

Automold--Road-Augmentation-Library

https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
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skater	#12 biker	&	car	#36 biker	#2 biker	#5 close	to	camera	#17 camera	movement	#12

running	#2 throwing	bag	#6 gymnastics	#17 throwing	paper	#20 camera	movement	#2 picking	up	paper	#20

unicycle	#8_157 brawling	#3_32 throwing	#4_46 skater	#4_50 close	to	camera	#5_20 big	objects	#3_41

Fig. 2. True positive (first four columns) and false positive (last two columns) detections of our framework. Examples are selected from the UCSD pedestrian
dataset (first row), Avenue dataset (second row) and ShanghaiTech dataset (last row). # indicates the testing video index. The red boxes are the regions
that have highest pixel-wise prediction error and the green box are the ground truth bounding boxes for the anomalous event. We can successfully detect
the motion- and appearance- related anomalies and tend to incorrectly flag objects as anomalies if they are closer to camera. The figure is best viewed in
color.
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Fig. 3. The anomaly detection accuracy (frame-level AUC score with 95%
confidence interval) when we have low fps input. z-mse is calculated us-
ing Eq. 2 on the latent code and p-mse is the MSE between the predicted
frames and actual frames. The figure is best viewed in color.

2016; Xu et al., 2017; Vincent et al., 2008). It is, however, also
known that MSE loss tends to generate blurry frames (Larsen
et al., 2016). Therefore, we conducted additional experiments
to investigate whether more advanced reconstruction loss func-
tions can further improve the anomaly detection accuracy. We
used Gradient Difference Loss (GDL) and Structure Similarity
Index Measure (SSIM), following the work from Larsen et al.
(2016) and applied them on the CUHK Avenue datasets. Ta-
ble 4 shows the results. Applying these more advanced recon-
struction loss functions can significantly increase the anomaly
detection accuracy when we only use reconstruction error to
detect anomalies (R-MSE). However, it diminishes the perfor-
mance of using the latent code difference to detect anomalies
(Z-MSE).

6.2. Reconstruction vs prediction

To understand the impact of each modules on the detection
accuracy, we report the frame level AUC score for the model

(a) (b) (c)

(d) (e) (f)

Fig. 4. The distorted frames using Avenue dataset. (a) original frame, (b)
and (c) have heavy rain with brightness degree 0.5 and 0.7 respectively
and (d),(e) and (f) show torrential rain with the brightness 0.6, 0.8 and 1.0
respectively. The figure is best viewed in color.

0.2 0.4 0.6 0.8 1.0
brightness

70

75

80

85

90

AU
C

z+original
p+original
z+heavy rain
p+heavy rain
z+torrential rain
p+torrential rain

Fig. 5. The averaged anomaly detection accuracy (frame-level AUC score)
on the augmented frames where z means the latent code feature-wise MSE
and p means the prediction pixel-wise MSE. The latent code anomalous
score measurement is more robust on unseen weather conditions compared
to other approaches. The figure is best viewed in color.
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Fig. 6. Anomaly detection accuracy (AUC ± 95% confidence interval) on
the CUHK Avenue dataset. The number in the bracket means the number
of added anomalous frames. There are 1565 anomalous frames in total.
Our approach (Z-MSE) achieves better performance and is more robust
than other SToAs as the number of anomalies during training increases.

that is without and with motion learning module in Table ??.
Adding the motion model highly improves the anomaly detec-
tion accuracy for all the datasets since it encodes spatiotem-
poral information better. Compared to the performance using
pixel-wise prediction error, the use of latent code prediction er-
ror tends to be better and more stable since it is more robust
to the noise in the image as indicated by section 5. To quali-
tatively understand how the model differentiates between nor-
mal and abnormal frames, we conduct an experiment on the
moving-mnist dataset.

We train the same model as shown in Fig. 1 using the video
sequences that are created by letting randomly selected digits
4 and 7 from the training set of MNIST (Lecun et al., 1998)
move horizontally or vertically with a speed of 2 following Luo
et al. (2017b) (see Fig. 7 (a)). This model is then tested on
video sequences that include all types of digits from the test set
of MNIST dataset and two new shapes (circle and square) that
are moving also horizontally or vertically with a speed of 2 or
speed of 4. The input, reconstruction, prediction and prediction
error are shown in Fig. 7 (b) and (c).

Fig. 7 (b) shows the model output for input objects that move
with a speed of 2. The model can make good reconstructions
and predictions for already seen digits 4 and 7 but tend to pre-
dict the unseen digits to be one of the already seen digits. For
example, it predicts the circle and square to be similar to 4 and
digit 8 to be similar to 7. The difference between the recon-
struction and prediction indicates that the model cannot make a
good prediction of the latent code for the unseen digits and this
allows us to detect the appearance related anomalies. For the
objects that are moving with a higher speed as shown in Fig. 7
(c), the model produces a prediction that falls behind the actual
input. This is because the designed motion model can further
exploit the speed mismatch of the objects during training and
testing and is thus able to detect the motion related anomalies.

6.3. Design of the motion model

The motion model is an important factor in the design of
our architecture since it is required to encode the typical ap-
pearance and motion information of the frequently seen events.
Therefore, we also replaced the Conv3D layers in the motion
model with ConvLSTM and autoregressive density estimation

Table 4. Influence of different reconstruction loss functions on the anomaly
detection accuracy using the CUHK Avenue dataset (AUC score ± 95%
confidence interval)

MSE GDL SSIM MSE+GDL MSE+SSIM MSE+GDL+SSIM

R-MSE 83.7±0.3 85.7±1.2 80.1±1.0 84.7±0.7 81.1±0.9 85.5±0.8
Z-MSE 89.2±0.2 84.2±0.1 85.2±0.7 86.0±0.3 85.0±0.2 84.4±0.5
P-MSE 88.8±0.3 88.4±0.3 88.7±0.3 88.6±0.2 88.7±0.1 88.0±0.8

(a) (b) (c)

Fig. 7. Experimental results on moving-mnist dataset. (a) training digits
4 and 7 are moving horizontally or vertically randomly with speed 2. (b)
and (c) show the testing digits and shapes that are moving in a similar fash-
ion but with speed 2 (b) and speed 4 (c). From left to right, the columns
in (b) and (c) are input, reconstruction, prediction and prediction error.
The model cannot accurately reconstruct and predict for both appearance-
related (unseen digits) and motion-related (unseen moving speed) anoma-
lies.

layers (Abati et al., 2019)) to study the impact of the design
of the motion model on anomaly detection performance. The
anomaly detection accuracy using pixel-wise reconstruction,
prediction error and feature-wise latent code error for different
datasets are shown in Table ??. We achieved better or simi-
lar performance on all the datasets using Conv3D layers in the
motion model. One of the possible reasons is that the Conv3D
layers can fit the data better and thus extract more representa-
tive features. In addition, we observed that the model that uses
ConvLSTM layers have delayed detection results such that it
fails to detect the beginning of anomalous events and it also re-
ports more false alarms after the anomalous events due to the
slowly response.

7. Conclusion and future work

In this paper we introduced a novel architecture that is able
to detect anomalies in real world surveillance footage using
only unsupervised training. The model consists of two parts
where the first part extracts appearance features from individ-
ual frames and the second part uses these features to predict the
latent code for a future frame. In contrast to previous works,
our model uses a prediction in latent space as a metric to detect
anomalies. We showed that is able to outperform other tech-
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niques that use reconstruction or pixel based prediction met-
rics. Because of the decoupled appearance and motion feature
learning, our model is also much more efficient than related
approaches. Where other techniques use expensive 3D convo-
lutions to analyze a stack of frames, we process each frame
individually and then combine the information with a much
smaller 3D convolutional model. This allows us to process 16
to 45 times more frames using the same computational bud-
get. Finally, we show that using latent space features makes the
model more robust against distortions such as changing lighting
or weather conditions.

Anomaly detection in real world surveillance data is a very
challenging topic with many useful applications. For future
work, we argue that more research is needed to deal with chang-
ing environments, weather and lighting conditions as well as
with camera degradation.
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