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Abstract. Learning and reasoning over graphs is increasingly done by
means of probabilistic models, e.g. exponential random graph models,
graph embedding models, and graph neural networks. When graphs
are modeling relations between people, however, they will inevitably
reflect biases, prejudices, and other forms of inequity and inequality. An
important challenge is thus to design accurate graph modeling approaches
while guaranteeing fairness according to the specific notion of fairness
that the problem requires. Yet, past work on the topic remains scarce, is
limited to debiasing specific graph modeling methods, and often aims to
ensure fairness in an indirect manner.
We propose a generic approach applicable to most probabilistic graph
modeling approaches. Specifically, we first define the class of fair graph
models corresponding to a chosen set of fairness criteria. Given this,
we propose a fairness regularizer defined as the KL-divergence between
the graph model and its I-projection onto the set of fair models. We
demonstrate that using this fairness regularizer in combination with
existing graph modeling approaches efficiently trades-off fairness with
accuracy, whereas the state-of-the-art models can only make this trade-off
for the fairness criterion that they were specifically designed for.
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1 Introduction

Graphs are flexible data structures, naturally suited for representing relations
between people (e.g. in social networks) or between people and objects (e.g. in
recommender systems). Here, links between nodes may represent any kind of
relation, such as interest or similarity. It is common in real-world relational data
that the corresponding graphs are often imperfect or only partially observed. For
example, it may contain spurious or missing edges, or some node pairs may be
explicitly marked as having unknown status. In such cases, it is often useful to
correct or predict the link status between any given pair of nodes. This task is
known as link prediction: predicting the link status between any pair of nodes,
given the known part of the graph and possibly any node or edge features [23].

Methods for link prediction are typically based on machine learning. A first
class of methods constructs a set of features for each node-pair, such as their
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number of common neighbors, the Jaccard similarity between their neighborhoods,
and more [24]. Other methods are based on probabilistic models, with exponential
random graph models as a notable class originating mostly from the statistics
and physics communities [30]. More recently, the machine learning community
has proposed graph embedding methods [14], which represent each node as a
point in a vector space, from which a probabilistic model for the graph’s edges
can be derived (among other possible uses). Related to this, graph neural network
models [33] have been proposed which equally can be used to probabilistically
model the presence or absence of edges in a graph [35].

The use of such models can have genuine impact on the lives of the individuals
concerned. For example, a graph of data on job seekers and job vacancies can be
used to determine which career opportunities an individual will be recommended.
If it is a social network, it may determine which friendships are being recom-
mended. The existence of particular undesirable biases in such networks (e.g.
people with certain demographics being recommended only certain types of jobs,
or people with a certain social position only being recommended friendships with
people of similar status) may result in biased link predictions that perpetuate
inequity in society. Yet, graph models used for link prediction typically exploit
properties of graphs that are a direct or indirect result of those existing biases. For
example, many will exploit the presence of homophily : the tendency of people to
associate with similar individuals [27]. However, homophily leads to segregation,
which often adversely affects minority groups [16,19].

The mitigation of bias in machine learning algorithms has been studied quite
extensively for classification and regression models in the fairness literature, both
in formalizing a range of fairness measures [13,15] and in developing methods that
ensure fair classification and regression [28]. However, despite the existence of
biases, such as homophily, that are specific to relational datasets, fairness has so
far received limited attention in the graph modeling and link prediction literature.
Current approaches focus on resolving bias issues for specific algorithms [6,4], or
use adversarial learning to improve a specific notion of fairness [25,4].

Contributions In this paper, we introduce a regularization approach to ensure
fairness in link prediction that is generically applicable across different link
prediction fairness notions and different network models.

To that end, in Sec. 3 we first express the set of all fair probabilistic network
models. For any possibly biased network model, we can then compute the I-
projection [11] onto this class: the distribution within the class of fair models that
has the smallest KL-divergence with the biased model. In an information-theoretic
sense, this I-projection can be seen as the fair distribution that is closest to the
considered biased model. We also show that for common fairness metrics, the set
of fair graph models is a linear set, for which the computation of the I-projection
is well-studied and easy to compute in practice.

In Sec. 4, we then propose the KL-divergence between a (possibly biased)
fitted probabilistic network model and its fair I-projection as a generic fairness
regularizer, to be minimized in combination with the usual cost function for the
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network model. We also propose and analyze a generic algorithmic approach to
efficiently solve the resulting fairness-regularized optimization problem.

Finally, our empirical results in Sec. 5 demonstrate that our proposed fairness
regularizer can be applied to a wide diversity of probabilistic network models such
that the desired fairness score is improved. In terms of that fairness criterion,
our fairness modification outperforms DeBayes and Compositional Fairness
Constraints, even on the models these baselines were specifically designed for.

2 Related Work

Fairness-aware machine learning is traditionally divided into three types [28]:
pre-processing methods that involve transforming the dataset to remove bias [7],
in-processing methods that try to modify the algorithm itself and post-processing
methods that transform the predictions of the model [15]. Our method belongs
to the in-processing category, because we directly modify the objective function
with the aim of improving fairness. Here, one approach is to enforce constraints
that keep the algorithm fair throughout the learning process [32].

The fairness-constrained optimization problem can also be solved using the
method of Lagrange multipliers [2,17,8,31]. This is related to the problem of
finding the fair I-projection [11]: the distribution from the set of fair distributions
with the smallest KL-divergence to a reference distribution, e.g. an already trained
(biased) model [3]. While we also compute the I-projection of the model onto
the class of fair link predictors, we do not use it to transform the model directly.
Instead, we consider the distance to that I-projection as a regularization term.

The work on applying fairness methods to the task of link prediction is limited.
Methods DeBayes [6], Fairwalk [29] and FairAdj [22] all adapt specific graph
embedding models to make them more fair. Other approaches, e.g. FLIP [25] and
Compositional Fairness Constraints [4], rely on adversarial learning to remove
sensitive information from node representations.

3 Fair Information Projection

After discussing some notation in Sec. 3.1, we characterize the set of fair graph
models in Sec. 3.2. In Sec. 3.3, we will leverage this characterization to discuss
the I-projection onto the set of fair graph models, i.e. the distribution belonging
to the set with the smallest KL-divergence to a reference distribution.

3.1 Notation

We denote a random unweighted and undirected graph without self-loops as
G = (V,E), with V = {1, 2, . . . , n} the set of n vertices and E ⊆

(
V
2

)
the set of

edges. It is often convenient to represent the set of edges also by a symmetric
adjacency matrix with zero diagonal A ∈ {0, 1}n×n with element aij at row i and
column j equal to 1 if {i, j} ∈ E and 0 otherwise. An empirical graph over the
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same set of vertices will be denoted as Ĝ = (V, Ê) with adjacency matrix Â and
adjacency indicator variables âij . In some applications, âij may be unobserved
and thus unknown for some {i, j}.

A probabilistic graph model p for a given vertex set V is a probability
distribution over the set of possible edge sets E, or equivalently over the set of
adjacency matrices A, with p(A) denoting the probability of the graph with
adjacency matrix A. Probabilistic graph models are used for various purposes,
but one important purpose is link prediction: the prediction of the existence of
an edge (or not) connecting any given pair of nodes i and j. This is particularly

important when some elements from Â are unknown. But it is also useful when the
empirical adjacency matrix is assumed to be noisy, in which case link prediction
is used to reduce the noise. Link prediction can be trivially done by making use
of the marginal probability distribution pij , defined as pij(x) =

∑
A:aij=x

p(A).
Note that many practically useful probabilistic graph models are dyadic inde-

pendence models: they can be written as the product of the marginal distributions:
p(A) =

∏
i<j pij(aij). This is true for the models evaluated in our empirical

results section, but the approach proposed in this paper is conceptually applicable
also where this is not the case (e.g. for more complex random graph models),
albeit at the cost of greater mathematical and computational complexity.

Finally, we assume vertices belong to one of a set of sensitive groups, defined
by categorical attributes with respect to which discrimination is undesirable or
forbidden. These sensitive groups are denoted as Vs with s ∈ S for some finite set
S. The sets Vs with s ∈ S form a partition of V . For notational convenience, we
also introduce the notation Ust , {{i, j}|i ∈ Vs, j ∈ Vt, i 6= j}, the set of possible

unordered pairs of distinct vertex pairs between Vs and Vt. Thus, |Uss| =
(|Vs|

2

)
and |Ust| = |Vs| × |Vt| for s 6= t. Similarly, we write U ,

(
V
2

)
for the set of all

(unordered) vertex pairs.

3.2 Fairness Constraints

Here we take inspiration from prior work [6,21,22] on translating two classification
fairness criteria to the graph setting: demographic parity and equalized opportunity.
We then formalize a general definition for such fairness criteria.

Demographic Parity (DP) A classifier could be thought of as non-discriminatory
when its expected score of an individual is the same regardless of which sensi-
tive group they belong to. This traditional criterion of fairness is referred to as
demographic or statistical parity (DP) [13].

We generalize this to the graph setting by requiring that the expected pro-
portion of vertex pairs belonging to any two sensitive groups Vs and Vt that
are connected, is constant over all pairs of sensitive groups. More formally, the
probabilistic graph model p satisfies the DP fairness criterion iff:

∃d ∈ R : ∀s, t ∈ S : E
A∼p

 1

|Ust|
∑

{i,j}∈Ust

aij

 = d,
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where choices for d are discussed in Sec. 4.2. (Note that this criterion also ensures
that the average expected vertex degree is the same for all sensitive groups.)

Thanks to linearity of the expectation operator, and with pij the marginal
distribution for the edge indicator variable aij , this can be simplified as follows:

∃d ∈ R : ∀s, t ∈ S :
∑

{i,j}∈Ust

E
aij∼pij

[aij ] = d|Ust|.

We thus define the set PDP of distributions satisfying these constraints as fair
with respect to DP. The DP fairness criterion is notable for diminishing the effect
of homophily, since it encourages inter-group (s 6= t) interaction to have the same
expected score as intra-group (s = t) interactions, thereby reducing segregation
based on the nodes’ sensitive traits. We note that some previous definitions [21,22]
enforce a weaker form of demographic parity that only requires balance between
the set of all intra-group connections and the set of all inter-group connections.
Quite trivially, our approach could handle this weaker form as well. However, in
our experiments we maintain the stronger definition of DP fairness (defined for
all pairs ∀s, t ∈ S) in order to penalize situations where one type of inter-group
connections Uss is discriminated against in favor of a second type of inter-group
connections Utt 6= Uss.

Equalized Opportunity (EO) A drawback of the DP fairness notion is that
it disregards the possibility that there are justifiable reasons for some sensitive
groups to be scored higher [15]. For example, in the social graph context one sen-
sitive group s may generally have more social interactions with others, regardless
of their sensitive group t 6= s [6]. Depending on the application, it may then be
deemed fair to predict inter-group edges (Ust) from this more social group as
more probable than intra-group edges between nodes in other groups (Utt).

A fairness criterion that takes this into account is equalized opportunity (EO)
[15]. EO requires that the true positive rate, and consequently also the false
negative rate, is equal across groups. In other words, and applied to the graph
context: when averaging the probability under the model of edge-connected
vertex-pairs Ê between two sensitive groups Vs and Vt, the result should always
be the same irrespective of s and t. More formally:

∃d ∈ R : ∀s, t ∈ S : E
A∼p

 1

|Ê ∩ Ust|

∑
{i,j}∈Ê∩Ust

aij

 = d,

where Ê is the fixed empirical set of edges.
Thanks to linearity of the expectation operator, and with pij the marginal

distribution for the edge indicator variable aij , this can be simplified as follows:

∃d ∈ R : ∀s, t ∈ S :
∑

{i,j}∈Ê∩Ust

E
aij∼pij

[aij ] = d|Ê ∩ Ust|.

We thus define the set PEO of distributions satisfying these constraints as fair
with respect to EO.
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General Sets of Fair Graph Distributions Both the DP and EO criteria
are thus formalized as a constraint that is linear in the probability distribution p.
Using 1 to denote the indicator function, the DP and EO constraints on p can
both be formalized in the following form:

Fc(p) ,
∑
{i,j}∈U

E
aij∼pij

[fc({i, j}, aij)] = dc, (1)

where for DP the functions fc : U × {0, 1} → R and corresponding constants dc
are given by:

fst({i, j}, x) = x1({i, j} ∈ Ust),
dst = d|Ust|,

for all s, t ∈ S and for some d ∈ R. Similarly, for EO:

fst({i, j}, x) = x1({i, j} ∈ Ê ∩ Ust),
dst = d|Ê ∩ Ust|.

As a matter of fact, many other statistical fairness criteria, such as equalized
odds, accuracy equality or churn equality can formalized in this manner, with
different choices for fc and dc [8,3,2].

Thus, although our implementation and experiments are focused on DP and
EO only, we develop the theory in this paper for the general formulation of a set
of fair probabilistic graph models as:1

PF := {p ∈ P | ∀c ∈ CF : Fc(p) = dc} , (2)

with P the set of all possible distributions over A, and CF a countable (and
typically finite) set indexing the constraints that enforce fairness criterion F .
Importantly, Fc as defined in Eq. (1) is a linear function of p, such that I-
projecting any distribution onto PF is a mathematically elegant operation. This
is the subject of the following.

3.3 Information Projection

We now show how to find, for any possibly unfair distribution h, the fair distri-
bution p ∈ PF that is as close to h as possible. When that closeness is computed
in terms of the KL-divergence, then the desired distribution, denoted by hF , is
known as the I-projection [10,11]:

hF = arg min
p∈PF

DKL(p || h),

1 In our proposed framework, we require these constraints to be satisfied exactly in
order for p to be fair. However, prior work has also allowed for a percentage-wise
deviation [34].
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where it is assumed that PF 6= ∅ and DKL(p || h) <∞. Since PF is linear and
thus convex, the I-projection hF is unique [11].

Finding the I-projection of model h under linear constraints CF is a convex
optimization problem 2. Although it is straightforward to generalize this, let
us assume that h is a dyadic independence model. This is justified as many
contemporary probabilistic graph models (including graph embedding methods
and graph neural networks) are dyadic independence models, and because it
simplifies notation. Then, the I-projection of h is the product distribution of the
marginal distributions for the vertex pairs {i, j}, given by [9]:

hF,ij(x) =
hij(x)

ZF,ij(λ)
exp

(∑
c∈CF

λcfc({i, j}, x)

)
,

with

ZF,ij(λ) =
∑

x∈{0,1}

hij(x) exp

(∑
c∈CF

λcfc({i, j}, x)

)
.

the log-partition function and with λ denoting the vector of λc values. Let
ZF (λ) =

∏
{i,j}∈U ZF,ij(λ). The values of the λc are found by maximizing:

Lh(λ) = − logZF (λ) +
∑
c∈CF

λcdc. (3)

This function Lh(λ) is the Lagrange dual of the KL-divergence minimization prob-
lem with reference model h, and λ is the set of Lagrange multipliers corresponding
to the fairness constraints.

4 The KL-divergence to the I-projection as a Fairness
Regularizer

We argue that the KL-divergence DKL(hF || h) between a probabilistic model h
and its fair I-projection hF is an adequate measure of the unfairness of h.

Indeed, suppose that hF represents an idealized version of reality that is
free from undue bias (i.e. fair). Specifically, it is the idealized version of reality
that is closest to the model h, which, in turn, can be seen as the unfairly biased
version of the reality hF . For example, it may be the result of discrimination and
cultural social biases in historical data. Then the KL-divergence DKL(hF || h)
quantifies the amount of information lost when using the biased model h instead
of the idealized model hF [5]. In other words, it is the information lost due to any
unfairness in the model h, and thus, informally speaking, the amount of ‘unfair
information’ in h.

2 The distribution that results from the reverse KL-divergence formulation
arg minp∈PF DKL(h || p) is much less practical to compute and was therefore not
further considered for this work.
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Algorithm 1: Optimizing L with respect to link predictor h, in the case
where DP is the fairness criterion.

Data: possible distinct vertex pairs U , empirical adjacency matrix Â, and
fairness strength parameter γ

initialize model h and I-projection parameters λ;
for t = 1 to T do

LA ← − log h
(
Â
)

;

d← 1
|U| EA∼h [A];

LF ← maxλ
[
− logZhF (λ) +

∑
s,t∈S λstd|Ust|

]
;

L ← LA + γLF ;
UPDATE(h,∇hL);

end

Moreover, the KL-divergence, in being a measure of information, is commen-
surate with commonly used loss terms in machine learning, in particular with the
cross-entropy between the empirical distribution and the learned model, which is
equivalent to the KL-divergence between those two up to a constant. This is the
topic of the next subsection.

4.1 I-Projection Regularization

Let p̂ represent the empirical distribution, i.e. p̂(A = Â) = 1 and p̂(A 6= Â) = 0.
The common machine learning objective is then to minimize the KL-divergence
DKL(p̂ || h), denoted by LA, which is equivalent to maximizing the log-likelihood
of h under p̂, or equivalently the cross-entropy. We propose to add the KL-
divergence DKL(hF || h) as an extra loss term LF . The overall objective function
L to find h is thus:

L = min
h

[LA + γLF ]

= min
h

[DKL(p̂ || h) + γDKL(hF || h)]

with γ a hyperparameter that controls the strength of the loss term. Recall
that, for a parameter λ that satisfies the fairness constraints, DKL(hF || h) is
equivalent to the loss function in Eq. (3):

L = min
h

[
DKL(p̂ || h) + γ min

p∈PF
DKL(p || h)

]
= min

h

[
DKL(p̂ || h) + γmax

λ
Lh(λ)

]
.

4.2 Practical Considerations

So far, we did not yet specify the choice of d in the DP and EO constraints. To
enforce p ∈ PDP , a straightforward option is to set d equal to the mean of p.
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However, d is then no longer constant with respect to p and instead depends on
changes in the λ parameters. The gradient of the second term of the loss function
Lh(λ) in Eq. (3) is then more complicated. Alternatively, setting d equal to the
mean of the empirical distribution p̂ forces p to adopt the same mean as the
empirical one, even though there is no specific reason that hF or consequently h
should match the empirical mean. We finally chose to set d equal to the mean of
h, such that when optimizing λ, we can treat d as a fixed, constant value.

Furthermore, out of several ways to optimize L, we opted to fully optimize
λ for every parameter update of h. On the one hand, the λ parameters are
typically very few in number (for DP and EO, there are only CF = |S|2), making
it cheap to store them. On the other hand, optimizing λ exactly requires the
repeated evaluation of the probability under h of all unordered vertex pairs U .

With |U | = n(n−1)
2 , this is infeasible for large n. However, for |S| � n, using a

relatively small subsample of all unordered vertex pairs will suffice in practice
to obtain a good estimate for the optimal λ, dramatically enhancing scalability.
Moreover, using the optimal λ of the previous iteration’s h as a starting guess
for the next iteration also speeds up computations in practice.

For concreteness, the use of the proposed generic fairness regularizer to the
DP fairness criterion is summarized in Alg. 1.

5 Experiments

Our experiments were performed on three datasets, described in Sec. 5.1. We
applied our proposed fairness regularizer on four simple, yet diverse methods
explained in Sec. 5.2. Though the method variants without fairness regularizer
are already baselines, we additionally compared our results with state-of-the-art
approaches for link prediction based on fair graph embedding in Sec. 5.3. All
methods went through the same evaluation pipeline described in Sec. 5.4. The
results of which were discussed in Sec. 5.5.

5.1 Datasets

The methods were evaluated on three attributed graph datasets, summarized in
Tab. 1. They were chosen for their diverse properties and manageable size.

Polblogs: The Polblogs [1] dataset was constructed from blogs discussing
United States politics in 2005. In the undirected version, there is an edge between
blogs if either of them had a hyperlink to the other. The sensitive attribute
is the US political party (the Republican or Democratic Party) that the blog
supported, either by their own admission or through manual labeling from the
dataset creators. Intra-group links are heavily favored over inter-group links.

ML100k: Movielens datasets are often used as a benchmark for recommender
systems. The data contains users’ movie ratings on a five-star scale. An unweighted,
bipartite graph is formed by considering the users and movies as nodes and an
edge between them if the user rated the movie. While the data contains several
types of sensitive attributes, we opted to group the age attribute into seven bins,
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Table 1: Properties of the datasets. The dataset names are URLs to hosts of the
datasets.

dataset #nodes #edges S |S|

Polblogs 1,222 16,714 party 2
ML100k 2,625 100,000 age 7
Facebook 3,955 85,482 gender 2

delineated by the ages [18, 25, 35, 45, 50, 56]. There are only user-movie edges, so
the domain of sensitive value of an edge is only affected by the user’s sensitive
value. Note that all methods were adapted such that they took the bipartitiness
of the graph into account when sampling negative training edges.

Facebook [26]: The Facebook graph consists of user nodes that are linked
if they are ‘friends’. Each user either has gender feature ‘0’, ‘1’ or neither.
For the last group of users, of which there are 84, it is unclear whether their
gender is unknown or non-binary. Their nodes and edges were removed from the
dataset. Only 3 undirected attribute pairs thus remain in the data. In contrast
to Polblogs, the bias effect is much weaker.

5.2 Algorithms

The proposed fairness regularizer was applied to four relatively simple graph
models. A PyTorch implementation was sought or implemented for each of them,
such that the fairness loss can easily be added.

MaxEnt: We will refer to the MaxEnt model as the maximum entropy
graph model under which the expected degree of each node matches its empirical
degree [12]. The solution is a simple exponential random graph model [30].

Dot-Product: Given a set of embeddings, one for every node, taking the
Dot-Product an embedding pair is a straightforward way to perform link
prediction [14]. In this simple model, the ‘decoder’ for edge (i, j) is the dot
product operator, while the ‘encoder’ for node i just looks up its representation
in a learned table of embeddings.

CNE: A method that combines both the MaxEnt model and the Dot-
Product decoder is the Conditional Network Embedding (CNE) model [18].
Instead of the Dot-Product, it ‘decodes’ the distance between nodes (i, j). More-
over, it uses the MaxEnt model as a prior distribution over the graph data.

GAE: The Graph Auto-Encoder (GAE) [20] is also a Dot-Product model,
though it uses a Graph Convolutional Network (GCN) as its encoder. As such,
it is an example of a graph neural network [33]. In our implementation we used
two layers for the GCN and used the identity matrix as the node feature matrix.

http://www-personal.umich.edu/~mejn/netdata/
https://grouplens.org/datasets/movielens/100k/
https://snap.stanford.edu/data/egonets-Facebook.html
https://pytorch.org/
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5.3 Fair Graph Embedding Baselines

In part, the algorithms from Section 5.2 were chosen such that they allow for
easy comparison with two recent methods in the field of fair graph embedding.

CFC: The Compositional Fairness Constraints (CFC) method [4] aims to
generate fair embeddings by learning filters that mask the sensitive attribute
information. This is done through adversarial learning. When applied to link
prediction, it also uses the Dot-Product decoder. Note that our implementa-
tion of the basic Dot-Product differs from the source code of CFC, causing
differences in performance between our Dot-Product experiments and CFC
with a fairness regularization strength of zero.

DeBayes: Finally, DeBayes [6] is an adaptation of CNE where the bias in
the data is used as additional prior information when learning the embeddings,
such that the embeddings are debiased. By using a prior without this biased
information at testing time, the link prediction using these embeddings is expected
to at least not be less fair than the standard CNE.

5.4 Evaluation

Every method was run for 10 different random seeds on each dataset. Those 10
seeds each had a different train/test split, where the latter consisted of around
20% of the edges in the data. The test set was extended with the same amount
of non-edges. However, it was made sure that the test set did not contain nodes
unknown in the train set, since the graph models in our evaluation are transductive
methods. Only test set results are reported.

Hyperparameter tuning in order to improve the performance of the considered
methods was minimal, as our aim is to show the effect of the fairness regularization
and not the predictive quality of the methods themselves. As such, we did no
hyperparameter sweep with the aim of improving AUC, and instead only deviated
from default parameters when it could allow for an easier comparison between
models, e.g. the dimensionality of Dot-Product and CFC embeddings. We
only report results of our proposed method with a fairness regularization strength
of γ = 100, because this parameter almost always caused a significant effect on
the fairness measures while not diminishing predictive power too strongly. For
DeBayes the default values were used, while for CFC we report the results for
the regularization strength λ ∈ {10, 100, 1000}. Smaller values did not cause a
noticeable effect on fairness, while larger values caused a strong degradation in
terms of AUC.

Along with the link prediction AUC score, all methods were tested for their
deviation from Demographic Parity (DP) and Equalized Opportunity (EO). The
calculation of those measures follows [6], where DP is the maximal difference
between the mean predicted value of any subgroup. Similarly, the EO measure
refers to the maximal difference between true positive rates of subgroups. Lower
DP and EO scores therefore imply a fairer model. Note that the test set contains
proportionally less negative edges than the overall dataset, possibly skewing
the DP score. This effect was compensated for by proportionately increasing
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the contribution of negative samples when calculating DP. Furthermore, in the
Appendix additional measures are reported on the diversity in the ranking of
prediction scores, as well as diversity in the embeddings.

5.5 Results

The test set results3 are reported in Fig. 1. We reiterate that our intention is
not to find the specific link prediction method with the best trade-off in terms
of AUC and fairness. Rather, we want to verify that our proposed regularizer
can be applied to a variety of methods and fairness criteria, with an efficient
AUC-fairness trade-off for the considered criterion.

Fairness Quality: In many cases and across all four methods, it can indeed
be observed that the use of our proposed fairness regularizer significantly reduces
the link prediction bias, according to the employed fairness criteria. This is
in contrast to the baselines DeBayes and CFC. The former did not improve
fairness scores over CNE, while the latter could only become more fair at a
significant cost to AUC.

There are a few exceptions where our method does not reduce unfairness
according to the fairness criterion. First, there are some cases where an already
low DP score for the base method can not be improved further by adding the
DP regularizer. This happens for MaxEnt in Fig. 1a, GAE and Dot-Product
in Fig. 1b and for CNE in Fig. 1c. A second kind of exception is where the
method with the DP regularizer is less EO-unfair than with the EO regularizer. It
occurs for the Dot-Product (EO) variant in Fig. 1a and 1c, possibly because
the former had a larger reduction in predictive power overall. In both these
cases, Dot-Product (EO) still significantly reduces EO compared to the
Dot-Product model without fairness regularizer.

Predictive Quality: Moreover, the decrease in AUC is fairly minimal with
our fairness regularizer, especially compared to an adversarial approach like CFC.
While the addition of the EO regularizer has no noticeable effect on the AUC, the
DP variant does cause strong reduction on some models in Fig. 1a. This is to be
expected, because enforcing DP can cause a significant loss in predictive power if
the subgroups in the underlying data have different base rates [15]. For a network
like Polblogs, which strongly favors intra-group connections, encouraging the
inter-group connections therefore results in AUC loss.

Runtimes: Runtimes4 of each method are listed in Tab. 2. In our experiments,
the addition of our regularizer causes a large increase in runtime. However, several
easy speed improvements are available to make the method scale to large graphs.
For example, the optimal λ parameters of hF can be approximated by only fitting
them on a subsample of the vertex pairs that h is trained on. As shown in Fig. 2,
the resulting KL-divergence (computed over all vertex samples that are available
to h), is already a good estimate when relatively small subsample sizes were used.

3 A table with the results in text format is provided in the Appendix.
4 All experiments were conducted using half the hyperthreads on a machine equipped

with a 12 Core Intel(R) Xeon(R) Gold processor and 256GB of RAM
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(a) Results on the Polblogs dataset.
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(b) Results on the ML100k dataset.
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(c) Results on the Facebook dataset.

Fig. 1: Markers display the mean over ten identical experiment runs with different
random seeds. Error bars horizontally and vertically show the standard deviation.
Completely empty markers refer to methods without any fairness modification.
Methods with a fairness regularizer that enforces the DP or EO fairness criterion
are left-filled or right-filled respectively. On the x-axis, unfairness is measured, so
more left is better. On the y-axis, AUC is measured, so higher is better.
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Table 2: Median runtimes (s) measured
by Python’s time.perf counter.

Dataset Polblogs ML100k Facebook

MaxEnt 14 68 158
with MA 707 3050 1924
with EO 170 773 1191

Dot-Product 60 62 200
with DP 349 456 1169
with EO 135 239 531

CNE 105 307 349
with DP 574 1417 2065
with EO 286 843 865

CNE 28 26 101
with DP 278 437 1072
with EO 92 255 388

CFC 280 843 1601
CFC (λ > 0) 242 2623 3494
DeBayes 98 305 343

100 1000 10000 100000 all
# vertex pairs

0.0001

0.0003

0.0010

0.0030

D
KL

(h
||h

)

Fig. 2: The KL-divergence in the exper-
iment of Fig. 1c between GAE and its
fair I-projection, trained using samples
from the set of all considered vertex
pairs during training: all training edges
plus 100 negative edges per vertex.

6 Conclusion

Employing a generic way to characterize the set of fair link prediction distributions,
we can compute the I-projection of any graph model onto this set. That distance,
i.e. the KL-divergence between the model and its I-projection, can then be used
as a principled regularizer during the training process and can be applied to a
wide range of statistical fairness criteria. We evaluated the benefit of our proposed
method for two such criteria: demographic parity and equalized opportunity.

Overall, our regularizer caused significant improvements in the desired fairness
notions, at a relatively minimal cost in predictive power. In this it outperformed
the baseline fairness modifications for graph embedding methods, which could
not leverage its debiased embeddings to perform fair link prediction according to
generic fairness criteria. In the future, more task-specific link prediction fairness
criteria can be defined within our framework, taking inspiration from social graph
or recommender systems literature. Moreover, our proposed regularizer can be
extended beyond graph data structures.
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