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Abbreviations 62 

2D – secondary structure, 63 

3D – tertiary structure, 64 

4D – quaternary structure, 65 

BAT - basophil activation test, 66 

DBPCFC - double-blind placebo-controlled food challenge, 67 

EAST - enzyme allergosorbent test, 68 

ELISA - enzyme-linked immunosorbent assay, 69 

HPP - high-pressure processing, 70 

HHP - high hydrostatic pressure, 71 

IgE – immunoglobulin E, 72 

IgG – immunoglobulin G, 73 

OFC - open food challenge, 74 

PEF - pulsed electric fields, 75 

PTM - post-translational modifications, 76 

PUV - pulsed ultraviolet, 77 

RAST - radioallergosorbent test, 78 

RBL - rat basophilic leukaemia, 79 

SPT - skin prick tests, 80 

Th1, Th2 – T helper cell type 1 or 2, 81 

WHO/IUIS - World Health Organization/International Union of Immunological Societies 82 

 83 
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Abstract 84 

Key determinants for the development of an allergic response to an otherwise ‘harmless’ 85 

food protein involve different factors like the predisposition of the individual, the timing, 86 

the dose, the route of exposure, the intrinsic properties of the allergen, the food matrix 87 

(e.g. lipids) and the allergen modification by food processing. Various physicochemical 88 

parameters can have an impact on the allergenicity of animal proteins. Following our 89 

previous review on how physicochemical parameters shape plant protein allergenicity, 90 

the same analysis was proceeded here for animal allergens.  91 

We found that each parameter can have variable effects, ranging on an axis from 92 

allergenicity enhancement to resolution, depending on its nature and the allergen. While 93 

glycosylation and phosphorylation are common, both are not universal traits of animal 94 

allergens. High molecular structures can favour allergenicity, but structural loss and 95 

uncovering hidden epitopes, can also have a similar impact. We discovered that there are 96 

important knowledge gaps in regard to physicochemical parameters shaping protein 97 

allergenicity both from animal and plant origin, mainly because the comparability of the 98 

data is poor. Future biomolecular studies of exhaustive, standardized design together with 99 

strong validation part in the clinical context, together with data integration model systems 100 

will be needed to unravel causal relationships between physicochemical properties and 101 

the basis of protein allergenicity. 102 

 103 

Keywords: plant allergens, protein families, allergenicity, food processing, allergen 104 

integrity.  105 
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Introduction 106 

Presently, food allergies are a very concrete public health problem, reaching near-107 

epidemic proportions in some regions of the world. The number of allergic reactions 108 

requiring medical treatments, and often hospitalisation, has multiplied over the past few 109 

years creating an important economic burden in several developed countries [1]. 110 

Understanding the mechanisms underlying this health condition is mandatory for better 111 

diagnosis and management of food allergies. With the increasing number of populations 112 

moving across the world, the local frequency of certain food allergies might significantly 113 

change. Additionally, with globally linked market places, the sensitised/allergic 114 

individuals are currently exposed to very different types of foods.  115 

Food-allergic reactions are caused by the immunorecognition of specific proteins, 116 

following the breakdown of immunologic and clinical tolerance to an ingested food 117 

antigen(s). It is important, not only to explore the physiological mechanisms underlying 118 

food allergy, but also to evaluate the structural properties of food allergens and how they 119 

are affected by current/novel food processing technologies [2,3]. At present, there is an 120 

impressive number of publications available, exploiting different physicochemical 121 

parameters of several allergens and thus, providing a local overview of their impact on 122 

those proteins. However, some questions remain to be answered in the broad context: (i) 123 

which physicochemical parameters affect mostly the allergenicity of food proteins? (ii) 124 

do the same parameters fit every allergen, independently of its origin? (iii) do homologous 125 

proteins have the same behaviour towards specific physicochemical properties? 126 

Our previous work reviewed those questions for plant allergens [4]. Same as for plant 127 

allergens, physicochemical parameters play also a critical role in the allergenicity of 128 

animal proteins. For this review, we gathered and analysed available publications 129 

reporting evidence about the impact of different physicochemical characteristics on the 130 
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allergenicity of animal protein families. Also, we aimed at identifying common features 131 

among distinct protein families of plant and animal origin in the light of the 132 

physicochemical parameters’ potential to affect protein allergenicity. For this purpose, 133 

we will first make a general description regarding each animal allergen family (biological 134 

function, chemical and structural composition, and clinical relevance) to establish their 135 

importance within the context of this review. Secondly, the collected evidence will be 136 

discussed under each physicochemical property topic, since the objective of this work is 137 

to evaluate how each physicochemical parameter shapes protein allergenicity across 138 

protein families and within family members. 139 

 140 

Animal Allergen Families 141 

The latest statistical data provided by AllFam database in 2017 [5,6] indicates 445 142 

allergenic proteins from animal sources, with 94% (n=421) of them being included in the 143 

WHO/IUIS (World Health Organization/International Union of Immunological 144 

Societies) nomenclature database [7]. These animal allergens were described on exposure 145 

routes via ingestion, inhalation, and/or contact [5,6]. Like for plant food allergens (n=436 146 

proteins), animal allergens (n=410 molecules) are also distributed by families of proteins 147 

(n=71). However, more than 70% of the animal allergenic molecules are known food 148 

allergens, which are restricted to four families of proteins, namely the tropomyosins, the 149 

EF-hand family (parvalbumins), the ATP-guanido phosphotransferase (arginine kinases), 150 

and the alpha/beta-caseins. 151 

 152 

Tropomyosins 153 

Tropomyosins are present in all eukaryotic cells, except for plants. They are composed of 154 

a variety of actin-binding proteins with the main function of actin cytoskeleton regulation, 155 
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which is of major relevance for both muscle and non-muscle cells [8]. Structurally, 156 

tropomyosins have an average length of approximately 284 residues, corresponding to 157 

coiled-coil homo- or hetero-dimers that form a polymer along the length of actin (Table 158 

1). They consist of two parallel α-helices with two sets of seven alternating actin-binding 159 

sites, 34-38 kDa, being only functional as dimers [9]. Tropomyosins are important 160 

contractile proteins that are highly conserved in both vertebrates and invertebrates but 161 

only considered as allergens in invertebrates [10,11], representing up to 1% of their 162 

muscle mass [12,13]. One exception of this allergenicity rule seems to be fish 163 

tropomyosins [14-16]. 164 

Tropomyosin family ranks the first position in terms of the total number of allergens 165 

(n=64) identified in animals [5,6], with 25 of those being registered in the WHO/IUIS 166 

allergen nomenclature database [7] as food allergens, mainly belonging to crustaceans 167 

(crab, prawn, lobster), molluscs (oyster, snail, abalone, squid), fish (tilapia, catfish, 168 

salmon) and fish nematodes (worms). Interestingly, shrimp allergic individuals clinically 169 

cross-react with a novel tropomyosin from mealworm, the larvae of a beetle (Tenebrio 170 

molitor), evidencing that tropomyosin is one of the cross-reacting allergens [17]. In the 171 

invertebrate family, tropomyosins are considered as panallergens (universal proteins 172 

responsible for IgE cross-reactivity to a large quantity of related and unrelated allergenic 173 

sources) [10,11,18], as well as, major allergens in several species. 174 

Tropomyosins are the third most prevalent cause of food-induced anaphylaxis [19], but 175 

they are also important respiratory allergens from crustaceans, arthropods, house dust 176 

mites and helminths [20]. Among the priority foods, the eliciting doses (ED) associated 177 

with the consumption/contact of these species (e.g. crustaceans) are in general high as 178 

compared to strong food allergens such as peanuts, namely 26.2, 280 mg of protein for 179 

ED01 and ED05, , respectively, or up to 2.5 g for ED10 (for comparison ED10 peanut 180 
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2.8 mg protein) [21-23]. Most of the allergic reactions are related to major allergen 181 

tropomyosin. Therefore, a small dose of the tropomyosins is sufficient to trigger severe 182 

and systemic clinical symptoms that may include immediate cutaneous reactions, oral 183 

allergy syndrome (OAS), digestive symptoms, anaphylaxis and asthma [24]. 184 

 185 

Parvalbumins 186 

Parvalbumins are calcium-binding proteins, belonging to the second largest family of 187 

animal food allergens (n=46) [5,6]. These proteins have evolved into two distinct 188 

evolutionary lineages, being classified as α- and β-parvalbumins. Although presenting 189 

similar conformational structures, α- and β-parvalbumins differ in their isoelectric points 190 

(pI) (α-: pI ≥5; β-: pI ≤4.5) and molecular weights, as well as, in their primary structures, 191 

affinities for Ca2+- and Mg2+-binding, cell-type-specific expression and physiologic 192 

functions [25,26]. 193 

Parvalbumins are sarcoplasmic muscle IgE-binding proteins, small in length 194 

(approximately 109 amino acids and 10-12 kDa), acidic pI (3.9-5.5) and Ca2+-binding 195 

(Table 1) [27,28]. They are relevant contractile proteins, representing 1-3% of muscle 196 

mass in invertebrates or fish, respectively [13,29]. Structurally, parvalbumins belong to 197 

the EF-hand family [30], characterised by the presence of three typical helix-loop-helix 198 

domains, organised in a globular tri-dimensional conformation (Table 1). Two of these 199 

domains (CD and EF domains) are capable of binding divalent metal ions (Ca2+ or Mg2+), 200 

while the third one (AB domain) forms a cap that covers the hydrophobic surface of the 201 

functional domain pair [31]. 202 

Parvalbumin is the main fish allergen sharing similar biochemical and immunochemical 203 

characteristics across fish species consumed in different parts of the world [28,32-34]. 204 

Most fish allergies are triggered by parvalbumins [24,35] with allergenic homologs being 205 
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expressed in fish at variable levels [29]. Cartilaginous fishes (e.g. rays), mainly consisting 206 

of α-parvalbumins, are tolerated by most bonefish (β-parvalbumins) allergic patients, due 207 

to their low allergenic capacity [36]. α-Parvalbumins are generally not considered 208 

allergenic because of their proximity to human homologs [30]. However, this dogma has 209 

been challenged with α-parvalbumins being identified as food allergens in frog (Ran e 1), 210 

chicken (Gal d 8) and crocodile (Cro p 2) meats [7,37-40]. 211 

Gad c 1 was the first β-parvalbumin identified as a fish allergen in Baltic cod, being 212 

functionally related to the regulation of calcium switching in muscular-skeletal cells [41-213 

43]. Since then, several allergenic β-parvalbumins (Clu h 1, Cten i 1, Cyp c 1, Gad c 1, 214 

Gad m 1, Lat c 1, Lep w 1, Onc m 1, Pan h 1, Ras k 1, Sal s 1, Sar sa 1, Sco s 1, Seb m 1, 215 

Thu a 1 and Xip g 1) have been identified mainly in fish species (Atlantic herring, grass 216 

carp, common carp, Baltic codfish, Atlantic codfish, barramundi, turbot fish, trout, 217 

catfish, Indian mackerel, salmon, pilchard, Atlantic mackerel, redfish, tuna, and 218 

swordfish, respectively), although two have been found in frog (Ran e 2) and crocodile 219 

(Cro p 1) [7]. 220 

Most fish species express two or more β-parvalbumin isoallergens that diverge in their 221 

amino acid sequences (e.g. salmon β1- and β2-parvalbumins share 64% of protein 222 

identity). Patients might have IgE-repertoires for all allergens or isoallergens [28,44]. 223 

Also, dimeric and polymeric forms of parvalbumin with high molecular weight 224 

(aggregates of approximately 24 and 48 kDa) have been reported to show IgE-reactivity 225 

[45,46]. Due to their capacity to sensitise through the gastrointestinal tract, β-226 

parvalbumins are classified as a class I or complete food allergens [47]. However, upon 227 

handing and food processing, they can induce sensitisation by inhalation (occupational 228 

allergy) [48,49], thus they are both food and respiratory allergens. Common clinical 229 
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symptoms triggered by β-parvalbumins range from mild (oral allergy syndrome) to severe 230 

(angioedema, asthma, anaphylaxis) in fish-allergic individuals [24]. 231 

 232 

Arginine kinases 233 

The arginine kinases belong to the ATP guanido phosphotransferases (also known as 234 

phosphagen kinases), which consists of a conserved family of functionally and 235 

structurally related enzymes that can reversibly catalyse the transfer of a phosphate 236 

between ATP and different phosphagens. Arginine kinases catalyse the phosphorylation 237 

of L-arginine residues [50] in crustaceans, which is a crucial reaction to the mechanism 238 

of cellular energy homeostasis [51].  239 

Biochemically, these proteins have a molecular mass of 40-45 kDa with two polypeptides 240 

of 355-357 amino acids organised in an asymmetric monomeric structure (Table 1) [52]. 241 

The experimental determination of the crystal structure of natural arginine kinase 242 

evidences a fold with an α-helical N-terminal domain (composed by five α-helices) and 243 

an α-β C-terminal domain (containing seven α-helices and eight β-sheets). Moreover, 244 

different arginine kinases from distinct phyla/subphyla/classes (crustaceans, molluscs and 245 

arachnids) present high sequence identity, linear epitope similarity, as well as, 246 

conservation of spatial structure in the conformational epitope regions, thus confirming 247 

the reason for the frequent cross-reactivity of these allergenic proteins among species 248 

[52]. 249 

Arginine kinases have been described as allergens, not only in seafood (Pen m 2, Cra c 2, 250 

Lit v 2) [53-55] but also in cockroaches (Per a 9) [56] and mites (Der p 20) [57]. So far, 251 

eleven arginine kinases have been identified as allergenic proteins, with 6 of them being 252 

classified as food allergens (Bomb m 1, Cra c 2, Lit v 2, Pen m 2, Pro c 2 and Scy p 2 in 253 

silk moth, North sea shrimp, white shrimp, black tiger shrimp, crayfish and mud crab, 254 
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respectively) [7] and representing the third most relevant family of animal proteins [5,6]. 255 

Arginine kinases are classified as minor allergens, but clinically relevant ones, since 256 

sensitisation to these allergens seems to be independent of tropomyosins, with allergic 257 

patients experiencing systemic symptoms, or even anaphylaxis [58].  258 

 259 

Caseins 260 

In terms of animal food allergens, caseins rank the fourth position in the list of protein 261 

families inducing allergic reactions by ingestion [5,6]. Caseins are a group of proteins 262 

belonging to a large family of secretory calcium-binding phosphoproteins, present in milk 263 

coagulum. As one of the most abundant proteins in milk (80% of the total protein 264 

fraction), caseins are also considered as major allergens responsible for the development 265 

of mild to severe allergic reactions in sensitised individuals [24,59]. 266 

The casein fraction (also known as Bos d 8) consists of four allergenic proteins, Bos d 9 267 

(αS1-casein), Bos d 10 (αS2-casein), Bos d 11 (β-casein), and Bos d 12 (κ-casein), all 268 

classified as important cow’s milk allergens [7], and three γ-caseins deriving from the 269 

hydrolysis of Bos d 11, which are considered not allergenic [60]. Caseins present primary 270 

structures with 190-224 residues and small molecular size (20-30 kDa) (Table 1). In the 271 

coagulum, caseins form ordered aggregates termed micelles, with a central hydrophobic 272 

core (calcium-sensitive Bos d 9, Bos d 10 and Bos d 11) and a peripheral hydrophilic 273 

layer (Bos d 12) containing major sites of phosphorylation mostly represented by 274 

phosphoserine residues [61]. Caseins have a non-compact, flexible and greatly hydrated 275 

structure, with a high hydrophobic surface due to the lack of a tertiary structure (Table 276 

1).  277 

The content and proportion of the four main casein fractions in milk vary according to 278 

the animal species. Sheep’s milk contains the highest concentration of caseins (4.18 g/100 279 
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g), followed by buffalo’s milk. Almost half of this amount is present in cow’s, goat’s, and 280 

camel’s milk. Human milk contains a low quantity of caseins (0.32 to 0.42 g/100 g), like 281 

mare’s and donkey’s milk [62]. Human milk is rich in Bos d 11, but it does not contain 282 

Bos d 9, which is very abundant in cow’s and buffalo’s milk, representing one of the most 283 

allergenic proteins in the milk of these species [63,64]. Bos d 9 is known to be the 284 

sensitising agent in about 60% of patients with cow’s milk allergy. Goat’s milk seems to 285 

be less allergenic than cow’s milk due to a lower contribution of Bos d 9 in the elicitation 286 

of the adverse immunological reactions [62]. In the same way, camel’s milk shows a high 287 

proportion of Bos d 11 and low proportion of Bos d 9 and Bos d 10 as in human milk 288 

[60,65], so camel’s milk is often suggested as alternative source of nutrients for cow’s 289 

milk allergic individuals [66]. Thus, these differences in the abundance of each casein, as 290 

well as the distinct degree of protein homology [67,68], are intrinsically related to their 291 

allergenic potential in different mammalian species.  292 

 293 

Miscellaneous protein families 294 

Miscellaneous families are defined as families containing only one or two important 295 

allergens, while most proteins are non-allergenic. This section describes some protein 296 

families containing important animal allergens.  297 

 298 

Serum albumins 299 

The serum albumins comprise a group of multifunctional proteins produced in the liver 300 

and secreted as a non-glycosylated protein into the plasma, presenting highly conserved 301 

sequential and conformational structures [69,70]. Serum albumins are abundant in the 302 

plasma of mammalian and avian species, displaying biological functions that include the 303 

transport of different molecules (water, cations - Ca2+/Na+/K+, fatty acids, hormones, 304 
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bilirubin and drugs) and the regulation of the colloid osmotic pressure in blood [6,24]. 305 

They are relatively large molecules with a molecular weight of 60-69 kDa and immature 306 

primary sequences of 607-608 amino acids (Table 1), being present in dander, skin, saliva, 307 

milk, and meat of different animal species. Structurally, serum albumins present a very 308 

flexible α-helical conformation (to accommodate different ligands) composed of three 309 

domains and stabilised by several disulphide bridges [24,70].  310 

So far, different serum albumins have been registered in the WHO/IUIS allergen 311 

database, although only three are classified as food allergens, namely Bos d 6 (bovine 312 

serum albumin - BSA), Gal d 5 (chicken serum albumin - CSA) and Sus s 1 (pig serum 313 

albumin - PSA) [7]. 314 

Bos d 6 is the serum albumin identified in cow’s milk and meat, sharing high sequence 315 

identity (75.6%) and similarity (85.5%) with human serum albumin [24,69]. Mature Bos 316 

d 6 has 583 amino acids folded in an α-helical structure composed of three structurally 317 

similar domains (I, II, and III) organised in a heart-shaped molecule and stabilised by 17 318 

disulphide bonds. Bos d 6 conformation is known to change to accommodate ligands, 319 

being able to coordinate the binding of three Ca2+, all of them located at domain I [70]. 320 

Bos d 6 is classified as a minor respiratory allergen, being associated with cases of 321 

occupational asthma and rhinitis, and inducing mild to moderate clinical symptoms, such 322 

as rhinorrhoea, nasal itching, nasal obstruction, and chest discomfort [24,71-73]. Besides, 323 

Bos d 6 acts as an important food allergen, being responsible for triggering mild to severe 324 

allergic reactions (including anaphylaxis), especially in the case of consumption of 325 

unprocessed cow’s milk or meat. Bos d 6 belongs to the whey fraction and represents 1% 326 

of total milk protein. More than 90% of meat-allergic patients are also allergic to cow’s 327 

milk, due to the fact of being sensitised to Bos d 6, suggesting that this protein might be 328 

a good diagnostic marker for cow’s meat and milk allergies [24,74]. Additionally, Bos d 329 
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6 has several biotechnological applications, such as vaccines and culture medium of 330 

spermatozoids for artificial insemination, which poses new health risks for the allergic 331 

individuals [73]. 332 

Sus s 1 is the serum albumin identified in pork’s meat, it has a smaller molecular weight 333 

(60 kDa) than the rest of serum albumin family of proteins, but it presents high sequence 334 

identity with Bos d 6 (69.7%) and with human serum albumin (72.0%) [69]. This allergen 335 

is the cause of the pork-cat syndrome, due to its high cross-reactivity with cat dander 336 

allergen (Fel d 2). Patients sensitised to Fel d 2 are at risk of developing mild to severe 337 

allergic reactions, including anaphylaxis, angioedema, rhinitis, urticaria, itching eczema, 338 

when consuming food products containing pork meat [75,76].  339 

Gal d 5 (also called α‐livetin) is the serum albumin in chicken (including egg yolk, serum, 340 

meat, and feathers), presenting 69 kDa and a mature primary sequence of 592 amino 341 

acids. Gal d 5 exhibits less sequence identity (46.1%) and similarity (61.1%) with human 342 

serum albumin [7,69] compared to other serum albumins, particularly with mammalian 343 

ones. Gal d 5 is classified as a respiratory allergen causing asthma, conjunctivitis and 344 

rhinitis associated symptoms, and as a food allergen (bird-egg syndrome) capable of 345 

triggering OAS, angioedema and anaphylaxis [77]. 346 

 347 

Glycoside hydrolase family 22 348 

The glycoside hydroxylases encompass a large group of enzymes that catalyse the 349 

hydrolysis of a glycosidic bond between two or more carbohydrates, or between a 350 

carbohydrate and a non-carbohydrate moiety [78], which are divided into families and 351 

some families into clans. Two important food allergens belong to the glycoside hydrolase 352 

family 22, namely the Gal d 4 (lysozyme C) from hen’s egg and the Bos d 4 (α-353 

lactalbumin) from cow’s milk. 354 
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Gal d 4 is expressed in the egg white (tissue-specific), representing about 3.4% of the 355 

total protein fraction [79]. It hydrolyses specific polysaccharides within bacteria cell 356 

walls, thus functioning as a bacteriolytic enzyme [80]. The mature protein of 129 amino 357 

acids in a single polypeptide chain is composed of two domains, one mostly formed by 358 

antiparallel β-sheets and one by α-helices. It has a monomeric conformation of 359 

approximately 14 kDa (four disulphide bonds with no free thiol groups), (Table 1) [80-360 

82], with a theoretical pI of 9.3. Gal d 4 has been recently reported as presenting two 361 

potential N-glycosylation sites, N39 and N44, both localized at a nonconsensus sequon 362 

[83,84]. Gal d 4 is classified as an important allergen, which can cause allergic 363 

sensitisation via inhalation, being associated with Baker’s asthma [85]. Clinical 364 

symptoms, such as angioedema and urticaria, have also been reported for egg-allergic 365 

patients, upon consumption of raw or minimally processed egg white [86]. Gal d 4 shares 366 

35 to 40% of the sequence identity with Bos d 4, as well as, the positions of the four 367 

disulphide bonds [87].  368 

Bos d 4 intervenes in milk production (regulatory subunit of lactose synthetase), being 369 

classified as a monomeric globular calcium-binding metalloprotein with 123 amino acids 370 

and 14 kDa (Table 1), and reported as having 3 genetic variants [88]. It possesses a high-371 

affinity binding site for calcium and four disulphide bridges, which helps to stabilise its 372 

secondary (2D) structure. Bos d 4 has a compact and spherical conformation, with two 373 

structural domains: a large α-helical domain at the N-terminal and a short β-sheet domain 374 

at the C-terminal, flanking the calcium-binding loop [89]. Bos d 4 exhibits high sequence 375 

homology with α-lactalbumins of several species, including humans [90] and it has been 376 

identified as a major allergen in cow’s milk, being commonly responsible for eliciting 377 

respiratory, cutaneous and gastrointestinal symptoms, and often anaphylaxis in milk-378 

allergic individuals [24,91]. 379 
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 380 

Transferrins 381 

Transferrins are sulphur-rich iron-binding glycoproteins that function in vivo to control 382 

the level of free iron [92,93]. These proteins are accountable for the transport of iron, both 383 

from sites of absorption and heme degradation to those of storage and utilisation. 384 

Members of this family include hen´s egg white Gal d 3 (ovotransferrin or conalbumin) 385 

or and cow’s milk Bos d LF (lactotransferrin or lactoferrin).  386 

Gal d 3 represents 12% of egg white protein fraction, it has a primary structure of 686 387 

residues with 78 kDa and a pI of 6.0 (Table 1). Gal d 3 binds two Fe3+ (one per each lobe) 388 

in tandem with two bicarbonate anions [94]. It has thirty cysteine residues, all involved 389 

in disulphide bonds (n=15), nine and six of them located at the C-terminal or the N-390 

terminal lobes, respectively. Structurally, Gal d 3 is a glycoprotein with a compact and 391 

asymmetric monomeric conformation [83,95,96]. Besides regulating iron transport, this 392 

protein is also known to exhibit antibacterial activity in their iron-free form [79,93]. Gal 393 

d 3 is classified as a minor allergen, with clinical symptoms being mostly associated with 394 

urticaria and angioedema. Egg allergic patients sensitised to Gal d 3 are at higher risk of 395 

suffering from an adverse immunological response when consuming raw or slightly 396 

processed eggs [24,97]. 397 

Bos d LF is composed by a single polypeptide chain of approximately 690 residues with 398 

a molecular weight of 80 kDa, folded into two globular lobes, each of them having high-399 

affinity iron-binding sites, connected by a 3-turn helix (Table 1). It has an asymmetric 400 

monomeric conformation, but it can exist in polymeric structures (tetramers) [24], which 401 

is analogous among mammal species (65-100% of sequence identity). Lactoferrins from 402 

ruminant species, like cow, buffalo, goat or sheep, share more than 90% of sequence 403 

identity, forming a particularly closely related cluster [98]. Bos d LF can be distinguished 404 
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from other members of the transferrin family by its greater pI (8.0-9.0) and its higher iron-405 

binding affinity [93,98,99]. Although, being present at very low concentrations in cow’s 406 

milk, as well as, in the milk of other species (<1%), Bos d LF is considered to be an 407 

important allergen (41% of IgE-response, in co-sensitisation with major cow's milk 408 

allergens) [100].  409 

 410 

Lipocalins 411 

Lipocalins represent a cluster of diverse proteins with biological functions focused, not 412 

only on the transport of small hydrophobic molecules (retinol, odorants, lipids, and 413 

pheromones) [101] but also in the regulation of several immunological, metabolic and 414 

developmental processes [102], that participate in the immune response mechanisms, 415 

enzymatic activity, tissue development and allergic reaction initiation [103]. Lipocalins 416 

are small extracellular proteins with 150-250 residues and 17-25 kDa (Table 1) [104,105]. 417 

They can be N- and/or O-glycosylated [103], and it is predicted that they can be 418 

phosphorylated by regulation processes [106]. 419 

Sequence identity among lipocalins is generally low (20 to 30%, although it may reach 420 

higher values) [103,105,107,108], but they share a common 3D structure made of a well-421 

conserved eight-stranded anti-parallel β-barrel (accommodating a ligand-binding pocket) 422 

and an α-helix [109,110]. The ligand-binding pocket has a central location where small 423 

molecules, such as lipids, steroids, hormones, bilins and retinoids can bind [103,111]. The 424 

β-barrel structure is stabilised by two disulphide bonds and depending on the pH, it can 425 

form monomers, dimers or higher-order oligomers [112,113]. Presently, several animal 426 

lipocalins have been identified as allergenic proteins (n=25), nineteen of those being 427 

registered in the WHO/IUIS allergen database [5-7]. Bla g 4 (cockroach), Mus m 1 428 

(mouse urine), Rat n 1 (rat), Can f 1 and Can f 2 (dog), Equ c 1 and Equ c 2 (horse) and 429 
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Bos d 2 (cow) are some examples of allergenic lipocalins. These proteins are highly 430 

abundant in epithelial mucosa and skin, especially in body fluids and secretions [112], 431 

being widely spread in indoor environments as aeroallergens [109,111]. 432 

Among this family, only Bos d 5 (cow´s milk β-lactoglobulin) was classified as a food 433 

allergen, although very recently (dated May 2020) [7], Bos d 2 has also received the same 434 

classification. Bos d 5 is a major whey protein and a major allergen, corresponding to 435 

10% of the total protein content of cow’s milk and participates in several molecular 436 

transport processes [59]. Clinical symptoms induced by IgE-binding to Bos d 5 are quite 437 

similar to the ones triggered by Bos d 4, which involve cutaneous, gastrointestinal and 438 

respiratory manifestations (or even anaphylaxis) [91]. Additionally, Bos d 5 is reported 439 

as a potential molecular marker for persistent cow’s milk allergy in adults [114]. 440 

 441 

Ovomucoids 442 

Kazal-type serine protease inhibitors are a family of proteins (MEROPS inhibitor family 443 

I1, clan IA) [115] with main biological functions associated with the inhibition of several 444 

serine proteases, which includes avian ovomucoid, pancreatic secretory trypsin inhibitor, 445 

acrosin inhibitor, and elastase inhibitor [116,117]. Included in this family, the Gal d 1 446 

(ovomucoid) functions as a trypsin inhibitor and it has been identified as an important 447 

allergen in hen’s egg white. Representing almost 11% of its protein fraction, Gal d 1 448 

primary sequence has 186 residues (containing 20-25% of carbohydrate moieties), a pI of 449 

4.1 and a molecular weight of 28 kDa (Table 1). Structurally, this protein comprises three 450 

independent domains (I-III), each of them behaving like a native globular protein, which 451 

are linked by intradomain disulphide bonds. Each domain is homologous to pancreatic 452 

secretory trypsin inhibitor (Kazal) and presents an actual or putative reactive site for 453 

inhibition of serine proteinases [118]. 454 



20 

Gal d 1 has nine asparagine residues with covalently attached glycan groups (nine 455 

glycosylation sites), mainly encompassing the oligosaccharides N‐acetylglucosamine, 456 

mannose, galactose and N‐acetylneuramic acid [83,119]. However, the carbohydrate 457 

chain attached to the third domain of Gal d 1 seems to perform a critical role in its IgE-458 

binding capacity [119,120]. High IgE levels to Gal d 1 seems to be well correlated with 459 

persistent hen’s egg allergy [121], suggesting that this protein might be a good molecular 460 

marker for egg allergy prediction [122]. Allergic patients sensitised to Gal d 1 are at risk 461 

of suffering adverse immunological responses towards all forms of hen’s egg (raw, slight 462 

or highly processed egg white), exhibiting clinical symptoms like atopic eczema, urticaria 463 

or vomiting [24].  464 

 465 

Serpins 466 

Serpins compose a superfamily of proteins with related, but functionally diverse 467 

structures, belonging to the MEROPS inhibitor family I4, clan ID [115]. Serpins are 468 

widespread among nature, except in fungi [117,123] and they play biological roles mainly 469 

related to protease inhibitory activity and control of proteolytic cascades. Other non-470 

inhibitory functions have also been attributed to serpins, namely hormone transporters, 471 

molecular chaperones and tumour suppressors [124]. Serpins are relatively large 472 

molecules, presenting primary structures ranging from 330 to 500 residues. 473 

So far, Gal d 2 (ovalbumin) is the only food allergen identified within this family [5-7], 474 

whose biological function is non-inhibitory (main role as storage protein). Gal d 2 is 475 

composed of 386 residues, with a molecular weight of 44 kDa and a pI of 4.5 (Table 1) 476 

[79,123,125]. It is glycosylated at residue Asn292, with a second potential glycosylation 477 

site at residue Asn311, and N-linked glycans consisting of hybrid-type and high-478 

mannose-type oligosaccharides [125,126]. Gal d 2 polypeptide chain is involved in a 479 
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defined secondary structure, with three β-sheets (A to C) and nine α-helices (A to H and 480 

helix R) [127]. Its structural conformation corresponds to a cyclic homodimer (Table 1), 481 

suggesting a quaternary organisation. 482 

Gal d 2 is a major protein component of hen’s egg white (almost 54%), but it is considered 483 

as a minor allergen. Allergic individuals (most often children of small age, <3 years) 484 

sensitised to Gal d 2 are at risk of experiencing allergic reactions upon consumption of 485 

raw or slightly processed egg white, exhibiting clinical manifestations, such as atopic 486 

dermatitis [128]. An additional risk factor concerns the use of Gal d 2 in vaccine 487 

formulations, which can lead to severe and systemic allergic reactions (anaphylaxis) in 488 

hen’s egg-allergic patients within minutes upon administration of Gal d 2-containing 489 

vaccines [121]. 490 

 491 

Physicochemical Properties Affecting Allergenicity 492 

An extensive literature search was performed to evaluate the impact of different 493 

physicochemical characteristics on the allergenicity of proteins from distinct families of 494 

animal allergens. Accordingly, the list of parameters includes several PTM, which are 495 

most commonly associated with allergens, namely glycosylation, phosphorylation, 496 

acetylation and hydroxylation. The structural integrity and the organisational level of 497 

allergens, their stability towards heat, pressure, light (radiation), mechanical and chemical 498 

activities resulting from different food processing methods (Fig. 1), as well as, their 499 

behaviour towards glycation and aggregation phenomena were also assessed. In addition, 500 

ligand binding, potential food component interactions (with lipids), resistance to 501 

gastrointestinal digestion and the ability to cross the epithelial barrier in altered states 502 

(e.g. aggregates) finalise the list of parameters analysed in this review. 503 
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Concerning each animal protein family, data from an extensive literature search covering 504 

the impact of all these physicochemical parameters on the allergenicity of their protein 505 

members were collected and provided in detail as supplementary material. Summarised 506 

data resulting from this extensive analysis are presented in Tables 2-4. 507 

 508 

Measuring the effect on allergenicity 509 

The pathophysiology of food allergy involves two stages: the sensitisation and the 510 

elicitation phases that are also designated as induction and effector phases, respectively. 511 

The sensitisation phase can be defined as the interaction of an allergen with an antigen-512 

presenting cell, T-cell, and B-cell leading to the production of allergen-specific IgE, while 513 

elicitation phase relates to the interaction of the allergen with the allergen-specific IgE on 514 

the surface of the mast cell or basophils, resulting in the release of mediators which are 515 

responsible for the clinical symptoms [24,129]. The sensitisation phase is not always 516 

followed by elicitation, thus hampering the prediction of a clinical food allergy by 517 

measuring alone the allergen-specific IgE. Still, most of the available approaches to assess 518 

the allergenic potential of a protein rely on IgE-mediated assays, which can be performed 519 

under different conditions and formats [130]. 520 

The evaluation of the impact of different physicochemical characteristics on the 521 

allergenicity of animal proteins depends on the data compilation from different assays 522 

(Table 3). Immunoblotting, ELISA (enzyme-linked immunosorbent assay) and 523 

radioallergosorbent test (RAST)/enzyme allergosorbent test (EAST)/ImmunoCap using 524 

human sera/plasma of sensitised or allergic patients provide an overall assessment of the 525 

IgE-binding capacity (either qualitative and/or quantitative) of allergens from almost all 526 

families of animal proteins under study (Table 3) [54,131-151]. Although representing a 527 

great portion of data on the IgE-binding capacity of animal allergens, their interpretation 528 
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needs to be carefully conducted, considering all the pitfalls associated with these assays 529 

(the use of different sources of sera/plasma from food sensitised/allergic patients, 530 

different analytical conditions, different target analytes, indirect/poor correlation with 531 

clinical outcomes) [152].  532 

Another strategy lies on the use of in vitro biological assays (cellular models), which 533 

provide a functional analysis of the specific effector cell activation by allergen-mediated 534 

specific IgE crosslinking (measured by mediator release or upregulation of cellular 535 

surface molecules). Such strategies present advantages related to high clinical specificity 536 

and sensitivity [152,153]. Although being more laborious and expensive than the previous 537 

approaches, the human basophil activation tests (BAT), the humanised rat basophilic 538 

leukaemia (RBL) mediator release assay and the mast cell models can be considered as 539 

in vitro surrogate of the allergic reaction that happens in vivo in allergic patients [154-540 

156]. Therefore, these tests can be used to explore the immune mechanisms of effector 541 

cell response to allergens [154], being also broadly applied to evaluate the allergenic 542 

potential of most families of animal proteins (Table 3) [135,138,157-167]. 543 

Presently, the in vivo models are the only methods able to assess the potential sensitising 544 

capacities of food proteins [168]. The skin prick tests (SPT) and food challenges, either 545 

as open food challenges (OFC) or as double-blind placebo-controlled food challenges 546 

(DBPCFC), are used for allergy diagnosis, but with very limited application to evaluate 547 

the allergic response to specific proteins or protein extracts as affected by different 548 

physicochemical properties (Table 3) [11,77,133,159,164,169,170]. However, carrying 549 

clinical trials in humans (OFC and DBPCFC) is time-consuming, expensive, and are not 550 

easy to perform, besides involving ethical issues. 551 

To overcome this problem, animal models have been used as surrogates for the 552 

identification and characterisation of food allergens, representing potential valuable tools 553 
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for safety assessment [171]. Nonetheless, the use of animal models to mimic food allergy 554 

in humans carries some concerns, such as how well they simulate the human disorder and 555 

what are their main strengths and limitations [172]. Still, they can provide some insights 556 

about the sensitising and eliciting capacities of specific allergens, representing the current 557 

closest physiological in vivo model of human immunological events. Therefore, animal 558 

allergy models have also been used to measure the influence of physicochemical 559 

properties on the allergenicity of molecules from some families of animal proteins (Table 560 

3) [166,173-194]. 561 

For this review, some general definitions and terminology were used to standardise an 562 

approach to deal with all different aspects of the data collected. Therefore, the definitions 563 

on the allergenicity/allergenic potential, immunoreactivity and IgG/IgE-binding capacity 564 

were adopted from Verhoeckx et al. [195]. By allergenicity/allergenic potential we mean 565 

“the potential of a material to cause sensitisation and allergic reactions, frequently 566 

associated with IgE antibody”, immunoreactivity describes “the ability of a material to 567 

elicit an immune response” and with IgG/IgE-binding capacity we mean “an altered 568 

ability of IgG (also antigenic integrity) or IgE (also allergenic integrity) to bind to 569 

epitopes, respectively”. 570 

In practical terms, the data collected from immunoblotting, ELISA, and 571 

RAST/EAST/immunoCAP assays with the sera of food allergic/sensitised patients were 572 

classified as “IgE-binding capacity”, while data from similar immunoassays using animal 573 

antibodies were defined as “immunoreactivity”. The terms allergenicity/allergenic 574 

potential were applied to classify results simulating the elicitation of an allergic reaction, 575 

namely the in vitro functional assays (RBL, BAT), in vivo assays (SPT, OFC and 576 

DBPCFC) and animal allergy models (mice physiological responses, mice anaphylaxis). 577 

It is also important to stress that despite the defined strategy of classifying the results from 578 
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different analytical methods within the terms defined above, it was difficult to separate 579 

results from the events of sensitisation and elicitation. Therefore, the classification of IgE-580 

binding capacity or allergenicity was determined in terms of weight of evidence (WOE). 581 

Highest WOE was concluded from animal models and functional biological assays that 582 

mimic main events of allergic reactions, acceptable WOE was seen in IgE-binding 583 

capacity, and modest WOE was seen in immunoreactivity studies (bearing in mind the 584 

extensive explanations above). 585 

 586 

Abundance  587 

Proteins, including allergens, play specific biological roles within organisms, whose 588 

expression is regulated by their physiological demands. In animals, most of the allergenic 589 

proteins perform structural, regulatory and transport functions, except for Gal d 2 590 

(serpins) that has nutritional storage function (Table 1). However, the correlation between 591 

the abundance of certain proteins and their allergenic impact is still a matter of debate. 592 

Within the four most relevant families of food allergens from animal origin, caseins are 593 

by far the most abundant proteins [59,89]. In this case, their high abundance seems to be 594 

well correlated with the increased risk for adverse immunological reactions in individuals 595 

sensitised/allergic to milk. 596 

Compared to caseins, tropomyosins and β-parvalbumins are minor protein components, 597 

representing only up to 1% or 1-3% of muscle mass in invertebrates (e.g. crustaceans, 598 

molluscs, insects) or fish, respectively [13,29]. Nonetheless, despite their relatively low 599 

abundance, tropomyosins and β-parvalbumins are classified as important major allergens 600 

of animal origin. In the specific case of β-parvalbumins, their greater abundance in certain 601 

flesh tissues (e.g. white vs. dark muscle) and their location (e.g. rostral vs. caudal part of 602 
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the white muscle) has been positively correlated with their increased allergenic potential 603 

[196-198]. 604 

Among the miscellaneous families of proteins, the serum albumins are present in 605 

moderate/low amount (approximately 5%) in the plasma of mammals, namely in bovine 606 

(Bos d 6), pork (Sus s 1), lamb, and deer meats [199] and also in hen’s egg yolk (Gal d 5) 607 

[77]. Their relative moderate/low amount seems to be well correlated with their ability to 608 

induce allergic responses in sensitised individuals [24,170], especially due to the high 609 

cross-reactivity among serum albumins (Bos d 6, Sus s 1) from different meats (bovine, 610 

pork), epithelia and milk [199]. However, in cow’s milk, Bos d 6 is a minor component 611 

of whey (about 1% of total protein fraction) but is considered as a major food allergen 612 

with high clinical relevance [24,60]. 613 

The two representative members of the glycoside hydrolase family 22 are the Gal d 4 and 614 

the Bos d 4, which account for 3.4% of egg white and 5% of milk protein fractions, 615 

respectively [59,79]. Regardless of their relative moderate/low abundance, Gal d 4 and 616 

Bos d 4 have been classified as highly immunogenic [200,201]. Likewise, the Gal d 1 of 617 

the ovomucoid family represents less than 11% of egg white protein fraction, but it is 618 

considered the immunodominant allergen in egg, being often related to severe cases of 619 

anaphylaxis [142]. Gal d 1 exhibits higher IgE-binding capacity than other allergens, 620 

following this specific order: Gal d 1 (11%)>Gal d 2 (54%)>Gal d 4 (3.4%), despite their 621 

different proportions in egg [175]. 622 

In the transferrin family of proteins, the two representative allergens are Bos d LF and 623 

Gal d 3, which have different proportions in their respective matrices, namely <1% in 624 

milk (variable according to the species) and 12% in egg white. Contrarily to other 625 

allergens, the abundance of these proteins is not well interconnected with their allergenic 626 

potential. In this case, the abundance seems to be inversely correlated with protein 627 
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allergenic potential since the Gal d 3 (12% of egg white) is described as presenting very 628 

limited clinical relevance [200], while Bos d LF (often less than 1% of milk protein) has 629 

strong IgE-binding response [100]. 630 

The Bos d 5 from lipocalin family represents 10% of the total protein fraction in milk, 631 

and it is classified as a major allergen. In the case of Bos d 5, its abundance seems to be 632 

well correlated with a higher risk to trigger allergic reactions in milk-allergic patients. 633 

This is most likely related to the fact that Bos d 5 is absent in human milk, as well as in 634 

milk from other mammalian species (e.g. camel), which have been demonstrated to be 635 

less allergenic than cow’s milk [202]. 636 

Gal d 2 from serpin family accounts for more than 54% of egg white protein fraction, but 637 

despite its great abundance, Gal d 2 is not an immunodominant allergen in egg’s white 638 

[203]. Nonetheless, it has been shown that there is a strong correlation between the 639 

amount of egg ingested by women that are breastfeeding and the concentration of Gal d 640 

2 in breast milk, which is considered to be responsible for eliciting egg-allergic reactions 641 

in infants [204]. 642 

 643 

Concluding remarks: 644 

• The high abundance of caseins, serum albumins (meats and egg yolk), lipocalins (Bos 645 

d 5), and ovomucoids (Gal d 1) seems to be related to increased allergenic risk.  646 

• The high abundance of other allergens (Bos d LF, Gal d 3, Gal d 2) does not always 647 

represent an additional risk for allergic reactions. 648 

• The limited quantity of specific allergens (tropomyosins, parvalbumins, glycoside 649 

hydrolase family 22, serum albumin – cow’s milk Bos d 6) often imply added hazard 650 

of eliciting severe immunological responses. 651 
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• Within the families of animal allergens, it is not possible to establish a correlation 652 

between abundance and an increased risk for triggering allergic reactions in 653 

sensitised individuals since different patterns are observed. 654 

 655 

Protein structure 656 

Food allergens are typically defined as molecules of small size and/or with compact 657 

globular structure (monomeric conformation), which is the case of some families of 658 

animal proteins, namely parvalbumins, arginine kinases, serum albumins, glycoside 659 

hydrolase family 22 and transferrins (Table 1). However, like in plant food allergens [4], 660 

there are several examples of animal allergens that present structures with a high level of 661 

organisation (quaternary structures), such as tropomyosins, lipocalins, ovomucoids, and 662 

serpins (Table 1). 663 

In opposition, caseins are intrinsically unstructured proteins, exhibiting very little 664 

secondary/tertiary structures. In milk, the four variants of caseins have structural 665 

differences, with Bos d 9 and Bos d 10 being unfolded proteins with extended coil-like 666 

conformations, and Bos d 11 and Bos d 12 presenting molten globule-like structures 667 

[205]. In the absence of calcium, caseins have no regular structures, but in response to 668 

calcium-phosphate binding, they form micelles that correspond to particles of colloidal 669 

size designated as supramolecules. In those cases, casein micelles are defined as complex 670 

molecules with quaternary structures, showing great conformational flexibility because 671 

they are easily adapted to different environments [206,207]. 672 

In most families of animal proteins, the loss of high level of spatial organisation (tertiary 673 

and quaternary conformations) leads to a reduction in the IgE-binding capacity of their 674 

members, which are the cases of parvalbumins, arginine kinases, glycoside hydrolase 675 

family 22 and serpins (Table 2). The reasons behind this accentuated reduction are 676 
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normally the damage of structural integrity (globular monomer), through Ca2+ depletion 677 

or by modification of different residues in the Ca2+ binding region in parvalbumins 678 

[35,208] or by the disruption of conformational epitopes in arginine kinases, glycoside 679 

hydrolase family 22 and serpins [139,209-211]. 680 

The loss of structural stability of tropomyosins, caseins, serum albumins, lipocalins and 681 

ovomucoids has limited impact on their IgE-binding capacity, mostly due to the presence 682 

of important sequential epitopes that become accessible upon disruption of native 683 

conformation [114,132,212-214]. However, the disruption of disulphide bonds and loss 684 

of secondary structure contribute to a small decrease in the IgE-binding capacity of 685 

caseins, serum albumins, lipocalins and ovomucoids [114,214,215]. For proteins of the 686 

transferrin family, the loss of their monomeric conformation seems to have a dual 687 

character. By one side, the exposure of hydrophobic groups and the partial unfolding of 688 

transferrin structure reavels hidden linear epitopes with increasing IgE-binding capacity, 689 

while the destruction of conformational epitopes (loss of secondary structure by the 690 

destruction of disulphide bonds), upon severe protein unfolding, reduces the 691 

immunoreactivity of these proteins [139,216,217]. 692 

The use of denaturing agents, such as urea, can disrupt the conformational structure of 693 

proteins, leading to a molten globule state with increased IgE-binding capacity (partially 694 

denatured protein but retaining native-like structure), which seems to be the case of 695 

glycoside hydrolase family 22 and transferrins [142]. 696 

Concluding remarks: 697 

• The IgE-binding capacity of parvalbumins, arginine kinases, glycoside hydrolase 698 

family 22 and serpins is reduced by the loss of 3D/4D conformations (destruction of 699 

conformational epitopes). 700 
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• The IgE-binding capacity of glycoside hydrolase family 22 and transferrins is 701 

increased by the destruction of native structures caused by denaturing agents (e.g. 702 

urea). 703 

• The IgE-binding capacity of tropomyosins, caseins, serum albumins, lipocalins and 704 

ovomucoids is hardly changed by the loss of native structural integrity (presence of 705 

linear epitopes). 706 

• The disruption of disulphide bonds and loss of secondary structure contribute to a 707 

slight decrease in the IgE-binding capacity of ovomucoids and lipocalins. 708 

• The loss of 3D structures of transferrins presents a dual character - exposure of 709 

hidden linear epitopes increases and the destruction of conformational epitopes 710 

reduces the IgE-binding capacity, respectively. 711 

 712 

Post-translational modifications 713 

Post-translational modifications have been greatly described as affecting protein 714 

conformational structure, which has a substantial influence on its allergenic potential. 715 

Conversely, it is not clear yet to what extent PTM impact distinct food allergen families, 716 

or even different members within the same protein family. In the case of animal protein 717 

families, three specific PTM can be found among their members, namely glycosylation, 718 

acetylation and phosphorylation. All involve enzymatic processes, where glycosyl, 719 

phosphoryl or acetyl groups, respectively, are added to the side chains of amino acids of 720 

different proteins [218,219]. 721 

In opposition to plant food allergens, whose glycosylated proteins are mainly restricted 722 

to members of the vicilin family [4], glycosylation is the most common PTM among the 723 

families of animal allergens (tropomyosins, caseins, arginine kinases, glycoside hydrolase 724 

family 22, transferrins, lipocalins, ovomucoids and serpins). Despite the generalised 725 
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concept that glycosylation greatly contributes to increase the allergenic potential of 726 

proteins, this fact cannot be defined as a rule. Depending on the family of animal proteins, 727 

or even among different members of a specific family, glycosylation has been described 728 

as showing contradictory effects on the allergenic potential of a protein. 729 

Enzymatic deglycosylation of tropomyosins (glycosylated proteins with N- and/or O-730 

glycans) from crab or prawn retained or increased their IgE-binding capacity, respectively 731 

[157,220]. Gal d 1 (ovomucoid family) is a glycosylated protein with high carbohydrate 732 

content (20-25%), although the role of the carbohydrate in the IgE-binding capacity of 733 

this allergen is still ambiguous. Deglycosylated Gal d 1 has been reported to preserve or 734 

decrease its allergenicity, which is explained by the fact that the carbohydrates are not 735 

part of the IgE-binding epitope or by potential structural alterations of the protein 736 

(deglycosylated forms are more easily digested), respectively (Table 2) [165,221]. 737 

Caseins are glycosylated (e.g. Bos d 12), which difficult their subsequent digestion [222], 738 

thus increasing their potential allergenicity. N-glycosylation sites have also been 739 

advanced in crayfish Pro c 2 (arginine kinase family), although their role in the IgE-740 

binding capacity of this protein is still unknown [223].  741 

Phosphorylation is another PTM that occur among members of some animal protein 742 

families, namely in caseins and serpins (Table 2). Dephosphorylated variants of Bos d 10 743 

and Bos d 11 are less IgE-reactive than their native counterparts, suggesting that the 744 

phosphorylation site(s) might be part of the IgE-binding epitope(s). Additionally, 745 

different casein variants contain a common phosphorylation site that is considered to be 746 

responsible for the cross-reactivity among caseins in milk-allergic individuals 747 

[169,224,225]. Phosphorylated caseins and serpins (Gal d 2) are more IgE-reactive than 748 

their dephosphorylated counterparts, suggesting that phosphorylation increases the IgE-749 

binding capacity of these proteins (Table 2). 750 
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Acetylation occurs in members of animal food allergens, although at a smaller scale. Fish 751 

parvalbumins can be modified by N-terminal acetylation, a PTM that makes 752 

parvalbumins highly stable and more allergenic [226].  753 

Concluding remarks: 754 

• Glycosylation occurs in tropomyosins, caseins, arginine kinases, glycoside 755 

hydrolase family 22, transferrins, lipocalins, ovomucoids and serpins. 756 

Phosphorylation is common among caseins and serpins, while acetylation occurs in 757 

parvalbumins. 758 

• Glycosylation has contradictory effects on the IgE-binding capacity of different 759 

families: tropomyosins (increase/maintain/decrease), arginine kinases (unknown 760 

effect), ovomucoids (maintain/increase) and caseins (increase). 761 

• Phosphorylation increases the IgE-binding capacity of caseins and serpins. 762 

• Acetylation increases the IgE-binding capacity of parvalbumins. 763 

 764 

Ligand-binding 765 

Protein structure might be greatly influenced by the presence of specific ligands (metals, 766 

ions) because they are often essential for protein folding. Some families of proteins can 767 

bind ligands, although in different ways, which is the case for parvalbumins, caseins, 768 

serum albumins, transferrins and lipocalins (Table 1). Structurally, parvalbumins are 769 

calcium-binding proteins presenting two available sites (two domains) for binding Ca2+ 770 

and Mg2+. Metal-binding stabilises protein conformation and contributes to maintaining 771 

their allergenicity as assessed by basophil histamine release assay when compared to their 772 

apo-forms [35,135,208,227]. 773 

Caseins contain phosphoryl groups that can sequester Ca2+ and form thermodynamically 774 

stable complexes (casein micelles), which prevents their aggregation into amyloid fibrils 775 
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(insoluble proteins) [228] and to conserve their IgE-binding capacity [224,225]. 776 

Transferrins and lipocalins are also able to accommodate and transport metal ions. In both 777 

cases, Gal d 3 (transferrin) and Bos d 5 (lipocalin) are less allergenic in their holo-forms 778 

(iron-bound) than in apo-forms (iron-free). Iron-binding seems to attenuate the immune 779 

responses by maintaining Th1/Th2 balance (holo-forms are more immunosuppressive 780 

than apo-forms), thus decreasing their allergenicity [163,177,229]. Besides iron, Bos d 5 781 

is also able to transport other small molecules (e.g. retinoic acid) in its central core. Lipid-782 

binding of Bos d 5 with retinoic acid (active vitamin A metabolite) can prevent an immune 783 

response by inducing profound inhibitory effects on different T-cell subsets and cytokine 784 

expression, therefore greatly reducing its allergenicity [230]. 785 

Concluding remarks: 786 

• Parvalbumins, caseins, serum albumins, transferrins and lipocalins can bind ligands 787 

(Mg2+, Ca2+, Fe2+, Na+ and retinoic acid). 788 

• Ca2+- and Mg2+-binding stabilise the structural conformation of parvalbumins, 789 

which maintain their allergenicity. 790 

• Caseins bind Ca2+ (by phosphoryl groups), forming casein micelles (stable 791 

macromolecules) and conserving their allergenic potential. 792 

• Transferrins and lipocalins can bind iron, decreasing their allergenic potential. Bos 793 

d 5 binds other small molecules (e.g. retinoic acid), reducing its allergenicity. 794 

 795 

Glycation and Aggregation 796 

Glycation is a chemical reaction between the amino groups of proteins, lipids or 797 

nucleotides and the carbonyl groups of monosaccharides (typically reducing sugars), and 798 

it is called as Maillard reaction or non-enzymatic browning [231]. Glycation is 799 

responsible for changing colours, odours and flavours of foods, resulting from non-800 
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enzymatic reactions during food processing under mild conditions. Although representing 801 

two distinct processes, glycation is frequently incorrectly designated as glycosylation 802 

(post-translational modification of proteins with the addition of carbohydrates during 803 

protein synthesis) [232]. In this section, we tried to include all manuscripts for the 804 

literature using the term glycosylation but meaning glycation (Maillard reaction). 805 

Glycation is known to affect the allergenicity of specific proteins, although its effects are 806 

not yet fully clear. This process requires the application of heat treatments to 807 

thermodynamically favour the chemical reactions between amino and carbonyl groups, 808 

which often contributes to protein unfolding and formation of macrostructures, such as 809 

aggregates [233]. Protein aggregation can also result from other processes (e.g. mistakes 810 

in protein synthesis, mutations); although during food processing, it is most likely to 811 

occur as a consequence of Maillard reactions.  812 

Protein behaviour towards glycation and aggregation processes can reflect their allergenic 813 

potential. Tropomyosin [131,157,173,234-237], parvalbumin [190,238-240], casein 814 

[241,242], lipocalin [143,243-250] and serpin [185,251-257] allergenicity is differently 815 

affect by glycation (Table 2). The behaviour of Gal d 2 (serpins) towards glycation is 816 

probably one of the best-studied, with several reports supporting the dual character of Gal 817 

d 2 IgE-binding capacity upon Maillard reactions. Accordingly, glycation of this protein 818 

with reducing sugars decreases the IgE-binding capacity of its glycated products [251-819 

253], while advanced glycation end-products of Gal d 2 or glycation products in the 820 

presence of different concentrations of sodium carbonate-bicarbonate buffer contributed 821 

to increasing their allergenic potential, as assessed by in vivo mice allergy models and 822 

mediator release assays [185,254,256,257]. 823 

The allergenicity of glycoside hydrolase family 22 (Bos d 4) and arginine kinases (e.g. 824 

Scy p 2) are decreased by glycation, as determined by in vivo mice allergy models and 825 
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mediator release assays [173,258], while in ovomucoids (Gal d 1) its IgE-binding capacity 826 

is increased (Table 2) [252]. In addition, Maillard reactions with different reducing sugars 827 

(glucose, mannose, ribose) might also induce distinct alterations in conformational 828 

structures, thus contributing to the contradictory effects in terms of protein IgE-binding 829 

capacity (e.g. tropomyosins, parvalbumins) [235-239]. 830 

In all referred families, the formation of aggregates as a result of glycation is commonly 831 

pointed out as the main factor for both increasing or decreasing the IgE-binding capacity 832 

of most allergens [237]. As an example, the formation of aggregates contributes to a 833 

decreasing effect on the IgE-binding capacity of arginine kinases and lipocalins, although 834 

when neoepitopes are formed in the aggregates, their IgE-binding capacity can increase 835 

[173,223,245,259]. Caseins naturally tend to form ordered aggregates, which contributes 836 

to maintaining their IgE-binding capacity [260]. However, when caseins form aggregates 837 

with other proteins, like the whey and wheat proteins, their IgE-binding capacity is 838 

increased or reduced, respectively [261-263]. In the case of tropomyosins and 839 

parvalbumins, aggregated proteins seem to have increased IgE-binding capacity 840 

[134,237], while aggregated forms of serum albumins, glycoside hydrolase family 22, 841 

ovomucoids and serpins are normally classified as less IgE-reactive 842 

[145,176,179,180,264,265]. 843 

Concluding remarks: 844 

• Chemical changes in tropomyosins, parvalbumins, caseins, lipocalins, and serpins 845 

(as a consequence of glycation) can lead to decreased, increased, or maintained 846 

allergenicity (depending on the allergen within a family, or even for the same 847 

allergen). 848 
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• Chemical changes in tropomyosins and parvalbumins, as a consequence of 849 

glycation with different reducing sugars (glucose, mannose, ribose), can affect their 850 

IgE-binding capacity (maintain, decrease or increase). 851 

• Structural changes (formation of aggregates with other molecules) in caseins can 852 

increase or decrease their IgE-binding capacity when aggregates are formed with 853 

whey or wheat proteins, respectively.  854 

• Structural changes (formation of aggregates) in arginine kinases and lipocalins 855 

induce a decrease in their IgE-binding capacity (except when neo conformational 856 

epitopes are formed, leading to an increase in IgE-binding capacity). 857 

• Structural changes (formation of aggregates) in tropomyosins and parvalbumins 858 

increased their IgE-binding capacity, while in serum albumins, glycoside hydrolase 859 

family 22, ovomucoids and serpins reduced their allergenicity. 860 

 861 

Heat stability 862 

Heat stability is generally considered as an important characteristic of allergenic proteins. 863 

For the evaluation of heat stability on the allergenicity of proteins, the influence of 864 

different thermal treatments used for food processing was extensively reviewed (Fig. 1). 865 

This is the case for tropomyosins [133,237,266-268], parvalbumins [190,197,269] and 866 

caseins [162,261,270,271], whose members are heat-stable proteins that conserve or 867 

increase their allergenicity (as determined by BAT, mediator release assays and in vivo 868 

mice allergy models), even after being submitted to extreme thermal conditions. 869 

Moreover, treatments like pasteurisation, boiling, frying, and roasting can induce severe 870 

alterations on the secondary structures of tropomyosins with subsequent exposure of 871 

hidden epitopes, contributing to increasing their allergenicity. This feature seems to be 872 

common to several crustacea and mollusc tropomyosins, as confirmed by their increased 873 
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overall IgE-binding capacity, greater basophil activation, and larger wheal size in skin 874 

prick tests compared to their raw counterparts [133,237,267,268]. Gal d 1 from 875 

ovomucoid family is also considered a heat-stable protein, thus preserving its IgE-binding 876 

capacity upon thermal processing [141,261], although when this protein is submitted to 877 

temperatures above 90ºC and for several minutes (>15 min), its IgE-binding capacity is 878 

significantly reduced [252,272]. Serum albumins have been described as partially heat-879 

labile (Gal d 5), but in fact, their behaviour is more likely to be heat-stable (Bos d 6 and 880 

Sus s 1), since these proteins tend to preserve their IgE-binding capacity upon boiling, 881 

broiling or even autoclave [151,170,214,273,274]. Therefore, depending on the family 882 

member, serum albumins might be differently affected by distinct heat treatments. 883 

Accordingly, Bos d 6 and Sus s 1 tend to conserve their IgE-binding capacity when 884 

submitted to temperatures above 90ºC [151,170,214,273,274], probably due to the 885 

presence of sequential epitopes, while the allergenicity of Gal d 5 is greatly reduced after 886 

10 min at 90ºC, as assessed by skin prick tests and food challenges [77,275]. 887 

Proteins belonging to arginine kinase and other miscellaneous families (glycoside 888 

hydrolase family 22, transferrin, lipocalins and serpins) are all heat-labile, which means 889 

that most thermal treatments are efficient in reducing or even eliminating the IgE-binding 890 

capacity of their members [136,139,141,223,252,261,270,276,277]. The loss of 891 

tertiary/secondary structures and destruction of conformational epitopes, or the formation 892 

of protein aggregates, as a consequence of heat treatments, are among the main reasons 893 

justifying the decrease in the IgE-binding capacity of these heat-labile proteins 894 

[139,216,261,270]. However, the application of mild heat treatments (55-60ºC) for short 895 

periods (<10 min), causing an incomplete unfolding and subsequent exposure of 896 

hydrophobic regions in proteins from transferrin and serpin families, might result in a 897 
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transient increased or preserved IgE-binding capacity of these members, respectively 898 

[141,216]. 899 

It is also important to highlight that the heat processing in the presence of proteins from 900 

other matrices, namely from wheat, might contribute to a great reduction (or even 901 

elimination) of the IgE-binding capacity of ovomucoids and serpins, probably due to 902 

aggregation through intermolecular disulphide bonds with wheat proteins [145,264].  903 

Concluding remarks: 904 

• Tropomyosins, parvalbumins, caseins and ovomucoids are heat-stable proteins. 905 

Serum albumins are partially heat-labile/stable proteins. Arginine kinases and other 906 

miscellaneous protein families (glycoside hydrolase family 22, transferrin, lipocalins 907 

and serpins) comprise heat-labile proteins. 908 

• Heat stability (upon extreme heat conditions) contributes to increase the allergenicity 909 

of tropomyosins (exposure of hidden epitopes) and preserve the allergenic potential 910 

of parvalbumins, caseins and serum albumins (Bos d 6 and Sus s 1), but not for 911 

proteins of the ovomucoid family (e.g. Gal d 1 decreases its IgE-binding capacity). 912 

• Structural changes (unfolding, exposure of hidden linear epitopes) increases the 913 

allergenic potential of tropomyosins and maintain the allergenicity of parvalbumins, 914 

caseins and serum albumins. 915 

• Structural changes (unfolding, destruction of conformational epitopes, and formation 916 

of aggregates) reduce or even eliminate, the IgE-binding capacity of arginine kinases, 917 

glycoside hydrolase family 22, transferrins, lipocalins, and serpins. 918 

 919 

Pressure stability 920 

Regarding food allergens, the parameter of pressure stability has gained some relevance 921 

over the last few years, especially due to the increasing application of the novel food 922 
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processing technologies (Fig. 1). Despite their numerous advantages related to the 923 

preservation of food quality (prolonging self-life, improving sensorial attributes) and 924 

safety (eliminating microorganisms), the impact of these technologies on the allergenicity 925 

of different proteins is still controversial (Table 2). 926 

In the case of tropomyosins and parvalbumins (Table 2), the application of pressure 927 

treatments seems to contribute to a generalised reduction in their IgE-binding capacities, 928 

which is even more pronounced by the combination of pressure with heat [174,190,278]. 929 

Likewise, the use of high pressures also contributes to decreasing the immunoreactivity 930 

of caseins by affecting the intermolecular forces in the micelles and by changing the 931 

surface structure of these molecules [279]. The application of pressure at 600 MPa caused 932 

casein aggregation (involving Bos d 5 with Bos d 12), shifting the balance of Th1/Th2 933 

type cytokines towards Th1, thus diminishing the allergenic capacity of caseins [280]. 934 

However, when pressure is combined with high temperatures, for short bursts of time, 935 

followed by instant pressure drop to vacuum, the IgE-binding capacity of caseins is 936 

increased due to the dissociation of the casein micelles or to the aggregation of casein’s 937 

monomers [281]. In the case of serum albumins, the application of high-pressure 938 

treatments (400 MPa) does not affect their immunoreactivity [282]. 939 

Treatments using high-pressures seem to have contradictory effects on the IgE-binding 940 

capacity of members from the glycoside hydrolase family 22. By one side, high-pressure 941 

treatments contribute to increasing the sensitising capacity of Gal d 4 (by inducing limited 942 

denaturation), as assessed by in vivo mice allergy models [175], on the other side, it 943 

maintains or even reduces the IgE-binding capacity of Bos d 4 [280,281]. In Bos d 5 944 

(lipocalin family), the application of high-pressure treatments has a similar behaviour as 945 

in the glycoside hydrolase family 22. Although keeping its internal core and 946 

primary/secondary structures, Bos d 5 undergoes small rearrangements in its 3D 947 
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conformation when subjected to high-pressure treatments. These rearrangements are 948 

reported as the main factor to increase or reduce its IgE-binding capacity 949 

[144,280,281,283,284]. The combination of dynamic high-pressure treatments with the 950 

glycation process seems to reduce the IgE-binding capacity of Bos d 5 conjugates in a 951 

pressure-dependent-manner (greater reduction with higher pressures) [143]. The 952 

application of high pressures (400 MPa) during enzymatic hydrolysis also reduces the 953 

sensitising capacity of Bos d 5 in mice allergy model [178]. 954 

In ovomucoids (Gal d 1) and serpins (Gal d 2), there were no significant differences in 955 

the levels of Gal d 1- or Gal d 2-specific IgE between the group of mice allergy model 956 

sensitised with pressurised egg white (400 MPa for 10 min at 37 °C) and the native egg 957 

white groups, suggesting that pressure treatments induce similar allergic sensitisation 958 

capacity of Gal d 1 and Gal d 2 in mice, as their native counterparts [175]. Regarding 959 

arginine kinase and transferrin families, no information on the effect of pressure stability 960 

on the allergenicity of allergens could be retrieved from literature. 961 

Concluding remarks: 962 

• Tropomyosins and parvalbumins are pressure-labile proteins, while serum albumins 963 

and ovomucoids and serpins seem pressure-stable. Caseins, glycoside hydrolase 964 

family 22 and lipocalins have dual behaviour towards pressures (most likely 965 

pressure-stable).  966 

• Pressure treatments of ovomucoids (Gal d 1) and serpins (Gal d 2) induce similar 967 

allergic sensitisation capacity of their native counterparts. Pressure treatments of 968 

serum albumins do not affect their immunoreactivity. 969 

• Structural changes induced by pressure (especially when combined with heat) reduce 970 

the IgE-binding capacity of tropomyosins and parvalbumins. 971 
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• Structural changes induced by pressure (affecting the intermolecular forces in the 972 

micelles and changing the surface structure) reduce the immunoreactivity of caseins, 973 

but when combined with heat (dissociation of casein micelles or aggregation of 974 

caseins) increases their IgE-binding capacity (clinical impact unclear). 975 

• Structural changes induced by pressure (limited unfolding) have contradictory effects 976 

on the IgE-binding capacity of glycoside hydrolase family 22. HP treatments increase 977 

the sensitising capacity of Gal d 4 (by inducing limited denaturation), but it maintains 978 

or even reduces the IgE-binding capacity of Bos d 4. 979 

• Structural changes induced by pressure (with the conservation of the internal core 980 

and the 2D structure) have contradictory effects on the IgE-binding capacity of 981 

lipocalins. HP increase (clinical impact unclear) or reduce the IgE-binding capacity 982 

of lipocalins (Bos d 5). HP combined with glycation or with enzymatic hydrolysis 983 

reduce IgE-binding or sensitising capacities, respectively, of Bos d 5. 984 

• Effect of pressure on the allergenicity of other protein families (arginine kinases and 985 

transferrins) is not known. 986 

 987 

Light/radiation stability 988 

Along with processing technologies using pressure, there are other novel non-thermal 989 

treatments of great interest in the food industry. Based on the application of light/radiation 990 

to increase the safety, quality and organoleptic characteristics of processed foods, 991 

treatments like gamma-radiation (γ-radiation), high voltage impulses, pulsed electric 992 

fields (PEF), pulsed UV light and microwave are widely used by industry [285-287]. 993 

However, the knowledge about the impact of this type of treatments on the allergenicity 994 

of proteins from animal origin is still very limited (Fig. 1, Table 2). 995 
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In general, the application of treatments with light/radiation (UV, pulsed UV, γ-radiation, 996 

microwave and PEF) seems to reduce the IgE-binding capacity of most proteins from 997 

different families [167,184,191,223,265,272,288-295], although some exceptions have 998 

also been described (Table 2). This is the case of tropomyosins, whose IgE-binding 999 

capacity has been reported to increase or decrease, depending on the dose of γ-radiation 1000 

used (small dosages lead to a small increasing effect, while upper dosages contribute to a 1001 

slight reduction) [296]. Similarly to tropomyosins, the IgE-binding capacity of Gal d 2 1002 

(serpin family) is negatively affected by increasing dosages of γ-radiation, ranging from 1003 

an increase at low levels of radiation to a decrease at higher ones (>10 kGy) 1004 

[147,276,293,297]. A decline in the secretion of IgE and cytokines (IL-4 and IL-5) 1005 

associated with Th2 immune response is pointed out as the main cause for the reduction 1006 

of Gal d 2 allergenicity [186,187]. 1007 

In parvalbumins, treatments based on the application of UV light do not affect their IgE-1008 

binding capacity [190], while PEF induces contradictory outcomes in lipocalins and 1009 

serpins [247,298,299]. The application of PEF (25 kV cm-1 for 60 μs) as a pre-treatment 1010 

greatly increases the IgE-binding capacity of Bos d 5 (lipocalin family) by unfolding the 1011 

structure to a certain degree. Conversely, when the treatment is followed by glycation 1012 

with mannose, it expressively diminished Bos d 5 IgE-binding capacity, by masking the 1013 

conformational epitopes through covalent binding with carbohydrate [247]. When 1014 

submitted to radiation (≥10 kGy) the IgE-binding of Gal d 2 is greatly reduced (even 1015 

abolished) [147,276,293,297], as well as its ability to induce sensitisation in mice allergy 1016 

models [186,187]. The application of low electric field intensity (<25 kV/cm, for 180 μs) 1017 

or for short time (<60 μs, at 35 kV/cm) to Gal d 2 induces gradual intensification in its 1018 

IgG/IgE-binding capacities due to the partial unfolding of the protein and to an increase 1019 

of free thiol content, surface hydrophobicity and UV absorption. However, when 1020 
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increasing the exposure time or the intensity of the electric field, Gal d 2 IgE-binding 1021 

capacity is significantly reduced due to aggregation [298]. 1022 

Concluding remarks: 1023 

• Most protein families are light/radiation labile, with some exceptions (tropomyosins, 1024 

parvalbumins, lipocalins, and serpins). 1025 

• Structural changes induced by light/radiation (unfolding) reduce the IgE-binding 1026 

capacity of proteins from most of the investigated protein families, with some 1027 

exceptions (tropomyosins, lipocalins, and serpins). 1028 

• Structural changes caused by high doses of radiations (unfolding) and long periods 1029 

of exposure (formation of aggregates) contribute to reducing the IgE-binding 1030 

capacities of tropomyosins, lipocalins, and serpins (only exception for Gal d 2, whose 1031 

application of low-intensity electric fields increases its IgE-binding capacity). 1032 

 1033 

Mechanical/chemical stability 1034 

The application of ultrasound or sonication treatments are among the most common 1035 

mechanical processes used by industry, which might include drying, sterilization, enzyme 1036 

inactivation, extraction, filtration, homogenisation, and meat tenderisation [300]. 1037 

Ultrasound or sonication alone is not capable of altering the allergenic potential of animal 1038 

proteins [164,190,223,290,301,302]. However, when combined with other treatments, 1039 

especially thermal processes, like boiling or glycation, the IgE-binding capacity of certain 1040 

proteins is reduced, as reported for tropomyosins, glycoside hydrolase family 22, 1041 

lipocalins, and serpins [174,248,255,301]. 1042 

In addition to the mechanical processes, there are several chemical or enzymatic 1043 

treatments commonly used by the food industry that might include fermentation, acid or 1044 

urea treatments, carboxymethylation, enzymatic hydrolysis, and crosslinking (Fig. 1). 1045 
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Fermentation (chemical modification of sugars to other end-products by the metabolic 1046 

activity of microorganisms, typically in anaerobic conditions) and enzymatic hydrolysis 1047 

(enzymatic crosslinking of proteins using enzymes like transglutaminases, alcalase, 1048 

among others) are the most effective in mitigating, or even eliminating, the allergenicity 1049 

of most allergens from animal origin [138,181,182,189,303-309]. Such treatments are 1050 

often combined with heat to reduce the allergenicity of different proteins, thus leading to 1051 

the production of hypoallergenic foods [309-313]. Both processes, enzymatic hydrolysis, 1052 

and fermentation of foods can induce severe protein modifications, causing the alteration 1053 

or destruction of conformational and linear epitopes and converting highly IgE-reactive 1054 

proteins into small and non-reactive peptides. However, it is important to highlight that 1055 

the efficiency of these treatments is highly dependent on several factors, such as pH, 1056 

temperature, time, the extent of hydrolysis, enzyme-substrate ratio, type of 1057 

microorganism (specific strains), and substrate concentration [287]. 1058 

Protein hydrolysis can be carried out with acids and alkali (chemical hydrolysis), but such 1059 

reactions are normally difficult to control, leading to the formation of products with 1060 

reduced nutritional qualities. Nevertheless, in some cases, they are used by industry for 1061 

food processing. Chemical hydrolysis of tropomyosins has been reported to contribute to 1062 

a great reduction (in some cases, up to 90%) of their IgE-binding capacity, which is 1063 

independent of the type of acid used [267,314]. Treatments with acids also contribute to 1064 

a strong reduction in the IgE-binding capacity of Gal d 3 (transferrin family) and Gal d 2 1065 

(serpin family), but in the case of Gal d 1 (ovomucoid family), its IgE-binding capacity 1066 

was not significantly affected by boiling (10 min) followed by acidic treatment [139,146]. 1067 

Some amino acids (mostly serine residues) of Gal d 2 can naturally suffer some 1068 

conformational modifications during storage, converting Gal d 2 into a more stable 1069 

protein (S-ovalbumin) and contributing to reducing its IgE-binding capacity. The same 1070 
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effect can be obtained when treating Gal d 2 with high pH (~10) and heat (~55ºC) during 1071 

several hours, thus allowing to decrease the IgE-binding capacity of Gal d 2 [315]. In the 1072 

case of Gal d 2, its immunoreactive epitopes are destroyed by the application of heat and 1073 

alkali treatments [211]. 1074 

Concluding remarks: 1075 

• The integrity (intactness) of the proteins is affected by processes that destroy primary 1076 

sequence (fragmentation due to hydrolysis), while mechanical, heat, pressure, and 1077 

light change the protein conformational structure (e.g. unfolding). 1078 

• Changes in protein structure (by combining ultrasound and heat) are seen for 1079 

members of tropomyosins, glycoside hydrolase family 22, lipocalins, and serpins, 1080 

thus reducing their IgE-binding capacity. 1081 

• Changes in protein size (resulting in protein fragmentation, as a consequence of 1082 

fermentation, enzymatic hydrolysis, or treatments with reducing agents) reduce or 1083 

even mitigate the IgE-binding capacity of all animal protein families. 1084 

 1085 

Digestibility and epithelial transport 1086 

The correlation between protein allergenicity and high resistance to pepsin digestion has 1087 

been widely considered as an important parameter related to food allergens. Conversely, 1088 

this correlation fails to explain why relatively well-digested allergens (e.g. some members 1089 

of tropomyosins) are still able to trigger potent clinical symptoms in allergic individuals, 1090 

while stable non-allergens remain non-immunoreactive [316]. When considering that 1091 

digested peptides with an estimated size of 3-5 kDa can induce mast cell degranulation, 1092 

the production of resistant allergen fragments represents an increased allergenic risk. 1093 

Since the uptake of proteins/peptides via the mucosal-associated lymphoid tissue is highly 1094 
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dependent on their shape, polarity, size, 3D structure, and aggregation status, the 1095 

mechanisms mediating this crossing are of major allergological importance [317-319]. 1096 

Several pathways enable the movement of molecules between the lumen and the mucosa, 1097 

which consist of transport through the specialised microfold cells of Peyer's patches and 1098 

isolated lymphoid follicles or across the epithelium, via transcellular (through cells) or 1099 

paracellular (between cells) mechanisms. Therefore, the molecular form (allergen 1100 

properties) and cellular processing of antigens are equally crucial in the elicitation of an 1101 

allergic reaction [319,320]. 1102 

In general, caseins are resistant to gastrointestinal digestion, thus preserving or even 1103 

increasing their immunoreactivity, especially when digested peptides: i) present PTM, as 1104 

phosphorylation and glycosylation, or ii) result from the formation of aggregates with 1105 

whey proteins, whose structures are stabilised by disulphide bridges [241,242,262,263]. 1106 

Parvalbumins, arginine kinases, and transferrins are quite resistant to 1107 

trypsin/chymotrypsin activities, but they seem to be easily digested by pepsin, thus 1108 

contributing to a significantly reduced IgE-binding capacity [223,316,321,322]. 1109 

However, in the case of parvalbumins, the formation of amyloid fibres (polymeric 1110 

structures of partially or completely unfolded protein chains) leads to a strong resistance 1111 

to proteolytic activity at acidic and neutral conditions. The formation of such amyloid 1112 

structures greatly facilitates their passage across the intestinal epithelial barrier, 1113 

increasing their IgE-binding capacity [134,323]. 1114 

After pepsin digestion, the allergenicity of tropomyosins is diminished, as assessed by 1115 

skin prick tests and basophil activation tests, being greatly reduced or eliminated by 1116 

subsequent intestinal digestion [159,188]. However, pepsin sensitivity does not seem to 1117 

be a common trait of all tropomyosins, as it has been demonstrated for Pen m 1 and Lit v 1118 

1, which are rather resistant to pepsin activity [11,324]. Deglycosylated, glycated, or 1119 
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crosslinked forms increase the susceptibility for gastrointestinal digestion, contributing 1120 

to significantly decrease the allergenicity of tropomyosins [157,188,234,235,325]. Gal d 1121 

4 from the glycoside hydroxylase family 22 is resistant to trypsin/chymotrypsin activities, 1122 

but it is partially degraded by pepsin at very low pH (<1.5) [139,326]. Bos d 4 is easily 1123 

destroyed by pepsin [252,277,306,327,328], thus greatly reducing, or even abolishing, 1124 

Bos d 4 IgE-binding capacity. Some IgE‐binding and basophil activation capacities are 1125 

maintained, being explained by the presence of high proportions of intact Gal d 4 that can 1126 

cross the epithelial barrier in an activated state [140,161,326]. Additionally, Gal d 4 may 1127 

contain some linear epitopes, previously hidden in its conformational structure, which 1128 

become accessible after the digestion process, increasing its allergenic potential [161]. 1129 

Bos d 6 (serum albumin family), Bos d 5 (lipocalin family), Gal d 1 (ovomucoid family) 1130 

and Gal d 2 (serpin family) are in part resistant to pepsin activity but susceptible to 1131 

trypsin/chymotrypsin digestion [148,151,329,330]. After complete digestion, the IgE-1132 

binding capacity of Bos d 6 and Bos d 5 is practically abolished [170,331], while Gal d 1 1133 

and Gal d 2 retain some allergenicity, most likely due to the presence of digested peptides 1134 

containing linear IgE-binding epitopes [140,149,166,252,332,333]. The thermal 1135 

processing of Gal d 1 and Gal d 2 induces small irreversible changes in their secondary 1136 

structures, which facilitate their gastrointestinal digestibility, contributing to the reduced 1137 

IgE-binding and mast cell degranulation capacities [166,252]. Differences in the 1138 

immunogenic properties of heat-digested fragments seem to promote shifts from Th2 to 1139 

Th1-type responses, leading to a significant reduction in allergenicity [183]. Additionally, 1140 

thermal processing before gastrointestinal digestion of Gal d 1 and Gal d 2 prevent their 1141 

transport across human intestinal epithelial cells in a state capable of inducing basophil 1142 

or T-cell activation, thus reducing their allergenicity [166]. 1143 
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The formation of Bos d 5 aggregates during the glycation process enhances the resistance 1144 

to proteolytic digestion, changing the mechanism of transport across the intestinal 1145 

epithelium. On one side, Bos d 5 aggregates are more prone to endolysosomal 1146 

degradation, inducing lower effector response, and reduced basophil activation. On the 1147 

other side, these aggregates are redirected to Peyer’s patches, promoting a significantly 1148 

higher Th2 response than the native allergen, thus increasing its allergenicity 1149 

[176,192,246]. 1150 

Concluding remarks: 1151 

• Most animal allergens are pepsin-sensitive, while caseins, serum albumins, 1152 

lipocalins, and serpins are considered pepsin-resistant. 1153 

• Most animal allergens present reduced IgE-binding capacity after complete 1154 

digestion, with some exceptions: 1155 

o In caseins, the presence of PTM or formation of aggregates in digested peptides 1156 

preserved/increased immunoreactivity. 1157 

o In parvalbumins, the formation of amyloid fibres (facilitate crossing epithelium 1158 

barrier) increase their IgE-binding capacity. 1159 

o In transferrins, the partial protective effect of matrix components (facilitate 1160 

crossing epithelium barrier in intact forms) preserve their IgE-binding capacity. 1161 

o In lipocalins, the formation of aggregates hampers digestion, changing the 1162 

mechanism of transport across the epithelium barrier, increasing its allergenicity. 1163 

 1164 

Lipid interactions 1165 

Since food allergens are not likely to be presented to the human immune system in their 1166 

natural state (native molecules), it is important to consider the immunomodulatory effects 1167 

of the surrounding components (e.g. lipids) within the protein source (e.g. food matrix) 1168 
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[334,335]. Although the association between allergens and lipids is not yet clearly 1169 

understood, some studies seem to indicate that lipids intervene in the early stages of 1170 

allergic sensitisation by interacting with numerous components of the innate immune 1171 

system. Additionally, lipids are also known to protect allergens from the enzymatic 1172 

activity during digestion and to facilitate allergen passage through the epithelial barrier 1173 

[334]. 1174 

The effect of the interaction of lipids on the allergenicity of proteins was evaluated for 1175 

some members of specific families, namely tropomyosins, parvalbumins, glycoside 1176 

hydrolase family 22, lipocalins, and serpins (Table 2). In general, the presence of lipids 1177 

contributes to preserving the IgE-binding capacity of proteins from parvalbumins, 1178 

glycoside hydrolase family 22, lipocalins, and serpins [140,148,161,326,336]. In most 1179 

cases, lipids increase the resistance of proteins towards proteolytic activity during 1180 

digestion (often protecting the allergen native structure) [161,326,336] and facilitate their 1181 

passage through the intestinal lumen as intact molecules [337,338]. Even when lipids 1182 

enhance the proteolysis during digestion, as seems to be the case of Gal d 4 (glycoside 1183 

hydrolase family 22) and Gal d 2 (serpin family), the IgE-binding capacity of these 1184 

allergens remain unaltered [140,148]. 1185 

Contrarily to the referred proteins, tropomyosins can be oxidised by acrolein and 1186 

malondialdehyde (compounds resulting from lipid peroxidation during shrimp 1187 

conservation), modifying their digestibility, as well as their IgE-binding properties. Met 1188 

e 1 (tropomyosin) oxidation by malondialdehyde can enhance the resistance to pepsin 1189 

digestion, while oxidation by acrolein produces structural changes, which in both cases 1190 

significantly reduce the IgE-binding capacity of tropomyosins [325,339]. The release of 1191 

inflammatory cytokines and mediators from activated RBL‐2H3 cells was also strongly 1192 



50 

influenced by Met e 1 crosslinked with malondialdehyde in a dose-dependent manner, 1193 

thus confirming a reduction in its allergenicity [158]. 1194 

Concluding remarks: 1195 

• Lipids have a protective effect on the allergen stability during digestion for 1196 

parvalbumins, glycoside hydrolase family 22, lipocalins, and serpins, preserving 1197 

their IgE-binding capacity. 1198 

• Lipid oxidation (by acrolein and malondialdehyde) of tropomyosins during 1199 

conservation, increased their susceptibility to proteolytic digestion and reduced their 1200 

allergenicity. 1201 

 1202 

Can Physicochemical Properties Shape Allergenicity? 1203 

After evaluating the effect of the selected set of physicochemical parameters on the 1204 

allergenicity of distinct animal protein families, it has become clear that the importance 1205 

of each parameter is quite different depending on the protein family or even on the 1206 

allergen itself (Table 2-4). Independently on the effect that each parameter has on the IgE-1207 

binding capacity/allergenic potential of a specific protein (Table 4), they all converge to 1208 

a common outcome, which concerns protein integrity. 1209 

Within the studied animal protein families, PTM during protein synthesis occurs with 1210 

high frequency. Glycosylation is the most common PTM, followed by phosphorylation 1211 

and acetylation. However, not every glycosylated protein seems to be correlated with 1212 

increased allergenicity. In fact, among the families of animal proteins, glycosylation is 1213 

common (e.g. tropomyosins, arginine kinases, caseins, serpins), but it cannot be 1214 

considered as an important parameter for allergenicity, since glycosylated proteins are 1215 

often described as less IgE-reactive than their deglycosylated counterparts (e.g. 1216 

tropomyosins). 1217 
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Phosphorylation is well correlated with increased IgE-binding capacity of caseins and 1218 

serpins, but it is not important or described for other animal protein families. Therefore, 1219 

PTM could be involved in allergenicity but it is not necessary to induce an allergic 1220 

reaction, meaning that not all allergens have PTM (phosphorylation or glycosylation). 1221 

Contradicting the generalised concept that allergens have globular and compact 1222 

structures, there is a huge number of potent animal allergens (tropomyosins, lipocalins, 1223 

ovomucoids, and serpins) presenting a high level of structural organisation (quaternary 1224 

conformations). The decrease in the IgE-binding capacity of several allergens can be 1225 

correlated with the loss of high ordered structures (3D and 4D structures), specifically 1226 

because most of the conformational epitopes are destroyed. However, there are several 1227 

examples of allergenic proteins that preserve or even increase their IgE-binding capacity 1228 

upon loss of 2D structures or rupture of disulphide bonds (e.g. tropomyosins, caseins), as 1229 

a consequence of unmasking hidden linear epitopes. This means that there is no 1230 

straightforward correlation between the loss of 2D structures/disruptions of disulphide 1231 

bonds and the allergenic potential of different proteins, due to conflicting effects for 1232 

different animal protein families, or even for the same allergen. 1233 

Protein stability towards heat is normally associated with potent allergens since they tend 1234 

to return to native states upon cooling to lower temperatures. However, like in the case of 1235 

plant allergens, this physicochemical property also fails to explain potent heat-labile 1236 

animal allergens (e.g. arginine kinases, lipocalins). Protein stability towards 1237 

light/radiation is similar to heat stability, normally because radiation often results in the 1238 

raising of temperature, contributing to increasing the degree of protein unfolding. 1239 

Most of the available literature considers pressure-treated proteins as of lower 1240 

allergenicity, an interpretation that is based on data from IgE-binding studies. With no 1241 

clinical studies available and only a few studies based on mice allergy models, indicating 1242 
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a slight reduction of allergenicity in proteins (tropomyosins, parvalbumins, and serpins) 1243 

combining pressure and heat [174,175,190], the impact of pressure in allergenicity might 1244 

be overestimated. The formation of aggregates has also a conflicting effect on allergen 1245 

IgE-binding capacity, since in their aggregated forms new conformational epitopes may 1246 

become accessible (e.g. tropomyosins, parvalbumins, glycoside hydrolase family 22, 1247 

arginine kinases and lipocalins). 1248 

Protein stability towards chemical and enzymatic processes is well correlated with a 1249 

significant decrease, or even mitigation, of the IgE-binding capacity of practically all 1250 

animal allergens [138,189], mostly due to the extensive fragmentation of protein primary 1251 

structure, with subsequent destruction of IgE-binding epitopes. The high resistance of 1252 

allergens towards the digestion process is also a generalised concept, but it cannot be 1253 

interpreted straightforward. In fact, it fails to explain several potent pepsin-sensitive 1254 

animal allergens, such are the cases of some members of tropomyosins and parvalbumins. 1255 

The protective effects of lipids towards allergen digestion are well correlated with the 1256 

preservation of the IgE-binding capacity of animal proteins, as demonstrated for 1257 

glycoside hydrolase family 22, lipocalins, and serpins.  1258 

 1259 

Conclusions 1260 

Some families encompass many proteins, but with only one or two acting as potent 1261 

allergens, while others are comprised of a large number of important allergens, which 1262 

confirms the existence of unknown factors that render protein to be allergenic. By the end 1263 

of this analysis, it was possible to conclude that there are still several gaps concerning the 1264 

impact of different physicochemical parameters on animal allergens. One of those is 1265 

related to the fact that numerous allergens have not yet been the target of intensive 1266 
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research, which hampers to determine the real effect of different properties on protein 1267 

allergenicity. 1268 

At this point, there is a great number of techniques (mostly by indirect means) that can 1269 

be used to test the influence of those physicochemical properties, but it is also true that 1270 

most of those are highly dependent on the use of sera from sensitised/allergic patients. 1271 

Along with the difficulties of most research groups to have access to sera, it is also crucial 1272 

to refer that the quality/composition of sera can be highly variable according to several 1273 

factors (e.g. geographical origin, age, patients’ sex, among others). Data from 1274 

interlaboratory analysis (considering that similar allergens would be analysed using 1275 

similar conditions) is practically inexistent, but which could help clarify if most of the 1276 

contradictory effects observed for specific allergens are real or if they result from 1277 

cumulative differences in protocols used by distinct research teams. Another aspect that 1278 

has not been investigated is the comparison of the behaviour of non-allergens with 1279 

allergens towards the same physicochemical parameters (only very few exceptions [11]). 1280 

Comparing data retrieved from methods simulating sensitisation (IgE-binding capacity) 1281 

with elicitation (clinical symptoms) phases is not ideal. However, considering the limited 1282 

information for different allergens within the same family or across families, this 1283 

comparison was performed to provide a more holistic picture of the impact of different 1284 

physicochemical properties on animal protein allergenicity. 1285 

Despite the gaps herein identified, we were able to draw some important conclusions 1286 

regarding specific physicochemical properties and to demystify some preconceived 1287 

concepts. Glycosylation is not a universal trait of allergens, as well as heat stability and 1288 

proteolytic resistance are not always a synonym of increased protein allergenicity. Like 1289 

in the case of plant allergens, the body of evidence confirms that several physicochemical 1290 

properties may shape the allergenicity of animal proteins, although at different extents. 1291 
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Moreover, the level at which each parameter may impact protein allergenicity is not the 1292 

same among plant or animal allergens. 1293 

Properties affecting protein integrity and composition can be correlated with the 1294 

elicitation capacity of certain allergens, but what renders a protein to be allergenic in the 1295 

first place and which properties might impact sensitisation are still quite unclear. The 1296 

integration of all the factors (proprieties) that link large protein families containing 1297 

numerous allergenic proteins with protein families with only one or two allergens (data 1298 

integration by multivariate models), could give a broader picture of how the complete set 1299 

of properties impact protein allergenicity (Fig. 2), instead of looking at individual proteins 1300 

or events. It would also clarify why a protein behaves as an allergen in some people, while 1301 

for others is innocuous, thus possibly paving the way for novel therapeutic concepts.  1302 
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Table 1. Data on the composition and structure of proteins from the most important animal allergen families.  2359 

  Tropomyosins Parvalbumins Arginine kinases Caseins Serum 

albumins 

Glycoside hydrolase 

family 22 

Transferrins Lipocalins Ovomucoids Serpins 

Size (aa) ~284 ~109 355-357 190-224 607-608 129 (Gal d 4) 

123 (Bos d 4) 

686-690 172 210 386 

MW (kDa) 34-38 11-12 40-45 20-30 60-69 ~14 78-80 17-25 22.5 44 

Biological 

function 

Structural 

 

Structural 

 

Enzymatic/ 

Regulatory 

Regulatory 

 

Transport Defence (Gal d 4) 

Structural (Bos d 4) 

Transport Transport Regulatory Regulatory 

Reserve 

Protein structure 4D 

Homo-
/heterodimer 

(coiled-coil) 

3D 

Globular 
monomer 

3D 

Monomer 

Typically 2D 

Casein micelles 
(4D) 

3D 

Globular 
monomer 

3D 

Monomer 

3D 

Monomer 

4D 

Globular 
homodimer 

4D 

(3 globular native 
configurations) 

4D 

Homodimer 
 

Crystal 

structures 

(Method: X-ray 

diffraction)  

There are 

structures 
experimentally 

determined at PDB 

(e.g. chicken 
tropomyosin), but 

none is classified 

as an allergen. 

 

 
 

 

 

 

 

 
Partial 

structure 

 

 
 

 

 

 
 

There are 

structures 
experimentally 

determined at 

PDB (e.g. turkey 
ovomucoid), but 

none is classified 

as an allergen. 

 

 

Example of an 

allergen (source)  

Shrimp Pen m 1 Cod Gad m 1 Shrimp Lit v 2 Cow’s Bos d 10 Cow’s Bos d 6 Chicken Gal d 4 Chicken Gal d 3 Cow’s Bos d 5 Chicken Gal d 1 Chicken Gal d 2 

PDB accession 

number 

NR 2MBX 4AM1 6FS4 3V03 2LYM 1N04 2Q2M NR 1OVA 

MW, molecular weight; aa, amino acid; NR, not reported; LMW, low molecular weight; HMW, high molecular weight; PDB, Protein Data Bank, https://www.rcsb.org/.2360 

https://www.rcsb.org/
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Table 2. Summary of the physicochemical parameters and their effect on the allergenicity of different animal protein families 2361 

 
Tropomyosins Parvalbumins Arginine Kinase Caseins Serum albumins Glycoside hydrolase 

family 22 

Transferrin Lipocalins Ovomucoids Serpins 

Protein 

structure 

→loss of 4D ↓,→loss of 3D, 

→molten globule 
state, 

↓Ca2+/Mg2+ 
depletion 

↓loss of 3D →loss 2D, 

→urea treatment, 

↓modification by 
crosslinking 

→loss of 3D/2D, 

↓β-ME treatment, 

↓loss of S-S, 

↓modification by 
crosslinking 

↓loss of 3D, 

↓loss of S-S, 

↑urea treatment, 

↑molten globule state 

↑exposure of 
hydrophobic groups 

↑molten globule state, 

↑urea treatment, 

↓loss of S-S 

↑partial unfolding, 

↓loss of 3D/2D 

↓loss of S-S ↓loss of 4D/3D 

PTM →,↓,↑ 

glycosylation 

↑acetylation →glycosylation ↑phosphorylation 

↑glycosylation 

NR NR NR NR →,↑glycosylation ↑phosphorylation 

Ligand-

binding 

NR ↑ Ca2+ or Mg2+ NR →Ca2+ NR NR →,↓iron ↓iron, retinoic acid NR NR 

Glycation ↑,↓ ↑,↓ ↓ ↑,↓ NR ↓ NR ↑,↓ ↑ ↑,↓ 

Aggregation ↑ ↑ ↑,↓ ↑,↓ ↓ ↑,↓ NR ↑,↓ ↓ ↓ 

Heat stability Heat stable: 

↑boiling, frying, 
roasting 

 

Heat-stable: 

→ boiling, 

→ autoclaving, 

↓canning 

 

Heat-labile: 

↓ boiling, 

↓ pasteurisation 

Heat-stable: 

→boiling, baking 

Heat-labile/ 

stable?: 

↓,→boiling, 

↓,→broiling, 

↓autoclaving, 

Heat-labile: 

↓boiling, frying, 
baking, 

→pasteurisation 

Heat-labile: 

↑low T, 

↓heat (T>80 ºC, 

boiling, frying, baking) 

→pasteurisation 

Heat-labile: 

↓boiling, 

→,↑heating 

(T 50-90ºC), 

→pasteurisation 

Heat-stable: 

→,↓boiling or 
T>90ºC, 

→boiling + acid, 

↓heat + wheat 
proteins 

Heat-labile: 

↓heat (T>90ºC), 

→heat (T>90ºC for <30 
min), 

↓heat + wheat proteins, 

↓heat +acid 

Pressure 

stability 

Pressure-labile: 

↓HPP, HPS 

↓HHP + heat 

Pressure-labile: 

→,↓pressure + 
heat 

 

NR Pressure-
labile/stable? 

↓HHP, HPP 

↑ICPD (pressure 
+ heat 

Pressure stable: 

→HPP 

Pressure-labile/stable? 

→,↑HHP, HPP, 

→HP + ultrasound, 

↓ICPD (pressure + 
heat), 

↓HP+ heat+ultrasound 

NR Pressure-
labile/stable? 

↓,↑HPP, HHP, 

↑HPP + heat 

(T 40-50ºC), 

↓HPP + heat 

(T>60ºC), 

↓HP + glycation, 

↓HP + enzymatic 

hydrolysis 

Pressure-stable? 

↑HPP 

Pressure-stable? 

→HPP 

Light/ 

radiation 

stability 

Light-
labile/stable? 

↓PUV,  

↑low radiation 
dose, 

Light-stable: 

→UV light, 

 

Light-labile: 

↓microwave, 

 

Light-labile: 

↓UV-C, far-IR 

↑low radiation 
dose, 

Light-labile: 

↓γ-radiation 

(> 3 kGy), 

↓microwave 

Light-labile: 

↓UV treatment, 

↓γ-radiation 

NR Light-labile/stable? 

↑PEF, 

↓PEF + glycation, 

↓microwave, 

Light-labile: 

↓γ-radiation (>10 
kGy), 

↓γ-radiation + heat 

Light-labile/stable? 

↓γ-radiation (>10 kGy) 

↑low EF, 

↓high EF 
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↓high radiation 
dose 

↓high radiation 
dose) 

↑low radiation 
dose, 

↓high radiation 
dose 

 

Mechanical/ 

Chemical 

stability 

↓ultrasound + 
boiling, 

↓chemical 
hydrolysis, 

↓fermentation, 

↓enzymatic 

crosslinking, but 
preserving 
reactive epitopes 

→ultrasound, 

→sonication, 

↓enzymatic 
hydrolysis/ 

crosslinking 

→ultrasound, 

↓enzymatic 
hydrolysis/ 

crosslinking 

 

→ultrasound, 

↓enzymatic 
hydrolysis/ 

crosslinking, 

↓fermentation 

→sonication, 

↓enzymatic 
hydrolysis/ 

crosslinking 

 

→ultrasound, 

↓ultrasound + heat, 

↓carboxymethylation, 

↓enzymatic hydrolysis, 

↓fermentation 

↓fermentation + heat 

↓ carboxymethylation, 

↓chemical hydrolysis, 

↓fermentation 

→ultrasound, 

↓ultrasound + 
glycation, 

→,↓fermentation, 

↓fermentation + 

heat, 

↓enzymatic 

hydrolysis, an 

effect dependent on 
the enzyme 

↓carboxymethylation, 

→urea-treatment 

 

↑ultrasound, 

→carboxymethylation, 

→urea-treatment,  

↓ultrasound + 
glycation, 

↓enzymatic hydrolysis/ 

crosslinking 

 

Digestibility Pepsin-sensitive? 

→,↓after pepsin, 

→,↓after trypsin, 

↓after digestion 

deglycosylated 
TM, 

↓after digestion 

of glycated TM 

↓after digestion 
of lipid-
peroxidised TM 

Pepsin-sensitive: 

↓after pepsin, 

→after 
pancreatic 
digestion, 

→,↓after 

digestion of 
glycated PV 

 

Pepsin-sensitive: 

↓after pepsin, 

→resistant to 
trypsin/ 

pancreatic 
digestion 

Pepsin-resistant: 

→,↓after pepsin 

of glycated 
products 

→,↓after trypsin 
or chymotrypsin, 

↓complete 
digestion, 

↑peptides with 
PTM 

Pepsin-resistant: 

→after pepsin 60 
min, 

↓after complete 

digestion, more 

evident for 
irradiated Sus s 1 

Pepsin resistant: 

(Gal d 4) 

↓after pepsin pH 1.5, 
some proteins remain 
intact, 

→partially resistant to 
trypsin/chymotrypsin, 

 

Pepsin-sensitive:  

(Bos d 4) 

↓after pepsin 

Pepsin-sensitive: 

↓after pepsin, 

→protective effect of 
matrix components 

Pepsin-resistant: 

→after pepsin, 

↓after complete 
digestion, but 

preserving reactive 
digested peptides, 

↓after trypsin 

digestion of 

fermented Bos d 5 

Pepsin-sensitive: 

↓after pepsin until pH 
2.5, 

↓after complete 

digestion, some 

peptides remain 
reactive, 

→protective effect of 

matrix components 

Pepsin-resistant: 

→after pepsin, 

↓after complete 
digestion, some 

immunoreactive 
peptides, 

↓after pepsin at HPP, 

some digested peptides 

conserve reactivity, 

→protective effect of 
matrix components 

Epithelial 

transport 

NR ↑amyloid 

structures, 
aggregates 

NR NR NR →intact proteins →intact proteins ↓,↑aggregates ↓heated protein ↓heated protein 

Lipid 

interaction 

↓ ↑ NR NR NR → NR → NR → 

β-ME, β-mercaptoethanol; HPP, high-pressure processing; HPS, high-pressure steaming, ICPD, instant controlled pressure drop; → maintain IgE-binding capacity; ↑ increase IgE-binding capacity; ↓ decrease IgE-binding 2362 
capacity; ↑↓ contradictory data about the effect on IgE-binding capacity; NR, not reported; PEF, pulsed electric fields; PUV, pulsed ultraviolet, PV, parvalbumins; S-S, disulphide bond; 2D, secondary structure; 3D, 2363 
tertiary structure; 4D, quaternary structure; TM, tropomyosin, T, temperature. 2364 
 2365 
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Table 3. Summary of the assays used to assess the effect of physicochemical parameters on the allergenicity of proteins from animal food families. 

  Specific serum screening Cellular in vitro or ex vivo assays In vivo assays 

Families 
Immunoblot/ 

dot blot 
ELISA 

RAST/EAST/ 

ImmunoCAP 

Basophil activation 

test 

RBL mediator 

release assay 
T-cell proliferation 

Murine IgE 

response 

Murine 

anaphylaxis 

Human Skin 

prick tests* 

Human Food 

challenges** 

Tropomyosins √  √ NR √ √ √ √  √ √ NR 

Parvalbumins √ √ √ √ √ NR √ NR √ NR 

Arginine kinase √ √ NR NR √ √ √ √ NR NR 

Caseins √ √ √ √ √ √ NR NR √ √ 

Serum albumins √ √ √ NR NR √ NR √ √ √ 

Glycoside Hydrolase √ √ NR √ √ √ √ √ √ √ 

Transferrins √ √ NR NR NR √ √ √ NR NR 

Lipocalins √ √ NR √ √ √ √ √ √ √ 

Ovomucoids √ √ NR √ √ √ √ √ NR √ 

Serpins √ √ NR √ √ √ √ √ NR √ 

IL, interleukins; IFN, Interferons; RAST, radioallergosorbent test; EAST, enzyme allergosorbent test; RBL, rat basophilic leukaemia; ELISA, enzyme‐linked immunosorbent assay; √, confirmation of tests performed as 

reported on literature; NR, no evidence found in the literature; *, Human SPT were performed mainly with pure protein, although pure food extracts were also used. **, Food challenges are normally performed using pure 

food extracts or entire food (either alone or hidden within a prepared matrix), respectively. 
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Table 4. Main conclusions about the adequacy of each physicochemical property as potentially shaping allergenicity. 

 Impact on IgE-binding capacity Supporting evidence/Main concerns 

ABUNDANCE Low Low abundant as well as high abundant proteins are known as potent allergens, e.g. tropomyosins (low abundant), caseins (high abundant). 

BIOLOGICAL FUNCTION High Potent allergens display biological functions as storage, regulation, transport, and defence. 

PTM 

Glycosylation Low Contradictory effects are found for potent allergens. Information is limited to tropomyosins, arginine kinases, caseins, and ovomucoids. 

Acetylation Limited Increase the IgE-binding capacity of parvalbumins. Information limited to parvalbumins 

Phosphorylation Limited Phosphorylation increases IgE-binding capacity. Information limited to caseins and serpins 

LIPID-BINDING Limited Reduces allergenicity. Information is limited to Bos d 5 (lipocalins). 

LIGAND-BINDING Low Contradictory effects are found for different potent allergens. Information is limited to parvalbumins, caseins, transferrins, and lipocalins. 

PROTEIN STRUCTURE 

Loss of 2D Low Contradictory effects. Loss of structural stability decrease (destruction of conformational epitopes) or maintain/increase (unmasking hidden linear 

epitopes) IgE-binding capacity. 

Loss of S-S bonds Low Contradictory effects. Loss of structural stability decrease (destruction of conformational epitopes) or maintain/increase (unmasking hidden linear 

epitopes) IgE-binding capacity. 

GLYCATION Low or inconclusive Chemical changes (formation of advanced glycation products) can decrease, maintain, or increase IgE-binding capacity (depending on protein 

family or within the same family). Data missing for transferrins and serum albumins. 

AGGREGATION Low or inconclusive Structural changes (formation of aggregates and potentially new conformational epitopes) can decrease, maintain, or increase IgE-binding capacity. 

Data missing for transferrins. 

HEAT STABILITY Low Heat stable allergens are potent allergens. Fails to explain potent heat-labile allergens (e.g. arginine kinase, lipocalins) 

PRESSURE STABILITY Low Pressure alone has a limited effect on allergens, but in vivo evidence is needed. Maintain protein integrity. Data missing for arginine kinases and 

transferrins. 

LIGHT/RADIATION 
STABILITY 

High Light/radiation stable proteins are potent allergens. High doses of radiation decrease IgE-binding capacity (promotes unfolding). Data missing for 
transferrins. 

MECHANICAL STABILITY Low Most allergens are stable to mechanical processing, preserving their IgE-binding capacity. Maintain protein integrity. Data missing for caseins, 

transferrins, and ovomucoids. 

CHEMICAL STABILITY 

Changes in protein structure High Reduce the IgE-binding capacity. 

Changes in protein integrity 
(fragmentation) 

High Reduce/mitigate the IgE-binding capacity. Loss of protein primary structure. 

DIGESTIBILITY 

Pepsin resistance Low or inconclusive Fails to explain potent pepsin-labile allergens (e.g. some members of tropomyosins) 



80 

Trypsin/chymotrypsin 

resistance 

High Most allergens are labile to trypsin/chymotrypsin activities. 

Lipid interaction High Presence of lipids protects allergens from proteolysis. Maintain protein integrity. 

 



81 

Figure captions 

Fig. 1. List of food processing technologies analysed for each parameter. 

Fig. 2. Decision tree interconnecting different physicochemical parameters and their 

influence for evaluating a protein allergenicity 

 

 


