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Automatic term extraction (ATE) is an important task within natural lan-
guage processing, both separately, and as a preprocessing step for other
tasks. In recent years, research has moved far beyond the traditional hybrid
approach where candidate terms are extracted based on part-of-speech pat-
terns and filtered and sorted with statistical termhood and unithood mea-
sures. While there has been an explosion of different types of features and
algorithms, including machine learning methodologies, some of the funda-
mental problems remain unsolved, such as the ambiguous nature of the
concept “term”. This has been a hurdle in the creation of data for ATE,
meaning that datasets for both training and testing are scarce, and system
evaluations are often limited and rarely cover multiple languages and
domains. The ACTER Annotated Corpora for Term Extraction Research
contain manual term annotations in four domains and three languages and
have been used to investigate a supervised machine learning approach for
ATE, using a binary random forest classifier with multiple types of features.
The resulting system (HAMLET Hybrid Adaptable Machine Learning
approach to Extract Terminology) provides detailed insights into its
strengths and weaknesses. It highlights a certain unpredictability as an
important drawback of machine learning methodologies, but also shows
how the system appears to have learnt a robust definition of terms, produc-
ing results that are state-of-the-art, and contain few errors that are not (part
of ) terms in any way. Both the amount and the relevance of the training
data have a substantial effect on results, and by varying the training data, it
appears to be possible to adapt the system to various desired outputs, e.g.,
different types of terms. While certain issues remain difficult – such as the
extraction of rare terms and multiword terms – this study shows how super-
vised machine learning is a promising methodology for ATE.
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1. Introduction

Automatic term extraction (ATE) attempts to automatically discover terms in col-
lections of domain-specific texts, where terms can be described as the specialised
vocabulary of that domain. Since manual term extraction is a time- and effort-
consuming task, ATE has been a popular field of research within natural language
processing (NLP). Extracted terms can be used for a multitude of applications,
such as ontology construction and enrichment (Durán-Muñoz 2019), machine
translation (Wolf et al. 2011), and sentiment analysis (Mayorov et al. 2015). Despite
the importance of terms and the amount of research about ATE, identifying terms
remains a difficult and largely subjective task. Three often-cited and strongly
related hurdles are the lack of a clear distinction between terms and general lan-
guage, the varying characteristics of terms for different domains, languages, and
applications, and the time- and effort-consuming nature of manual term extrac-
tion for the creation of gold standard data. Consequently, annotated datasets are
scarce, often limited, and rarely cover multiple languages and domains. Combin-
ing multiple datasets is problematic since each dataset has a different annotation
protocol. However, the rise of machine learning methodologies means that good
datasets are becoming increasingly important, both as training, and as evaluation
data. The ACTER dataset (Annotated Corpora for Term Extraction Research)
(Rigouts Terryn et al., 2019; Rigouts Terryn et al., 2020) was created with these
problems in mind and covers multiple languages and domains. Manual annota-
tions are made with four different labels, and both the dataset itself and the anno-
tation guidelines are freely available online. These characteristics make ACTER
an especially useful resource for research into machine learning methodologies
for ATE, as demonstrated in the current project.

Based on ACTER, HAMLET has been developed, a Hybrid Adaptable
Machine Learning approach to Extract Terminology. This system is hybrid, in
the sense that it follows the traditional hybrid methodology for ATE and com-
bines both linguistic and statistical clues to detect terminology. A list of unique
candidate terms (CTs) is extracted based on part-of-speech (POS) patterns and
this is list is further filtered and sorted based on other information, including sta-
tistical features, such as termhood and unithood measures (Kageura and Umino
1996). In contrast to the traditional hybrid approach, the HAMLET methodology
is adapted to fit a supervised machine learning perspective. Instead of a single
or very limited list of statistical features with manually set thresholds, dozens of
features of various kinds are calculated and automatically combined using super-
vised machine learning. The aim of this research was not to build the ATE system
with the highest possible f1-scores, but rather to explore the potential of super-
vised machine learning for ATE in more detail, since “to what extent the cur-
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rent machine learning approach can deal with issues in terminology extraction is
yet to be seen” (Kageura and Marshman 2019). Therefore, this contribution will
focus on the strengths and weaknesses of the methodology and the impact of the
various components. How important is domain-specific training data? Can train-
ing data from different languages be combined and what is the role of the vol-
ume of training data? How does the methodology perform on the different term
types and how do terms and Named Entities relate in this context? Which are the
most common errors and, finally, how do the different features contribute to the
results?

Section 2 starts with an overview of the state-of-the-art of ATE and is followed
by Section 3 on the ACTER dataset. Section 4 is dedicated to the methodology
and the experiments. It discusses the experimental setup, the results per corpus
and the impact of various factors on these results. Section 5 presents a more
detailed analysis and discusses the impact of the different types of annotations
and features. The paper concludes with a discussion and ideas for future research.

2. Related research

Traditionally, ATE methodologies have been categorised into three different
types: linguistic, statistical, and hybrid. Linguistic systems rely on information
from the linguistic preprocessing of texts, using POS tagging and, occasionally,
more advanced syntactic chunking or parsing. Statistical systems depend on fre-
quencies to calculate termhood and unithood measures (Kageura and Umino
1996), often using a general language reference corpus for comparison. Hybrid
systems combine both strategies by selecting CTs using the linguistic method and
sorting and filtering this list with statistical measures. These hybrid systems have
long set the tone for ATE research and still obtain state-of-the-art performance,
provided the language is well-resourced enough that reference corpora and POS
tagging are available. Many current state-of-the-art systems still maintain some
variation of this methodology (Drouin 2003; Kessler, Béchet, and Berio 2019;
Kosa et al. 2020; Macken, Lefever, and Hoste 2013; Šajatović et al. 2019).

However, in recent years, research into ATE has outgrown this linguistic/sta-
tistical/hybrid typology. Gao and Yuan (2019) propose a typology of five, calling
the three original categories “rule-based”, “statistical”, and “hybrid”, and adding
“machine-learning based” and “deep-learning based”. While it is true that the
original typology is due for an update, their suggestion may not be ideal, in the
sense that “deep learning” is technically a type of “machine learning”, which is
considered the opposite of “rule-based”. Moreover, it combines two characteris-
tics into a single methodology (the type of features, e.g., linguistic vs. statistical,
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and the type of algorithm, i.e., rule-based vs. machine learning). Furthermore, the
variation in methodologies has increased to such an extent, that the fundamen-
tal differences can no longer be captured in 3 or 5 categories. Nevertheless, it can
still be valuable to provide a theoretical framework to identify different method-
ologies. Consequently, we suggest a different approach to describe ATE method-
ologies in a clear and comprehensive way, while still leaving room for all possible
variation in such a productive field of research.

To categorise methodologies for ATE, four fundamental aspects were identi-
fied in which current methodologies for ATE differ. Rather than trying to fit all
methodologies into a single categorisation, we propose defining the methodolo-
gies according to the following four aspects, which are explained in more detail
below:

1. Candidate term selection
2. Algorithm
3. Features
4. Term variation

Candidate term selection (1) refers to the preprocessing step of ATE where it is
decided which lexical units are to be considered as potential terms. As mentioned,
in the traditional, hybrid methodology, this would be done based on a predefined
list of POS patterns, as with the TermoStat (Drouin 2003) and TExSIS (Macken,
Lefever, and Hoste 2013) systems. Rather than starting from a predefined list of
POS patterns, the POS patterns can also be derived from training data, as was
done in the work of Patry and Langlais (2005), who trained a POS-based lan-
guage model to determine appropriate POS patterns for terms. Another strategy is
looking at n-grams (any sequence of n tokens), regardless of POS. This approach
was tested, among others, by Wang et al. (2016). A third approach is sequence
labelling, where, rather than extracting a flat list of CTs, each token in the text
is considered sequentially and in relation to the surrounding tokens, for instance
with IOB-labelling (where each token is either Inside, or Outside of a term, or
the Beginning of a term) or some variation thereof (Kucza et al. 2018; McCrae
and Doyle 2019). Most approaches fit into one of these three categories relatively
easily, though there may be some exceptions. For instance, Gao and Yuan (2019)
use a sequential approach with deep learning and, rather than traditional IOB-
labelling, they work with all possible term spans in each sentence, with spans up
to a maximum term length k, where k must be smaller than or equal to the sen-
tence length. This allows the detection of nested terms with a sequential approach.
This could be marked as a hybrid of the second and third categories proposed for
the CT selection aspect: a sequence labelling approach with n-grams.
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The algorithm (2) can easily be split into rule-based and machine learning
methodologies. However, especially in the case of machine learning methodolo-
gies, many more distinctions can be made, e.g., supervised vs. semi-supervised vs.
unsupervised. An example of an unsupervised deep learning approach is the work
of Shah et al. (2019), who use statistical termhood and unithood features to find
the most likely CTs, and then find similar terms through a siamese neural network
with word embeddings. We refer to their work for more information about super-
vised vs. unsupervised methodologies for ATE. Machine learning algorithms can,
of course, also be divided according to the learner. Many different kinds have
already been used for ATE, e.g., logistic regression (Bolshakova, Loukachevitch,
and Nokel 2013; Fedorenko, Astrakhantsev, and Turdakov 2013), the ROGER
evolutionary algorithm (Azé et al. 2005), rule induction with RIPPER (Foo and
Merkel 2010), CRF++ (Judea, Schütze, and Brügmann 2014), decision trees
(Karan, Snajder, and Dalbelo Basic, Bojana 2012), support-vector machines
(Ljubešić, Erjavec, and Fišer 2018), AdaBoost (Patry and Langlais 2005), k-nearest
neighbours (Qasemizadeh and Handschuh 2014), and many types of neural net-
works (Amjadian et al. 2018; Hätty and Schulte im Walde 2018; Kucza et al. 2018;
Shah, Sarath, and Shreedhar 2019; Wang, Liu, and McDonald 2016).

For the third aspect, features (3), we do not attempt an exhaustive classi-
fication, since the variety and creativity of features that are invented to detect
terms is too great. However, we do propose a number of categories for some
of the most common types of features, specifying that methodologies may com-
bine any number of these types of features. The first two categories have already
been mentioned: linguistic (POS patterns, parsing, stopwords, etc.) and statistical
(termhood and unithood measures). Related to the former are morphological or
shape-related features, (e.g., length, capitalisation, presence of special characters,
Greek or Latin forms etc.) and related to the latter are frequency features (fre-
quencies that have not yet been transformed into statistical measures). Another
large category is reserved for features based on external resources, such as existing
terminologies and ontologies, Wikipedia, or internet searches. For instance,
Vivaldi and Rodríguez (2001) rely on the lexical database EuroWordNet,
Loukachevitch (2012) uses both features based on an internet search, and features
based on a domain-specific thesaurus, and Ramisch et al. (2010) use the results of
internet search engines as well. The next type of features are those based on topic
modelling, as in the works of Šajatović et al. (2019) and Loukachevitch and Nokel
(2013). Two less commonly used features are those based on language models, like
measuring perplexity (Foo 2009), and features related to the layout and position
of the term. Such features have been used for unsupervised training data gener-
ation (Judea, Schütze, and Brügmann 2014) or for related tasks such as indexing
(Koutropoulou and Efstratios 2019). A hypothetical reason for the relative absence
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of such potentially informative features, like the occurrence of CTs in bold or ital-
ics, or in the titles of texts, may be the fact that most systems work with plain text
files, in which such information is not readily available. Another category can be
reserved for features relating to context. For instance, the proximity of a CT to
other highly scored CTs (Vivaldi, Màrquez, and Rodríguez 2001). The final cat-
egory is devoted to features that use word- or character-embeddings, which are
becoming ever more prevalent. Recently, embeddings are used in both feature-
based and so-called “featureless” methodologies (Gao and Yuan 2019; Wang, Liu,
and McDonald 2016). In the TermFrame project (Pollak et al. 2019) FastText
embeddings trained on the small, domain-specific corpus are used to extend the
list of CTs obtained through a traditional, hybrid approach.

The final fundamental aspect in which ATE methodologies differ, is in how
they handle term variation (4). Many systems currently do not go beyond pro-
viding the user with a flat list of (lowercased) unique CTs. A first step towards
handling term variation is to perform lemmatisation or stemming (e.g., Conrado
et al., 2013), i.e. combining different full forms of the same term. Related to this,
one can distinguish formally identical terms with a different POS, e.g., having
separate entries for type as a noun and as a verb. Handling term variation can
go much further as well, e.g., with automatic abbreviation/acronym detection
(Meyers et al. 2018) or automatic detection of syntactic term variation (Ville-
Ometz, Royauté, and Zasadzinski 2007).

Apart from these four fundamental aspects, there are many other ways in
which methodologies for ATE can differ. For instance, the limitations placed on
the types of terms a system aims to extract can have a large impact: minimum fre-
quency, minimum or maximum term length, limited POS patterns, inclusion or
not of nested terms, etc. Other examples are the amount of preprocessing (e.g.,
removal of single-character terms, punctuation, special characters, etc.), speciali-
sation to a single language and/or domain, binary or multiclass approaches, etc.
It is beyond the scope of this paper to discuss each of these differences in detail,
but imperative to consider that such differences have an enormous impact on the
results and, therefore, also on the evaluation of ATE.

3. ACTER Annotated Corpora for Term Extraction Research

The ACTER dataset consists of manually annotated corpora in four specialised
domains (corruption, dressage (equitation), heart failure, and wind energy), and
three languages (English, French, and Dutch). It contains annotations with four
different labels (Specific Terms, Common Terms, Out-of-Domain Terms, and
Named Entities). The dataset has been introduced in previous publications,
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(Rigouts Terryn et al., 2018; Rigouts Terryn, et al., 2020), and served as the basis
for the TermEval 2020 shared task on ATE (Rigouts Terryn, et al., 2020). It is
publicly available with up-to-date documentation as a Github repository,1 and is
accompanied by annotation guidelines.2 For the current project, version 1.4 was
used.

Around 60k tokens have been manually annotated per language & domain.
All annotations were made in the texts, not using any preprocessing or filtering of
CTs. Each occurrence of a term was annotated separately. Moreover, there were
few limitations on what might be considered a term: no minimum frequency, no
minimum or maximum length, no restrictions based on POS patterns (apart from
that it had to contain a content word), and all nested terms were annotated as well.
This makes it a challenging gold standard for ATE, with many hapax terms (that
occur only once) and few ways to quickly reduce the search space (since using a
frequency threshold, or length or POS restrictions will immediately limit recall).
However, these characteristics also make it a more realistic gold standard.

Aside from the distinction between terms and Named Entities, there were
three different term labels: Specific Terms, Common Terms, and Out-of-Domain
Terms. These three categories of terms are defined according to their domain-
specificity, i.e., how typical is the term for the relevant domain, and lexicon-
specificity, i.e., how specialised does one have to be to know the term (or is it
part of general language?). For instance, in the domain of heart failure, a term
like ejection fraction is both domain-specific (strongly related to heart failure, as
it refers to the percentage of blood that leaves the heart during each contraction)
and lexicon-specific (laypersons will generally not know the term, only medical
professionals will). Therefore, ejection fraction is a Specific Term. An example of
a Common Term for that domain is heart, which is domain-specific (relevant to
the domain of heart failure), but not lexicon-specific (it is assumed that every
layperson has a basic knowledge of the concept). Conversely, p-value would be the
opposite: not domain-specific (it is more of a statistic term, rather than a medical
term), and lexicon-specific (some specialisation in statistics is required to under-
stand the concept). Other researchers have used similar intuitions to define or cat-
egorise terms. For instance, Meyers et al. (2018) employ the model of the naïve
adult, using Homer Simpson to decide whether a lexical unit might be consid-
ered specialised enough to be a term (if Homer Simpson would know it, it is not
a term), in combination with the Juvenile Fiction subcorpus of COCA. Drouin
et al. (2018) and Hätty et al. (2017) distinguish between different types of termi-
nology as well.

1. https://github.com/AylaRT/ACTER
2. http://hdl.handle.net/1854/LU-8503113
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The distinction between the four labels allows researchers to, at least partially,
tailor the definition of terms to different possible applications. For instance, ATE
used for ontology construction would ideally exclude Out-of-Domain terms
which are not relevant to the ontology, whereas ATE for translators might be most
useful for Specific Terms, which are not part of the translator’s general vocabu-
lary. Since HAMLET requires a binary distinction between terms and non-terms,
we merge different annotation categories, as was also done in the KAS-term pro-
ject (Ljubešić, Fišer, and Erjavec 2019). For the experiments, unless mentioned
otherwise, all annotations are combined, so that Specific, Common and, Out-of-
Domain Terms, and Named entities are all considered positives. The ±60k tokens
of text annotated per language & domain, resulted in 119,450 annotations over
719,338 tokens.

4. Methodology and experiments

4.1 Experimental setup

4.1.1 Preprocessing and CT selection based on POS
All corpora are linguistically preprocessed using LeTs Preprocess (van de Kauter
et al. 2013), which includes tokenisation, lemmatisation, POS tagging, chunking,
and Named Entity Recognition (NER). To allow multilingual models and fair
cross-lingual experiments, a single set of POS tags was required. The original
sets used by LeTs are language-dependent: the English, French and Dutch tag
sets were from Penn Treebank, TreeTagger and CGN (Corpus Gesproken Ned-
erlands) respectively. Universal Dependencies (UD) (Petrov, Das, and McDonald
2012) were used as a basis, and a mapping was already available for the English
and Dutch tagsets. By comparing these existing mappings, one could also be
derived for the French tags. However, since the original LeTs tagsets were all more
fine-grained, a few tags were added, which resulted in a final set of 26 tags. Start-
ing from this fine-grained POS tagset, a more coarse-grained simple POS set was
created counting 8 tags. Both sets are shown in Table 1.
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Table 1. Standard and simple POS tagsets

Standard POS Simple POS Description

ABR X Abbreviation

ADJ ADJ Adjective

ADP FUNC Adposition (prepositions etc.)

ADV ADV Adverb

CONJ FUNC Conjunction

DET FUNC Determiner

FW X Foreign word

INTJ X Interjection

NOUN NN Noun

NUM X Numeral

PART FUNC Particle

PNO FUNC Pronoun (other)

PNPR FUNC Pronoun (personal)

PNPS FUNC Pronoun (possessive)

PROPN FUNC Proper noun

PUNCT PUNCT Punctuation (general)

PUNQ PUNCT Punctuation (quotation marks)

PUNB PUNCT Punctuation (parentheses)

SYM X Symbol

VB VB Verb (infinitive)

VBG VB Verb (present participle or gerund)

VBN VB Verb (past participle)

VBPA VB Verb (past tense)

VBPR VB Verb (present tense or imperative)

VBX VB Verb (other)

EOS EOS End Of Sentence

Since HAMLET is based on traditional ATE and aims to extract a list of all
unique terms rather than all occurrences of each term, the next step was to decide
how to combine terms. To make an informed decision, scenarios were tested with
six types of variants. To avoid an overly fine-grained system which could be overly
sensitive to small tagging errors, the simple POS tagset (rather than the more fine-
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grained standard set) was used. The different variant forms, illustrated with the
example term Co-morbidities, are:

1. Token_noPOS (token with original casing, without POS pattern), e.g., Co-
morbidities

2. token_noPOS (lowercased token, without POS pattern), e.g., co-morbidities
3. Token_POS (token with original casing, with POS pattern), e.g., Co-

morbidities(NN)
4. token_POS (lowercased token, with POS pattern), e.g., co-morbidities(NN)
5. lemma_POS (lowercased lemma, with POS pattern), e.g., co-morbidity(NN)
6. normalised_noPOS (normalised3 token, without POS pattern), e.g., comor-

bidities

For each annotation, all six variant forms were constructed, and we calculated
how consistently each form was annotated, i.e., out of all occurrences of that vari-
ant form in the corpus, how often it was annotated. While a small margin of
inconsistency will always remain to account for both human error in the manually
annotated data, and terms which may only be valid terms in some contexts, the
goal was still to limit this inconsistency. On the other hand, since low-frequency
terms are notoriously difficult for ATE, variants that are able to capture more
annotations under a single entry (e.g., combining identical terms with different
capitalisation) could also be beneficial, since they reduce the total number of
unique terms (in that variant), and the number of very rare terms. Table 2 shows
the average consistency and total number of gold standard terms per variation. As
can be seen, there are three variants that lead to over 90% consistent annotations
on average: Token_POS, token_POS, and lemma_POS. Since the token_POS
variant considerably reduces the number of different annotations compared to
Token_POS, while at the same time scoring very high on consistency, this is the
variant that will be used for all experiments. Nevertheless, the same methodology
can be applied with the other variants as well.

After linguistically preprocessing all texts, mapping all POS tags to a shared,
language-independent set, and deciding to work with the token_POS variant, a
preliminary list of unique CTs was extracted. HAMLET follows the traditional
hybrid method for ATE and selects a list of CTs based on POS patterns. However,
contrary to the traditional methods, these patterns are not manually defined, but
extracted from the training data. This means that no restrictions had to be pre-
defined with respect to term length, frequency, or POS type, but that all of this
information would be derived from the training data. Since POS patterns were

3. Normalised in this case meant converting all tokens to only [a-z][0–9] characters, unless
this meant no characters were left, in which case UNK was used as a placeholder.
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Table 2. Total number of (unique) annotations per variant and how consistent
annotations are when using this variant; for each annotated term/Named Entity as the
specified variant, how many of the occurrences of that string in the text are annotated

Variant # Annotations % Occurrences that are annotated (average)

Token_noPOS 21,270 82.1%

token_noPOS 18,801 79.5%

Token_POS 22,776 92.9%

token_POS 20,459 91.8%

lemma_POS 18,375 90.2%

normalised_noPOS 18,611 79.0%

derived from the automatically tagged data, this means wrongly tagged patterns
will be included. While this may lead to more noise among the CTs, it could also
benefit recall when similar tagging errors are made in the test data. In English, 436
unique POS patterns were found; in French 353, and in Dutch 283. When exclud-
ing Named Entities, the numbers are slightly lower at 331 (en), 277 (fr), and 2020
(nl). Out of all term POS patterns, 61–70% contain at least one noun.

This selection of CTs based on POS patterns aims for high recall, since these
are the CTs for which features will be calculated, to be processed by the machine
learning classifier. The goal is not to “lose” (m)any real terms before these features
can be calculated, so they can be used to make a more informed decision about
which CTs to discard. However, this comes at a cost to precision. When the POS
patterns of the test corpus itself are included, precision ranges between 3.2% and
8.4% and recall is perfect. When POS patterns from the test corpus are excluded,
and only patterns from the other domains are used, precision is similar between
3.1% and 11.2%, but, since some POS patterns only occur in a single domain, recall
is no longer perfect and ranges between 91.1% and 98.4% (95% on average). While
the loss in recall is limited, this stresses the impact of both volume and relevance
of training data.

4.1.2 Features
For each of the extracted CTs, 177 features were calculated. Most of these were
based on the typical information used for hybrid ATE, such as termhood and unit-
hood. Since previous research has repeatedly shown that no single feature appears
to work best for all cases (Loukachevitch 2012), we investigated different feature
combinations. Some of the features have not (often) been used for ATE and were
based on findings during the annotation process. For instance, especially in the
medical domain, terms often occur both in full, and as an abbreviated version.
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In such cases, they are introduced in the full form, followed by the abbrevia-
tion between parentheses, e.g., heart failure (HF). Therefore, features were added
to indicate whether a CT occurs in the vicinity of parentheses. All features were
divided into 6 groups and 18 subgroups. A summary per subgroup is given below
and a complete overview is included in the Appendix.

A few of the features rely not only on the domain-specific corpora, but also
on general language reference corpora. Two separate types of reference cor-
pora were used per language: a Wikipedia reference corpus, based on Wikipedia
dumps, and a newspaper reference corpus.4 All reference corpora were limited to
10M tokens and artificially split into 5000 documents. Features that make use of
reference corpora are always calculated twice, i.e., once for each type of reference
corpus. Non-numeric features are converted to (one-hot) vectors. A non-trivial
task was finding a way to encode the POS pattern into informative features, with-
out having to add a separate feature for each of the 300+ possible patterns. Based
on preliminary experiments, we decided to work with three vector representa-
tions: two one-hot vectors for all POS tags (not patterns) to represent the POS
of the first token and the last token and one frequency vector for the tags of all
tokens of the CT. For instance, a term like heart failure (noun+noun) would get
three vectors representing all POS tags, with zeros in all places except for the first
noun in the first vector (1), the last noun in the second vector (1), and the sum of
all nouns in the last one (2).

Before training, all statistical features (including those in the variational fea-
tures), were scaled using scikit-learn’s (Pedregosa et al. 2011) RobustScaler, which
is more robust towards outliers. Features without any variance were automatically
removed, which mostly concerned the POS-related features, since not all POS
tags can occur in first/last position. Out of 177 possible features, 150–160 usually
remained (depending on the setup).

4.1.3 Algorithm, evaluation, and optimisation
Evaluation and optimisation of the models was based on f1-scores (harmonic
mean of precision and recall). In this context, precision is defined as the percent-
age of true terms among all extracted CTs (number of true positives, divided by
number of extracted terms), and recall as the percentage of all true terms that
have been extracted (number of true positives divided by the number of gold stan-
dard terms). Evaluation is strict, in the sense that only exact matches are counted
as correct. Relatively low scores were expected due to the inherent difficulty of

4. The newspaper reference corpora per language were: the English News on Web corpus
(Davies 2017), the French Gigaword corpus (Graff, Mendonça, and DiPersio 2011), and the
news-related subcorpora of the Dutch openSONAR (Oostdijk et al. 2013)
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Table 3. Description of features per group and subgroup

1. Shape features (SHAP)

length number of characters & number of tokens

alphanumeric whether the CT is alphabetic, numeric, alphanumeric, etc. & the number of
digits and non-alphabetic characters

capitalisation out of all occurrences of the CT, how often (%) is it all lowercase, all uppercase,
title case, etc.

2. Linguistic features (LING)

first POS POS tag of the first token of the CT (simple & standard POS)

last POS POS tag of the last token of the CT (simple & standard POS)

freq. POS how frequently each POS tag (simple & standard) occurs within the CT (simple
& standard POS)

NER whether the CT was tagged (completely, partially, etc.) as a Named Entity during
preprocessing

chunk which chunk tag(s) were assigned to the CT in preprocessing

stopword whether the CT contains a stopword or is a stopword*

3. Frequency features (FREQ)

spec. freq. relative (document) frequency in the specialised corpus

ref. freq. relative (document) frequency in the news and Wikipedia reference corpora

4. Statistical features (STAT)

stats without
ref.

metrics to calculate termhood/unithood without comparing to a reference
corpus: C-Value (Barrón-Cedeño et al. 2009), TF-IDF (Astrakhantsev,
Fedorenko, and Turdakov 2015), Lexical Cohesion and Basic (Bordea, Buitelaar,
and Polajnar 2013)

stats with ref.
(basic)

metrics to calculate termhood/unithood by comparing frequencies to a reference
corpus: Domain Pertinence (Meijer, Frasincar, and Hogenboom 2014), Domain
Relevance (Bordea, Buitelaar, and Polajnar 2013), Weirdness (Astrakhantsev,
Fedorenko, and Turdakov 2015), Relevance (Peñas, Verdejo, and Gonzalo 2001),
Log-Likelihood Ratio (Macken, Lefever, and Hoste 2013)

stats with ref.
(advanced)

similar to the basic termhood/unithood measures, but these measures do not just
use the frequencies of the entire CT in the reference corpora, but also those of all
separate tokens that make up the CT: Vintar’s termhood measure (Vintar 2010),
Domain Specificity (Kozakov et al. 2004)

5. Contextual features (CTXT)

parentheses CT occurs between parentheses or right before/after parentheses
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Table 3. (continued)

6. Variational features (VARI)

var. numbers number of different variations for the CT for each variant type (types explained
in Section 4.1.1) & the combined relative frequency in the domain specific
corpus of the CT in each variation per variant

var. stats sum of the domain specificity and Vintar termhood scores of all different
variations for the CT for each variant type

* The ISO stopwords were used for all languages: https://github.com/stopwords-iso

the ACTER dataset (no minimum or maximum term length, no minimum fre-
quency, no limitations on POS patterns, inclusion of nested terms). Preliminary
experiments were performed to choose the best algorithm for this task. Since
there is no way to predict the best algorithm for a specific task and dataset before-
hand (no free lunch theorem (Wolpert 1996)), a relatively wide range of clas-
sifiers was tested. With scikit-learn, the decision tree classifier (DTC), random
forest classifier (RFC), multi-layer perceptron (MLP), and logistic regression
(LOGREG) were compared, all allowing hyperparameter optimisation. In these
preliminary experiments, the best average f1-scores were obtained with the RFC,
followed by DT (−5,6 percentage points), LOGREG (−19.4), and MLP (−20.5).
All experiments reported in the current contribution were, therefore, performed
with scikit-learn’s RFC. Hyperparameter optimisation was performed through
grid search with five folds. Whenever k-fold cross-validation was used, five folds
were used, with nested hyperparameter optimisation.

4.2 Results per corpus

With the basic methodology outlined (variant token_POS, CTs based on standard
POS patterns, RFC with 177 features), five experimental setups were defined. The
first, basic setup, is trained on three out of the four domains in a single language
and tested on the held-out test corpus (domain) in that same language (e.g., train-
ing on English corruption, dressage, and wind energy corpora, testing on English
heart failure corpus). This was deemed the most realistic real-world setup, since
in-domain test data is rarely available. However, to get a better idea of the impact
of the training data, four additional setups were defined. As can be seen in the
summary in Table 4, setups 1 and 2 use a separate, held-out test corpus and only
train on data from other corpora. In setup 2, corpora from other languages are
included, so domain-specific training data is included, but only in different lan-
guages from the test corpus. Setups 3, 4, and 5 do not have a held-out test corpus
but use 5-fold cross-validation to train and test on a single corpus (setup 3), all
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domains in a single language (setup 4), or all corpora in all languages (setup 5).
The CT extraction based on POS patterns (see 4.1.1) always excludes the POS pat-
terns from the test corpus for a fair evaluation, except for setups 4 and 5, which are
evaluated simultaneously on multiple corpora, so that it is impossible to exclude
all POS patterns. Only the language-specific POS patterns from the training cor-
pora are used for CT extraction.

Table 4. Overview of experimental setups

Setup Train/test Lang. Training
Corpus-specific POS
patterns

1 held-out
test

one 3 other domains in same language excluded

2 held-out
test

all all other corpora in all languages excluded

3 5-fold cv one single corpus (1 domain, 1
language)

excluded

4 5-fold cv one single language (all domains, 1
lang.)

included

5 5-fold cv all all corpora (all domains, all lang.) included

Tables 5 and 6 contain the results for each of the described experimental
setups per corpus. Table 5 shows the results for models trained and evaluated on
terms (Specific, Common, and OOD Terms) and Named Entities, while Table 6
excludes Named Entities. So, both tables show results on with the same method-
ology, with the exact same data, except that in the first table, Named Entities
are considered positive instances, and in the second they are not. All results are
averaged over three trials, and the average standard deviation between trials is
only 0.8%. On average, f1-scores for the models excluding Named Entities are 3.7
percentage points lower, with the biggest difference for the domains of corrup-
tion and dressage, especially in English. The cross-validation experiments are less
influenced by the Named Entities than the experiments with a held-out test set.
Since basic Named Entity Recognition is already included in the preprocessing,
and it is generally considered an easier task, since Named Entities have clearer
characteristics, it is not surprising that performance is higher when Named Enti-
ties are excluded. Results, both with and without Named Entities, are state-of-the-
art. Compared to the TermEval shared task (Rigouts Terryn, et al., 2020), which
was based on the same dataset, they are similar to the best-performing system
using a deep neural network with BERT models (Hazem et al. 2020).
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A lot of conclusions can be drawn from the results in Tables 5 and 6. First
of all, given the mentioned difficulty of the task, the scores are promising with
f1-scores up to 68.4%. Nevertheless, there is a lot of variation, and the lowest
f1-score is only 28.8%, so further analysis is required. While, on average, precision
and recall are similar and the top scores are very good (74.8% for precision, 81.8%
for recall), the balance between the two varies greatly. The most extreme differ-
ences are seen for the Dutch corpus on wind energy, where the recall is up to 46.6
percentage points higher than precision. The first setup appears to be most sen-
sitive to these differences, which might be another indication of the importance
of domain-specific data. This unpredictability is an important issue for real-world
applications, since, even if machine learning approaches get higher f1-scores than
rule-based approaches, “for ATE to be usable, its results should be consistent, pre-
dictable and transparent” (Kageura and Marshman 2019).

There are notable differences between the results of the different setups.
Setups 4 and 5, using cross-validation on all corpora, or all corpora in the same
language, perform best on average (better even than cross-validation on a single
corpus or cross-validation on all corpora combined). Setup 1, which is both the
most realistic, but also the strictest, achieves the lowest f1-scores. The models
in setup 2 are similarly evaluated on a held-out test corpus, but, as opposed to
those in setup 1, they have access to training data in the other languages, includ-
ing domain-specific data. This combination of more training data and domain-
specific training data, even if it is in other languages than the test corpus, appears
to give the models in setup 2 a slight advantage over setup 1. The importance of
volume of training data might also explain why results for cross-validation setup 3
are lower than the other cross-validation setups, despite being trained exclusively
on the same domain and language. The potential of including data in other lan-
guages is not entirely clear, since it appears to help in setup 2 versus setup 1, and
potentially also in setup 5 versus 4.

Language appears to have an undeniable impact on terminology. The results
for Dutch are noticeably higher than those for the other languages, and French
scores lowest. The most probable explanation is that Dutch compounding rules
make ATE slightly easier. In Dutch, nominal terms are often long compound
nouns, rather than multi-word terms, as in English and French, e.g., ejectiefractie,
compared to ejection fraction and fraction d’éjection. Therefore, in Dutch, there
are more single-word terms (which are easier to detect, see further). Domain has
a notable impact on the results as well. Both dressage and heart failure obtain
relatively high f1-scores compared to wind energy and corruption. The average
f1-scores per domain (setups 1–3) including Named Entities are 42.1%, 58.5%,
55.5%, and 44.2% for corruption, dressage, heart failure, and wind energy respec-
tively. This aligns with how the annotation process was perceived, as both heart
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failure and dressage were found to be easiest to annotate, and corruption most
challenging. Consequently, it is difficult to distinguish between cause and effect:
terminology might be objectively more difficult to identify for certain domains,
influencing both human annotators and ATE, or the data may have been anno-
tated better for the domains which were perceived as easier to annotate, making
it more suitable for ATE. Likely, both have some effect. In conclusion, the results
reported in Tables 5 & 6 show that performance is promising, but not always pre-
dictable, and variable per corpus. There is a considerable impact of training data,
language, and domain. Overall, even models tested on a completely unseen lan-
guage and domain obtain robust performance, so it can be concluded that the
HAMLET methodology is able to generalise relatively well across corpora, and is,
therefore, a viable strategy for ATE, even without domain-specific training data

5. Analysis and discussion

5.1 Error analysis

Despite promising scores, there is still a lot of room for improvement. A more
detailed error analysis of a previous version of the system, including a comparison
to a non-machine learning tool, has already been presented in a previous pilot
study (Rigouts Terryn et al. 2019). Without going into the same amount of detail,
this section will provide an error analysis with some of the remaining challenges.
To avoid an overly complex examination per corpus and per setup, the results
of setup 5 will be used for this purpose, since this is a single model trained and
evaluated on all data combined through cross-validation. Since the goal is to look
beyond precision, recall, and f1-score at the actual output, the analysis will focus
on one run (one trial) of the system (the results in the previous tables were aver-
aged over three trails). Also, since the focus is on the extraction of terms, rather
than Named Entities, one of the models of Table 6 (trained and evaluated exclu-
sively on terms) will serve as the basis for the analysis. While this means only a sin-
gle experiment is discussed in detail in this section, most of the conclusions were
found to hold for the other experiments as well. For this particular run of setup
5, precision, recall, and f1-score were 48.9%, 56.3%, and 52.3% respectively. There
were 17,400 terms in the gold standard, and 320,063 CTs were extracted based on
POS patterns. Of these, 20,043 were classified as terms, resulting in 9,795 true pos-
itives, 10,248 false positives, 7,605 false negatives, and 292,415 true negatives.

As predicted, f1-scores are higher for single-word terms (58.6%) than for
multi-word terms (41.8%). Recall for single-word terms is especially good at 69.1%,
while only 39.2% of all multi-word terms are found. Single-word terms are gener-
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ally considered easier to extract since only termhood needs to be calculated, not
unithood (which only needs to be measured for multi-word terms, to test whether
the separate words form a cohesive unit), so this was expected. Similarly, it was
unsurprising to find that hapax terms, which only occur once in the entire corpus,
are more difficult to find than terms that occur at least twice: recall of hapax terms
is 45.1% versus 66.3% for more frequent terms. While some features are included
that do not rely on frequency at all, these alone are not very efficient at detecting
terms (see Section 5.3). Nevertheless, as seen in previous research (Rigouts Terryn
et al. 2019), this approach still performs better for rare terms than the traditional
hybrid method. The impact of a minimum frequency for CTs is further illustrated
by the fact that even increasing the minimum frequency to 2, leads to a gain in
f1-scores of 6.5 percentage points for setup 5 (when also evaluated on CTs that
occur at least twice). However, since there are many hapax terms, the evaluation
compared to the complete gold standard that still includes hapax terms drops by
11.3 percentage points. This is important to remember when comparing different
ATE systems, as most do work with a minimum frequency threshold.

Recall of the different term types is 60.8% (Specific Terms), 48.3% (Common
Terms), and 46.2% (OOD Terms). Since Specific Terms are those that are likely to
be most important for most projects (these are the terms in the strictest sense of
the word: both domain- and language-specific), it is promising to see a relatively
high recall there, especially considering that, among Specific Terms, frequencies
are often low. Lower recall with Common Terms may be due to the fact that they
are not language-specific and are easier to confuse with general vocabulary. OOD
Terms, conversely, are language-specific but not domain-specific, so they are also
not the typical target for term extraction features. Even though the system was
trained to find only terms, some Named Entities were included in the output as
well, but compared to systems trained to find Named Entities, recall for this cat-
egory was low at only 11.1%. To illustrate: an identical system trained to find both
terms and Named Entities has a recall of 69.1% for the latter. This implies that,
while some confusion between terms and Named Entities remains possible due to
sometimes similar characteristics, in general, the system adapts well to the train-
ing data.

To get a more detailed idea of the results, the predicted CTs were sorted based
on the predicted probability that they would be true terms. Since setup 5 combines
all corpora, the corpus of origin was displayed for each CT as well. A sample of the
results can be seen in Table 7, where only the 25 most highly ranked English terms
can be seen. Only 3 of these (in grey) are not in the gold standard. The predicted
probability appears to be an effective way to sort results: the average probability for
true positives is 77.2%, compared to 67.4% for false positives, 26.6% for false nega-
tives, and 6.4% for true negatives. However, some non-terms can still be predicted
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as terms with high probability scores, and the average probability for false positives
is only 10 percentage points lower than for true positives. The difference between
true negatives and false negatives is slightly higher, with an average predicted prob-
ability of 26.6% for the latter. A sample of the results can be seen in Table 7, where
only the 25 most highly ranked English terms can be seen. Both the predicted prob-
ability score and the rank are shown in this table. Since setup 5 combines all cor-
pora, the corpus of origin was displayed for each CT as well. Only three of the
extracted CTs are not in the gold standard; they have been marked in grey.

Table 7. 25 highest ranked English CTs of model trained to extract only terms (no
Named Entities), for setup 5, marking false positives in grey and showing the CT (as
variant token_POS), domain of origin, predicted probability, and when sorted by
probability

Candidate Terms (grey = false positives) Domain Predicted Probability Rank

Strides(NN) dres 99.5%  23
stride(NN) dres 99.4%  39
carvedilol(NN) htfl 99.3%  46
spironolactone(NN) htfl 99.3%  49
canter(NN) dres 99.3%  51
metoprolol(NN) htfl 99.1%  75
impulsion(NN) dres 99.0%  94
forehand(NN) dres 98.8% 105
travers(NN) dres 98.8% 108
ivabradine(NN) htfl 98.7% 124
rein(NN) dres 98.6% 142
angiotensin(NN) htfl 98.6% 148
kccq(NN) htfl 98.5% 161
pesade(NN) dres 98.5% 165
ballotade(NN) dres 98.5% 168
forelegs(NN) dres 98.5% 171
airfoils(NN) wind 98.4% 183
elastance(NN) htfl 98.4% 184
sitagliptin(NN) htfl 98.4% 186
etidronate(NN) htfl 98.4% 192
elektrine(NN) wind 98.3% 197
halts(NN) dres 98.3% 198
gaits(NN) dres 98.3% 203
resynchronization(NN) htfl 98.3% 204
gait(NN) dres 98.2% 209
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A first observation concerning these most highly ranked terms is the presence
of many Dutch terms (Dutch terms not displayed in table), and terms from the
domains of dressage and heart failure, which are also the language and domains
that tend to obtain the highest f1-scores. In the list of the 25 most highly ranked
English terms in Table 7, it is remarkable to see only single nouns. When includ-
ing the other languages as well, the most highly ranked non-noun appears at
rank 81, and it is a POS tagging mistake (noun tagged as adverb): binnenachter-
been (nl), meaning inside hind leg in the domain of dressage. To find the first
multi-word term, we must go down even further in the list, to rank 147: peptides
natriurétiques (fr), (natriuretic peptides in English). While it has already been
confirmed that recall, in general, is lower for rare terms, this does not mean that
all infrequent terms are hard to extract. The second most highly ranked term of
all, gedragenheid (nl), a term in the domain of dressage, only appears twice in the
entire corpus.

Among highly ranking false positives there are a few Named Entities, e.g.,
KCCQ, which is an abbreviation of Kansas City Cardiomyopathy Questionnaire.
This was one of the instances which caused some hesitation during the annotation
process as well since it could reasonably be considered both a term and a Named
Entity. It is interesting to find that such cases which were considered ambiguous
during the annotation process, are also problematic for the ATE. Other notable
false positives are those that possibly should have been annotated, but were not,
e.g., elastance, which was only annotated when combined with adjectives (e.g.
ventricular elastance), but not by itself. Again, such cases regularly caused doubts
during the annotation process, as it is often far from clear where to draw the
boundary between terms, parts of terms, and general language. Of course, not
all false positives are so ambiguous that they might be considered correct after
all. For instance, electrine in the corpus on wind energy is the second token in a
Named Entity Lietuvos Elektrine that simply happens to occur often in the cor-
pus, but which is clearly not a term. Nevertheless, it is encouraging to see that,
especially among highly ranked CTs, many of the false positives are understand-
able mistakes, i.e., they resemble the types of disagreements that might also occur
between human annotators.

Among the false negatives there are, as expected, many multi-word terms.
There also appear to be more non-nominal terms, e.g., dynamic, covariate, black-
listing, diseased, hydroelastic. Some of these are due to tagging errors, e.g., clinician
is tagged as an adjective instead of a noun. Most terms contain at least one noun,
which is reflected in the output, where only 33 of the 1000 most highly ranked CTs
do not contain a noun, so the system seems to have learnt that such CTs are less
likely to be valid terms. However, it also means that terms that do not contain a
noun but are still valid terms, are less likely to be extracted. Out of the 1000 most
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highly ranked false negatives (so gold standard terms that were not detected),
187 do not contain any nouns. Among the false negatives, there are also many
terms that are common in general language, and are, therefore, more difficult to
detect. Sometimes this concerns Common Terms which are domain-specific but
also very common in general language, e.g., breeze, downwind, political; in other
cases, they are ambiguous Specific Terms which use general language words that
only acquire a more specialised meaning in the context of a domain, e.g., yield
and collection, which are Specific Terms in the domain of dressage.

To conclude, despite remaining difficulties, like multi-word terms, non-noun
terms, and rare terms, the system can extract over half of all terms in a very dif-
ficult setting, with a reasonable precision. The fact that many of the errors of the
system are “understandable” is a promising indication that the system has been
able to learn a robust definition of terminology.

5.2 Impact of annotation types

To find out how adaptable the methodology is to different configurations of
the four labels, the binary approach was maintained, but the definition of what
was considered a valid term changed to include or exclude various labels (both
in training and evaluation). For instance, in the experiment of the first row of
Table 8, all annotated instances of all labels are considered as positives (1), while
all non-annotated instances are considered negatives (0), whereas, in the second
row, only term labels are considered as positives and annotated Named Entities, as
well as non-annotated instances, are negatives. The results of these experiments,
using setup 5, can be found in Table 8. As can be seen, f1-score is highest when all
categories are included. Leaving out Named Entities leads to a drop in both pre-
cision and recall. Trying to extract only Specific Terms leads to the lowest perfor-
mance. This was expected, since, by excluding all other annotations as positives,
the dataset of CTs becomes even more imbalanced, making it even more difficult
to correctly identify the few valid terms correctly. Since there are very few OOD
Terms, they do not have a big impact on the results.

5.3 Impact of Features

5.3.1 Feature group selection
Since HAMLET combines so many features of different types, it is important to
investigate the role these features play in the eventual models. As a first experi-
ment, we trained models according to setup 1, i.e., the strictest setup, and tested
performance when including and excluding various feature groups. Alle exper-
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Table 8. Scores (as percentages) of the HAMLET classifier for setup 5, training and
evaluating on different configurations of the labels (those in grey are excluded)

Specific Terms Common Terms OOD Terms Named Entities p r f1

Specific Terms Common Terms OOD Terms Named Entities 50.2 60.5 54.9

Specific Terms Common Terms OOD Terms 48.9 56.2 52.3

Specific Terms Common Terms 48.9 56.2 52.3

Specific Terms 45.4 50.1 47.6

Specific Terms Named Entities 47.8 55.8 51.5

Specific Terms Common Terms Named Entities 50.0 59.9 54.5

iments were performed twice: once including both terms and Named Entities,
once including only terms. Table 9 shows the results with all scores (average
scores over all corpora), sorted based on the average f1-score without Named
Entities. The first, and perhaps most remarkable observation is that the highest
scoring model excludes statistical features, even though these features have long
been some of the most important features in ATE research. However, this conclu-
sion needs to be nuanced, since the variational features include statistical metrics
as well, calculated for different variants of the CTs. This is illustrated by the fact
that leaving out either statistical or variational features has little impact but leav-
ing out both leads to a much bigger drop in the f1-scores.

In most cases, leaving out one feature group has only a limited impact, except
for linguistic features, in which case performance suddenly drops to only 33.0%,
showing the importance of these features. Using only linguistic and statistical fea-
tures, as in typical hybrid ATE methodologies, leads to moderate performance.
When models are trained with only a single group of features, shape features
are most informative, followed by linguistic features. Contextual features are least
informative when used by themselves, which is hardly surprising, since they are
currently very limited (only features relating to parentheses). In conclusion, inves-
tigating the impact of the feature groups based on this limited feature group selec-
tion leads to some surprising results. In the next section, this is investigated in
more detail.

5.3.2 Feature importance
With scikit-learn’s RFC, it is possible to see the importance assigned to each fea-
ture. Because it was assumed different types of features might be important for
different corpora, we looked at those from experimental setup 3, where cross-
validation is used within a single corpus (so all features are learnt from the
same corpus). To avoid overcomplicating the conclusions with Named Entities,
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Table 9. Average f1-scores (as percentages) for setup 1, trained & evaluated on terms
(incl. & excl. Named Entities), including, and excluding various features groups (see
Table 4 for setups, Table 3 for features)

Included feature groups f1-scores

Shape Ling. Freq. Stat. Context Variants Incl. NEs Excl. NEs

SHAP LING FREQ CTXT VARI 46.2 41.8

SHAP LING STAT CTXT VARI 45.2 40.5

SHAP LING FREQ STAT CTXT VARI 45.5 40.4

SHAP LING FREQ STAT CTXT 45.1 40.3

SHAP LING FREQ STAT VARI 45.5 40.2

LING FREQ STAT CTXT VARI 44.4 39.2

LING STAT 42.8 38.0

SHAP LING FREQ CTXT 41.3 37.7

SHAP FREQ STAT CTXT VARI 37.9 33.0

SHAP 24.0 28.7

LING 32.2 28.3

VARI 28.3 24.3

STAT 24.3 23.1

FREQ 22.6 22.1

CTXT 18.3 16.4

for these experiments the models were trained only on terms. The heat map of
the results per feature subgroup is displayed in Table 10. For all corpora, variant
scores are very important, as well as advanced statistical measures that use the
reference corpora. Both of these feature subgroups contain almost the same met-
rics, but the former subgroup calculates them for different variants of the CT. By
comparison, the other statistical scores that use reference corpora are assigned a
surprisingly low importance, especially considering that even simple frequency
features get higher importance scores. Another rather universally informative
group concerns stop words, which is logical, since stop words are not automati-
cally filtered out, but can still be identified through these features. The differences
between the corpora are relatively limited. One of the only clear patterns is that
Dutch models place a higher importance on length features, which is unsurprising
given the language’s compounding rules (long compound SWTs without spaces,
which can be very informative for terms).
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Table 10. Heat map of assigned importance per feature subgroup, per corpus, for model
trained with setup 3 on terms, without Named Entities; green=higher, red=lower
importance

Since the differences between corpora appear relatively small, the analyses of
all separate features will take a more general approach using setup 5. With this
setup, 160 features were maintained (the others were discarded due to a lack of
variance). For more information on the features, see the Appendix. Table 11 shows
the 30 most highly ranked features with the assigned importance scores. Inter-
estingly, the four most important features are all Vintar’s termhood score (Vintar
2010) compared to the newspaper reference corpus, for different variants of the
CT (the variant used for all other features is token_POS, i.e. lowercased token fol-
lowed by simple POS). The same metric for this standard variant only occurs in
eighth place as a statistical feature. Out of the 160 features, only 28 are assigned
an importance of over 1%; 62 features score below 0.1%. The most highly ranked
non-variational feature is the one indicating there are no stop words in a term (5th
place). The first shape feature occurs in 18th place (number of tokens). The first
POS-related features are in 22nd and 23rd place and indicate how many function
words and adpositions the CT contains. One frequency feature makes it in the
top 30, in 28th place: the relative document frequency in the specialised corpus.
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Since there are so few contextual features, which are only relevant in very specific
contexts, the first one only occurs in 71st place (CT is followed by an open paren-
thesis). Most of the bottom-ranked features are related to POS, which is under-
standable since there are so many of them and most will apply only to a minority
of CTs. It is surprising that the most highly ranked POS features concern function
words and adpositions, rather than nouns. The first noun-related features only
occur in 36th to 38th place.

Analysing the features shows that the relation between them can be quite
complicated and that many different types contribute towards the final results.
Termhood and unithood calculations remain invaluable, and the more advanced
calculations appear to more informative than the simple ones like TF-IDF.

6. Conclusions and future research

In conclusion, in recent years, ATE has evolved beyond the traditional rule-based
methods of extracting CTs based on POS patterns and filtering them with term
hood and unithood measures. This explosion of new methods means that a new
theoretical framework is required to describe each method systematically and
with enough detail, since the simple distinction between linguistic, statistical, and
hybrid methods no longer suffices. In this contribution, we propose moving away
from a simple categorisation, and describing ATE in terms of at least four aspects:
CT selection, algorithm, feature types, and term variation. Moreover, this evolu-
tion has emphasised the need for large, diverse, and reliable datasets. For this pro-
ject, the freely available ACTER dataset was selected.

Based on this dataset, the HAMLET Hybrid Adaptable Machine Learning
approach to Extract Terminology was developed. The diversity of the data
allowed the development and evaluation of a robust supervised machine learning
approach. This system was elaborately tested to evaluate the impact of training
data, language, domain, types of terms and Named Entities. A simple Random
Forest Classifier yielded f1-scores up 68%, which is promising when considering
the difficulty of the dataset and the strictness of the evaluation (many low-
frequency terms, no restriction on POS, no maximum length, only count of
full matches). While the methodology is robust and can be used on an unseen
domain, results vary widely depending on language, domain, available training
data, and type of annotation. Domain-specific training data can considerably
improve results, but the amount of training data plays a role as well, and even
data from a different language can be helpful. The methodology can be adapted to
focus on different types of terms and/or Named Entities and works especially well
for the most specialised (Specific) terms. Some of the same difficulties as in tra-
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Table 11. 30 highest ranked features according to assigned importance (as percentages)
for setup 5, model excluding Named Entities

Rank Group Feature Name (see appendix for explanations) Imp.

1 VARI variant(normalised_noPOS)_sum_termhood_vintar_news 5.2

2 VARI variant(token_noPOS)_sum_termhood_vintar_news 5.2

3 VARI variant(Token_noPOS)_sum_termhood_vintar_news 4.6

4 VARI variant(lemma_POS)_sum_termhood_vintar_news 4.6

5 LING stopword_none 4.2

6 VARI variant(lemma_POS)_sum_domain_specificity_wiki 3.8

7 VARI variant(Token_POS)_sum_termhood_vintar_news 3.5

8 STAT vintar_news 3.4

9 LING stopword_partial 3.2

10 VARI variant(normalised_noPOS)_sum_domain_specificity_wiki 3.2

11 STAT vintar_wiki 3.1

12 VARI variant(Token_noPOS)_sum_domain_specificity_wiki 3.0

13 VARI variant(Token_POS)_sum_domain_specificity_wiki 2.8

14 VARI variant(token_noPOS)_sum_domain_specificity_wiki 2.7

15 STAT domain_specificity_wiki 2.5

16 STAT domain_specificity_news 2.4

17 VARI variant(token_noPOS)_rel_freq_in_spec_corp 1.5

18 SHAP nr_tokens 1.5

19 VARI variant(normalised_noPOS)_rel_freq_in_spec_corp 1.5

20 VARI variant(lemma_POS)_rel_freq_in_spec_corp 1.4

21 STAT basic 1.4

22 LING POS_simple_freq_FUNC 1.4

23 LING POS_standard_freq_ADP 1.3

24 SHAP nr_characters 1.3

25 SHAP nr_non_letters 1.3

26 VARI variant(Token_noPOS)_rel_freq_in_spec_corp 1.2

27 STAT llr_news 1.2

28 FREQ freq(doc)_in_specialised_corpus 1.1

29 STAT relevance_wiki 0.9

30 STAT relevance_news 0.9
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ditional ATE remain, such as rare terms, multi-word terms, and non-noun terms,
the large number of varied features do help towards a robust performance.

This project has inspired many ideas for future research. First and foremost,
the goal is to consider context by developing a sequential labelling approach. The
hypothesis is that contextual features might be complementary with the current
features and, thus, lead to a better performance, especially for those types of terms
which are currently still problematic. Second, a sequential approach would create
the opportunity of experimenting with Recurrent Neural Networks, so that these
can be compared to a feature-rich approach. Finally, the issue of term variation
has so far not been addressed in any detail and could be both an effective and nec-
essary improvement to the methodologies.
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Appendix. Features

For more explanation about all features, including the motivation behind them and the refer-
ences for the statistical features, see Section 4.1.2.

Grp. Subgrp. Name & Description Type #

SHAP length nr_characters integer
(cont.)

 1

number of characters (incl. space)

nr_tokens integer
(cont.)number of tokens

alpha-
numeric

is_alpha integer
(binary)

 1

contains only [a-zA-z] and space

is_alpha_with_dash_or_apostrophe integer
(binary)

 1

is_alpha + dashes and/or apostrophes

is_alphanum integer
(binary)

 1

is_alpha + [0–9]

is_numeric integer
(binary)

 1

contains only [0–9] and space
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Grp. Subgrp. Name & Description Type #

is_non_alphanum integer
(binary)

 1

contains characters other than [a-zA-Z], [0–9],
space, dash, apostrophe

nr_digits integer
(cont.)

 1

number of [0–9] characters

nr_non_letters integer
(cont.)

 1

number of characters other than [a-zA-Z] and space

capitali-
sation

caps_all_lower_prob float
(perc.)

 1

how often the CT occurs completely lowercased

caps_all_upper_prob float
(perc.)

 1

how often the CT occurs completely uppercased

caps_title_case_prob float
(perc.)

 1

how often the CT occurs completely title-cased

caps_mwt_first_upper_prob float
(perc.)

 1

for multi-word CTs: how often the CT occurs with
only first letter capitalised

caps_mixed_case_prob float
(perc.)

 1

how often the CT occurs with different
capitalisation (anything not in other features)

LING first POS POS_simple_first_[POS tag] integer
(binary)

 8

simple POS tag of first token as one-hot vector with
one feature for each of the simple POS tags

POS_standard_first_[POS tag] integer
(binary)

26

standard POS tag of first token as one-hot vector
with one feature for each of the standard POS tags

last POS POS_simple_last_[POS tag] integer
(binary)

 8

simple POS tag of last token as one-hot vector with
one feature for each of the simple POS tags

POS_standard_last_[POS tag] integer
(binary)

26

standard POS tag of last token as one-hot vector
with one feature for each of the standard POS tags

freq. POS POS_simple_freq_[POS tag] integer
(cont.)

 8
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Grp. Subgrp. Name & Description Type #

frequency with which simple POS tag occurs in CT

POS_standard_freq_[POS tag] integer
(cont.)

26

frequency with which standard POS tag occurs in
CT

NER NER_completely_tagged int
(binary)

 1

completely tagged as Named Entity LeTs Preprocess

NER_not_tagged int
(binary)

 1

not at all tagged as Named Entity LeTs Preprocess

NER_partially_tagged int
(binary)

 1

partially tagged as Named Entity by LeTs Preprocess

CHUNK chunk_contains_ADVP int
(binary)

 1

LeTs Preprocess chunking assigned ADVP tag to
one or more of the CT’s tokens

chunk_contains_AP int
(binary)

 1

LeTs Preprocess chunking assigned AP tag to one or
more of the CT’s tokens

chunk_contains_NP int
(binary)

 1

LeTs Preprocess chunking assigned NP tag to one or
more of the CT’s tokens

chunk_contains_PP int
(binary)

 1

LeTs Preprocess chunking assigned PP tag to one or
more of the CT’s tokens

chunk_contains_VP int
(binary)

 1

LeTs Preprocess chunking assigned VP tag to one or
more of the CT’s tokens

chunk_contains_O int
(binary)

 1

LeTs Preprocess chunking assigned O (outside) tag
to one or more of the CT’s tokens

chunk_ends_with_I int
(binary)

 1

LeTs Preprocess chunking assigned I (inside) tag to
the final token of the CT

chunk_starts_with_B int
(binary)

 1
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Grp. Subgrp. Name & Description Type #

LeTs Preprocess chunking assigned B (beginning)
tag to the first of the CT’s tokens

Stopwords stopword_completely int
(binary)

 1

CT is completely composed of stopwords

stopword_none int
(binary)

 1

CT does not contain any stopwords

stopword_partial int
(binary)

 1

CT contains stopword(s), but also other tokens

FREQ spec. freq. freq_in_specialised_corpus float
[0–1]

 1

relative frequency in specialised corpus

freq(doc)_in_specialised_corpus float
[0–1]

 1

relative document frequency in specialised corpus

ref. freq. freq_in_reference_corpus_news float
[0–1]

 1

relative frequency in news reference corpus

freq(doc)_in_reference_corpus_news float
[0–1]

 1

relative document frequency in news reference
corpus

freq_in_reference_corpus_wiki float
[0–1]

 1

relative frequency in Wikipedia reference corpus

freq(doc)_in_reference_corpus_wiki float
[0–1]

 1

relative document frequency in Wikipedia reference
corpus

STAT stats
without ref.

tfidf float
[0–1]

 1

TF-IDF scores of CT in specialised corpus

cvalue float
[0–1]

 1

C-value score of CT in specialised corpus

basic float
[0–1]

 1

Basic score of CT in specialised corpus

lexical_cohesion float
[0–1]

 1

Lexical Cohesion of CT in specialised corpus

stats with
ref. (basic)

domain_pertinence_news/wiki float
[0–1]

 2
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Grp. Subgrp. Name & Description Type #

Domain Pertinence scores compared to news and
Wikipedia reference corpora

domain_relevance_news/wiki float
[0–1]

 2

Domain Relevance scores compared to news and
Wikipedia reference corpora

weirdness_news/wiki float
[0–1]

 2

Weirdness scores compared to news and Wikipedia
reference corpora

relevance_news/wiki float
[0–1]

 2

Relevance scores compared to news and Wikipedia
reference corpora

llr_news/wiki float
[0–1]

 2

Log-Likelihood Ratio scores compared to news and
Wikipedia reference corpora

stats with
ref.
(advanced)

domain_specificity_news/wiki float
[0–1]

 2

Domain Specificity scores compared to news and
Wikipedia reference corpora

vintar_news/wiki float
[0–1]

 2

Vintar’s termhood scores compared to news and
Wikipedia reference corpora

CTXT parentheses parentheses_ct_between int
(binary)

 1

CT occurs between parentheses in specialised
corpus

parentheses_ct_open_paranthesis int
(binary)

 1

CT occurs followed by open parenth. in spec.
corpus

parentheses_open_ paranthesis _ct int
(binary)

 1

CT occurs after open parenth. in spec. corpus

parentheses_ct_closing_paranthesis int
(binary)

 1

CT occurs followed by closing parenth. in spec.
corp.

VARI var.
numbers

variant(X)_nr_possible_variants int
(cont.)

 5
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Grp. Subgrp. Name & Description Type #

for the CT in its current variant, how many different
variations there are for the CT as the other 5
variants

variant(X)_rel_freq_in_spec_corp float
[0–1]

 5

combined relative frequency of all possible
variations of the CT as the other 5 variants

var. stats variant(X)_sum_termhood_vintar_news float
[0–1]

 5

sum of Vintar’s termhood score compared to the
news reference corpus for all possible variations of
the CT as the other 5 variants

variant(X)_sum_domain_specificity_wiki float
[0–1]

 5

sum of Domain Specificity score compared to the
Wikipedia reference corpus for all possible
variations of the CT as the other 5 variants
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