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Abstract. Operators in closed-circuit television (CCTV) control rooms
have to monitor large sets of video feeds coming from an ever increas-
ing number of cameras. To assist these operators in their demanding
day-to-day tasks, AI-driven support systems accompanied by user-centric
interfaces are being developed. However, prototyping these support sys-
tems and testing them in operative control rooms can be a challenge.
Therefore, in this paper, we present a virtual reality (VR) control room
which can be used to investigate the effects of existing and future support
systems on operators’ performance and behaviour in a fully controlled
environment. Important assets of this VR control room include the pos-
sibility to subject operators to different levels of cognitive load and to
monitor their cognitive-affective states using not only subjective but also
behavioural and physiological techniques.
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1 Introduction

To assist human operators in modern closed-circuit television (CCTV) control
rooms, AI-driven support systems are increasingly deployed to facilitate or
automate certain aspects of the operator’s task. In parallel with the continuously
increasing number of security cameras in modern cities [9,11], control room
operators are charged with monitoring an ever growing amount of video feeds. As
a result, new control room interfaces – leveraging the power of computer vision
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algorithms – are designed to display video feeds in such a way that they facilitate
the operator’s work [12]. However, in order to effectively design such intuitive,
AI-driven interfaces, as well as validate the impact they offer towards operator
performance and cognitive load, extensive user testing is required.

The construct of cognitive load plays a profound role in cognitive ergonomics.
The level of cognitive load in human actors is defined by multiple antecedents [16].
These antecedents are elements of either cognitive work demands or human
cognitive architecture. As an example, increased task complexity can increase
operators’ cognitive load as it places higher demands on their limited working
memory capacity. However, the effects of these antecedents on cognitive load
can be moderated by numerous factors both related to the individual (e.g.,
task experience) and to the task (e.g., involving the use of assistive technology).
Especially in work contexts, (sub-)optimal cognitive load can impact the actor’s
work behaviour (e.g., speed and accuracy) and thus overall work performance.

Cognitive load as a multi-dimensional construct [20] is assessed through a
wide range of procedures. In literature, adapted versions of the NASA-TLX
questionnaire [8] are regularly used as a method to obtain a measure of perceived
cognitive workload (e.g., [6,5]). However, other than obtaining a subjective
measure through questionnaires, researchers have studied physiological correlates
of cognitive load ranging from electrical brain activity [1] to electrodermal
activity [13] to pupil dilation (see, [19]). As a study of Vanneste et al. [17]
demonstrates, the accuracy of cognitive load assessment increases by using a
multimodal approach that includes multiple measures.

To effectuate a multimodal approach to assess cognitive load during CCTV
monitoring, immersive virtual reality (VR) appears an advantageous testing
environment. By means of a head-mounted display (HMD), people can watch
and interact with an immersive virtual environment. Building VR simulators
offers multiple advantages over traditional approaches. First, with regards to the
present project, it is less time-consuming to prototype and evaluate simulated
operator support systems in VR than it is to build fully operational supportive
systems in a physical environment. Moreover, virtual environments allow the
implementation of the Wizard of Oz prototyping approach [3] to test initial
ideas without the need of developing automated systems. This means that
researchers can simulate automated systems by manually steering in-scene events
so that the participant believes these events to occur automatically. Second, by
using VR, the experimental environment is fully controlled. Researchers can
control for lightning conditions, background noise, the presence of colleagues,
etc. This allows investigating the effects of experimental manipulations (e.g., the
addition of supportive systems in surveillance rooms) during numerous different
circumstances. In addition, it is possible to log all the participant’s actions and
interactions. Third, state-of-the-art HMDs with built-in eye-trackers continuously
log eye-related indices. As an example, insights on participants’ gaze as well as
indirect indicators of cognitive load (pupil dilation and blink rate) can be derived
from this data. Finally, results of a study by Tauscher et al. [14] demonstrate
that, with some optional minor modifications, it is possible to combine EEG and
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VR. Furthermore, researchers have already been able to discriminate between
different levels of cognitive load using a classical n-back task in an interactive
VR environment regardless of the increase in muscle tension and activity as a
result of the interactive environment [15].

In the present paper, we present a VR environment to test existing and next-
generation AI-based supportive systems or new interfaces in CCTV control rooms.
To this extent, we developed a virtual CCTV control room in which an operator’s
job is simulated using immersive VR technologies. In a pilot experiment, we
tested whether we can influence participants’ cognitive load in order to create
different working conditions. To do so, we introduced a dual task paradigm that
is commonly used by experimental psychologists to gain insight into multitasking
processes. Participants – who wore an HMD in order to watch the virtual control
room and interact with it – had to perform a simplified monitoring task (primary
task) while from time to time they were interrupted by auditory requests which
they had to respond to (secondary task). This secondary task either consisted of
low demanding task rules and long response-stimulus intervals (RSIs; i.e., the time
between a participant’s response to a trial and the presentation of the stimuli of
the next trial) or high demanding task rules and short RSIs. We will refer to these
conditions as the low and high demand condition respectively. Manipulating these
two features (task difficulty and RSIs) has previously been shown to increase
cognitive load [7,18]. Therefore, we hypothesised higher cognitive load in the
high demand condition compared to the low demand condition. To investigate
this with a multimodal approach, task performance, pupil size, blink rate and
subjective reports on perceived cognitive load (using an adapted version of NASA-
TLX) were selected as measures for cognitive load, as they are frequently used to
measure cognitive load and represent behavioural, physiological and subjective
techniques.

2 Virtual Reality CCTV Control Room

The test environment was developed in Unity (version 2019.4.3f1) using a pre-
existing police control room asset, which was modified according to the experi-
ment’s design needs. The VRTK framework (vrtoolkit.readme.io) was used for in
scene interactions. The resulting virtual control room is equipped with a videowall
consisting of 8 large screens and two desks with 3 monitors each (fig. 1). One of
the monitors of the operator’s (i.e., the participant) personal workspace is used as
a response screen with buttons that can be pressed using a pointer and the trigger
button of the controller. On the remaining screens, a wide range of various types
of content can be rendered such as (interactive) city maps, surveillance camera
footage and visualisations of data streams. Moreover, the screen set-up can easily
be modified according to assistive technology requirements and the study’s needs.
Also, other than prerecorded camera footage, real-time video streams can be
integrated in the scene through embedded web browsers and virtual desktop
screens in Unity.
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To manipulate cognitive load in order to test supportive systems during
different circumstances, a secondary task with varying difficulty and response-
stimulus intervals (RSI) is introduced. In the scene, a walkie talkie radio is
present, which is the audio source for the presentation of the auditory stimuli of
the secondary task. This secondary task consists of the auditory presentation of
digit sequences (max. 6 digits) which require a different response according to
the condition participants are in. In the low demand condition, they are asked to
click on the on-screen response button corresponding to the last heard digit. In
contrast, in the high demand condition, the response depends on the number of
digits in the sequence. When the sequence consists of an odd number of digits,
participants have to click the last two heard digits. When the number of digits
in the sequence is even, participants have to click the first two digits they heard.
In addition, the RSI of the secondary task varies over both conditions. In the
low demand condition, the RSI varies ad random between 25 and 30 seconds
whereas in the high demand condition the RSI varies between 2 and 7 seconds.
During testing, performance on this task is instantly calculated. Furthermore, all
operator actions and UI interactions are automatically logged. Additionally, eye
gaze, pupil dilation and blink rate are measured continuously.

Fig. 1: Overview of the virtual control room.

3 Pilot experiment: Cognitive Load Manipulation

3.1 Method

Participants. Thirteen participants with normal or corrected to normal vision
participated to the experiment (3 female, Mage = 21.92, SDage = 0.95). All
participants signed informed consent and participated voluntarily to the study.
Therefore, they were not credited nor paid.
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Materials and Equipment. The VR setup consisted of a computer running
SteamVR (v.1.14.16) and an HTC VIVE Pro Eye. The HMD and the controllers
were tracked by two Vive SteamVR Base Stations 2.0. The HMD’s built-in eye-
tracker and the Vive Eye-tracking Software Development Kit (SDK) SRanipal was
used to obtain eye-tracking measures (incl. pupil sizes). This built-in eye-tracker
had a sampling rate of 120 Hz. However, in this experiment, we recorded the
eye-tracking data at 50 Hz. Perceived workload was assessed at the end of every
block using an adapted version of the NASA-TLX [8]. The NASA-TLX is a
well-known assessment instrument which results in an indication of perceived
workload on six domains of task requirements (e.g., mental demand, physical
demand etc.).

The Primary Task. A simplified video monitoring task was used as the primary
task. Participants watched surveillance videos that were presented on the eight
screens of the videowall and on the left and centre monitor on the personal desk.
These videos merely served to create a realistic operator setting and, thus, were
irrelevant to the task. However, one of these screens turned green after a variable
interval (5 – 10 seconds). The task was to press the ‘detected’ button on the
response screen whenever this happened before the response deadline of 4 seconds
was exceeded. Both accuracy and reaction times were measured.

Procedure. Participants signed informed consent upon arrival and were then
given a short instruction on the experiment. After the brief introduction, they
were helped to put on the headset. Throughout the whole experiment, partici-
pants were seated and wore one controller in their hand of preference. Next, all
instructions were presented on the centre monitor of the personal workspace in
the virtual control room. After reading these on-screen instructions in VR, each
participant performed a practice block on the primary task. Next, half of the
participants were instructed on the low demand task rules and the other half on
the high demand task rules, followed by a practice block on the secondary task.
Subsequently, a practice block for the dual task was provided. This was followed
by three experimental blocks of approximately 5 minutes each, separated by
self-paced breaks. After these blocks, the task rules of the secondary task changed.
Participants who first performed the low demand secondary task were now in-
structed on the high demand secondary task and vice versa. Next, a practice block
to get familiar with these new task rules was performed. Finally, participants
were presented with another set of three dual task experimental blocks, now
using the new task rules. At the start of every block, participants performed an
eye-tracker calibration procedure. At the end of each block, participants were
asked to unmount the HMD and fill in the questionnaire on perceived cognitive
load.

3.2 Results

The data was analysed with one within-subject factor (i.e., task demands – high
or low). All data pre-processing was performed in Python 3 and models were
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constructed in R using the lme4 package [2] specifying a random intercept for each
participant. Reported p-values for the linear mixed effects models are corrected
values using the Kenward-Rogers correction [10].

Performance. In the analysis of accuracy on the primary task, we found that
people performed better in the low demand condition (M = 93%, SD = 2%)
compared to the high demand condition (M = 99%, SD = 6%), F (1, 12) = 22.02,
p < 0.001. Moreover, participants were slower to detect the highlighted screen
in the high demand (M = 1194.53 ms, SD = 709.88 ms) compared to the low
demand condition (M = 905.93 ms, SD = 514.64 ms), F (1, 12) = 8.32, p = 0.014.
The same trend was found for accuracy on the secondary task where participants
performed worse in the high demand (M = 67%, SD = 13%) compared to the
low demand condition (M = 95%, SD = 7%), F (1, 12) = 165.00, p < 0.001.

Cognitive load. Subjective cognitive load as measured by the adapted version
of NASA-TLX was higher in the high demand condition (M = 52.26, SD = 13.74)
than in the low demand condition (M = 19.70, SD = 11.86), F (1, 12) = 81.24,
p < 0.001. This effect was found for pupil size as well. Participants had larger
mean pupil sizes during the high demand condition (M = 3.17 mm, SD = 0.42 mm)
compared to the low demand condition (M = 2.99 mm, SD = 0.28 mm),
F (1, 12) = 11.79, p = 0.004. This effect reflects higher cognitive load when
the task rules of the secondary task were more difficult. Blink rate also differed
significantly between conditions. Blink rate was higher when the task rules were
difficult (M = 18.10 blinks/min., SD = 12.65 blinks/min) relative to the low de-
mand condition (M = 10.50 blinks/min., SD = 4.82 blinks/min.), F (1, 12) = 7.74,
p = 0.017.

4 Discussion

In this project, we developed a VR CCTV control room in order to test the influ-
ence of supportive systems and interfaces on operators’ performance, behaviour
and cognitive load while they are subject to different levels of cognitive load.
This allows researchers to gain insight into the effects of assistive technology
during different cognitive states of the operator. To validate the cognitive load
manipulation, we conducted a pilot experiment in which we investigated whether
we can manipulate cognitive load by manipulating difficulty and temporal features
of a secondary task. In line with previous research, the results of this experiment
highly suggest an increase in cognitive load when the task rules for the secondary
task became more difficult and the frequency of secondary task trials was higher.
In particular, we found a significant main effect of task demands on reported
cognitive load. Moreover, the same effect was found in the behavioural results.
Specifically, performance (i.e., accuracy and reaction time) on the primary task
decreased with increasing task demands for the secondary task. Since the primary
task was identical across conditions, these results indirectly reflect an increase
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in cognitive load as a result of the demand manipulation in the secondary task.
Next, the same effect was found in the analysis of pupil size. As larger pupil sizes
reflect higher cognitive load, this result also suggests an increase in cognitive load
driven by the secondary task manipulation. For blink rate, which we included as
an exploratory measure, a main effect of task demands was found. Specifically,
blink rate was higher in the high demand condition compared to the low demand
condition. However, since multiple drivers can underlie this effect, we cannot
surely attribute this effect to either an increase in mental activity needed to
perform the dual task or an increase in using mental rehearsal [4] as a strategy
to accomplish the secondary task goals.

Future experiments within the current project will investigate the effects of a
specific support system on operators’ behaviour, performance and cognitive load.
Furthermore, we will explore the gain of adding EEG as a measure of cognitive
load. In particular, we will look into parietal alpha suppression, increases in
frontal theta power and the cognitive load index [19]. Additionally, using the
built-in eye-tracker, we will explore how we can gain insights in visual search and
active exploration of monitored video footage using eye gaze data. An example of
such a measure would be the proportion of time spent looking at suggested video
footage pushed by a camera selection algorithm compared to the proportion of
time spent looking at the other videos that are presented on, for example, the
videowall. Additionally, from a user testing perspective, it remains important to
take into account the perceived usability of professional control room operators
when testing new assistive technology. Therefore, this VR tool can also be used
to set up qualitative experiments tapping into the subjective experience of users.
In sum, these experiments will yield a demonstration of how the VR control
room can be used and investigate possible additional dependent measures that
might offer insights in how control room operators are affected by introducing
AI-based supportive systems.
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