Heterogeneous Integration of Uni-Travelling-Carrier Photodiodes using Micro-Transfer-Printing on a Silicon-Nitride Platform

Dennis Maes¹,², Gunther Roelkens¹, Mohammed Zaknoune², Camiel Op de Beeck¹, Stijn Poelman¹, Maximilien Billet¹, Muhammad Muneeb¹, Sam Leme⁰¹, Emilien Peytavit², Bart Kuyken¹

¹. Department of Information Technology (INTEC), Ghent University — imec, Technologiepark-Zwijnaarde, 9052 Ghent, Belgium
². Institute of Electronics, Microelectronics and Nanotechnology (IEMN), Université de Lille, 59652 Villeneuve d’Ascq, France

High-speed photodiodes often compromise responsivity in exchange for a reduced footprint. However, using waveguide photodiodes circumvents this limitation [1]. We combine uni-travelling-carrier photodiodes (UTC PDs) on a silicon nitride (SiN) photonic platform to achieve both high responsivity and high speed detectors. The SiN-platform has excellent properties such as low-loss waveguides and does not suffer from two-foton absorption at high optical power. A high responsivity is obtained through evanescent coupling of waveguide UTC photodiodes to SiN waveguides while still maintaining a small footprint.

The devices are integrated using the micro-transfer-printing (µTP) technology for hybrid integration of different material platforms [2]. First, photodiode chiplets are made in an InP/InGaAs-technology using a standard fabrication flow. The epitaxial layer stack is adapted from [3] and includes a 500 nm thick sacrificial InAlAs release layer. This material is used for its excellent selective underetching properties [4]. Figure 1a summarizes the processing steps to create a waveguide-coupled UTC PD. (i) Photodiodes are made on the source wafer. (ii) The InAlAs release layer is anisotropically etched using a hard mask. (iii) A new SiN layer is deposited and patterned to create tethers to the InP-substrate. The device is under-etched (isotropic) to create a suspended coupon. (iv) The coupon is transfer-printed on a SiN target chip. (v) Vias are etched and metal connections are made.

![Fabrication steps](image)

Fig. 1 (a) Fabrication steps, (b) IV-curves for different incident on-chip powers, and (c) SEM-image of a 2 µm × 10 µm waveguide-coupled UTC PD.

The waveguide-coupled PDs show a responsivity of 0.80 A/W for a bias voltage of −1 V, illuminated at 1550 nm. This corresponds to an external quantum efficiency of 65 %. We believe this can be further increased for longer devices or by incorporating a reflection-reducing design in the InP subcollector. The IV-characteristic for a PD with an active area of 2 µm × 10 µm is shown in Figure 1b. High dark currents of 10-20 µA and 20-50 µA, at respectively −0.5 V and −1.0 V biasing, are thought to be a result of surface leakage currents, and are currently being investigated and remedied. Given the small surface area of 20 µm² and the average measured series resistance of 30 Ω, a high intrinsic bandwidth is expected. This will be verified using RF photoresponse measurements in the near future.

References

