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Abstract 

Background: The severity of an influenza infection is influenced by both host and viral characteristics. This study 
aims to assess the relevance of viral genomic data for the prediction of severe influenza A(H3N2) infections among 
patients hospitalized for severe acute respiratory infection (SARI), in view of risk assessment and patient management.

Methods: 160 A(H3N2) influenza positive samples from the 2016–2017 season originating from the Belgian SARI 
surveillance were selected for whole genome sequencing. Predictor variables for severity were selected using a penal-
ized elastic net logistic regression model from a combined host and genomic dataset, including patient information 
and nucleotide mutations identified in the viral genome. The goodness-of-fit of the model combining host and 
genomic data was compared using a likelihood-ratio test with the model including host data only. Internal validation 
of model discrimination was conducted by calculating the optimism-adjusted area under the Receiver Operating 
Characteristic curve (AUC) for both models.

Results: The model including viral mutations in addition to the host characteristics had an improved fit ( X2=12.03, 
df = 3, p = 0.007). The optimism-adjusted AUC increased from 0.671 to 0.732.

Conclusions: Adding genomic data (selected season-specific mutations in the viral genome) to the model con-
taining host characteristics improved the prediction of severe influenza infection among hospitalized SARI patients, 
thereby offering the potential for translation into a prospective strategy to perform early season risk assessment or to 
guide individual patient management.
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Introduction
Influenza is ranked as the infectious disease with the 
highest impact on population health in the Burden of 
Communicable Diseases in Europe in the period 2009–
2013 [1]. Influenza types A and B are the predominant 

types causing disease in humans [2], of which type A 
viruses exhibit the greatest genetic diversity, infect the 
widest range of host species and cause the vast major-
ity of severe disease in humans [3]. Influenza A viruses 
mainly circulating worldwide in humans are subtypes 
A(H1N1) and A(H3N2) [2, 4].

Severity is one of the critical parameters for influenza 
monitoring. Following the A(H1N1) pandemic in 2009, 
the World Health Organization (WHO) and the Euro-
pean Center for Disease Prevention and Control (ECDC) 
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recommended to implement a hospital-based surveil-
lance of Severe Acute Respiratory Infections (SARI) to 
monitor the severity of influenza infection and the viru-
lence of circulating strains, upon which several countries 
have strengthened their surveillance of severe influenza 
infections in order to rapidly detect new variants and 
assess their population impact [5–10]. In Belgium, a 
SARI surveillance network has been implemented since 
2010 and includes six sentinel hospitals spread over Bel-
gium [11]. The main goal of this surveillance is to contrib-
ute to the early detection of signals of seasonal influenza 
severity. Clinical monitoring of severity is based on well-
defined severity indicators (i.e. complications), including 
treatment in an intensive care unit (ICU), acute respira-
tory distress syndrome (ARDS), extracorporeal mem-
brane oxygenation (ECMO), invasive respiratory support, 
and death.

The severity of seasonal influenza depends on the virus, 
host factors, and other factors such as access to care [12]. 
Host characteristics such as age and several comorbidi-
ties [13–15], including diabetes, chronic lung condition, 
cardiovascular disease, hepatic disease, hematologic 
condition, obesity, chronic renal failure, neurological 
condition, and suppressed immune function [12] have 
been identified as risk factors for severe seasonal influ-
enza [13]. Disease severity can however also be related 
to characteristics of the virus itself. For example, subtype 
A(H3N2) caused more deaths than A(H1N1) [16, 17] and 
influenza B infections [17, 18], and is especially severe 
in the elderly [3, 19]. Influenza evolves continuously via 
reassortments and point mutations that can influence 
host specificity and viral pathogenicity. The influenza 
genome is subject to high mutation rates (antigenic drift) 
due to the lack of proofreading of the influenza viral 
RNA-polymerase [20]. Newly evolved mutations can help 
the virus to evade the host immune system, and therefore 
be positively selected and passed on to the next genera-
tion [21]. Hemagglutinin (HA) and neuraminidase (NA), 
located on the surface of the virion, are the most studied 
proteins in influenza virulence and antiviral resistance, as 
these proteins are involved in the host immune response 
and are more likely to mutate [22–25].

Until recently, public health laboratories mainly 
relied on Sanger sequencing of the HA1 region of the 
HA gene to characterize influenza viruses, which only 
partially covers one of the eight RNA segments of the 
viral genome [26]. Next-generation sequencing (NGS) 
allows whole genome sequencing (WGS) of all eight 
segments of the influenza genome in one single reac-
tion through a massively parallel sequencing set-up 
[27]. Consequently, WGS offers greater resolution for 
genetic characterization compared to Sanger sequenc-
ing of the HA segment. Previously, we demonstrated 

that considering the whole genome rather than solely 
the HA segment substantially improved phylogenetic 
classification [28]. Additionally, WGS enables the iden-
tification of reassortment events [28, 29], the analysis 
of minor genetic variants in the viral RNA quasispecies 
population, and the detection of mutations in all seg-
ments of the genome potentially related to drug resist-
ance, virulence or other patient characteristics [30–34]. 
Consequently, crucial information can be missed 
when considering solely a sub-region of the genome 
obtained through the more traditional Sanger sequenc-
ing of the HA1 region. In order to make genomic data 
truly useful, it should however be combined with epi-
demiological data, and data sharing should be facili-
tated through global surveillance initiatives [35]. For 
instance, the Global Initiative on Sharing All Influenza 
Data (GISAID) promotes the international sharing of 
all influenza virus sequences, and related clinical and 
epidemiological data [36].

High-throughput technologies such as NGS generate 
high-dimensional data with many predictors, as every 
genomic position constitutes a variable, compared to the 
typically limited number of independent observations 
(i.e., patients or samples). An integrated data set, which 
combines the ‘classical’ host characteristics (including 
age, gender, vaccination status, and co-morbidities) with 
genomic viral characteristics (i.e., mutations), can ena-
ble building a predictive model for the severity of influ-
enza infection among SARI patients. Modeling severe 
outcomes of influenza infections has however mainly 
focused on host characteristics as potential risk factors 
using conventional multivariable regression methods 
[17, 37–42]. Although many mutations in the influenza 
genome have been linked to virulence [43–46], studies 
in a clinical or public health context that aim to incorpo-
rate genomic information remain scarce [19, 32]. This is 
partly due to numerous issues associated with employ-
ing high-dimensional data for predictive modelling, such 
as false discoveries and vulnerability to overfitting, also 
referred to as the ‘curse of high-dimensionality’, result-
ing in standard regression methods to perform poorly 
on high-dimensional datasets [47, 48]. Regularization 
methods provide an alternative strategy that aim to miti-
gate this by creating a linear regression model that is 
penalized for having too many variables in the model by 
adding a constraint in the equation (also called shrink-
age) [49, 50] that shrinks coefficient values towards zero 
for less contributive variables, thereby allowing variable 
selection [51]. Such penalized regression methods are 
commonplace for variable selection in high dimensional 
studies focusing on human genetic data [52–56], but have 
to the best of our knowledge not yet been applied to an 
infectious disease such as influenza.
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Here, we evaluate the added value of applying genomic 
data as additional information to complement the exist-
ing surveillance system. Incorporating viral WGS infor-
mation could potentially result in a better understanding 
of the different (currently unknown) factors that impact 
disease severity [19]. Our study therefore aims to find 
the combination of predictors for the severity of influ-
enza infection among patients hospitalized for SARI, 
and to assess the relevance of adding genomic viral data 
for increasing the performance of predictive modelling 
approaches.

Methods
Data collection
The SARI case definition is an acute respiratory illness 
with fever of ≥ 38  °C, cough or dyspnea, and requiring 
hospitalization for at least 24  h. Surveillance is carried 
out within six sentinel hospitals and only during the epi-
demic period of seasonal influenza. All hospital wards 
(including pediatric and adult units) collect both clinical 
data and nasopharyngeal swabs from every patient who 
corresponds to the SARI case definition. Samples and 
clinical forms are sent to the Belgian National Reference 
Center (NRC) of Influenza [11]. Among SARI patients, a 
severe influenza infection is defined based on the pres-
ence of at least one severe complication, i.e. stay in ICU, 
ARDS, ECMO, invasive respiratory support, or death, as 
recorded on the clinical forms. Data and accompanying 
samples from this existing surveillance system, i.e. rou-
tinely collected health data, were used for the current 
study. All methods were performed in accordance with 
relevant guidelines and regulations. The protocol of the 
SARI surveillance has been submitted for approval to 
the Sectorial committee for social security and health 
(i.e. private life commission). The Sectorial commit-
tee authorised the communication of private data in 
the frame of this surveillance during its deliberation n° 
15/043 of the 16 June 2015.

Study design
A population-based case–control study was performed. 
Cases and controls were chosen from a larger retrospec-
tive ‘case-series’ of the 2016–2017 SARI hospitalized 
population. The influenza 2016–2017 season was used as 
this was the most recent season for which data collection 
was completed at the point of initiating the study. Sam-
ples from 1422 SARI patients were sent to the NRC dur-
ing this season. Samples of 563 patients tested positive 
for influenza, of which 526 were positive for Influenza 
A(H3N2). Patients with a co-infection (n = 131), includ-
ing viral co-infections as identified by the NRC using 
multiplex real-time quantitative polymerase chain reac-
tion (RT-qPCR) and bacterial co-infections (e.g. bacterial 

pneumonia) as detected in the hospital, were excluded. 
The remaining 395 patients formed the potential case–
control study population. Samples to be sequenced were 
selected based on the quantification cycle (Cq) values, 
which is a semi-quantitative measure of the amount of 
virus DNA in a clinical specimen (the lower the Cq value, 
the more product was produced by a PCR). With high Cq 
values, the viral load might be insufficient for sequencing.

Cases were considered as SARI patients with a severe 
influenza infection (i.e. presence of at least one severity 
indicator) as defined in the previous section. Of all SARI 
patients with a severe influenza infection (n = 50), 9 had 
a Cq ≥ 30 and for 3 there was no accompanying sample 
available, resulting in 38 included cases. For the control 
study population (i.e. SARI patients without a severe 
complication, n = 345), 48 were excluded based on a high 
Cq value (Cq ≥ 30). From the remaining 297 patients, 
150 controls were randomly selected to aim for a case–
control ratio of at least 1:3. From these, 122 controls 
had samples available for sequencing. Correspondingly, 
samples from a total of 160 patients (38 cases and 122 
controls) were used for sequencing. An overview of the 
selection process is presented in Fig. 1.

Whole genome sequencing and identification of mutations
After RNA extraction from the clinical samples, reverse 
transcription polymerase chain reaction (RT-PCR) was 
performed with three universal primers to amplify the 
eight segments of the influenza A genome. All of these 
RT-PCR products were purified, the presence of the 
segments was verified, and the DNA concentration of 
each sample was measured. NGS was performed on the 
Illumina MiSeq (chemistry v3, 2 × 250  bp) using the 
Nextera XT DNA Sample Preparation Kit for library 
preparation. Full details on RNA isolation, PCR amplifi-
cation and WGS have been described previously [28]. All 
generated WGS data have been deposited in the NCBI 
Sequence Read Archive (SRA) under accession num-
ber PRJNA615341. Afterwards, the consensus genome 
sequence was obtained for every sample as described 
previously [28] and are available in the GISAID data-
base as isolates ID EPI_ISL_415292 to EPI_ISL_415452. 
Nucleotide mutations, i.e. Single Nucleotide Polymor-
phisms (SNPs), were identified by aligning the consen-
sus genome sequence for every sample to a reference 
genome (strain A/Hong Kong/4801/2014, GISAID acces-
sion number EPI_ISL_198222). Untranslated regions 
were stripped on both sides retaining only the protein-
coding parts on which the nucleotide enumeration was 
based. Mutations with an overall frequency of occur-
rence over all samples < 5% or > 95% were discarded. A 
detailed description of these procedures, including the 
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identification of genetic subgroups, is provided by Van 
Poelvoorde et al. [34].

Host characteristics
The dataset of host characteristics obtained through the 
clinical forms included the sampling period (beginning, 
middle, or end of the 2016–2017 epidemic period), age, 
gender, vaccination status, and co-morbidities (chronic 

respiratory condition, chronic cardiovascular condition, 
renal insufficiency, hepatic insufficiency, immunocom-
promised condition, pregnancy, asthma, neuromuscular 
condition, diabetes, and obesity).

Data exploration and univariate analysis
All analyses were performed using R software (R ver-
sion  3.6.0) [57]. Host characteristics were described for 

526
Influenza A(H3N2) posi�ve

395

Exclude co-infec�ons (n=131)

50
Cases

345
Controls

38
Cases

297
Controls

150
Controls

Random sample

122
Controls

SEQUENCING

Exclude samples with Cq≥30 (n=9) 

41
Cases

No sample available (n=3)

1,422
SARI pa�ents from influenza season 16-17

563
Influenza posi�ve

Exclude samples with Cq≥30 (n=48) 

No sample available (n=28)

SARI pa�ents included in 
the study (n=160)

All influenza A(H3N2) SARI pa�ents 
without a co-infec�on (n=395)

Fig. 1 Selection of severe acute respiratory infection (SARI) samples from a larger retrospective ‘case-series’ of the 2016–2017 SARI hospitalized 
population using a case–control sampling approach. SARI patients were categorized in two groups: a cases, defined as SARI patients with a 
severe influenza infection based on the presence of at least one severe complication, i.e. stay in intensive care unit (ICU), acute respiratory distress 
syndrome (ARDS), extracorporeal membrane oxygenation (ECMO), invasive respiratory support, and death, and b controls, defined as SARI patients 
without one of these severe complications. Cq (quantification cycle) = relative measure of the concentration of target in the PCR reaction
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the 160 included SARI patients, stratified per severity sta-
tus (cases versus controls). Univariate descriptive com-
parisons of host characteristics between severe (cases) 
and non-severe (controls) patients used the Fisher’s exact 
test for categorical data, and the Wilcoxon rank sum test 
for continuous data. Likewise, for descriptive purposes 
a Fisher’s exact test was used to assess univariate asso-
ciations between the mutations and severity of infection. 
Multiple testing correction was conducted by apply-
ing the Benjamini–Hochberg method [58]. Explorative 
analyses and visualization of the multivariable data were 
performed using principal components analysis (PCA), 
separately for the host characteristics and genomic data. 
To identify potential selection bias, baseline character-
istics were compared between cases and controls within 
the set of SARI patients included in the study (n = 160), 
and between cases and controls within the total cohort of 
influenza-positive A(H3N2) SARI patients without a co-
infection within the 2016–2017 season (n = 395).

Model building
The outcome was defined as a binary variable: severe 
influenza infection based on the presence of at least 
one severity indicator (cases) and non-severe influenza 
infection based on the absence of severity indicators 
(controls). Elastic net regression was used as a regulari-
zation method to build a predictive model for severity 
that is able to handle high-dimensional datasets [59]. 
This penalized model was used to select predictor vari-
ables for severity from the combined dataset of muta-
tions and host characteristics described previously. The 
analysis was conducted using the package ‘glmnet’ ver-
sion 2.0–18 of the R software that allows to fit penalized 
regression models with alpha values between 0 and 1 to 
fit an elastic net model. Lambda refers to the λ penalty 
parameter. To estimate these model parameters, eleven 
models were fitted with alpha ranging from 0 to 1 in steps 
of 0.1. Lambda was chosen using five-fold cross valida-
tion for each separate model. The cross-validated mean 
squared error (CVMSE) of the different models was com-
pared to select the optimal alpha estimate. The models 
were bootstrapped 300 times and only those variables 
that were selected by the elastic net regression in at least 
80% of the models were retained as predictors. The exact 
cut-off to retain the predictors was selected based on the 
Akaike Information Criteria (AIC) [60] of the resulting 
models. A logistic regression model with those predic-
tors was subsequently constructed to estimate adjusted 
odds ratios (OR) and the corresponding 95% confidence 
intervals (CI). Potential (multi)collinearity of the selected 
predictors was assessed based on the variance inflation 
factor (VIF). Additionally, interactions within the com-
bined model between the selected mutations and host 

characteristics were explored one-by-one by comparing 
models with and without the interaction term by a like-
lihood-ratio test (LRT). In addition, the potential inter-
action effect of the genetic subgroups (clades) on the 
association between the selected mutations and severity 
was assessed to take into account the viral genetic back-
ground, as suggested by Van Poelvoorde et  al. [34]. An 
elastic net regression model was fitted independently on 
a dataset only including the host characteristics using the 
same approach as for the combined model. An overview 
of the model building process is presented in Fig. 2.

Model comparison
The added value of including genomic data was assessed 
by comparing the combined model and the host model 
in terms of the goodness-of-fit and predictive accuracy. 
Goodness-of-fit of the nested models was assessed with 
the AIC [60] and the LRT. The predictive accuracy was 
estimated using the area under the receiver operator 
characteristic (ROC) curve (AUC) that indicates how 
well the models discriminate between severe and non-
severe influenza infections among SARI patients. In addi-
tion, the integrated discrimination improvement (IDI) 
index was calculated as a measure of the incremental 
value of the viral genomic predictors [61]. Cut-off points 
to determine the sensitivity and specificity of the mod-
els were selected using the Youden index [62, 63]. Inter-
nal validation of both models was assessed by calculating 
the optimism-adjusted AUC obtained through 200 boot-
strap resamples [64], accounting for overfitting of model 
parameters. The bootstrap resampling process starts with 
fitting models in a bootstrap sample of the same size as 
the original sample, selected with replacement from the 
original sample, and then evaluates model performance 
in both the bootstrap resample and original sample. The 
difference between the bootstrap and test performances 
is referred to as optimism. The optimism (averaged over 
200 bootstraps) is then subtracted from the apparent per-
formance (i.e. the performance in the original sample) to 
obtain the optimism corrected estimated performance 
[65, 66]. The rationale supporting this internal validation 
approach can be found in the Additional file 1: Appendix 
A. The overall model performance and calibration were 
assessed by calculating the Brier score (distance between 
fitted and actual values) and by performing the Hosmer–
Lemeshow test (goodness-of-fit) [67], respectively.

In addition to the approach described above, another 
data analysis scenario based on stepwise regression 
was explored and is presented in the Additional file 1: 
Appendix B to increase transparency and to assess the 
impact of methodological choices on the final conclu-
sions [68].
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Results
Data exploration and univariate analyses
Baseline characteristics (sampling period, age, gen-
der, vaccination status, and co-morbidities) of the 160 
included SARI patients stratified per severity status 
are presented in Table  1. Out of 160 included patients, 
38 were cases as they had at least one severe compli-
cation and were therefore considered as severe infec-
tions (i.e. ‘severe SARI patient’). The median age of all 
included SARI patients was 77.5  years, and was equal 
between cases and controls. The sampling period within 
the influenza season was also comparable between 
cases and controls. Severity was significantly associated 
with the presence of a chronic cardiovascular condition 
(p = 0.047), a chronic respiratory condition (excluding 
asthma) (p = 0.02), renal insufficiency (p = 0.02), and 
immunocompromised condition (p = 0.02). The vaccina-
tion status was not significantly different between cases 
and controls, but vaccination status was unknown for 
70 out of 160 patients. To assess potential selection bias, 
baseline characteristics were also compared between all 
cases (i.e. patients with a severe infection) (n = 50) and 
the full subset of potential controls (n = 345) among all 
influenza-positive A(H3N2) SARI patients without a co-
infection within the 2016–2017 season (n = 395) (see 
Additional file  1: Appendix C). No selection bias was 
detected as severity was associated with the same host 
characteristics as reported for our study population.

A total of 253 nucleotide mutations were identified 
among the 160 consensus sequences of the sequenced 
samples. The association between this genome-wide 
SNP panel (n = 253) and severity was tested using the 
univariate Fisher’s exact test. A total of 25 mutations 
had a p-value < 0.05 (see Additional file 1: Appendix D). 
As we carried out one Fisher’s exact test for every muta-
tion (n = 253), we corrected for multiple testing using the 
false discovery rate (FDR). The Manhattan plot in Addi-
tional file 1: Appendix E shows that after controlling the 
FDR at 5%, no significant associations could be identified 
between mutations and severity.

For explorative purposes, visualization of the multivari-
able data using principal component analysis (PCA) is 
presented in Additional file 1: Appendix F.

Model building
Elastic net regression was used to select variables from 
the combined dataset of host characteristics and viral 
mutations, and separately from the host dataset. Vac-
cination status was not included as a variable, as it was 
unknown for 70 patients. The elastic net regression 
model selected the following predictors from the data-
set containing only host characteristics: chronic respira-
tory condition, chronic cardiovascular condition, renal 
insufficiency, immunocompromised condition, and 
asthma. The parameter estimates of the elastic net model 
with host characteristics as input were alpha = 0.2 and 

160 SARI pa�ents

Host characteris�cs: age, gender, 
vaccina�on status, comorbidi�es, 

period of sampling

Viral characteris�cs: 253 
nucleo�de muta�ons among

consensus sequences compared to 
a reference strain

Host dataset

Combined dataset

Penalized elas�c net

Penalized elas�c net

GLM with selected
host predictors

GLM with selected
host and genomic

predictors

Severity

Genomic dataset

Internal
valida�on

Goodness-of-fit
Predic�ve accuracy

Fig. 2 Overview of the predictive model building process to compare a model including variables obtained from a combined dataset (i.e. host 
characteristics and viral characteristics) and a model including variables from the host characteristics dataset. SARI  severe acute respiratory infection, 
GLM  generalized linear model
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lambda = 0.063. As the coefficient of the asthma vari-
able resulted in an inflated standard error due to quasi-
perfect separation and as it did not significantly improve 
the goodness-of-fit following a LRT, it was removed from 
the final host model. A logistic regression model was fit-
ted with the remaining four host characteristics (chronic 
respiratory condition, chronic cardiovascular condition, 
renal insufficiency, and immunocompromised condition) 
resulting in an AIC of 168.63.

When providing both host characteristics (n = 13) and 
viral mutations (n = 253) in a combined data set as input 
for the elastic net regression, the parameter estimates 
were alpha = 0.5 and lambda = 0.011. The same four host 
characteristics were selected for the combined model 
as for the host model (chronic respiratory condition, 
chronic cardiovascular condition, renal insufficiency, 
and immunocompromised condition). Sampling period 
was initially selected by the model selection process but 
removed manually from the combined model in order to 
arrive at the same set of host characteristics in accord-
ance with the host model. This was justified by the fact 
that sampling period did not significantly improve the 
fit of the model based on the LRT, as well as the fact the 
AIC was lower when not including sampling period in 
the model. In addition to the four host characteristics, 
the following three mutations were selected: PA T135C, 
PA A1475G and NS A323C. No (multi)collinearities 

between the covariates were detected. No interactions 
between the viral and host characteristics could be iden-
tified. In addition, there was no interaction effect of the 
genetic subgroups (clades) on the association between 
the selected mutations and severity. A logistic regression 
model was fitted containing the four host characteristics 
(chronic respiratory condition, chronic cardiovascular 
condition, renal insufficiency, and immunocompromised 
condition) and the three mutations (PA T135C, PA 
A1475G, and NS A323C) resulting in an AIC of 162.60. 
The adjusted ORs and associated CIs of the selected vari-
ables within the host and the combined model are pre-
sented in Table 2.

Model comparison
Likelihood ratio tests were used to compare the good-
ness-of-fit between the nested models. The combined 
model including the 3 mutations and 4 host character-
istics had a significantly improved fit compared to the 
host model only including the 4 host characteristics ( X2 
= 12.03, df = 3, p = 0.007). The host model resulted in a 
Brier score (distance between fitted values and actual val-
ues) of 0.161, whereas the combined model resulted in a 
Brier score of 0.145. A lower Brier score indicates more 
accurate predictions. The Hosmer–Lemeshow good-
ness-of-fit test resulted in a p-value of 0.959 for the host 

Table 1 Characteristics of patients hospitalized for severe acute respiratory infection (SARI) (n = 160), stratified per severity status, i.e. 
severe influenza A(H3N2) infections (cases) and non-severe influenza A(H3N2) infections (controls), Belgium, Influenza season 2016–
2017

SARI severe acute respiratory infection, IQR interquartile range
a Wilcoxon rank sum test applied for medians and Fisher’s exact test applied for proportions

Severe SARI patients (i.e., cases)
(n = 38)

Non-severe SARI patients (i.e., 
controls) (n = 122)

p  valuea

Median + IQR Total Median + IQR Total

Age (years) 77.5 (67.5–82) 38 77.5 (61–84) 122 0.94

Sampling period (weeks) 5 (4.25–6) 38 5 (4–6) 122 0.31

Proportion Total Proportion Total

Males 0.54 37 0.48 119 0.58

Vaccinated 0.53 19 0.34 71 0.18

Chronic cardiovascular condition 0.47 38 0.29 122 0.047

Chronic respiratory condition 0.39 38 0.20 122 0.02

Renal insufficiency 0.34 38 0.16 122 0.02

Hepatic insufficiency 0.03 38 0.04 122  > 0.99

Immunocompromised condition 0.26 38 0.10 122 0.02

Pregnant 0.00 38 0.02 122 /

Asthma 0.00 38 0.06 122 /

Neuromuscular condition 0.11 38 0.12 122  > 0.99

Diabetes 0.18 38 0.15 122 0.61

Obesity 0.08 38 0.11 122 0.76
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model, and a p-value of 0.781 for the combined model, 
indicating no evidence of poor fit.

The predictive accuracy was assessed by the AUC that 
indicates how well the models discriminate between 
severe and non-severe SARI influenza infections inde-
pendently from the exact decision threshold employed. 
The apparent AUC (see Additional file  1: Appendix G) 
increased from 0.700 [0.602, 0.799] to 0.773 [0.684, 0.861] 
when adding the 3 mutations to the model contain-
ing host characteristics (p = 0.015). The discrimination 
slope increased, yielding an IDI of 0.077 [0.039, 0.116] 
(p < 0.001). After choosing an appropriate objective clas-
sification threshold based on the Youden index (0.26 for 
the host model and 0.25 for the combined model), the 
host model resulted in an apparent sensitivity of 53% 
and specificity of 80%, whereas this was respectively 
74% and 72% for the combined model. Boxplots of the 
fitted values are presented in Additional file  1: Appen-
dix H. Internal validation of the predicted accuracy was 
assessed by optimism-adjustment, which was obtained 
through 200 bootstrapped resamples (see Table  3). The 
optimism-adjusted AUC increased from 0.670 to 0.732 
when adding viral genomic information (i.e. the three 
mutations) to the model. The combined model had an 
optimism-adjusted sensitivity and specificity of 68% and 

70% respectively, whereas this was 48% and 79% for the 
host model.

Approximately similar conclusions could be drawn 
when adopting an alternative approach consisting of a 
prioritization step of variables following univariate anal-
ysis and subsequent stepwise regression (see Additional 
file 1: Appendix B).

A genomic model built from a dataset only including 
mutations was also evaluated and resulted in a lower per-
formance based on AUC than both the combined and 
host models, suggesting that the increased performance 
of the combined model was due to incorporating data 
from both the clinical forms and genomics rather than 
genomics data on itself (see Additional file  1: Appendix 
I).

Discussion
As recommended by WHO and ECDC, severity of influ-
enza infection and the virulence of circulating strains is 
monitored through the implementation of a hospital-
based surveillance of SARI. This study assessed the added 
value of viral sequence data obtained through WGS to 
complement “traditional” clinical data for predicting 
a severe influenza infection among hospitalized SARI 
patients. A penalized elastic net logistic regression was 

Table 2 Host and viral characteristics (mutations) selected for predicting severity of influenza A(H3N2) infection among patients 
hospitalized for severe acute respiratory infection (SARI) (n = 160), Belgium, Influenza season 2016–2017

a The variables were selected by penalized elastic net regression and fitted as predictors in a logistic regression model
b The mean adjusted odds ratio’s and accompanying 95% confidence intervals (CI) are based on the results of the logistic regression model

Host model
(AIC = 168.6)

Combined model
(AIC = 162.6)

Variablea Odds  ratiob 95%  CIb Odds  ratiob 95%  CIb

Chronic respiratory condition 2.16 [0.93, 4.95] 2.76 [1.13, 6.76]

Chronic cardiovascular condition 2.05 [0.91, 4.64] 1.96 [0.83, 4.64]

Renal insufficiency 1.94 [0.78, 4.64] 1.75 [0.68, 4.40]

Immunocompromised condition 3.00 [1.09, 8.19] 3.35 [1.16, 9.76]

PA T135C – – 0.12 [0.01, 0.69]

PA A1475G – – 2.55 [0.49, 13.00]

NS A323C – – 3.32 [0.91, 11.91]

Table 3 Apparent and bootstrap (using 200 resamples) optimism-adjusted measures of accuracy for the combined and host model 
predicting severity of influenza A(H3N2) infection among patients hospitalized for severe acute respiratory infection (SARI) (n = 160), 
Belgium, Influenza season 2016–2017

Host model Combined model

Apparent Optimism Corrected Apparent Optimism Corrected

AUC 0.700 0.030 0.670 0.773 0.041 0.732

Sensitivity 0.526 0.044 0.482 0.737 0.058 0.679

Specificity 0.803 0.015 0.788 0.721 0.018 0.703
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used to fit models to predict influenza infection sever-
ity using either only host characteristics obtained from 
the clinical forms (the ‘host model’), or alternatively an 
integrated dataset containing both host characteris-
tics and viral genomic data (i.e. 253 nucleotide muta-
tions) as potential predictors (the ‘combined model’). 
The elastic net method effectively sets the less contribu-
tive model variables to zero thereby allowing variable 
selection. For both models, such variable selection was 
employed to find the combination of predictors that 
optimized the overall model fit. Following subsequent 
model comparison, the goodness-of-fit increased sig-
nificantly when adding the selected viral mutations (PA 
T135C, PA A1475G, and NS A323C) to selected host 
characteristics (chronic respiratory condition, chronic 
cardiovascular condition, renal insufficiency, and immu-
nocompromised condition). This indicates that adding 
viral mutations presents a significant improvement over 
the more parsimonious host model. Moreover, the opti-
mism-adjusted predictive accuracy was higher for the 
combined model (AUC = 0.732) compared with the host 
model (AUC = 0.670). The higher the AUC, the better the 
model is at distinguishing between severe and non-severe 
influenza-infected hospitalized patients. Following objec-
tive classification threshold selection using the Youden 
index, the optimism-adjusted sensitivity increased by 
20% at only a cost of 9% in specificity.

Predictors for severity selected from the host char-
acteristics through the elastic net approach for both 
the host and combined models include chronic respira-
tory condition, renal insufficiency, immunocompro-
mised condition, and chronic cardiovascular condition, 
in agreement with previous studies [12, 13, 17, 69]. Age 
was also indicated as an important risk factor for influ-
enza severity following a large systematic review [13], but 
was not a strong predictor for influenza severity within 
our population of hospitalized patients. However, these 
other studies often define severity as requiring hospital 
admission, while in the current study we evaluated sever-
ity among hospitalized patients based on clearly defined 
severity indicators. Three nucleotide mutations were 
selected on top of these four host characteristics in the 
combined model: PA T135C, PA A1475G, NS A323C. 
Since these mutations are located on the PA (polymer-
ase acid protein) and NS (non-structural protein) seg-
ments, Sanger sequencing of only the HA segment as 
traditionally performed for influenza surveillance would 
not have identified them, demonstrating the added value 
of characterizing the other genome segments as well 
because they can also be good predictors for severity [19, 
28, 34, 43]. It should be noted that the choice of refer-
ence genome used to identify mutations can potentially 
have implications. A genomic position with predictive 

ability present in the reference will not be picked up as 
only positions that are different from the reference are 
propagated. Consequently, the more distant the reference 
strain the more mutations that will be detected.

It has been suggested that mutations in the haemagglu-
tinin (HA), non-structural protein 1 (NS1) and polymer-
ase basic protein 2 (PB2) of influenza viruses might be 
associated with disease severity [19, 43–46]. The muta-
tions PA T135C, PA A1475G, and NS A323C included 
in the combined predictive model have, to the best of 
our knowledge, not been described before in relation to 
influenza pathogenicity. The NS A323C mutation pro-
vokes an amino acid change (Lysine into Threonine) in 
the NS1 protein. The NS1 protein has been implicated 
in pathogenicity by playing a role in the evasion of the 
innate immune response [70–72]. The PA A1475G muta-
tion results in an amino acid change in the PA protein 
(Lysine into Arginine). The function of the PA subunit 
is less well defined [73, 74] but plays an essential role in 
viral RNA transcription and replication. PA T135C is a 
synonymous mutation, i.e. did not result in an amino acid 
change in the encoded protein, but it has been demon-
strated previously that natural selection can also act on 
synonymous sites [75, 76]. Nucleotide mutations may 
also influence pathogenicity of influenza viruses [77], as 
they can affect packaging, transcription and translation 
of the virus, interfere with the hosts’ immune response 
[78–82], and can be co-selected with other sites, sup-
porting our approach of incorporating mutations at the 
nucleotide rather than amino acid level as potential pre-
dictors for severity. The PA T135C mutation would not 
have been detected as a predictor of severity when only 
looking at the amino acid level. Furthermore, it should 
be stressed that selection of predictive mutations does 
not necessarily imply a causal association with severity. 
A causal analysis would require a thoughtful selection of 
confounders. However, the objective of the current study 
was not to identify individual risk factors that are caus-
ally related to an outcome by a direct or indirect effect, 
but rather to find a combination of factors that best pre-
dicts the severity of a current or future diagnosis [83]. 
When the interest lies exclusively on outcome prediction, 
one may want to select any variable that, when included 
as covariate in the model, improves its predictive ability 
[84]. This explains why the predictive modelling could 
detect mutations that were not picked up by univariate 
analysis, after correction for multiple testing.

Strengths of the currently existing SARI surveillance 
system in Belgium are the well-defined severity indi-
cators, and the absence of sampling bias as a swab is 
taken for every patient corresponding to the case defini-
tion. Furthermore, no selection bias was detected when 
comparing baseline characteristics between our study 
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population and the SARI database population. Also, as 
six sentinel hospitals are participating in the surveillance, 
the data are considered to be more generalizable com-
pared to single-center studies. Limitations include that 
the quality and completeness of the data cannot always 
be guaranteed when retrospectively analyzing clinical 
data from a routine surveillance system [85]. For exam-
ple, the absence of pre-existing immunity is considered 
as an important risk factor for influenza disease severity 
[86]. Consequently, adding information on host immuno-
logical status, such as vaccination history, to the model 
might significantly improve the predictions. The added 
value of genomic information was assessed by comparing 
two hierarchical models: a model with host data only and 
the same model with viral genomic data. If pre-existing 
immunity plays a role in the severity of influenza, it is 
expected to induce a bias in both models but not on the 
difference. Nevertheless, the current prediction model 
was built using real-life patient data collected as part of a 
routine surveillance system where vaccination status was 
missing for 44% of the included patients and therefore 
not considered as a predictor in the model. When this 
predictive model would be applied in a real-life setting, it 
would face the same limitations. Another limitation is the 
relatively small sample size. Several cross-validation and 
bootstrapping steps were added to the analysis to avoid 
an overfitting problem.

A case–control sampling approach was used to select 
an appropriate subsample of individuals from a larger 
retrospective ‘case-series’ study population (i.e. routinely 
collected surveillance data) to ensure that WGS was only 
performed for as many samples as necessary to avoid 
costly sequencing in large cohorts, and is more efficient 
than sampling a random population subset that could by 
chance include some cases. It is therefore more efficient 
to utilize all available cases (especially when the outcome 
is relatively infrequent), and randomly select a number of 
controls for every case from the remaining population. 
There exists an upper limit on statistical power if only a 
limited number of cases are available so that collecting 
more controls to increase the sample size will not add 
statistical power once past a certain level [87]. The power 
gained for case:control ratios above 1:3 or 1:4 is likely 
poor compared to the additionally required workload 
[88]. Additionally, controls were not matched to cases, as 
we aimed to analyze all variables as potential risk factors 
[89].

Viral genomics has to date only seen limited direct use 
in clinical or public health practice for predicting infec-
tion severity [19, 44], which can partly be explained by 
its larger cost and difficulty of collecting samples com-
pared to collecting the traditionally employed clinical 
data. Information on the pathogen genome however 

increases understanding of disease severity. Broberg et al. 
[90] highlighted the importance of reporting influenza 
sequence data along with associated clinical and epidemi-
ological information to improve understanding of factors 
that may increase the risk of severe influenza. Further-
more, ECDC recommends notification of influenza cases 
in combination with genetic analysis, and has prioritized 
influenza for further integration of molecular typing and 
full genome sequencing into European level surveillance 
activities and epidemic preparedness [91]. According to a 
survey conducted by ECDC in 2017, 8 EU/EEA countries 
use WGS for first or second-line typing for routine sur-
veillance and outbreak investigations of human influenza 
virus, while 20 countries indicated that they do not use 
WGS for any public health operations related to influ-
enza. However, 14 countries indicated that the imple-
mentation of WGS for human influenza virus is planned 
by 2019 [92]].

We demonstrated that adding viral genomic infor-
mation to a predictive model on top of standard host 
characteristics, provides a more complete view on the 
predictors of severity of influenza infection, and subse-
quently increases model performance. A potential limi-
tation of the current approach for implementation into 
routine practice, is that the modelling approach cannot 
be fully automated and requires expert decisions and 
interventions at several steps. Furthermore, given the 
substantial genetic variation in the influenza genome and 
its quick mutation rate, the viral model parameters (i.e. 
selected mutations) should be considered as dynamic 
rather than fixed. Still, results could be accumulated 
over multiple influenza seasons to construct a database 
of mutations with predictive ability. More investigation 
is needed to understand how such an approach can be 
translated into public health practice. From a research 
perspective, the identified mutations are ideal candidates 
for additional investigations by molecular biology-based 
approaches to examine if they potentially affect sever-
ity. Although being careful against insinuating a causal 
relationship, this approach would reduce the overall 
size of genomic positions to be investigated. The added 
value of other information from the viral genome, such 
as the detection of reassortment events and the analysis 
of minor genetic variants in the viral RNA quasispecies 
population, for predictive modeling of influenza severity 
should also be further investigated in the future.

At the public health level, a better understanding of the 
different factors predicting severity, including viral muta-
tions, could serve public health authorities by estimating 
influenza severity at the beginning of the season (i.e. early 
season risk assessment [26]). The collection of a suffi-
cient number of samples at the beginning of the season 
allowing to perform our proposed predictive modelling 
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strategy, would likely require international collaboration 
between multiple countries, in line with the objectives of 
GISAID [36]. Information concerning influenza severity 
could assist public health authorities on advising pre-
cautionary measures and/or hospital recommendations. 
Furthermore, the predictive model could potentially be 
useful for individual patient care. As SARI cases are sam-
pled at hospital admission, information from the model, 
if provided in real-time, could potentially allow the iden-
tification of people at risk of progressing to severe disease 
by allowing better patient management and treatment 
(e.g. administration of antivirals).

Conclusion
This retrospective study demonstrated the added value of 
incorporating viral genomic information on top of tradi-
tional clinical data for the prediction of severe influenza 
A(H3N2) infections among hospitalized patients. This 
approach may allow potential translation into a prospec-
tive strategy for surveillance purposes and patient man-
agement of influenza infections, and eventually other 
respiratory viruses.
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