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Abstract 

The system spatial resolution of whole-body positron emission tomography (PET) is limited to 

around 2 mm due to positron physics and the large diameter of the bore. To stay below this ‘physics’-

limit a scintillation detector with an intrinsic spatial resolution of around 1.3 mm is needed. 

Currently used detector technology consists of arrays of 2.6-5 mm segmented scintillator pixels 

which are the dominant factor contributing to the system resolution. Pixelated detectors using 

smaller pixels exist but face major drawbacks in sensitivity, timing, energy resolution and cost.  

Monolithic continuous detectors, where the spatial resolution is determined by the shape of the light 

distribution on the photo detector array, are a promising alternative. Without having the drawbacks 

of pixelated detectors, monolithic ones can also provide depth-of-interaction (DOI) information.  

In this work we present a monolithic detector design aiming to serve high-resolution clinical PET 

systems while maintaining high sensitivity. A 50 x 50 x 16 mm3 Lutetium- Yttrium oxyorthosilicate 

(LYSO) scintillation crystal with silicon photomultiplier (SiPM) back side readout is calibrated in 

singles mode by a collimated beam obtaining a reference dataset for the event positioning. A mean 

nearest neighbour (MNN) algorithm and an artificial neural network for positioning are compared. 

The targeted intrinsic detector resolution of 1.3 mm needed to reach a 2 mm resolution on system 

level was accomplished with both algorithms. The neural network achieved a mean spatial resolution 

of 1.14 mm FWHM for the whole detector and 1.02 mm in the centre (30 x 30 mm2). The MNN 

algorithm performed slightly worse with 1.17 mm for the whole detector and 1.13 mm in the centre. 

The intrinsic DOI information will also result in uniform system spatial resolution over the full field 

of view.   

Keywords: monolithic detector, high-resolution, PET, TB-PET 

 

1. Introduction 

Spatial resolution of positron emission tomography (PET) systems is limited by the intrinsic detector 

resolution, the system diameter and the positron range of the tracer isotope. Almost all recent clinical 

PET scanners are based on detectors with pixelated Lutetium- Yttrium oxyorthosilicate (LYSO) crystal 

arrays coupled to silicon photomultipliers (SiPMs) (Siemens Biograph VisionTM (van Sluis et al 2019), 

GE DiscoveryTM MI (Pan et al 2019), Philips Vereos (Rausch et al 2019) and United Imaging uMI 780 

(Spencer et al 2020)(Hu et al 2021)). The intrinsic detector spatial resolution of those detectors is 

limited by their crystal pixel widths ranging from 2.6 mm to 5 mm. For a system with a diameter of 60-

80 cm the introduced noncollinearity limits the achievable spatial resolution to around 2 mm. Therefore, 

the ideal detector resolution 𝑅𝑖𝑛𝑡 should be better than 1.3 mm to not have a significant effect on the 

Page 1 of 18 AUTHOR SUBMITTED MANUSCRIPT - PMB-111910.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Journal XX (XXXX) XXXXXX Author et al  

 2  
 

system spatial resolution limit. This is calculated from the system resolution definition 𝑅𝑠𝑦𝑠 ≈

 √𝑅𝑑𝑒𝑡
2 + 𝑅𝑟𝑎𝑛𝑔𝑒

2 + 𝑅180°
2  , where for monoliths 𝑅𝑑𝑒𝑡 ≈

𝑅𝑖𝑛𝑡

√2
, the positron range of 𝐹18  is 𝑅𝑟𝑎𝑛𝑔𝑒 =

0.2 𝑚𝑚 and the noncollinearity dependent on the system diameter D is 𝑅180° = 0.0022 ×  𝐷 (Cherry 

et al 2012)(Vandenberghe et al 2020) (Levin and Hoffman 2000). A conventional pixelated detector 

can also reach the spatial resolution of 1.3 mm and better, but at the same time the costs are increasing 

because the detector then consists of more and thinner crystals which impede the manufacturing 

procedure. A decreasing pixel size also leads to a reduced light collection and a deterioration of timing 

performance (Berg and Cherry 2018). Nevertheless, the current state-of-the-art coincidence timing 

resolution (CTR) is 214 ps FWHM based on pixelated arrays of 3.2 x 3.2 x 20 mm3 (van Sluis et al 

2019). For monoliths the light spread and collection over multiple photodetector pixels results in low 

SNR and thus limits the achievable timing performance (Lamprou et al 2020, Borghi et al 2016b). 

However, the unrestricted movement of scintillation photons with a direct travel path to the 

photodetector makes monolithic crystals fundamentally superior to be used for timing measurements. 

We believe that the monolith is a promising alternative to reach timing performances comparable or 

better than those of pixelated detectors using precise calibration techniques and/or simulated data to 

train neural networks.  

Furthermore, the longer the axial field of view, the more oblique gamma rays will interact with the 

crystal, leading to parallax errors and decrease in spatial resolution when no depth-of-interaction (DOI) 

measurement is present. DOI determination is a unique feature of monolithic crystals that cannot easily 

be extracted from pixelated crystals (Ito et al 2011). Long axial field-of-view (FOV) PET devices, also 

called total-body (TB) - PET scanners (Vandenberghe et al 2020, Surti et al 2020), have recently been 

prototyped (Spencer et al 2020, Karp et al 2020) and thereafter emerged on the imaging market (United 

Imaging uExplorer, Siemens Biograph Vision Quadra). These scanners can have an axial length of up 

to 2 m leading to great sensitivity increase and the possibility to measure dynamic processes in the 

entire human body simultaneously. However, this axial extension requires many more gamma-ray 

detectors constituting an enormous cost factor. The PET20.0 consortium was formed aiming to build a 

cost-efficient more compact TB-PET scanner with a system spatial resolution of 2 mm (Vandenberghe 

et al 2017). The only currently existing TB-PET systems employ pixelated detectors of 2.76 mm and 

3.76 mm crystal width leading to system resolutions of 3.0 mm (Spencer et al 2020) and 4.0 mm (Karp 

et al 2020) respectively. These systems do not have DOI capabilities. At off-centre positions the spatial 

resolution therefore degrades to 4.7 mm and 5.6 mm FWHM. More recently the Biograph Vision 

Quadra system with long axial FOV was presented with pixel width of 3.2 mm (Alberts et al 2021). 

 

The aim of this work is to develop a gamma-ray detector that can provide good spatial resolution and 

sensitivity while being cost-efficient. Monolithic detectors are an alternative detector design consisting 

of a continuous scintillation crystal coupled to an array of SiPMs. The scintillation light spreads inside 

the crystal and the light distribution can be sampled by the SiPM array. From the shape of this 

distribution the 3D interaction position i.e., the 2D position and DOI can be accurately determined. As 

mentioned above, for TB-PET scanners DOI becomes more important as there is also parallax effects 

and degradation in the axial direction (axial blurring). At the same time, DOI improves spatial resolution 

for larger radial distances in dedicated organ scanners where the small bore induces oblique incidence 

angles. It minimizes parallax effects and therefore provides a more uniform resolution across the bore 

and allows smaller system diameters (Thoen et al 2013). Furthermore, DOI is of interest for TOF - PET 

to correct for the time walk inside the detector (Lecoq et al 2020). Another advantage of monoliths 

compared to pixelated detectors is that there is no sensitivity loss due to dead space. The higher the 

resolution requirements for a pixelated detector the more dead spaces are created between the pixels 

and the larger the sensitivity loss. For a 1 mm pixelated array a scintillation material loss of 14% was 

calculated compared to the monolithic detector, adding up to 26% loss in coincidence (Stockhoff et al 

2019). 
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Monolithic detectors provide high spatial, timing, energy resolution, and sensitivity, while the single 

detector is significantly cheaper compared to a pixelated crystal with the same resolution (Borghi et al 

2016b, Marcinkowski et al 2016, Gonzalez-Montoro et al 2021). The unit cost for e.g. a 1 mm pixelated 

array stated by two manufacturers is 1.5-1.75 higher than for a monolithic crystal of the same size 

(Stockhoff et al 2019). A 1-1.5 m long PET system can consist of 800-1200 detectors. According to 

(Vandenberghe et al 2020) crystal cost can constitute up to 46-48% of the total cost of a long axial FOV 

PET scanner. One should also keep in mind that if all photodetector channels are read out, the count 

rate performance of the electronics needs to be much higher for monolithic detectors compared to 

pixelated ones. Various techniques to reduce the number of readout channels have been evaluated e.g., 

Anger logic, row and column summing or a sparse readout (González-Montoro et al 2018, Chinn et al 

2013, Pierce et al 2014, Yang et al 2019). However, these techniques should be implemented cautiously 

since performance parameters like spatial resolution can degrade but especially timing resolution is 

sensitive to multiplexing (Lamprou et al 2020, Gundacker et al 2016). 

There are some other drawbacks related to monolithic detectors. First of all, there is the more complex 

positioning, which has only recently become possible in real time due to more advanced hardware like 

GPUs. Secondly, there is the more elaborate calibration procedure to acquire reference data for the 

positioning algorithms being used. Often reference signals are acquired by a tiny calibration beam in a 

narrow 2D grid over the whole detector. Techniques to speed up the calibration already exist (Freire et 

al 2019, España et al 2013, Miyaoka et al 2010, Müller et al 2018).  

Most commonly used positioning algorithms are statistical ones, such as maximum likelihood 

estimation (Pierce et al 2018, Ling et al 2007, España et al 2014), k- nearest neighbour (van Dam et al 

2011, Borghi et al 2016a), and more recently other machine learning algorithms like gradient tree 

boosting (Müller et al 2018) and neural networks (Wang et al 2013, Bruyndonckx et al 2004, Iborra et 

al 2019, Decuyper et al 2021). Multiple detector designs have been evaluated with respect to spatial 

resolution. The performance depends highly on the crystal thickness. For the use in clinical systems a 

thickness of more than 12 mm is typically required to have sufficient detector sensitivity. A spatial 

resolution of 1.7 and 1.5 mm FWHM could be achieved with a 22 and 20 mm thick crystal, respectively 

(Borghi et al 2016a, 2015). A 15 mm thick crystal was used in (González-Montoro et al 2018) achieving 

1.8 mm FWHM. In (Müller et al 2018) a spatial resolution of 1.4 mm (with correction of source size) 

could be obtained with a crystal thickness of 12 mm. Even better spatial resolution of 1.1 mm (Borghi 

et al 2015) and 0.78 mm (Mollet et al 2017) could be achieved with a 10 and 8 mm thick crystal. Not 

only the crystal thickness but also the evaluated region on the detector (centre, edge, corner, centre line 

on one axis) and the correction methods applied to isolate the calibration beam diameter (González-

Montoro et al 2019) have a large impact on the stated spatial resolution. There is no standardized 

procedure to evaluate the performance of monolithic detectors and therefore it is not trivial to compare 

results from different groups.  

In this document we present a high-resolution monolithic detector design aiming to serve the TB-

PET system in the PET20.0 project, but also a potential candidate for other brain or clinical PET systems 

with similar requirements. A 50 x 50 x 16 mm3 LYSO scintillation crystal with backside SiPM readout 

is calibrated in singles mode by traversing a collimated beam in a 2D grid to obtain a dataset of events 

that serve as references for the event positioning. Two positioning algorithms are compared, a mean 

nearest neighbour algorithm (MNN) (Stockhoff et al 2019) and an artificial neural network (Decuyper 

et al 2021). The MNN algorithm is well-studied and implemented in commercial PET systems while 

neural network development is still evolving and promising for high-performance positioning. We study 

with extensive measurements the intrinsic spatial resolution and DOI performance of this detector for 

both positioning algorithms. 

 

2. Materials and Methods 

2.1 Experimental setup 
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The investigated detector is a monolithic 50 x 50 x 16 mm3 LYSO (Epic Crystal) crystal, readout by 

silicon photomultipliers (SiPMs) at back (Figure 1 a), b)). The surfaces have a rough black painted 

finishing on the crystal sides (16 x 50 mm2) and a black-painted specular reflector attached to a polished 

crystal top (50 x 50 mm2). The crystal is coupled with optical grease (St. Gobain BC630) to an 8 x 8 

array of 6 x 6 mm2 SiPMs (ON Semiconductor MicroFJ-60035-TSV). The crystal and SiPMs are 

placed in a light-tight aluminium housing. Similar to what has been previously published (Deprez et al 

2011, Mollet et al 2017, Krishnamoorthy et al 2018) the signals of 64 SiPM pixels are combined to 16 

(8+8) channels by summing rows and columns (Figure 2). This is done by using a resistor network that 

splits the current of each pixel in two. One half of the current ends up in the column signal and the other 

half ends up in the row signal. The 16 rows and columns currents are then amplified using a current-to-

voltage amplifier (based on an operational amplifier). In a next step the amplified signal is converted to 

a differential signal, using a differential amplifier. The differential signal is digitized by a free-running 

ADC with a sampling frequency of 64 MHz. 

2.2 Calibration data acquisition 

The detector is calibrated with a collimated 68Ge source (69 MBq) placed in a tungsten collimator 

forming a beam with a diameter of 0.6 mm and 1 mm respectively. The beam is first collimated to 1 

mm for 48 mm and then further collimated to 0.6 mm (1 mm) for 12 mm respectively (Figure 1 d)). 

The collimated beam is orthogonal to the optical table irradiating the detector which is mounted on a 

three-dimensional robot stage (Owis LTM 80, positioning error 25 m/100 mm) (Figure 1 a)). 

Calibration data is acquired in a 49x49 grid for 70s per position. A calibration and an evaluation dataset 

are extracted from the acquired data. For the calibration dataset the events are pre-positioned with an 

Anger logic algorithm for each calibration position. A region of interest (ROI) is then drawn around the 

calibration beam position to extract only data from the irradiated position and to avoid events from the 

intrinsic 176Lu radiation of the scintillator. An energy window of 20% is applied. For the neural network 

validation an additional dataset is acquired at 1 mm grid steps in the detector centre (10 x 10) with an 

offset of 0.5 mm with respect to the calibration positions. This validation set is acquired to avoid 

overfitting (more detail in section 2.4). For clarity we summarize that for both algorithms the training 

(calibration) data is energy filtered and a position filter is applied. For the evaluation (test) dataset an 

energy filter but no ROI selection (no position filter) is applied. Therefore, only those scattered events 

are filtered that have not deposited their full energy in the detector (i.e., Compton interaction then 

gamma exits the crystal). 

 
Figure 1 a) The calibration setup consists of a collimator forming the calibration beam and the detector that is 

mounted on a 3D robot stage. b) The light-tight aluminium housing encapsulates the black-painted scintillation 

crystal coupled to the SiPM array. c) The collimators have holes of 0.6 mm and 1 mm diameter. d) Sketch of the 

collimator geometry. Diameter A represents 0.6 mm or 1 mm, respectively. 
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2.3 Mean Nearest Neighbour (MNN) positioning algorithm 

The calibration data for the MNN algorithm is extracted from the Anger histogram as a ROI of in total 

37 high intensity pixels (pixel size = 0.26 mm). The remaining number of events per position for the 

0.6 mm beam is on average 4930  730 and for the 1.0 mm beam 9796  1577. Each event first 

undergoes a baseline correction and is normalized by dividing the signal in each channel by the sum of 

all 16 channels to make it energy independent. For each single event we calculate the variance between 

the values of the 16 channel signals. These variances are then used to sort the calibration events into 6 

groups. For example, the first group includes signals with small variances referring to events that 

interacted at the top of the crystal where the light spread is broad and many SiPM pixels have a similar 

value. On the contrary, the sixth group includes events where the gamma interaction occurred close to 

the SiPM array and most of the light is captured by a small number of SiPM pixels and therefore the 

signal has a larger variance. The final step is to calculate the mean signal in each of the channels per 

group. For each calibration position we then end up with 6 reference signals which are the mean of all 

the events per “depth”-group. In Figure 2 c) these mean signals are presented for a calibration position 

in the detector centre. The number of events per group, here called layers, best resembles the expected 

depth distribution derived from Beer-Lambert attenuation Law with these splits: 29.5%, 22.95%, 

17.87%, 13.91%, 10.83% and 4.94% for layer 1 to 6 respectively (Figure 6). For simplicity we assume 

the beam to be perpendicular, however, a certain opening angle is introduced by the collimator geometry 

(Figure 1 d)).   

The six layers do not only provide depth information but also improve 2D spatial resolution (Ling et al 

2007). The reason for the improvement is that the signal at one 2D position varies greatly between the 

different interaction depths. Using a single mean signal over all interaction depths would be a too 

general representation of the signal variety. Therefore, using mean events from different (here six) 

depth-groups lead to a better position determination using the mean nearest neighbour algorithm. The 

ideal number of layers is determined in section 2.5.6. For each layer the mean signal is calculated, 

interpolated to a grid size 0.26 mm and stored in look-up-tables. The evaluation data is positioned with 

a nearest neighbour algorithm implemented in Matlab (‘knnsearch’-function). In an exhaustive 

neighbour search, each test event is compared to all reference signals from all six depth layers. The 

calibration signal with the calculated least distance to the test signal is the selected nearest neighbour. 

More details can be found in (Stockhoff et al 2019). 

Figure 2 a) Detector geometry with SiPM readout and virtual DOI layers. b) The signals of the 64 SiPM pixels 

are summed per row and column to a total of 16 readout channels. c) 16-channel mean signal per depth-group 

for a calibration position in the detector centre. The channel variance is smaller in layer 1 and increases towards 

layer 6. 

2.4 Neural network positioning algorithm 

The calibration data for the neural network is defined by a ROI of 109 high intensity pixels (pixel size 

= 0.26 mm) in the Anger histogram. The ROI is larger for the neural network calibration dataset than 

in the MNN dataset. A larger ROI includes more scattered events and especially the ones that scattered 

with a larger angle in a direction more parallel to the entrance face. While the neural network training 
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profits from the ‘far’- scattered events and learns to position them, the MNN algorithm filters scattered 

events in the process of taking the mean signal of many events. Therefore, it is counterproductive to 

include more scattered events in the MNN training dataset. A fully connected artificial neural network 

is designed with 16 inputs (from 8+8 SiPM signals), three hidden layers containing each 256 neurons 

and three outputs (x, y and z position coordinates) as illustrated in Figure 3. Leaky ReLU activation is 

added after every hidden layer. The network is trained using the AdamW optimization algorithm with 

an initial learning rate of 10-3, a mini-batch size of 256 events and L1 loss between predicted and ground 

truth calibration position as optimization metric. L2 weight decay is set to 10-2. The calibration beam 

positions were used as ground truth x and y coordinates. The z coordinate label was set to the DOI layer 

(label 1 to 6) the event belongs to as obtained from the events’ variance (similar to section 2.3). The 

number of events per calibration position is split with 28.85% for layer 1 with the smaller variances, 

22.03% for layer 2, 17.4% layer 3, 13.8% layer 4, 10.85% layer 5 and 8.07% for layer 6 with the larger 

variances. Each event is independently standardized to zero mean and unit variance. The training set 

contains 1000 events per calibration position and one training epoch is defined as an iteration over 100 

events per position randomly extracted from the training set. After every epoch, the network is validated 

on data acquired in a 1 mm intermediate grid in the detector centre (9x9 mm2, 10x10 positions, 1000 

events/position). This allows to regularly check and prevent potential overfitting on the training grid 

positions. Based on the validation loss, learning rate is halved every 10 epochs without improvement 

and training is stopped if the loss did not improve for 50 epochs. The deep learning methodology is 

implemented in python using PyTorch and the network is trained on an 11 GB NVIDIA RTX 2080Ti 

GPU. Optimization of the network architecture, training set size and training procedure was done based 

on simulation data of the same setup. For full detail we refer the reader to (Decuyper et al 2021). 

 

Figure 3 Neural network architecture. Input of 16 (8+8 summed row and column) signals and three output 

coordinates x, y and z. 

2.5 Performance evaluation 

The performance is evaluated based on two parameters: FWHM and 1D/2D-bias. The FWHM [mm] is 

the full width at half maximum of the Gaussian fit to the horizontal and vertical line profile of the point 

spread function (PSF) in the 2D histogram of all events from all depths per calibration position. For the 

estimation of the FWHM we need the peak value of the distribution and the width of the distribution at 

half the peak value. To determine these two parameters most accurately, we fitted a Gaussian to the 

central peak region (including all values over a threshold T = 0.25 * peak value). The FWHM could 

also be evaluated simply by extracting the peak of the distribution and the width of the distribution at 

half the maximum without fitting a function to the distribution. The low sampling on the x-axis, 

however, does not allow to determine the FWHM at exactly the half maximum. Therefore, an 

interpolation between the data points or a fit is needed to determine these values. The positioning bias 

[mm] is the distance between the peak of the PSF and the known calibration position in x and y direction. 

The 2D bias [mm] is the 2D distance between the peak of the PSF and the true calibration position. 

Mean and median values are evaluated for the full detector (5x5 cm2) and the detector centre (3x3 cm2), 

respectively. Note that PSFs at the detector edges mostly do not resemble a Gaussian distribution 

resulting in inaccurate FWHM values. As an alternative measure for spatial resolution over the whole 

detector including the edges the bar phantom measurement can be used.  

256 256 256
16

x

y

z
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2.5.1 Spatial resolution estimation with a 0.6 mm and 1.0 mm calibration beam 

The collimated calibration beam should ideally deliver an infinitely small beam diameter that generates 

gamma interactions at ground-truth positions. However, the collimator is limited to a certain diameter 

by (i) the manufacturing feasibility and (ii) the limited statistics with small beams. We test two 

calibration beams with diameter 0.6 mm and 1.0 mm respectively to evaluate their effect on the 

achievable spatial resolution with the two positioning algorithms. Two sets of calibration data are 

obtained, using a calibration beam collimated to 0.6 mm and 1 mm beam respectively. The two MNN 

reference datasets and two trained neural networks are then tested with the evaluation dataset from the 

smaller collimated beam. This is done because the smaller beam can provide data that is closer to the 

ground truth position. The evaluation dataset includes 30000 energy-filtered events (20% energy 

window) per position without ROI selection. The results are not corrected for the remaining source size 

of 0.6 mm. A bias correction for the 2D - position between the two calibrations is done with 0.3 mm 

and 0.18 mm in x-direction and 0 mm and -0.18 mm in y-direction for the MNN algorithm and neural 

network positioning respectively. The bias originates from the disassembly and assembly steps in 

between the two calibrations.   

2.5.2 DOI estimation  

For positioning with the MNN algorithm each of the reference events automatically belongs to a 

certain depth-layer defined by the signal variance and therefore DOI of the event. The principle is 

described in detail in section 2.3. For the neural network the DOI is determined by a network trained 

on the DOI labels defined by the signal variance. This is explained in section 2.4.   

To evaluate the DOI estimation of both algorithms the predicted relative number of events in each 

of those layers is compared. We compare to (i) the theoretical number of events that we expect by the 

attenuation of the crystal according to Beer-Lambert Law and (ii) the results we previously obtained 

from optical simulations (Stockhoff et al 2019) modelling the same detector geometry, calibration 

procedure and MNN positioning. Note that in the simulations the DOI was evaluated for only the centre 

10 x 10 mm2. Here, we use the calibration dataset from the 1.0 mm beam with 109 pixels (2.5.1).  

2.5.3 Energy resolution  

The energy resolution is evaluated per calibration position. The sum of each event signal from the 

calibration dataset (1.0 mm beam, 37 pixels) is histogrammed and a Gaussian is fit to the distribution.  

Similar to what is described in section 2.5. the Gaussian is fitted to the photopeak so that the fit 

accurately represents the peak of the actual distribution and the width at half maximum. To determine 

these two parameters most accurately, we fitted a Gaussian to the central peak region (including all 

values over a threshold T = 0.25 * peak value). Figure 7 shows the original distribution and the Gaussian 

fit. A remainder of the background signal (176Lu) is present in the energy histograms and explains the 

counts higher than what is expected from the Germanium source. The fit does not consider the tails 

from the Lutetium contamination. 

2.5.4 Uniformity  

A 68Ge source (29 MBq) is placed at a distance of 52.5 cm of the detector. The acquired events are 

filtered with an energy window of 20% and then positioned with the MNN algorithm and neural 

network. The uniformity is further analysed by selecting the positioned events per DOI layer.  

2.5.5 Bar phantom  

Additional to the analysis of the point spread function, a four-quadrant bar phantom designed for this 

study gives a more visual impression on the detector performance. With this phantom the spatial 

resolution of the detector can be assessed by its capability to resolve adjacent bars. Furthermore, spatial 
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linearity can be visually inspected. The phantom is a 60 x 60 x 15 mm3 tungsten block in which slits of 

0.6, 0.8, 1.0 and 1.2 mm are machined by wire erosion (Figure 4). The phantom is placed directly on 

the detector while the 68Ge source (29 MBq) is placed at 52.5 cm distance. For each of the four phantom 

quadrants a separate measurement is done by positioning the source in the respective quadrant centre 

as seen in Figure 4. This way the entrance angles are more perpendicular and less gamma rays penetrate 

the thin bars worsening the contrast of the test pattern. Recorded events are filtered with an energy 

window of 20% and positioned with the MNN algorithm and the neural network. The flood source 

histograms from section 2.5.4. are used to normalize for uniformity. The line profiles are not taken at 

one discrete position but are summed for each respective quadrant in the direction parallel to the bar 

pattern. The minima 𝑂𝑚𝑖𝑛  and maxima 𝑂𝑚𝑎𝑥 are determined in the summed line profile (Figure 11, 

between 0 and 60) to calculate the output modulation 𝑀𝑜𝑢𝑡 =
𝑂𝑚𝑎𝑥−𝑂𝑚𝑖𝑛

𝑂𝑚𝑎𝑥+𝑂𝑚𝑖𝑛
. The input modulation 𝑀𝑖𝑛 =

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
 is obtained from Gate simulations. The STL file of the bar phantom is loaded into the 

simulation software. The detector is modelled in Gate with the same geometry, SiPM pixel size and 

surface finish as in the presented prototype. More details on simulation parameters can be found in 

(Stockhoff et al 2019). The positions of the gamma rays absorbed in the crystal are recorded for the 

four measurement scenarios (source positions x1 to x4 in Figure 4 b)). Similar to the experimental 

analysis the line profiles are then summed for each respective quadrant in the direction parallel to the 

bar pattern. Then the input modulation Min for all four bar widths is calculated. The simulated Min value 

is almost constant over the detector but does not include events from lutetium background. Due to that 

and since a simulation represents an idealized environment a rather high input modulation value 

between 0.93 and 0.95 is calculated. For the determination of the MTF it means that the results shown 

here are rather on the pessimistic side and might be better in reality. Finally, the modulation transfer 

function (MTF) is calculated for each bar width w MTF(w) = Mout(w)/Min(w).  

 

Figure 4 a) 3D view of the four-quadrant bar phantom. b) Dimensions of bar phantom and source positions x1-

x4. c) Side view of the experimental setup. 

2.5.6 2D resolution improvement by adding DOI layers 

For the MNN positioning algorithm the calibration data per position is divided into groups according 

to the signal’s variance. For each group the mean signal is calculated and stored as a reference signal. 

Since the variance is related to the DOI of the signal we call these groups DOI layers or simply layers. 

Here the effect of the number of chosen DOI layers on the 2D resolution is evaluated. The acquired 

events from the bar phantom measurements in 2.5.4 are positioned with reference datasets calculated 

with different number of layers. For 1, 2, 4, 6, 8, and 10 layers the 2D resolution is compared visually. 

A quantitative comparison is provided by MTF values (Figure 12) that are determined the same way as 

in 2.5.5. 

3. Results 

3.1 Spatial resolution estimation with a 0.6 mm and 1.0 mm calibration beam 
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Figure 5 Spatial resolution as FWHM [mm] for detector with 0.6 mm diameter calibration beam. The bias vectors 

are indicated as arrows for a) MNN event positioning and b) Neural network positioning.  

The spatial resolution obtained for the detector calibrated with the 0.6 mm beam is shown in Figure 5 

for the MNN algorithm and the neural network respectively. For the MNN algorithm a FWHM of 1.17 

mm is obtained (Table 1). The mean x and y bias is 0.37 mm and the resulting 2D bias is 0.59 mm. For 

the neural network mean and median FWHM is obtained of 1.14 mm and 1.10 mm. The mean x,y bias 

is 0.13/0.11 mm and the resulting 2D bias is 0.20 mm. A general degradation is seen towards the edges 

of the detector. In the detector centre 30 x 30 mm2 the mean FWHM value is 1.13 mm for MNN and 

1.02 mm for the neural network. 

Table 1 Performance parameters for calibration of detector with 0.6 mm diameter calibration beam. 

 MNN Neural network 

 50 x 50 mm2 30 x 30 mm2 centre 50 x 50 mm2 30 x 30 mm2 centre 

FWHM mean 1.17 1.13 1.14 1.02 

FWHM median 1.17 1.14 1.10 1.01 

Bias x mean 0.37 0.14 0.13 0.06 

Bias y mean 0.37 0.16 0.11 0.05 

Eucl. distance/ 2D Bias 0.59 0.26 0.20 0.09 

 

A calibration with a 1 mm diameter collimator leads to a mean and median FWHM of 1.23 mm and 

1.21 mm when positioning 0.6 mm beam data with MNN (Table 2). The neural network can keep up 

the overall mean resolution of 1.5 mm FWHM and median of 1.0 mm. Therefore, the larger collimator 

diameter only slightly degrades the mean and median FWHM values for MNN while with the neural 

network the values are stable. The bias decreased slightly for MNN and for the neural network. 

Table 2 Performance parameters for calibration of detector with 1.0 mm diameter calibration beam.  

 MNN Neural network 

 50 x 50 mm2 30 x 30 mm2 center 50 x 50 mm2 30 x 30 mm2 center 

FWHM mean 1.23 1.16 1.15 1.02 

FWHM median 1.21 1.16 1.10 1.02 

Bias x mean 0.29 0.13 0.12 0.05 

Bias y mean 0.26 0.10 0.12 0.05 

Eucl. Distance/ 2D bias 0.46 0.20 0.19 0.09 

 

3.2 DOI estimation 
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Figure 6 DOI evaluation. The distribution of events positioned in each layer. 

In Figure 6 the relative distribution of the identified DOI layer is presented in red for the two algorithms 

presented in this paper. As a reference the theoretical distribution that we expect by the attenuation of 

the crystal is shown as a dotted black line. The results obtained from simulations (Stockhoff et al 2019) 

with the MNN algorithm is shown as a black solid line.  

For the MNN algorithm an offset of 1-2% can be observed in layer one to four compared to the 

theoretical curve. The sixth layer contains about 6% more events than expected. The depth distribution 

obtained from simulations with the same algorithm also shows a significant higher amount of events 

positioned in layer 6 than expected from the theoretical distribution. This has been investigated and is 

explained in the discussion. The neural network fits the theoretical curve with a maximum offset of 

0.8%.   

3.3 Energy resolution 

The evaluation of the energy resolution per calibration position is shown in Figure 7. The energy 

resolution for the whole detector is 11.03%  1.1% and 10.7%  0.5% for the detector centre (30 x 30 

mm2). Degradations of up to 18% can be observed in the top left and right corner regions at 6-7 mm 

from the crystal edge. The bottom corner region degrades to 14-15%. The energy spectrum includes 

small amounts of 176Lu background radiation from the LYSO scintillator which explain the counts above 

511 keV in Figure 7 a) (Alva-Sánchez et al 2018).  
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Figure 7 a) The energy spectrum at a calibration position in the detector centre with Gaussian fit and energy 

resolution of 10.6% FWHM. b) The mean energy resolution of the detector per calibration position is 11.03%.  

 

3.4 Uniformity 

In Figure 8 the detector uniformity is shown for the MNN positioning algorithm and the neural 

network. Both histograms show artifacts related to the underlying 8x8 SiPM pixel array. Furthermore, 

the MNN histogram shows bright hotspots while the neural network histogram shows more wrinkle-

like artifacts. 

 

Figure 8 Detector uniformity. 2D histogram of positioned events from a flood source using a) the MNN 

positioning algorithm and b) the neural network positioning. 

A better understanding of the non-uniformities can be obtained by looking at the 2D histograms per 

DOI layer in Figure 9. From left to right, the uniformity can be observed from the crystal top (gamma 

entrance face) to the readout (SiPM array) side of the detector. Especially in layer 6 the uniformity 

suffers from the underlying SiPM structure.  
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Figure 9 The detector uniformity presented per DOI layer. Layer 1 is the gamma entrance face and layer 6 is 

close to the SiPM array. 2D histograms for a) the MNN positioning and b) the neural network positioning.  

 

3.5 Bar phantom 

 

Figure 10 Bar phantom measurement with a) the MNN positioning and b) the neural network positioning. 

 

Figure 11 Evaluation of the bar phantom. a) The summed line profiles of the bar phantom. b) The modulation 

transfer function (MTF) of the detector. 
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In Figure 10 the bar patterns can be visually inspected from the MNN algorithm (left) and the neural 

network (right). The bar patterns can be well distinguished for all bar sizes with both algorithms. A 

more quantitative evaluation is shown in Figure 11. On the left the summed line profiles are presented. 

From these profiles the output modulation Mout is calculated. The MTF (Figure 11 b)) is calculated from 

Mout and the input modulation Min which was obtained from simulations (0.94). It is given in line pairs 

per mm. The object contrast for the largest 1.2 mm bars (spatial frequency of 0.8 mm) is 22% and 24% 

for MNN and neural networks respectively. For the smallest bars of 0.6 mm (spatial frequency of 1.67 

mm-1) the object contrast is 2.9% and 5.3%. 

 

3.6 2D resolution improvement by adding DOI layers 

 

Figure 12 Bar phantom measurement with MNN positioning using up to 10 layers a) - f). MTF values are stated 

in the corner of each quadrant.  

The 2D spatial resolution that is achieved with the MNN algorithm depends amongst other factors on 

the implementation of DOI layers. In Figure 12 the improvement can be seen between not using any 

DOI layers and a 10-layer DOI implementation. MTF values are stated in the corner of each quadrant. 

The most substantial improvement for this detector can be seen between layers 1 and 6. Here the MTF 

values for the largest bar size increase from 7.8% to 21.5% for the smallest bar size the MTF increases 

from 1.5% to 2.9%. Between 6 to 10 layers the improvement is limited. Here the MTF values for the 

largest bar size increase from 21.5% to 22.3% for the smallest bar size the MTF increases from 2.9% 

to 3.6%. For the neural network the 2D resolution does not depend on DOI layers. 

 

4. Discussion 

The mean spatial resolution obtained with neural networks is 1.14 mm FWHM for the whole detector 

and 1.02 mm in the centre excluding the edge region. Therefore, the novel neural network shows 

superior positioning performance to the MNN positioning algorithm by 2.6% and 9.7% respectively. 

The degradation towards the edges is typical for these detectors and is due to the scintillation light 

truncation. The measured PSFs at the edges are broader on the one hand but also not well characterized 

a) no layers b) 2 layers c) 4 layers

d) 6 layers e) 8 layers f) 10 layers
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by Gaussian distributions that are used to calculate the FWHM. As can be seen in the uniformity 

measurement (Figure 8), events at the edges are often positioned at few very specific pixels leading to 

very good FWHM values. However, they are also connected to larger bias values. Hence, the fitting 

and resulting FWHM values at the very edges need to be taken with caution and median values or values 

excluding the edges are more reliable. In Figure 5 we see that the neural network shows a more uniform 

positioning performance especially at the edges compared to the MNN algorithm. The mean 2D bias is 

0.59 mm for MNN and 0.2 mm for the neural network. In the centre the bias is 0.26 mm and 0.09 mm 

respectively. Note that this resolution is obtained with only 16 channels obtained from 6x6 mm2 SiPMs 

that characterize the respective light spread functions (LSFs). Further improvements could be obtained 

by reading out more SiPM channels, that means 64 channels (8x8) when reading out each individual 

SiPM signal instead of one signal from each row and column (8+8). Another option that can further 

improve the results is using smaller SiPM pixels e.g., 3x3 mm2 pixels in a 16x16 array reading out 32 

or 256 channels. In previous simulation studies (Stockhoff et al 2019) we found that with an MNN 

approach for 6x6 mm2 pixels (as used in this setup) a single channel readout does not significantly 

improve spatial resolution. The study also showed that a reduction of the SiPM pixel size to 3x3 mm2 

can improve the resolution by ~20% with summed channel readout and that a single channel readout 

with 256 channels further improves the resolution by another 7%. The next logical step would therefore 

be a reduction of the pixel size if better spatial resolution would be desired. 

The experimental results do not include a correction to account for the resolution degradation 

introduced by the calibration beam diameter. The beam at its smallest diameter is here 0.6 mm. The 

collimator geometry leads to a spread of that beam with increasing distance to the collimator. The final 

beam width at the light extraction side of the crystal is slightly above 1 mm.  

We tested calibrating the detector with a larger calibration beam diameter of 1 mm to estimate the 

effect the calibration beam has on the obtainable resolution. As mentioned above also the 1 mm 

collimated beam spreads with distance to the collimator. Results show that when the algorithms were 

trained with the data from the 1 mm beam and then tested on the 0.6 mm beam data, for the neural 

network, there is barely any degradation in terms of FWHM. The MNN algorithm just slightly degrades. 

We showed that the source diameter of 1 mm allows calibration at higher count rates while not causing 

much degradation on the detector performance. Note that the spatial resolution that we measure here 

depends strongly on the evaluation dataset. If we evaluated this detector with the data of the 1 mm 

collimator we would see a worse resolution and reversely the resolution would still improve 

significantly if ground truth data (without a beam diameter) would be available for testing (Stockhoff 

et al 2020). However, that does not change the actual performance that the detector will have on system 

level.  

The main factors that could cause the performance differences between the two positioning 

algorithms are discussed in this section. The fraction of Compton scattered events is ~60% and has a 

large influence on the overall positioning performance (Decuyper et al 2021). The neural network is 

trained on many individual events while for the MNN database we use the mean of many signals which 

acts like a filter for PSFs of scattered events. The positioning of scattered events might therefore be 

improved with the neural networks. The output of the MNN algorithm is a discrete position depending 

on the degree of interpolation that is applied. The neural network on the contrary is able to provide 

continuous coordinates as an output. However, it is also prone to overfitting on the discrete calibration 

positions. Therefore, an additional dataset with signals of intermediate positions is needed to cross-

check for overfitting in the training process. In terms of timing the neural network takes more time to 

be trained but once the training is finished positioning can be accomplished much faster. The MNN 

algorithm is comparing each event to the complete reference dataset which is computationally more 

intensive. This increases with higher degrees of interpolation and with the number of implemented DOI 

layers. 
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Besides very good intrinsic spatial resolution DOI estimation is an attractive feature of monolithic 

detectors. The variance of the LSF gives a direct measure of the DOI and can be easily extracted from 

the measured signal. However, with large monolithic crystals it is very difficult to quantify DOI 

performance. Obtaining depth dependent data from an experimental setup e.g., with an irradiation from 

the side has two main drawbacks. Firstly, the fact that most events will be captured at the very edge of 

the crystal and secondly, the Compton scatter direction is dependent on the incident angle of the gamma 

photon thus a side irradiation changes the measured light distributions for scattered events which are 

more than half of the events. Therefore, we compare the number of events in each depth-layer with (i) 

theoretically calculated numbers and (ii) simulated data, where the real DOI of the event is known. For 

MNN the overall DOI distribution is similar to what we expect but there is a large number of events in 

the sixth layer (close to readout array). This is related to the mispositioning of Compton scattered events 

when the actual photoelectric effect occurs deeper inside the crystal than the first interaction. This was 

previously shown in simulations. An implementation in neural networks with the variance as a measure 

of the depth shows that neural networks on the contrary are able to position scattered events more 

reliably. Ideally DOI studies should be linked to simulated data since this is the most accurate way to 

obtain ground truth data. 

The measured energy resolution for the whole detector is 11.03%. The major degradations in the 

corner regions could be linked to the crystal, crystal finish or reflector. In separate experiments we 

turned the crystal while the rest of the setup stayed as it is. The degradation could still be linked to the 

specific corner of the scintillator. Experiments using other crystals showed also a degradation in the 

corners but with different emphasis. Thus, for more uniform and better energy resolution towards the 

corners the crystal and/or reflector quality should be examined. 

The uniformity of the detector is clearly influenced by the underlying 8x8 SiPM pixel grid (Figure 

8). When most optical photons are detected by a single SiPM pixel the algorithms are not able to position 

the event more accurately than in the centre of that pixel. In Figure 9 the origin of the artifacts becomes 

clearer by looking at the uniformity as a function of the estimated interaction depth of the photons. 

Especially towards the SiPM array in layer 5 and 6 uniformity starts to degrade. An improvement could 

be achieved by using smaller SiPMs or a light guide. Important to be aware of is that for the neural 

network a uniformity measurement is very useful to check for overfitting. During the training the overall 

positioning performance improves uniformly over the whole detector until the point that the 

performance at the discrete calibration positions keeps improving while the other positions start 

degrading. At that point the network is overfitting and detector performance will become non-uniform. 

In the uniformity histogram more events would be drawn towards the discrete 49x49 calibration grid 

forming a grid of hot spots. This effect is not observed here proving limited or no overfitting is present. 

The bar phantom measurement gives a visual impression on the detector resolution over the complete 

field of view. The neural network can distinguish bars down to 0.6 mm with >5% contrast determined 

by the MTFs while the MNN algorithm is just below the 5% mark. The FWHM value is calculated as 

the smallest resolvable bar times 1.4 - 2 (Cherry et al 2012). Thus, the bar phantom measurement shows 

a detector resolution of 0.84 - 1.2 mm FWHM for neural networks and is in the range of what was 

evaluated with the PSFs. Note that for example in the bottom left quadrant the bars can be distinguished 

all the way to the left edge while they cannot be distinguished towards the bottom edge. This is due to 

the source position and angle of the gamma rays penetrating the bars. The impression of a central cone 

shape in contrast enhancement is a combination of these oblique incidence angles at the edges and a 

general worse detector capability to resolve events towards the edges. If a more perpendicular 

irradiation could be provided the resolution would improve more towards the edges as well. 

Both algorithms show similar spatial resolution values (~0.1 mm difference). However, the artificial 

neural network provided more uniform performance over the full detector and smaller positioning bias. 

Furthermore, the DOI performance was improved with neural networks mainly due to improved 
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positioning of scattered events. The bar phantom measurement provides additional support of the 

determined detector performance and spatial resolution at the detector centre, edges and corners.   The 

detector resolution using neural networks is 1.13 mm FWHM over the whole detector and 1.02 mm 

FWHM without the edges. This is expectedly exceeding the resolution of PET detectors in the field that 

have a greater thickness than 16 mm (Borghi et al 2015, González-Montoro et al 2019, Bruyndonckx 

et al 2007). In (González-Montoro et al 2019) a remarkable detector spatial resolution of 0.9 mm 

FWHM is reported with a only slightly thinner crystal of 15 mm thickness. A notable difference is that 

the spatial resolution presented in our work is not corrected for the beam source diameter. In (González-

Montoro et al 2019) a great effort is done to isolate the source size from the measured FWHM values 

leading to a better estimate of the intrinsic spatial resolution. Other detectors that have better spatial 

resolution are significantly thinner such as (Borghi et al 2015) with 1.1 mm spatial resolution at 10 mm 

thickness or (Mollet et al 2017) with 0.76 mm spatial resolution at 8 mm thickness.  

5. Conclusion 

In this work we presented a monolithic detector design aiming to serve high-resolution but lower 

cost clinical PET systems while maintaining high sensitivity. The targeted detector resolution of 1.3 

mm intrinsic FWHM needed to reach a 2 mm resolution on system level (with bore diameter of 65 cm) 

was exceeded with a MNN algorithm and 1.13 mm FWHM, as well as with a neural network achieving 

1.02 mm FWHM. The 6-layer DOI positioning will also result in a uniform system spatial resolution 

over the full FOV.   
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