
Contact details

Jan G. Cornelis, jgcornel@etro.vub.ac.be

Bruno Da Silva, brunotiago.da.silva.gomes@ehb.be

Acknowledgements

This research has been made possible thanks to a Tetra grant 100132 "A
combined GP-GPU/FPGA desktop system for accelerating image processing
applications (GUDI)” of the Flanders agency for Innovation by Science and
Technology.

 GPU tool chain: standard OpenCL

 FPGA tool chain: Using HLS tools as
ROCCC and AutoESL/Vivado HLS

 Handwritten vs C-to-VHDL compiler

The C-to-VHDL compilers have outperformed
handwritten code for algorithms as erosion and is
highly productive, but also uses more resources.

 Comparison of GPUs and FPGAs for image
erosion.

The measurements show that both the GPU and
FPGA excel for image processing algorithms, but
both devices suffer from the limited I/O bandwidth
to the host.

 Object Recognition Application (fastHOG):
 A real collaboration of GPU/FPGA

Results

Conclusions
 Combined HPC platform

 C++ based tool chain available for
both platforms; FPGAs and GPUs

 High-level synthesis cuts down
development time and has the
potential to increase execution speed
for several applications.

Programming steps:

1. Identify the parts of the application to be
executed on GPU, CPU and FPGA.

2. Create a C++ program with GPU, CPU and
FPGA function calls

• GPU code → GPU compiler

• FPGA code → High-Level Synthesis (HLS)
 (ROCCC, VivadoHLS, ...)

3. Compile the programs, synthesize the FPGA
design and generate an executable linking the
CPU, GPU and FPGA binaries.

4. Load GPU, CPU code binaries and FPGA
configuration binary.

5. Execute the program

Combined toolchain

An Braeken, Jan G. Cornelis, Bruno Da Silva, Erik H. D’Hollander,
 Valentin Enescu, Jan Lemeire, Abdellah Touhafi

Erasmus University College, Brussels
Free University of Brussels, Ghent University

 GUDI: A combined GPU/FPGA
Desktop System for Accelerating
Image Processing Applications

References

1. Cornelis J., Lemeire J. Benchmarks Based on Anti-Parallel Pattern for the
Evaluation of GPUs, International Conference on Parallel Computing, Ghent, 2011

2.Erik H. D’Hollander, High-Performance Computing for Low-Power Systems,
Advanced HPC Systems workshop, Cetraro, 2011

• The performance of today's PCs exceeds many
times the power of the supercomputers in the
90s, but it is not enough for many
computationally hungry applications..

• Present-day solutions focus on one technology,
e.g. multi-cores, grids, clusters,…

• To leverage the power of different technologies, a
hybrid solution is presented, combining the power
of Graphics Processing Units (GPUs) and Field
Programmable Gate Arrays (FPGAs).

Introduction

Objectives
 Build a super GPU/FPGA desktop

 Develop a combined tool chain

 Accelerate industrial applications

Hybrid architecture

Figure 1. Detailed architecture combining GPU and FPGA accelerators to create a
high performance computing super desktop platform..

Presented at the PHPC Symposium in Brussels, December 13, 2012

GPUs:

 Massive SIMD parallelism

 Well-known software tool chain

FPGAs:

 Massive fine-grain parallelism and pipelining

 Algorithm in hardware

 Optimizing C-to-VHDL compilers

Research platform:

GPU: Tesla C2050 NVIDIA

FPGA: Pico Computing w/ 2 Virtex-6 FPGA’s

Communication link:

PCIe 2.0 x16 lanes (GPU and Pico board)

 Applications
Combining GPU and FPGA strengths:

 Image processing + Bio-informatics

 Face recognition + Security

 Image segmentation + HMMer searches

 Traffic analysis + Neural network control

Figure 2. An algorithm is converted into a C ++ program with mixed code fragments for
the three platforms, CPU, GPU and FPGA. The executable communicates with the GPUs
and FPGAs using API libraries.

Figure 4. The object recognition application called fastHOG and designed for GPUs is
adapted to be partially executed on the FPGA. The Histogram computation and the
normalization are ideal candidates for FPGAs.

4

6

8

10

12

14

16

18

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

FL
op

s
(lo

g1
0)

Moore's law

Memory speed increase (relative)

Computational Power

Lineal (Computational Power)

Performance estimation
• The roofline expresses the maximum

performance in function of the algorithm's
computational intensity (CI), taking into account
the peak compute power (PP) and the peak I/O
bandwidth of the accelerator (BW).

• Superimposing the rooflines of GPU and FPGA
shows the relative performance of both
accelerators.

Figure 3. Roofline models of GPU (dashed lines) and FPGA (continuous lines) with the
measured performance values of the algorithm erosion3x3. The PCIe bandwidth (x16
continuous lines and x8 dashed lines) limits the performance for both technologies.

Figure 5. Execution of HOG on GPU (left) and on FPGA (right). Thanks to operating in
streaming and in pipelining mode, the HOG execution can be accelerated on the FPGA.

mailto:brunotiago.da.silva.gomes@ehb.be
mailto:brunotiago.da.silva.gomes@ehb.be

	Slide Number 1

