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ABSTRACT

Advances in high-throughput sequencing have re-
sulted in a massive increase of RNA-Seq transcrip-
tome data. However, the promise of rapid gene
expression profiling in a specific tissue, condi-
tion, unicellular organism or microbial community
comes with new computational challenges. Owing
to the limited availability of well-resolved reference
genomes, de novo assembled (meta)transcriptomes
have emerged as popular tools for investigating the
gene repertoire of previously uncharacterized organ-
isms. Yet, despite their potential, these datasets often
contain fragmented or contaminant sequences, and
their analysis remains difficult. To alleviate some of
these challenges, we developed TRAPID 2.0, a web
application for the fast and efficient processing of
assembled transcriptome data. The initial process-
ing phase performs a global characterization of the
input data, providing each transcript with several lay-
ers of annotation, comprising structural, functional,
and taxonomic information. The exploratory phase
enables downstream analyses from the web appli-
cation. Available analyses include the assessment
of gene space completeness, the functional analy-
sis and comparison of transcript subsets, and the
study of transcripts in an evolutionary context. A
comparison with similar tools highlights TRAPID’s
unique features. Finally, analyses performed within
TRAPID 2.0 are complemented by interactive data vi-
sualizations, facilitating the extraction of new biolog-
ical insights, as demonstrated with diatom commu-
nity metatranscriptomes.

INTRODUCTION

The advent of low-cost RNA sequencing (RNA-Seq) has
led to a steep increase in the number of available transcrip-
tomes for which no corresponding reference genome se-
quence is yet available. Sequencing and assembly often re-
main more cost-effective for de novo transcriptomes than for
whole genomes, especially for organisms featuring complex
and large genomes or for species that cannot be cultured
in laboratory conditions (1). As the cost and labor to go
from a low-quality fragmented genome assembly to a high-
quality chromosome level assembly can be prohibitively
high, a high-quality transcriptome can represent a valuable
alternative to a low-quality genome. Although a transcrip-
tome does not provide the same opportunities for down-
stream analyses as a fully sequenced and assembled genome,
it still suits multiple purposes. Examples include studying
the presence or absence of specific functions or pathways
among expressed genes, as well as unraveling taxonomic re-
lationships between sets of distantly related species (2–6).

Protists are unicellular eukaryotes that encompass the
majority of the eukaryotic biodiversity (7,8), but for which
genome-based studies are lagging behind. These organ-
isms show a wide range of nutritional modes and have
a major impact on the ecology and chemistry of their
ecosystems. The size and complexity of eukaryotic genomes
make genome sequencing a daunting task, resulting in the
widespread adoption of transcriptomic approaches to char-
acterize the gene content of unicellular eukaryotes (9,10).
Apart from transcriptome reconstruction, each transcript
can also be quantified according to whether it is expressed in
certain environmental conditions. As such, transcriptomic
studies of cultures and natural assemblages of protists are
revealing complex metabolic responses to environmental
conditions (11). As a metatranscriptome collects all RNA
transcripts present in a sample composed of a community
of microorganisms, it represents a molecular readout of the
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global transcriptional gene activity present in a specific en-
vironment or in response to environmental perturbations
such as nutrient availability, the presence of other (non-)
parasitic species, or abiotic effects. Nevertheless, sufficient
sequencing depth as well as the presence of high-quality
and complete reference data sets are imperative for success-
ful gene annotation of complex metatranscriptomes (12).
Metatranscriptome sequence analysis can not only shed
light on a species’ success in specific natural communities,
but disentangling taxonomic information and gene func-
tions encoded by specific transcripts allows for the study
of the functional or metabolic contribution of individual
species to complex environments (13–17).

Here, we present TRAPID 2.0, the next iteration of the
TRAPID (18) platform for fast and accurate transcriptome
analysis, utilizing comparative genomics approaches with
a series of high-quality reference genome databases. This
new version features numerous improvements on both the
backend and frontend: a reworked processing pipeline, up-
dated reference databases, and a redesigned web applica-
tion, together with a wide variety of new analytical fea-
tures. Due to the improved processing speed, new reference
databases, and the integration of protein-based taxonomic
sequence classification, TRAPID 2.0 now also supports the
analysis of assembled (meta)transcriptomes showing differ-
ent prokaryotic and/or eukaryotic compositions.

MATERIALS AND METHODS

Collection of transcriptomes from unicellular eukaryotes

Transcriptomes of 42 samples from the Marine Microbial
Eukaryotic Transcriptome Sequencing Project (MMETSP)
re-assembled data set (9,19) were retrieved from http://doi.
org/10.5281/zenodo.1212585 (version 2; see Supplementary
Table S1 for a complete list). Selected ciliate MMETSP sam-
ples correspond to organisms reported to use the ciliate nu-
clear genetic code in the NCBI taxonomy.

Taxonomic classification of transcripts

Taxonomic classification of transcript sequences is per-
formed using Kaiju (20), run in MEM mode, using the pa-
rameters ‘-x -m 11’ (filtering of low-complexity sequences,
minimum match length of 11 amino acids). The refer-
ence index used during the taxonomic classification con-
sists of all sequences from eukaryotes, bacteria, archaea,
and viruses in the NCBI non-redundant protein database
(downloaded 5 September 2019). Because Kaiju’s index
needs to be loaded in memory, we run Kaiju using a split
index to keep memory usage reasonable and ensure we
can face the perpetual data growth of the NCBI non-
redundant protein database without major hurdles. The
split results of Kaiju are merged using the same selection
criteria as those used by Kaiju’s algorithm (i.e. keeping
the longest match from all the splits, or the lowest com-
mon ancestor in case equally long matches were found).
Benchmark experiments confirmed that splitting the index
results in nearly identical performance compared to a reg-
ular Kaiju MEM run (see Supplementary Note S1). The
‘Krona’ and ‘Tree view’ taxonomic classification visualiza-
tions available on TRAPID 2.0 are built using Krona (21)

and the UniPept (22) visualizations (https://github.com/
unipept/unipept-visualizations), respectively.

Reference databases

Five reference databases are available within TRAPID 2.0:
PLAZA 4.5 dicots and monocots (23), pico-PLAZA 3.0
(24), PLAZA diatoms 1.0 (25) and eggNOG 4.5 (26). These
databases integrate homology and functional information
for genomes spanning a broad taxonomic range. Supple-
mentary Table S2 provides an overview of their content and
details, for major lineages, the number of species and genes
they each incorporate.

In addition to these reference databases, leveraged to as-
sign transcripts to gene families and functionally annotate
them, TRAPID 2.0 makes use of the NCBI taxonomy (27)
(downloaded 5 September 2019) for all taxonomy-related
analyses.

Similarity search, gene family assignment and functional an-
notation

DIAMOND (28) was used to align query transcript se-
quences against a reference database, as a faster alterna-
tive to BLASTX. We run DIAMOND in ‘more sensitive’
mode, with a user-selected E-value cutoff set to 1e–5 by de-
fault. The proteome (defined as the full set of proteins en-
coded by a genome) used as index for the similarity search
can either be the entire reference database or a user-selected
taxonomy-constrained subset of it, corresponding to a spe-
cific phylogenetic clade or individual species. The latter will
reduce the time needed for initial processing and would be
suitable, for instance, to analyze data for which a closely re-
lated clade or species is available in the reference database.

For each transcript, the top protein similarity hit is re-
tained and the gene family (GF) associated to this protein
(if any) is assigned to the transcript. When using a PLAZA
reference database, the functional annotation of each tran-
script can then be transferred from either the top protein hit
from the similarity search, its assigned GF, or a combina-
tion of both (by default). This choice is also defined by the
user. In case gene families are used to infer functional an-
notation, annotation labels (e.g. GO terms or proteins do-
mains) that are transferred to the transcript have to be rep-
resented in at least 50% of the members of the GF (majority
vote). To ensure the validity of this representation thresh-
old, additional values were tested during functional anno-
tation benchmark experiments conducted using data from
five model species (see Supplementary Note S2).

When eggNOG 4.5 is used as reference database, the
similarity search output file is processed using the anno-
tation procedure of eggNOG-mapper (version 1) (29). For
each transcript, the NOG associated to the seed ortholog
(derived from the top protein hit of the similarity search)
at the selected taxonomic scope is assigned as GF to the
transcript. GO terms and KO terms reported by eggNOG-
mapper are then transferred to the transcript. The taxo-
nomic scope can be set by the user for all transcripts of an
experiment, or adjusted automatically for each query (de-
fault).
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Finally, if no protein hit was detected during the similar-
ity search, no gene family or associated functional annota-
tion are assigned to the transcript.

Non-coding RNA identification

Potential non-coding RNAs present among query tran-
script sequences are identified using Infernal (30) with
a selection of RNA models from Rfam 14.1 (31) (Jan-
uary 2019). By default, this selection comprises ubiqui-
tous non-coding RNAs, with families from Rfam clans
CL00001 (tRNA), CL00002 (RNase P), CL00003 (SRP
RNA), CL00111 (small subunit rRNA), CL00112 (large
subunit rRNA), and CL00113 (5S rRNA). Infernal’s ‘cm-
search’ command is run using parameters ‘–nohmmonly –
rfam –cut ga’ (all models run in CM mode, heuristic fil-
ters set at Rfam-level, and Rfam’s gathering cutoffs used
as reporting thresholds), as described in (32). The matched
transcript sequences are assigned to their top Rfam RNA
family (and clan, if any) and subsequently annotated with
manually curated GO terms associated to the family. The
mapping between Rfam RNA families and GO terms, de-
fined by Rfam curators, was retrieved from Rfam’s FTP
site (available at ftp://ftp.ebi.ac.uk/pub/databases/Rfam/14.
1/database files/database link.txt.gz).

Ribosomal RNA sequences post-processing

Transcripts assigned to any RNA family from CL00111
(SSU) and CL00112 (LSU) Rfam clans during TRAPID’s
initial processing were considered as putative ribosomal
RNA sequences. Their taxonomic classification was in-
ferred using SINA (33) (version 1.5.0) with the SILVA 132
database (34) (using the ‘SSU Ref NR 99’ and ‘LSU Ref’
files with potential SSU and LSU sequences, respectively).
SINA was set up to search and classify sequences using a
minimum sequence similarity threshold of 0.9 and default
values for all the other parameters.

Assigning frame information, detection of potential
frameshifts, and meta-annotation

For each transcript, retrieval of strand and frame infor-
mation from similarity search hits (including detection of
potential frameshifts) and homology-based ORF sequence
prediction are performed using the strategy outlined in
(18). In case the transcript does not have any similar-
ity search hit and is not identified as being a non-coding
RNA, its predicted ORF sequence is the longest ORF
in all possible frames. The ORF sequence prediction step
can use any of the genetic codes available from the NCBI
taxonomy (https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/
wprintgc.cgi). It is additionally possible to run it after ini-
tial processing completion for sequences of individual tran-
script subsets, using any genetic code.

The meta-annotation of each transcript––a description
of its full-length status––is based on a length comparison
between its predicted coding sequence and the members of
its associated GF, and the presence of predicted start and
stop codons, as described in (18).

Non-canonical genetic code use impact evaluation

Transcriptomes from 16 ciliate MMETSP samples (825,773
sequences in total) were processed with TRAPID 2.0, se-
lecting eggNOG 4.5 as reference database, using either the
standard genetic code (NCBI taxonomy translation table 1)
or the ciliate nuclear genetic code (NCBI taxonomy trans-
lation table 6) for ORF prediction. All the other parameters
were left at their default values. After initial processing, the
ratio of predicted ORF sequence length over best similarity
search hit length, termed ‘best hit recovery ratio’, was com-
puted for all 257 454 transcript sequences having protein
similarity search hits and the two genetic codes.

Protein sequences corresponding to two transcripts from
MMETSP0018 (Uronema sp. Bbcil) that were assigned to
‘0IF5I’, an eggNOG orthologous group containing 100
proteins from 91 eukaryotes, were aligned with four ref-
erence sequences from Alveolata using MAFFT (35). Se-
quences predicted using the standard genetic code and the
ciliate nuclear genetic code were used to compute the align-
ment. The MSA visual representation was generated using
the ‘MSA’ R package (36) to create a TEXshade alignment
(37).

Estimation of gene space completeness using core gene fami-
lies

TRAPID 2.0 estimates the gene space completeness of user-
submitted transcriptomes by assessing the representation of
core GFs. Core GFs are gene families that are highly con-
served in a majority of species within a defined evolution-
ary lineage, and as such represent a valuable tool to estimate
and analyze the gene space completeness in gene-based se-
quence data sets (38,39).

TRAPID 2.0’s core GF completeness analysis module
enables the definition of a core GF set for any phyloge-
netic clade that is represented in the user-selected reference
database, or any of the 107 available eggNOG taxonomic
levels in the case of eggNOG 4.5, permitting the exami-
nation of gene space along an evolutionary gradient. Core
GFs are defined using a simplified version of the approach
described in (38): in order for a GF to be considered ‘core’
for a phylogenetic clade, it needs to be represented in at least
90% of the species of this clade. This threshold does not re-
quire complete conservation across all species of the clade
and therefore tolerates potential annotation errors or GF
loss in a limited number of species. It can alternatively be ad-
justed by the user in case more stringent or relaxed conser-
vation requirements are needed. When defining a core GF
set, each GF is given a weight based on its number of mem-
bers and represented species as outlined in (38). The com-
pleteness analysis, performed after definition of the core
GFs, consists of two steps. First, for each transcript, the top
protein hit from the similarity search is retrieved, and the
GF to which this protein is associated is considered to be
represented. Then, a completeness score is computed (sum
of the weight of represented core GFs on the weight of all
core gene families) and reported, along with the list of rep-
resented and missing core GFs. In case the user chooses to
use more than one top similarity search hit during the com-
pleteness analysis, gene families to which the top hit pro-
teins are associated are scored based on the significance of
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the hits, and the GF having the best score is considered to
be represented.

Subset functional enrichment analysis

Subset functional enrichment analyses are performed using
the hypergeometric distribution with a user-selected q-value
cutoff ranging between 0.05 and 1e-5, and the annotation
from all the transcripts of the experiment as background.
For each enriched functional annotation label, the enrich-
ment q-value is determined using the Benjamini–Hochberg
correction for multiple hypothesis testing.

Multiple sequence alignments and phylogenetic trees

Translated coding sequences of transcripts assigned to the
same GF, combined with protein sequences of homologous
genes from the reference database, are aligned using either
MAFFT (35) or MUSCLE (40). The former uses automatic
method detection with a maximum of 1000 iterative refine-
ment cycles while the latter uses default parameters. Input
sequences used for the alignment can be filtered by exclud-
ing reference protein sequences present in selected species
and discarding transcript sequences flagged as ‘partial’ or
arbitrarily selected. When creating a phylogenetic tree, op-
tional editing of the alignment is performed using one of
the available editing modes: removal of lowly conserved po-
sitions by trimming the sequences, filtering of partial se-
quences, or a combination of both. From this alignment,
phylogenetic trees are inferred with either the approximate
maximum likelihood program FastTree2 (41) or the maxi-
mum likelihood programs IQ-TREE (42), PhyML (43), or
RaxML (44). Using IQ-TREE, trees are built under the best
amino acid substitution model as selected by ModelFinder
(45), chosen among a set of commonly used models (JTT,
LG, WAG, Blosum62, VT, and Dayhoff). Rate heterogene-
ity across sites is accounted for using the FreeRate model
(46), and branch support is estimated using the ultrafast
bootstrap approximation (UFBoot) (47) with 1000 boot-
strap replicates. When using other programs, trees are built
using the WAG substitution model in combination with 100
bootstraps and gamma approximation for modeling rate
heterogeneity across sites. Generated Newick trees are con-
verted to PhyloXML to enable incorporation of transcript
meta-annotation and subset information. MSAs are visual-
ized using the MSAviewer BioJS component (48,49) while
phylogenetic trees are visualized using PhyD3 (50).

Assembly, expression quantification and analysis of diatom-
dominated community metatranscriptomes

Raw pyrosequencing reads of samples obtained from
diatom-rich communities of three sampling sites in the
western Antarctic Peninsula (16) were retrieved from the
NCBI Sequence Read Archive (accessions SRX727358,
SRX727361, SRX727362). Reads from each library were
processed using Trimmomatic version 0.36 (51) to filter out
short and low-quality sequences, and trim 5’ adapter se-
quences. Quality control of the sequences at various filtering
stages was performed using FastQC version 0.11.2 (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc). Re-
tained reads from all libraries (526,527 reads in total,

see Supplementary Table S3) were combined to produce
a ‘global’ metatranscriptome assembly, performed using
MIRA version 4.0.2 (52). The resulting metatranscriptome
consisted in 53 569 contigs, with a N50 contig length of 391
bp. A total of 208 592 reads were not used by MIRA to pro-
duce the assembly. Among these, 89 739 sequences longer
than 200 bp after trimming were considered bona fide tran-
scripts. After adding them to the metatranscriptome, a data
set of 143 308 sequences (N50 320 bp) was obtained and
used as input for further analyses.

Transcript expression quantification was performed as
follows: first, filtered reads from each library were mapped
to the metatranscriptome (contigs and retained singletons)
with BWA mem (53) version 0.7.17. Second, read counts
were computed using FeatureCounts (subread package ver-
sion 1.6.2) (54). Finally, read counts were transformed into
TPM values and used as a basis for transcript subset def-
inition. For each sampling site, subsets containing all ex-
pressed transcripts were defined, considering transcripts
having a TPM value of 2 or more for a given library to be
expressed in the corresponding sampling site and filtering
out identified non-coding RNAs.

Transcript sequences were processed using TRAPID 2.0,
selecting pico-PLAZA 3.0 as a reference database. All the
initial processing parameters were set to their default val-
ues (‘Eukaryotes’ as clade and 1e–5 maximum E-value cut-
off for the similarity search, functional annotation trans-
fer from both GF and best similarity search hit, default
Rfam clans for Infernal, and taxonomic classification en-
abled). All the transcript subsets were subsequently loaded
into TRAPID 2.0 and refined to only retain sequences as-
signed to diatoms (i.e. assigned to ‘Bacillariophyta’) to cre-
ate diatom-specific subsets expressed in each sampling site,
and subset functional enrichment analyses were performed
from the web application to examine the functional varia-
tions between the three phytoplankton communities.

Implementation

The TRAPID 2.0 web application was implemented us-
ing CakePHP (https://cakephp.org) and a MySQL database
(https://www.mysql.com) as back-end. The available inter-
active visualizations were developed using two open-source
JavaScript libraries, D3.js (https://d3js.org) and Highcharts
(https://www.highcharts.com), or built on top of other
open-source software projects mentioned in the above sec-
tions. TRAPID’s analysis pipelines consist of a collection
of programs and scripts written in Java, Perl, and python.
All TRAPID 2.0 jobs run on a computing cluster (64 ‘In-
tel(R) Xeon(R) Platinum 8153’ cores, 264 GB of memory).
Information regarding the status of jobs and the load of the
cluster is available via the job management page.

RESULTS AND DISCUSSION

A two-phase approach for the annotation and exploration of
assembled transcriptome data

TRAPID 2.0 is a web application for the annotation and
exploration of assembled transcriptome data. It processes a
set of input sequences, named an experiment, in two distinct
phases: the initial processing and the exploratory phases
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(Figure 1). The individual steps they incorporate (Supple-
mentary Table S4) tackle diverse aspects of the characteri-
zation of transcriptomes and enable the end-user to address
a variety of biological questions, including transcript qual-
ity control, the assignment of transcripts to gene or RNA
families, and the generation of functional annotations.

Executed non-interactively, the initial processing phase
ingests, analyzes, and extracts meaningful information from
the input data. The first step, the taxonomic classification of
transcripts, enables the detection of potential contaminant
sequences and facilitates the characterization and analysis
of metatranscriptomes. It is followed by an RNA homol-
ogy search to identify putative non-coding transcripts, sub-
sequently assigned to RNA families and functionally an-
notated. Next, TRAPID 2.0 leverages predefined reference
databases, which contain biological sequences from multi-
ple species clustered in precomputed homologous gene fam-
ilies (GFs) and having functional annotations. A sequence
similarity search against a proteome from one of the avail-
able reference databases is employed to assign transcripts
to GFs, transfer homology-based functional annotations,
infer coding sequences, identify putative frameshift errors,
and estimate the full-length status of each transcript. In
case the user chooses to process untranslated coding se-
quences rather than transcripts, for instance predicted from
a genome or resulting from any other sequencing effort, the
ORF finding routine is skipped: all sequences are translated
using frame and strand ‘+1’ with the user-selected genetic
code.

The exploratory phase features a collection of compo-
nents accessible via the web interface for downstream anal-
ysis and detailed data inspection, exploiting the previ-
ously generated information. The experiment statistics re-
port comprehensive annotation metrics and allow the ex-
amination of the length distribution of transcripts and pre-
dicted ORF sequences. The core GF completeness module
provides a means to estimate gene space completeness at
varying evolutionary levels by assessing the representation
of conserved, quasi-universal gene families within the in-
put data. After defining transcript subsets, functional biases
within subsets can be identified and investigated through
subset functional enrichment analysis and interactive gene
function visualization tools. Transcript subsets can addi-
tionally be compared to identify their unique or shared
functional characteristics. Finally, transcript sequences can
be studied alongside their detected homologs in an evolu-
tionary context to identify orthologs and paralogs, using
multiple sequence alignments and phylogenetic trees. Data
processing and analyses performed within TRAPID 2.0 are
transparent and reproducible: the experiment log stores ex-
tensive information about all computation steps, applied
tools, and parameters.

Taxonomic classification of transcript sequences to detect pu-
tative contaminants and disentangle microbial communities

After the user creates a TRAPID experiment and uploads
assembled transcripts (or coding sequences), they are tax-
onomically classified. This initial processing step serves a
dual purpose: it enables the identification of potential con-
taminant sequences within single-species transcriptomes,

and facilitates the analysis of transcriptome data from com-
munities. It may be disabled by the user in case it is consid-
ered unrelated to the analysis at hand. The taxonomic clas-
sification is performed using Kaiju (20), a program based on
finding maximal exact matching substrings between queries
and protein sequences of a reference database. To enable the
classification of transcripts from the broadest possible taxo-
nomic range and to remain as unbiased as possible with re-
gards to the selected clades used as reference, the database
used by Kaiju consists of 219 million sequences from eu-
karyotes, bacteria, archaea, and viruses in the NCBI non-
redundant protein database. Although several taxonomic
classification methods have been described, see e.g. (55–57),
Kaiju was ultimately retained for this step due to its low
running time, its ability to overcome large evolutionary di-
vergences, and because it was shown to be more sensitive
than k-mer-based methods to classify sequences from clades
that are underrepresented in reference databases (20), mak-
ing it an appropriate candidate for the study of non-model
species. Kaiju assigns transcript sequences to a species or
strain, or to a higher-level node in the taxonomic tree in case
of ambiguity: if a transcript contains a protein fragment
that is identical between two organisms from the same clade,
then it is assigned to this clade, which represents the lowest
common ancestor of these organisms (20). Upon comple-
tion of the initial processing, taxonomic classification re-
sults are made available to the user as multiple interactive
visualizations, together with a tab-delimited file containing
raw results (Figure 2). The Krona sunburst chart (Figure
2A) and the tree viewer (Figure 2B) enable an in-depth ex-
amination of the results through the exploration of the com-
plete taxonomic tree, whereas the sample composition bar
and pie charts (Figure 2C) provide a quick overview of the
results, depicting the domain-level composition and the ten
most represented clades at adjustable taxonomic ranks. Any
of these interactive visualizations can also be used to rapidly
create transcript subsets by selecting clades: all the tran-
scripts assigned to the selected clades are then grouped in
a new transcript subset that can be further analyzed within
TRAPID 2.0.

Benchmark experiments were performed to assess Kaiju’s
performance with regards to the classification of assem-
bled transcript sequences and to explore various running
mode and parameter combinations (Supplementary Note
S1; Supplementary Figure S1; Supplementary Table S5).
Based on the results obtained after evaluating Kaiju with
two types of evaluation data sets having different properties,
we concluded the selected running mode combines good
genus-level classification performance with computational
efficiency.

Genus-level taxonomic classification results for 26 micro-
bial eukaryote transcriptomes from the Marine Microbial
Eukaryote Transcriptome Sequencing Project (MMETSP)
(9) provide insights into their quality and ecology (Fig-
ure 3A). While overall large fractions (21.9–90.4%) of tran-
scripts were assigned to eukaryotic genera matching sam-
ple metadata, nine different bacterial genera were present
among the most represented genera for the 26 inspected
samples. This observation likely reflects the general low
level of contamination problem mentioned in the MMETSP
publication, with contaminant sequences originating from
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Figure 1. TRAPID 2.0 workflow and functionality overview. TRAPID’s workflow comprises two main parts: an initial processing phase (1), executed
non-interactively after data upload, and an exploratory phase that consists of a set of functional and comparative tools (2) accessible through the web
application. Input and output data are represented by cyan boxes. Output data boxes are complemented by thumbnails that depict the visualizations
available from the web application. Available reference databases (consisting of functionally annotated proteomes and gene families) are represented by
orange cylinders. Analysis and computation steps are represented by grey boxes and solid arrows.

A B

C

Figure 2. Ostreococcus mediterraneus transcriptome taxonomic classification results visualization. (A) Krona sunburst chart. (B) Tree viewer: users can
explore the classification of transcripts along the tree of life, enabling in-depth investigation of the results. (C) Sample composition bar charts: domain-level
composition is shown on the left and the top ten most represented clades at a given taxonomic rank (here genus) on the right, providing an overview of the
results. Transcript subsets can be defined using any of the available visualizations for further analysis. These results were generated using MMETSP0929
(Ostreococcus mediterraneus clade-D-RCC2572).
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A B

Figure 3. Genus-level taxonomic classification, core eukaryotic completeness, and transcript count of 26 microbial eukaryote transcriptomes. (A) Genus-
level taxonomic classification summary. For each transcriptome, only up to 10 top represented genera (genera to which the most transcripts are assigned)
are shown. Transcripts not assigned to any taxonomic label are represented as ‘Unclassified’ (dark grey fraction), and transcripts assigned to other genera or
genera encompassing <1% of the depicted transcripts are aggregated as ‘Other’ (light grey fraction). Transcript sequences classified to a rank above genus-
level are not represented. The circle on the right of each classification summary indicates the number of top represented genera additionally supported
by the classification of either SSU or LSU rRNA sequences detected by TRAPID 2.0 (see Materials and Methods). (B) Core eukaryotic completeness
score, computed using 1116 ‘core’ eggNOG orthologous groups conserved in at least 90% of the eukaryote organisms present in the database (red dots,
top x-axis), and transcript count (blue bars, bottom x-axis). The genus label associated to each depicted transcriptome was retrieved from the MMETSP
metadata. These results were generated using 26 MMETSP samples processed with eggNOG 4.5 as a reference database and default initial processing
parameters.

species living in culture with the sequenced organism (58,59)
or from experimental procedures (e.g. during library con-
struction and sequencing). However, the four analyzed Tha-
lassosira minuscula samples (MMETSP0737-740) exhibited
varying fractions of transcripts assigned to bacteria (mostly
Rhodobacterales), with up to 30.2% assigned transcripts
for MMETSP0740 in our summary, suggesting contami-
nation levels may have been underestimated for these sam-
ples. Three samples of the labyrinthulid hard clam parasite
QPX (MMETSP0098-100), obtained from clam tissue, dis-
played similar genus-level taxonomic classification profiles,
with a large fraction of unclassified sequences (up to 54.6%
for MMETSP0100) and a high diversity of represented gen-
era (large ‘Other’ fraction, up to 28.6% for MMETSP0100).
Interestingly, for MMETSP0098, 26.4% of transcripts were
assigned to Crassostrea, potentially representing sequences
from the host. Similarly, the analyzed Emiliania huxleyi
sample (MMETSP1008) showed a fraction of 1.1% as-
signed transcripts to Coccolithovirus, a virus for which Emil-
iania huxleyi is the natural host. In general, the observed
unclassified fractions point to the lack of available refer-
ence genomic information for microbial eukaryotes, moti-

vating further sequencing efforts (60), or to the presence
of misassembled transcripts or untranslated sequences lack-
ing protein similarity to known genes. Although this section
focuses on genus-level classification summaries, it is worth
pointing out that Kaiju classifies sequences to the lowest
possible taxonomic level (e.g. at the species- and strain-
level), with an accuracy that depends on the availability of
relevant protein sequences in the used database. For exam-
ple, for MMETSP1400 (Micromonas sp. RCC451) 82.2%
of all sequences were assigned to ‘Micromonas commoda’;
in MMETSP1008 (Emiliania huxleyi 374) 70.0% sequences
were assigned to ‘Emiliania huxleyi’; in MMETSP0972
(Thalassiosira oceanica CCMP1005), 86.4% sequences were
assigned to ‘Thalassiosira oceanica’; and in MMETSP1451
(Vitrella brassicaformis CCMP3346), 82.0% sequences were
assigned to ‘Vitrella brassicaformis’.

Apart from the characterization of protein-coding tran-
scripts, TRAPID 2.0 identifies potential non-coding RNAs
using Infernal (30) with a selection of RNA models from
Rfam (31), representing ubiquitous non-coding RNAs by
default (see Materials and Methods). Identified non-coding
transcripts are assigned to the corresponding Rfam family
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and clan, if any, and are subsequently annotated with asso-
ciated GO terms. Identified RNA families can be browsed
(Supplementary Figure S2), Infernal’s output examined via
individual transcript pages, and RNA transcripts easily ex-
ported for further characterization, for example using the
SILVA database (34) to examine predicted ribosomal RNA
sequences or any other dedicated tool, such as tRNAscan-
SE to annotate tRNAs (61).

Comparing the genus-level classification results of Kaiju,
based on all the transcripts of each sample, with the
classification of SSU/LSU ribosomal RNAs identified by
TRAPID 2.0 revealed that in 69.2% of samples (18/26) the
displayed most abundant genera were supported by riboso-
mal RNA analysis (Figure 3A). For only nine samples, all
the most abundant genera were recovered, demonstrating
the complementarity of protein-based and ribosomal RNA-
based taxonomic classification approaches.

Homology-based functional annotation

After completion of the taxonomic classification, DIA-
MOND (28) is employed to perform a sequence similarity
search against a user-selected protein database (Figure 1).
The used protein database consists of protein sequences re-
trieved from one of the available reference databases, which
contain functionally annotated biological sequences from
multiple species clustered in precomputed homologous gene
families (Supplementary Table S2). By default, the entire
reference proteome (proteins from all the species of the
reference database) is used, but it can optionally be con-
strained to a subset of proteins originating from a specific
phylogenetic clade or individual species.

Within TRAPID 2.0, five reference databases are avail-
able: PLAZA 4.5 dicots and monocots (23), pico-PLAZA
3.0 (24), PLAZA diatoms 1.0 (25), and eggNOG 4.5 (26).
As illustrated in Supplementary Table S2, these reference
databases span a broad and diverse taxonomic range, pro-
viding flexibility to the user and making it possible to pro-
cess transcript sequences of diverse origin. In addition to bi-
ological sequences, they encompass high-quality functional
annotations and GF information, and as such represent a
high-quality backbone for the comparative and functional
analyses that can subsequently be performed during the
exploratory phase. Comparing the species represented in
PLAZA databases and eggNOG 4.5 reveals their comple-
mentarity: while the former are more restricted in terms
of taxonomic range, they incorporate information for or-
ganisms that are absent from the latter. Taken together,
TRAPID 2.0’s reference databases encompass protein se-
quences, functional annotation, and GF information for
115 archaea, 1678 bacteria, and 326 eukaryotes, 88 of which
exclusively present in PLAZA databases.

The similarity search output is utilized during a post-
processing step to provide input sequences with several lay-
ers of information (Supplementary Table S4). First, each
transcript is assigned to a gene family from the reference
database, and this information is used to transfer func-
tional annotation to the transcript (GO terms, InterPro
domains, or KO terms). Second, using the alignments re-
ported for each transcript, frame statistics are generated
and used to infer the transcript’s ORF sequence, i.e. the

longest ORF within the frame supported by sequence sim-
ilarity hits, and to predict whether the transcript contains
putative frameshifts in case conflicting frame information
was detected. Finally, meta-annotation, an estimation of the
full-length status of the transcript, is generated based on the
comparison of the predicted ORF sequence length to the
coding sequence length of the genes from the GF the tran-
script was assigned to. In case eggNOG 4.5 was selected
as reference database, the GF assignment and functional
annotation transfers are performed using the eggNOG-
mapper annotation routine (29).

To evaluate the performance of the functional annotation
procedure, we compared the GO annotations inferred by
TRAPID 2.0 to gold standard GO annotations for cDNA
sequences originating from five well-characterized model
organisms (Arabidopsis thaliana, Drosophila melanogaster,
Escherichia coli (strain K12), Homo sapiens and Sac-
charomyces cerevisiae; see Supplementary Note S2). For
each organism and GO aspect, recall, precision, F1 score,
and annotation coverage were determined when either
eggNOG 4.5 or PLAZA 4.5 dicots was selected as a ref-
erence database, additionally evaluating multiple GF trans-
fer threshold values for the latter (Supplementary Note S2;
Supplementary Figure S3). Due to the broad taxonomic
distribution of species in eggNOG 4.5, encompassing all
the evaluated organisms, a better overall functional anno-
tation performance (higher F1 score) was achieved when
it was used as a reference database compared to PLAZA
4.5 dicots, with the exception of Arabidopsis thaliana. Con-
sidering that all the evaluated organisms are represented
within eggNOG 4.5, the observed annotation coverage was
in some cases low (e.g. ranging between 24.2 and 66.6%
for E. coli), potentially linked to the fact that only non-
electronic annotations are transferred by eggNOG-mapper,
and because not all proteins necessarily have associated
GO annotations. Finally, since Arabidopsis thaliana is repre-
sented in both PLAZA 4.5 dicots and eggNOG 4.5, focus-
ing on the evaluation results for this species enabled us to
compare the functional annotations inferred using both ref-
erence databases. Processing A. thaliana cDNA sequences
using PLAZA 4.5 as a reference database yielded overall
better annotation metrics compared to using eggNOG 4.5
(higher F1 score for the ‘biological process’ and ‘molecu-
lar function’ GO aspects and higher annotation coverage
for all GO aspects). Drawing on this evaluation, we rec-
ommend users to select one of the available PLAZA in-
stances as a reference database in case they annotate tran-
script sequences originating from plants or microbial pho-
tosynthetic eukaryotes. However, eggNOG 4.5 remains a
suitable default choice, due to the broad taxonomic dis-
tribution of represented species, its taxonomy-constrained
orthologous groups, and the functional annotation perfor-
mance achieved by eggNOG-mapper.

ORF finding using non-canonical genetic codes

The genetic code, the translation of nucleotide triplets into
amino acids, is universal in nearly all organisms and cellular
locations. While it was termed a ‘frozen accident’ (62) and
long considered to be completely unalterable, variations of
the standard genetic code have been observed within the
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tree of life as well as in organellar genomes (63). Among
others, notable examples of non-canonical genetic code use
reported for eukaryotes include the reassignment of stop
codons by certain ciliates (64,65) and ulvophycean green al-
gae (66).

To accommodate these variations, TRAPID 2.0 supports
the use of non-canonical genetic codes during ORF detec-
tion and translation with any of the genetic codes available
from the NCBI taxonomy. In practice, the user may select
a non-canonical genetic code to use for all the transcripts
of an experiment prior to initial processing. After comple-
tion of the initial processing, it becomes possible to perform
ORF finding and translation using any genetic code for in-
dividual transcript subsets, based for instance on taxonomic
classification results, via the subset page.

To evaluate the impact of using an appropriate genetic
code during ORF finding, 16 ciliate MMETSP transcrip-
tomes (825,773 sequences) were processed with TRAPID
2.0 selecting either the standard or the ciliate nuclear ge-
netic code for ORF detection (see Material and Methods
for individual accessions and initial processing parameters).
Transcript sequences having a protein similarity search hit
against the reference database were retained and the length
of their predicted ORF sequence was compared with the
length of their best hit (Figure 4A). Performing the ini-
tial processing using the ciliate nuclear genetic code yielded
ORF sequences that better support similarity search re-
sults, longer and closer to the best hit length, compared
to the sequences predicted using the standard genetic code.
The quantity of transcripts flagged as ‘partial’ moreover de-
creased by 28.4% (from 166 011 to 118 815), indicating the
recovery of more complete protein sequences. To illustrate
how downstream, GF-level analyses are impacted by the
use of non-canonical genetic code, we aligned two Uronema
transcripts with four Alveolata reference sequences from
their assigned eggNOG orthologous group, using proteins
predicted with both the standard or the ciliate nuclear ge-
netic code (Figure 4B). Longer amino acid sequences having
higher global similarity were recovered when the ciliate nu-
clear genetic code was used during initial processing (stop
codon reassignment), whereas substantially shorter amino
acid fragments were recovered when using the standard nu-
clear genetic code.

Rapid estimation of gene space completeness along an evolu-
tionary gradient

The thorough evaluation of assembled transcriptomes is
critical, as downstream analyses are directly impacted by
quality. While technical sequencing quality metrics enable
to estimate assembly contiguity (e.g. metrics returned by
TransRate (67)), the information they provide only partially
reflects the quality of the data and they should therefore
be complemented by metrics that evaluate the global gene
content. Such metrics frequently compare the observed and
the expected gene content, the latter being modeled using a
set of evolutionarily conserved marker genes that can range
from ancestral, highly conserved genes, to clade- or species-
specific genes (39). TRAPID 2.0 leverages the GF assign-

ment step of the initial processing, enabling users to assess
and analyze the gene space completeness of transcriptomes
(Supplementary Figure S4) by inspecting the representation
of core gene families (‘core GFs’). Core GFs consist of a
set of gene families that are highly conserved in a majority
of species within a defined evolutionary lineage (more de-
tails in Material and Methods). A key feature of this func-
tionality in TRAPID 2.0 is the on-the-fly definition of core
GF sets for any lineage represented in the selected refer-
ence database, making it possible for users to rapidly exam-
ine gene space completeness along an evolutionary gradi-
ent and check if core/ancestral conserved genes or clade-
specific genes are represented within their data set (39).
The main output of the core GF completeness analysis is
the completeness score, an intuitive quantitative measure of
the gene space completeness at the selected taxonomic level
ranging between 0 and 100%. The represented or missing
core GFs and their associated biological functions are also
reported, enabling the identification of potential functional
biases.

The possibility to define core GF sets for any lineage is
one of the two major differences between our approach and
BUSCO (68), a widely used tool for gene space complete-
ness evaluation based on the presence of quasi single-copy
genes predefined for major clades (69). The second differ-
ence is the use of multi-copy gene families. The usage of all
conserved gene families, regardless of their copy number,
enables to cover a larger fraction of the gene function space
and reduces strong functional biases. For instance, many
conserved genes in eukaryotes are not single-copy, such as
histones, transcription factors, or other key components of
the eukaryotic cell machinery (70).

Figure 3B shows an overview of transcript counts and
eukaryotic gene space completeness, computed using 1,116
core eukaryotic eggNOG orthologous groups, for 26 mi-
crobial eukaryote samples from the MMETSP. Overall,
the observed transcriptomes exhibit high core eukary-
otic GF completeness scores, apart from MMETSP0932
and MMETSP0232. With the exception of transcrip-
tomes containing a very small number of sequences (e.g.
MMETSP0232 with 342 sequences), number of transcripts
and core eukaryotic completeness score are not strongly
correlated. For the analyzed Thalassiosira minuscula sam-
ples, the variation in the fraction of transcripts assigned
to bacterial genera matches the variation in complete-
ness scores, revealing the high occurrence of Proteobacte-
ria in two of these diatom samples (MMETSP0740 and
MMETSP0738). Finally, the presence of large fractions of
unclassified sequences does not seem to result in lower com-
pleteness scores, illustrating that these two measures cap-
ture different information and that a combination of eval-
uation metrics should be employed to assess the quality
of transcriptomes. For the 26 microbial eukaryote samples,
we further compared the computed eukaryotic gene space
completeness score with BUSCO (Supplementary Note S3;
Supplementary Figure S5), confirming the overall agree-
ment of both metrics but also illustrating the impact of in-
complete transcript sequences on gene space completeness
scores when using BUSCO.
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Figure 4. Impact of non-canonical genetic code use during ORF prediction for ciliate transcriptomes. (A) Histogram of predicted ORF sequence length
divided by best sequence similarity search hit length (‘best hit recovery ratio’) for 257 454 sequences from 16 ciliate MMETSP samples having homology
support, using the standard or the ciliate nuclear genetic code for ORF prediction (translation table 1 or 6 respectively). For each genetic code, the distri-
bution of ratio values is depicted as a rug plot, and the mean value represented by a dashed line. (B) Multiple sequence alignment of two transcripts from
MMETSP0018 (Uronema sp. Bbcil) assigned to the ‘0IF5I’ eggNOG orthologous group with reference sequences from Alveolata. ORF sequences were
predicted using either the standard or the ciliate nuclear genetic code (corresponding to blue and orange sequence labels, respectively). Amino acid residues
are shaded based on the chemical properties of their functional groups, with orange circles indicating stop codons reassigned to glutamine. Sequence label
prefixes were trimmed to improve legibility.

Functional analysis and comparison of transcript subsets

In addition to the global characterization of transcrip-
tomes, the detailed analysis and comparison of transcript
subsets can lead to valuable biological insights. Starting
from any arbitrary list of transcript identifiers (for instance,
transcripts expressed in a specific condition), TRAPID 2.0
users can define subsets and use them to perform subse-
quent functional analyses. A new transcript subset may ei-
ther be uploaded as a file or created interactively from the
web application, for example based on the taxonomic classi-
fication results or the annotation as protein-coding or RNA
gene. Three default subsets are defined upon initial process-
ing completion, encompassing sequences that were assigned
to a gene family (protein-coding transcripts), an RNA fam-
ily (RNA transcripts), and both a gene and an RNA family,
(ambiguous transcripts, potentially marking misassembled
or fused transcripts).

Individual transcript subsets are characterized through
functional enrichment analysis, using the annotation from
all the transcripts of the experiment as background. Func-
tional enrichment results are reported as a bar chart de-
picting the enrichment fold and q-value (corrected P-value)
of significantly enriched functional annotation labels, as
shown in Figure 5A for 48 Ostreococcus mediterraneus
metal ion transport transcripts (MMETSP0936). In the
case of GO enrichment analysis, a subgraph representing
the hierarchy of enriched GO terms within each aspect can
also be viewed (Supplementary Figure S6). The complex re-
lationship between transcript subsets, enriched functional
annotation labels, and associated gene families can addi-
tionally be investigated using interactive Sankey diagrams
(Figure 5B).

Besides the analysis of individual subsets, TRAPID 2.0
supports their comparison. By computing functional an-
notation ratios between subsets, it is possible for the user

to identify shared and unique functions. The interactive
Sankey diagrams presented in Figure 5B also support the
examination of multiple subsets simultaneously, given func-
tional enrichment analysis was performed for them.

Comparison with other transcriptome analysis tools

TRAPID 2.0 represents the first major overhaul of the
platform since its initial inception in 2013 (18). Although
TRAPID’s base rationale and two-phase architecture re-
main unaltered, this new version features numerous im-
provements that expand its scope of applicability and an-
alytical capabilities. We extended the underlying reference
databases by incorporating the latest PLAZA databases and
eggNOG 4.5, thus covering a broader taxonomic range with
an increased resolution. In addition to databases, the update
also involved the replacement of previously used tools with
more recent or adapted alternatives, as illustrated by the use
of DIAMOND to perform faster sensitive sequence similar-
ity search, replacing RapSearch2 (71), or the reworked phy-
logenetic pipeline. The initial processing and exploratory
phases incorporate several new features, such as the taxo-
nomic classification of transcripts, the detection and anno-
tation of non-coding RNAs, and the core gene space com-
pleteness analysis. Finally, the revamped web application,
which includes a job management system and new visual-
izations, offers an optimal user experience and an easier ex-
ploration of the data and results.

While numerous transcriptome analysis tools are pub-
licly available, a comparison of their functionalities high-
lights TRAPID 2.0’s unique properties (Table 1). We se-
lected seven tools for comparison based on their similar-
ity with TRAPID 2.0 and community usage: Blast2GO
(72), KAAS (73), eggNOG-mapper (29), Trinotate (cou-
pled with Trinotate-web) (74), EnTAP (75), Annocript
(76) and dammit (https://doi.org/10.5281/zenodo.3569831).
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Figure 5. Functional enrichment analysis of a subset of Ostreococcus mediterraneus metal ion transport transcripts. (A) Metal ion transport transcripts
InterPro enrichment results. InterPro identifiers are represented on the x-axis, enrichment fold on the left y-axis (red bars), and enrichment q-value on the
right y-axis (dark grey dots). (B) Sankey diagram depicting the relationships between metal transport transcripts (left blocks), significantly enriched InterPro
domains (middle blocks), and PLAZA gene families (right blocks). Line width is proportional to transcript annotation (left lines) and GF membership
(right lines). The maximum enrichment q-value threshold is 1e-5 and only gene families corresponding to at least two enrichment records (transcript-
function pairs) are displayed. These results were generated using MMETSP0936 (Ostreococcus mediterraneus clade-D-RCC2573) with pico-PLAZA 3.0
as a reference database and default initial processing parameters.

Since several of these tools are web services or rely on web
services, a comparison of their execution time would likely
be biased as it may be influenced by variables that cannot
be controlled for, such as the underlying computational re-
sources or the current server load. For the end-user, the
time required to process a transcriptome nevertheless re-
mains a relevant consideration in choosing a tool. There-
fore, we report TRAPID 2.0’s initial processing execution
times for five different microbial eukaryote transcriptomes
and all available reference databases (Supplementary Fig-
ure S7). As one would intuitively expect, the execution time
depended heavily on the size of the input data set and the

used reference database. TRAPID 2.0 processed the largest
tested transcriptome (119 699 sequences) in under 5 h in all
settings.

Although all the compared tools perform sequence sim-
ilarity search against reference proteins and functional an-
notation of input sequences, these two tasks are performed
using different methods, reference databases, and functional
ontologies, resulting in divergent speed, comprehensive-
ness, and accuracy. Other features are shared by a limited
number of tools exclusively. For instance, only eggNOG-
mapper, Trinotate, EnTAP and TRAPID 2.0 assign input
sequences to gene families. In addition, only Trinotate, En-
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TAP, Annocript, dammit and TRAPID 2.0 include the
prediction of ORF sequences as a processing step, since
they were developed for the analysis of de novo transcrip-
tomes in particular. Moreover, while half of the compared
tools focus on the annotation of protein-coding sequences,
only Trinotate, Annocript, dammit, and TRAPID 2.0 take
non-coding RNAs into account. In terms of accessibility,
eggNOG-mapper, Blast2GO, KAAS, and TRAPID 2.0 fea-
ture user-friendly graphical interfaces for the processing of
input sequences, easing their adoption by a wider commu-
nity than command-line tools. The interfaces of TRAPID
2.0, Blast2GO, and Trinotate web (accessed via a local
webserver) support subsequent data exploration, after se-
quences were processed. Additionally, TRAPID 2.0 offers
some unique features including the detection of putative
frameshifts and built-in taxonomic classification.

Besides the multilayered annotation that TRAPID 2.0
provides during its initial processing phase, comprising
structural, functional, and taxonomic information, the
main difference between TRAPID 2.0 and the other exam-
ined tools resides in its exploratory phase. In addition to
permitting an in-depth exploration of the generated results,
TRAPID’s analytical toolkit enables users to address a wide
array of biological questions directly from the web applica-
tion. Using an intuitive and interactive interface, it is pos-
sible to inspect sequence conservation and evolution, esti-
mate gene space completeness (also possible via command-
line with dammit using BUSCO), and perform functional
enrichment analyses and detailed comparisons of subsets.

Finally, in contrast to Trinotate, EnTAP, and Annocript,
TRAPID 2.0 does not perform transcript expression quan-
tification nor provides any straightforward way to directly
incorporate this information. It is nevertheless possible to
perform expression quantitation externally and define tran-
script subsets based on observed expression patterns to con-
duct downstream analyses via TRAPID 2.0, as illustrated in
the next section.

Studying taxonomic and functional variation in diatom com-
munity metatranscriptomes

To demonstrate TRAPID’s capabilities, we employed it
to analyze metatranscriptomics data of three samples ob-
tained from diatom-dominated phytoplankton communi-
ties (16). The samples were collected from three distinct sites
in the western Antarctic Peninsula: the Bransfield Strait
(BFS; 30 m), the Weddell Sea (WDS; 6–45 m), and the
Wilkins Ice Shelf (WKI; melted sea ice). After quality con-
trol and filtering, 526 527 pyrosequencing reads from all
samples were assembled into 53,569 contigs, with a N50
contig length of 391 bp (Supplementary Table S3). Single-
tons longer than 200 bp after trimming, considered bona
fide transcripts, were subsequently incorporated into the
metatranscriptome, resulting in a data set of 143 308 tran-
script sequences (N50 320 bp) used as input for TRAPID
2.0.

To characterize and compare those phytoplankton com-
munities, we first quantified expression in each sampling
site (Supplementary Table S3). After generating and trans-
forming raw counts, multiple transcript subsets were de-
fined based on their expression patterns across the three

sampling sites: for each site, subsets containing all the ex-
pressed transcripts (TPM ≥ 2) were defined (see Materials
and Methods), filtering out identified non-coding RNAs.

Transcript sequences were subsequently processed with
TRAPID 2.0, using pico-PLAZA 3.0 as reference database
and default parameters (see Material and Methods). 63
641 (44.4%) transcripts were assigned to 8931 gene fami-
lies and 4536 transcripts (3.2%) to 13 RNA families. 77 105
(53.8%) sequences received a taxonomic classification. 65
831 (45.9%) transcripts were functionally annotated with
12 965 distinct GO terms, and 63 641 (44.4%) transcripts
with 7,052 distinct InterPro domains (Supplementary Table
S6). Following uploading of the defined transcript subsets
into TRAPID 2.0, we refined the subsets to only include se-
quences assigned to Bacillariophyta and performed subset
functional enrichment analyses from the web application to
examine the functional variations between the three diatom
communities.

A domain-level overview of the taxonomic classification
of the protein-coding transcripts of the global metatran-
scriptome reveals that Eukaryota is the most represented
domain (Figure 6A), the remainder of transcripts being
mainly assigned to Bacteria, with only <1% assigned to
Archaea or viruses. At the genus-level, the inspection of
the taxonomic classification of transcripts expressed in each
sampling site shows a global domination by diatom tran-
scripts in the three sites and site-specific variations (Figure
6B). Transcript sequences were mainly assigned to Fragi-
lariopsis, Pseudo-nitzschia, and Thalassiosira, in contrast-
ing proportions depending on the sampling site. The BFS
sample features the largest fraction of transcripts assigned
to Pseudo-nitzschia (21% of sequences assigned to eukary-
otes and 33% of sequences assigned to diatoms), WDS the
highest fraction assigned to Thalassiosira (23% of sequences
assigned to eukaryotes and 52% of sequences assigned to di-
atoms), and WKI the highest fraction assigned to Fragilar-
iopsis (23% of sequences assigned to eukaryotes and 48%
of sequences assigned to diatoms). The observed reparti-
tion of protein-coding transcripts assigned to diatom gen-
era per sampling site supports results previously obtained
with a ribosomal protein gene maximum likelihood phy-
logenetic analysis (16). Interestingly, WKI exhibits a sub-
stantial portion of transcripts assigned to Eurytemora and
Tigriopus (6% of sequences assigned to eukaryotes), two
genera of copepods. The presence of copepods in this en-
vironment is not unusual, as they represent a key link be-
tween primary production and higher trophic levels, grazing
on phytoplankton. One such example would be S. longipes,
a species observed in a similar environment (location and
time of the year) and for which the ice–water interface plays
a crucial role in the lifecycle (77).

Functional enrichment analysis of diatom-assigned tran-
scripts expressed in each sampling site sheds light on
the functional variations between the diatom communities
and reflects their adaptation to their respective environ-
ment (Figure 6C; Supplementary Tables S7-S9). Briefly, the
two pelagic communities (BFS and WDS) were enriched
for protein domains linked to carbohydrate and energy
metabolic pathways, absent from the ice sheet community
(WKI), potentially reflecting a reduced carbohydrate assim-
ilation. InterPro entries linked to lipid metabolism were en-
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Figure 6. Diatom-rich communities metatranscriptome taxonomic classification and diatom-assigned transcript subsets InterPro enrichment results. (A)
Domain-level taxonomic profile of the global metatranscriptome. 4734 transcript sequences assigned to ‘cellular organisms’ or the root node of the taxon-
omy are not represented. (B) Genus-level taxonomic classification summary of transcripts expressed in each of the three sampling sites. For each sample,
the fraction of expressed transcripts assigned to the top 10 represented genera (the genera to which the most transcripts were assigned overall) is shown.
Transcripts assigned to other less represented genera are aggregated as ‘Other’ (light grey fraction), and transcripts not assigned to any genus are not
displayed. The numerical values complementing the sample identifiers indicate the ratio of transcripts classified at the genus-level over the total amount of
expressed transcripts. (C) Heat map showing the 25 most enriched InterPro domains per subset of diatom-assigned transcripts expressed in each sampling
site, compared with the global metatranscriptome (maximum enrichment q-value 0.01). Transcript subsets are represented along the x-axis and enriched
InterPro domains along the y-axis. Transcripts associated to a subset and an enriched InterPro domain are binned by assigned genus (three most rep-
resented diatom genera and ‘Other’). For each combination of subset, enriched InterPro domain, and assigned genus, the circle size is proportional to
the ‘taxonomic ratio’, a ratio of the frequency of the subset’s transcripts associated to the InterPro domain and assigned to the genus over the observed
frequency for all the transcripts expressed in the sampling site. Enriched InterPro domains were assigned to broad functional categories, indicated by row
annotations, and equivalent enrichment results were filtered to reduce redundancy. The significance of the enrichment is depicted as a color gradient, and
each column is annotated with sample and genus classification information.
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riched in BFS (e.g. Acetyl-CoA carboxylase), potentially
corresponding to nutrient stress in this community. Protein
domains linked to translation and the basic protein process-
ing machinery (e.g. peptidases, elongation factors, riboso-
mal proteins) or to membrane fluidity (e.g. fatty acid de-
saturase) were predominantly enriched in the two coldest
communities, WDS and WKI, denoting a molecular foot-
print of their adaptation for survival at cold temperature.
Finally, ice-binding proteins were enriched in WKI, with
transcripts mainly assigned to Fragilariopsis, further allud-
ing to the adaptation of this psychrophilic diatom to this
stressful environment. Overall, these observations corrob-
orate results obtained in a previous functional comparison
study of these samples (16).

CONCLUSIONS

We have presented TRAPID 2.0, a tool for the annotation
and exploration of de novo assembled transcriptomes. En-
tirely web-based, it is well-suited for non-expert scientists
as it removes the requirements for bioinformatics exper-
tise or computational resources usually inherent to high-
throughput –omics data processing. The high-quality ref-
erence databases it leverages enable the characterization
of transcript sequences from a broad taxonomic range,
while the components of its exploratory phase allow several
downstream comparative and functional analyses. Detailed
information and machine-readable export files are available
for every processing or analysis step, ensuring reproducibil-
ity and facilitating subsequent analyses for advanced users.

Dissecting microbial eukaryote transcriptomes from the
MMETSP with TRAPID 2.0 provided a glimpse into their
diversity and complexity. Although they are bulk tran-
scriptomes of single cultured species, the processed sam-
ples exhibited a wide array of taxonomic classification pro-
files, sequence counts, and gene space completeness scores.
Their inspection additionally illustrated various features of
TRAPID 2.0, showcasing the adaptability of its approach
when confronted to the multifaceted nature of the analy-
sis of transcriptomes. In practice, we have successfully used
TRAPID 2.0 to generate complementary quality metrics,
perform taxonomic, functional, and comparative analyses,
and observe the impact of using an appropriate genetic code
during ORF prediction.

Comparing TRAPID 2.0 to other similar transcriptome
analysis software underscored its singularity and strengths,
such as the inclusion of a built-in taxonomic classifica-
tion module or its web-based analytical toolkit. Although
TRAPID 2.0 does not perform transcript expression quan-
tification, we have shown it is possible to exploit this infor-
mation by defining and analyzing transcript subsets based
on observed expression patterns. We have demonstrated
TRAPID 2.0’s potential by employing it to annotate and
analyze a metatranscriptome of three phytoplankton com-
munities from the western Antarctic Peninsula, uncovering
taxonomic and functional variations across distinct sam-
pling sites.

In conclusion, TRAPID 2.0 provides researchers with a
user-friendly and versatile tool to efficiently process de novo
(meta)transcriptomes, and constitutes a valuable contribu-

tion to the ever-expanding transcriptome analysis software
ecosystem.
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ugent.be/trapid. General documentation, tutorials, and ex-
ample data sets are available on the TRAPID 2.0 website.
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