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Abstract

Our modern cities are resource sinks designed on the current linear economic model which recovers very little of
the original input. As the current model is not sustainable, a viable solution is to recover and reuse parts of the
input. In this context, resource recovery using nature-based solutions (NBS) is gaining popularity worldwide. In
this specific review, we focus on NBS as technologies that bring nature into cities and those that are derived
from nature, using (micro)organisms as principal agents, provided they enable resource recovery. The findings
presented in this work are based on an extensive literature review, as well as on original results of recent inno-
vation projects across Europe. The case studies were collected by participants of the COST Action Circular City,
which includes a portfolio of more than 92 projects. The present review article focuses on urban wastewater,
industrial wastewater, municipal solid waste and gaseous effluents, the recoverable products (e.g., nutrients,
nanoparticles, energy), as well as the implications of source separation and circularity by design. The analysis
also includes assessment of the maturity of different technologies (technology readiness level) and the barriers
that need to be overcome to accelerate the transition to resilient, self-sustainable cities of the future.

Key words: circular cities, energy, nature-based solutions, nutrients, resource recovery
ABBREVIATIONS/ACRONYMS
AD
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Anaerobic digestion

ALE
 Alginate-like exopolysaccharides

ATAD
 Autothermal thermophilic aerobic digestion

Bio-W
 Bio-waste

BIQ
 Bio-intelligent quotient

BOD
 Biological oxygen demand

BW
 Blackwater

CDW
 Construction and demolition waste

COD
 Chemical oxygen demand

CSTR
 Continuously stirred tank reactor

CW
 Constructed wetland

DTM
 Dry toilet matter

ESCO
 Energy service companies

EWS
 Evapotranspirative willow system

FGD
 Flue gas desulphurisation

FW
 Food waste

GHG
 Greenhouse gas

GDP
 Gross domestic product

GrW
 Green waste

GW
 Greywater

HRAP
 High-rate algal ponds

K
 Potassium

LCFA
 Long-chain fatty acids

MBR
 Membrane bioreactor

MBT
 Mechanical biological treatment

MFCs
 Microbial fuel cells

MSW
 Municipal solid waste

N
 Nitrogen

NBS
 Nature-based solutions

OLAND
 Oxygen-limited autotrophic nitrification/denitrification

P
 Phosphorus

PBR
 Photobioreactor

PCB
 Polychlorinated biphenyl

PHA
 Polyhydroxyalkanoates

PHB
 Polyhydroxybutyrate

PPB
 Purple phototrophic bacteria

R&D
 Research and development

RO
 Reverse osmosis

TRL
 Technology readiness levels
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Total solids

TSS
 Total suspended solids

UASB
 Upflow anaerobic sludge blanket

VFAs
 Volatile fatty acids

VFY
 Vegetable, fruit and yard waste

VSS
 Volatile suspended solids

WW
 Wastewater

WWTP
 Wastewater treatment plant

YW
 Yellow water
INTRODUCTION

Cities are emerging as centres of human and economic capacity, with 54% of the global population
living in cities and raising 85% of worldwide GDP (World Bank 2017). However, cities also accumu-
late or emit end-user resources and wastewater, functioning as resource sinks within the current linear
economic model of ‘take-make-dispose’. Urban populations consume 75% of natural resources, they
are responsible for 50% of global waste and for 60–80% of overall greenhouse gas emissions (Ellen
MacArthur Foundation 2017). Given the human and economic potential, the accumulation of
resources and societal challenges of ecosystem degradation present in urban areas, the momentum
is shifting towards recovery of these resources within the urban infrastructure.
Resource flows are generally considered ‘waste’, destined for final disposal as soon as they reach

sewage systems, rubbish bins and exhaust pipes, although they include valuable resources such as nutri-
ents (N, P, K), organics, water and metals. Each year, Europeans produce 3.6 Mt of N, 1.7 Mt of P and
1.3 Mt of K as part of human excrement. At the same time, Europe consumes 11 Mt of N, 2.9 Mt of P
and 2.5 Mt of K of manufactured fertilisers (Fertilizers Europe 2017). The volumes of post-use material
bear high potential. Therefore, the present study considers secondary resource streams, including urban
wastewater, industrial wastewater, municipal solid waste and gaseous effluents, as well as the potential
of source-separated waste(water) streams. Figure 1 showcases the urban water, nutrient, material and
energy loops established by using and integrating nature-based solutions (NBS) in cities.
The present paper is a product of interdisciplinary cooperation among researchers from all 28 EU

countries and 11 third countries within the EU-funded COST Action Circular City. Discussions among
project members have produced a definition of nature-based solutions for the purpose of the COST
Action, set out in Langergraber et al. (2019). As such, the present paper defines NBS as technologies
that bring nature into cities and those that are derived from nature, using organisms as principal
agents if they enable resource recovery and the restoration of ecosystem services in urban areas.
The objective of this review is to provide a comprehensive overview of NBS applied and developed
today to recover resources in cities, along current cutting-edge research and innovation, and to
map out recoverable products as well as barriers, which represent the scope for further research.
NBS can be applied to micro (household), meso (district) and macro (city and above) scales (Langer-
graber et al. 2019).
The findings are based on a literature review, as well as on the review of ongoing and recent

research and innovation projects. These case studies were collected by participants of the COST
Action Circular City with a portfolio of a total 92 research projects, as well as projects that partner
researchers are aware of. Case studies specifically mentioned in the paper illustrate the diversity of
applications and recoverable products. Based on discussions within the Action’s working group on
resource recovery, the present review paper looks at urban wastewater, industrial wastewater, munici-
pal solid waste and gaseous effluents, as well as the implications of source separation of waste and
end-of-pipe technologies versus circularity by design. Non-technical interrelated factors, which influ-
ence the applicability, selection and adoption of available technologies, such as legal frameworks,
community awareness, acceptance and involvement, business and financing conditions, are not
addressed here but are discussed in a separate review paper (Katsou et al. 2019).
bgs/article-pdf/2/1/138/890238/bgs0020138.pdf



Figure 1 | Overview of urban water, nutrient, material and energy loops enabled using NBS within cities.
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RESOURCE STREAMS AND OPPORTUNITIES FOR RECOVERY IN CITIES

The following section reviews different secondary resource streams found in cities, subdivided in
urban wastewater, industrial waste and wastewater, municipal solid waste, gaseous effluents and
source-separated waste. It provides an overview of technologies, projects and developments as well
as barriers in relation to resource recovery with NBS.
Urban wastewater

Urban wastewater is defined as domestic wastewater or its mixture with industrial wastewater and/or
runoff rainwater (European Commission 1991). The adequate treatment of urban wastewater is essen-
tial to protect human health and the environment. In Europe, cities largely collect and treat urban
wastewater as a mixture of grey and blackwater, often also stormwater (combined sewer system).
In Europe, more than 277 million people live in agglomerations bigger than 150,000 population equiv-
alent (PE). They produce 41.5 million m3 of wastewater per day. Currently, an annual 2.4%
(1 billion m3) of treated urban wastewater effluents are reused in the EU (European Commission
2018b), but this secondary resource stream bears significantly more resources to recover, including
nutrients, organic carbon, lipids, biosolids and energy. The vast majority is still unexploited, but
many of these can be recovered in cities using NBS. Table 1 provides an overview of projects deriving
secondary resources and products from unsegregated urban wastewater, including reclaimed fertiga-
tion/irrigation water (water and nutrients), P-rich sludge, biopolymers, alginates, cellulose,
construction material and energy (biogas, biofuel, electricity and heat). Information on the scale at
which the technology is applied, the technology readiness level (TRL), region, project and project
periods provide an indication as to the transferability of applied technologies.
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf



Table 1 | Overview of resources that can be recovered from unsegregated urban wastewater, recovery technologies applied, recovered products, scale, TRL, region and project

Recoverable
resource Technologies applied Products Scale TRL Region Project

Project
period Reference

Reclaimed water,
energy and
nutrients

Upflow anaerobic sludge blanket
(UASB)þ constructed wetlandsþ
UV disinfection

Fertigation water;
domestic non-
potable water

Micro,
meso

7 Lesvos Island, Greece HYDROUSA 2018–2022 https://www.hydrousa.org/

Combination with shred kitchen
waste, liquid-solid separation,
green walls, anaerobic membrane
bioreactor (AnMBR), UV
hygienisation

Fertigation water;
biogas, fertiliser,
domestic non-
potable water

Micro 7 Austria, Spain HOUSEFUL 2018–2022 https://houseful.eu/

Hybrid constructed wetland,
evapotranspirative willow system
with zero discharge, algae-based
technology

Fertigation water,
woodchips for heat
production

Micro,
meso

7 Slovenia GreenT (Slovenian
Research Agency J2�
8162 and Z2� 6751)

2017–2020 http://www2.zf.uni-lj.si/si/
component/content/article/32-
raziskovanje-splosno/2489-
zapiranje-snovnih-poti-pri-ciscenju-
komunalnih-odpadnih-voda-z-
zelenimi-tehnologijami-j2-8162

Nutrients Adsorption columns and planted
filters

Nutrients for
irrigation water

Micro 3–4 Barcelona and Almería,
Spain

INCOVER 2019–2021 https://incover-project.eu/
technologies/nutrient-recovery

Organic carbon
(carbohydrates)

Two-stage anaerobic-photosynthetic
high-rate algal pond system

Biopolymers Micro 6 Chiclana de la Frontera
and Almería, Spain

INCOVER 2019–2021 https://incover-project.eu/
technologies

Two sequencing batch reactors
(SBR): one for heterotrophic
bacterial growth and the other for
growth of autotrophic nitrifiers

Biopolymers (PHA)
and P-rich sludge

Macro 6 Manresa, Spain SMART-Plant 2016–2019 http://www.smart-plant.eu/

Mixed microbial cultures, activated
sludge at WWTP, bioprocess
facilitating feast and famine
conditions, biomass is fed with
VFA-rich liquors, pure acetic and
propionic acids

Biopolymers (PHA) Meso 6–7 The Netherlands Phario 2015–2019 http://phario.eu/

Alginate extraction from granular
excess sludge from 3 municipal
Nereda®-plants and one industrial
one

Alginates Macro 6 WWTP Epe, Dinxperlo,
Vroomshoop,
The Netherlands

National Alginate
Research Programme

2013–2019 https://www.royalhaskoningdhv.
com/en-gb/news-room/news/
water-authorities-working-hard-to-
achieve-circular-economy/7123

Alginate extraction from Nereda®-
granular excess sludge

Kaumera Nereda®

Gum (formerly:
Neoalginate)

Macro 7–8 WWTP Zuthpen,
The Netherlands

KAUMERA 2016–2018 https://kaumera.com/english/

Lipids Two-stage aerobic/anaerobic reactor,
M. parvicella bacterium
accumulates FOG (fat, oil, grease),
lipids extraction, subsequent
esterification/transesterification

Biofuel Micro 3–4 Luxembourg & France WOW 2018–2021 https://www.cell-vation.com/wow-
project

(Continued)
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Table 1 | Continued

Recoverable
resource Technologies applied Products Scale TRL Region Project

Project
period Reference

Energy, nutrients Anaerobic biofilter for municipal
wastewater treatment

Biogas Meso,
macro

7 Karmiel, Israel SMART-Plant 2018–2020 http://www.smart-plant.eu/

UASB for municipal wastewater Biogas Meso 7 Sweden Pioneer-STP 2016–2019 https://www.kt.dtu.dk/english/
research/prosys/projects/pioneer-
stp

Vacuum toilets and collection, AD,
Fixed bed reactor, heat exchange,
district heating

Biogas, fertiliser,
thermal energy

Meso 7–8 Hamburg, Germany Hamburg Water Cycle,
Jenfelder Au

2011–2018 https://www.hamburgwatercycle.de/
en/the-jenfelder-au-
neighbourhood/the-hwc-in-the-
jenfelder-au/

Energy Horizontal subsurface CW with
electrodes; oxidation of the organic
matter generates electricity

Electricity Micro 4–5 Spain, UK, Turkey URBAN GreenUP 2017–2022 https://www.urbangreenup.eu/

Energy, salts Microbial desalination combined
with membrane treatment

Freshwater, treated
wastewater

Micro,
meso

5 Spain, Chile, Tunisia MIDES 2016–2020 http://midesh2020.eu/

Nutrients, lipids,
cellulose

Microbial conversion of nutrients to
high-value compounds in a
biorefinery approach

Ectoine, PHA, biogas,
cellulose,
construction
materials

Meso,
macro

6 Spain DEEP PURPLE 2019–2023 https://deep-purple.eu/

DEEP PURPLE: Conversion of diluted mixed urban bio-wastes into sustainable materials and products in flexible purple photobiorefineries. GreenT: Closure of material pathways in urban wastewater treatment with green technologies. HYDROUSA:

Demonstration of water loops with innovative regenerative business models for the Mediterranean region. INCOVER: Innovative eco-technologies for resource recovery from wastewater. MIDES: Microbial desalination for low energy drinking water.

Pioneer-STP: The potential of innovative technologies to improve sustainability of sewage treatment plants. Run4Life: Large-scale nutrient recovery from domestic wastewater. SMART-Plant: Scale-up of low-carbon footprint material recovery

techniques in existing wastewater treatment PLANTs. WOW: Wider business opportunities for raw materials from wastewater.
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Technologies and products

As set out in Table 1, NBS for resource recovery from urban wastewater range from extensive tech-
nologies, such as constructed wetlands, evapotranspirative willow systems and algae ponds, to
high-tech biological processes, such as rotating biological contactors, aerobic granulation
(Nereda®) and anaerobic reactors. The wide range of recoverable products includes commonly
derived products, such as biogas from primary and secondary sludge and reclaimed water for agricul-
tural (crop irrigation or fertigation), industrial (cooling water), residential (sanitary flushing) and
urban (park irrigation or even crop production) purposes as well as for groundwater recharge.
Combustible biomass of plants and microalgae can be converted to biogas and digestate for use as

fertiliser through anaerobic digestion, bioethanol through sugar fermentation or ethylene reaction
with steam (EUBIA 2019), biochar through pyrolysis, or processed for pulp-paper production or bio-
plastics. Bio-oil is produced by processing biomass under high temperature without oxygen and
biohydrogen by steam reformation of bio-oils, dark and photofermentation of organic material as
well as photolysis of water catalysed by specific microalgae species (Li et al. 2008). Algae biomass
can also be used for feed production and extraction of high-value chemicals (Razzak et al. 2013;
Passos et al. 2014; Wuang et al. 2016; Fermoso et al. 2019).

Constructed wetlands and nutrient-rich irrigation. Urban wastewater contains nitrogen and
phosphorus which is usually not valorised within wastewater treatment plants (WWTPs). Although
raw urban wastewater is a diluted effluent with low concentrations of nitrogen (30–70 mgN/L) and
phosphorus (5–12 mgP/L), the large flows of generated wastewater carry significant quantities of
nutrients. Constructed wetlands (CW) are the most common extensive NBS for nutrient recovery.
They offer effective, reliable, robust and low-cost treatment of wastewater. Moreover, the nutrient
content in the outflow can be adapted to the needs for crop fertigation. They can be integrated
with other engineered solutions, such as anaerobic processes to meet strict water reuse regulations.
The EU-funded HYDROUSA project (Table 1) combines upflow anaerobic sludge blanket (UASB)

with vertical constructed wetlands and UV disinfection to treat domestic sewage. The treated effluent
is rich in nutrients, but has very low chemical oxygen demand (COD) and total suspended solids
(TSS) levels, and is free of pathogens. It is used at the demonstration site to develop an agroforestry
unit on the arid island of Lesvos, Greece, thereby reusing nutrients directly for agricultural purposes.
The HOUSEFUL project (Table 1) also utilises domestic wastewater directly on site. It diverts the
solids and liquids of the unsegregated household wastewater and treats the liquid fraction in green
walls, hygenises it with UV radiation and reuses it for flushing toilets and irrigating food crops in
greenhouses. The solids are co-digested together with the organic household waste in small biogas
plants. The digested matter is converted to compost in a closed-vessel composting unit with in-built
odour abatement (Bertino et al. 2018).
Numerous laboratory-scale experiments have been conducted introducing electrodes to (con-

structed) wetlands (e.g., iMETland or plant-e projects), generating electricity from the oxidation of
the organic matter, but only a few pilot facilities have been attempted. The URBAN GreenUP project
(Table 1) is piloting horizontal sub-surface flow (HSSF) wetlands, where electrodes and electrical con-
nections through the filter bed stimulate the growth of an exoelectrogenic biofilm able to transfer the
electrons generated by decomposition of organic matter. The MIDES project (Table 1) combines
urban wastewater treatment and desalination by using microbial desalination processes to generate
energy and run conventional reverse osmosis with the generated electricity.
The evapotranspirative willow system (EWS) (GreenT, see Table 1) treats wastewater and produces

wood biomass. Mechanically pre-treated municipal wastewater flows into a waterproof bed filled with
soil and planted with selected willow clones. In two research projects funded by the Slovenian
Research Agency, willows in this system have been found to produce significantly more biomass
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf
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compared to control trees, namely 34–38 t DM/ha (Istenič et al. 2017, 2018). The treatment of waste-
water produced by one person in a sub-Mediterranean climate requires 42 m2 of EWS and produces
140–179 kg of wood biomass per year. Where available space allows the application of EWS, the
wood biomass produced can be used for heating houses.

Microbial biotechnology. Anaerobic digestion is a popular treatment method for wastewater
treatment sludge and enables recovery of energy (biogas, electricity, heat) and nutrients. Significant
research is being conducted to enhance biogas and energy yields as well as valorisation of value-
added products from side streams (intermediate products and valorisation of digestate). Among the
projects mentioned in Table 1, HYDROUSA, HOUSEFUL, SMART-Plant, Pioneer-STP and
Hamburg Water Cycle/Jenfelder Au are applying biomethane production using technologies such as
common anaerobic digester, upflow anaerobic sludge blanket, anaerobic membrane bioreactor,
anaerobic biofilter. Recently, biological production and harvesting of N2O gas for energy recovery
and reduction of high nitrogen loads in digestate centrate was performed by coupled aerobic-
anoxic nitrous decomposition operation (CANDO). Combustion of N2O with biogas increases
energy yields and reduces the emission of the potent greenhouse gas (Weißbach et al. 2018).
Biofuel is usually produced from vegetable oils (soybean, canola, sunflower, palm and coconut oils)

and animal fats, requiring large amounts of agricultural land. Urban wastewater can provide large
quantities of alternative lipid feedstocks that help to meet the increasing demand for biofuel but do
not compete with food production. Lipids, including oils, greases, fats and long-chain fatty acids
are significant organic components of municipal wastewater, accounting for approximately 30–40%
of the total COD of 120 g per PE and day, which means that about 18 kg per PE and year can be
found in raw wastewater (Chipasa & Mędrzycka 2006). In the EU-funded WOW project (Table 1),
lipids are accumulated by Microthrix parvicella bacteria and then processed to biofuel. The filamen-
tous, selective lipid accumulator also has the ability to take up long-chain fatty acids, which can be
used directly for the production of biofuel (Uwizeye et al. 2017).
The Nereda® process is a wastewater treatment technology, where activated sludge forms gran-

ules that have the ability to settle very fast. From these sludge granules, so-called ‘alginate-like
biopolymers’ or ‘alginate-like exopolysaccharides (ALE/Kaumera)’ as a raw material can be
obtained (Van der Roest et al. 2015). Aerobic granular sludge from the Nereda® process contains
about 15–25% ALE that can be recovered. This material has the ability to bind strongly with
water, can thicken and can also be used as a basis for coatings. The wastewater-derived alginate
could be used for manifold applications, e.g., in the medical and food industries (Van der Roest
et al. 2015). The neoalginate is already being recovered from granular sludge in three municipal
WWTPs and one industrial plant in the Netherlands. The Zutphen WWTP produces ‘Kaumera
Nereda® Gum’ (biopolymers), which can both retain and repel water. It is useful for a wide
range of applications, e.g., in agriculture, to reduce leaching of fertilisers and enhance crop nutrient
uptake, and in the concrete industry as a water-repellent coating for concrete floors (Waterschap
Rijn en IJssel 2018).
Purple phototrophic bacteria (PPB) can convert organic matter from wastewater and from the

organic fraction of municipal solid waste (MSW) into high-value compounds. Within the DEEP
PURPLE project (Table 1), a PPB photobiorefinery is developed combining biomass, cellulose and
biogas production in one single site. PPB uses near-infrared light as the main energy source, so
they do not compete with other phototrophs such as microalgae or cyanobacteria (Madigan &
Jung 2009).
Polyhydroxyalkanoates (PHAs) are bio-based and biodegradable thermoplastic polyesters. They are

produced mostly from sugars or fats with pure culture fermentation. The Phario project (Table 1) is
piloting a different approach, where secondary sludge from a municipal sewage treatment plant pro-
vides the functional biomass to produce PHA. Organic residues from the surrounding region were
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf
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collected, fermented and successively fed to the sludge to produce a PHA-rich biomass with PHA con-
tent of 40–50% of the total volatile suspended solids (VSS). This PHA-rich biomass was acidified,
dewatered by centrifugation and dried in a thermal dryer. The facility uses solvents such as butanol,
which are reused (Bengtsson et al. 2017). The preliminary investigation was conducted in a pilot-scale
facility in Brussels, using the full-scale secondary activated sludge from Bath WWTP (500,000 PE).
The pilot has produced a biomass with PHA content of up to 0.47 g PHA/g VSS, which is above
the considered profitability threshold (0.40 g PHA/g VSS) (Bengtsson et al. 2017). Each year,
2,000–2,500 t PHA can be produced from 2,500 t VSS of waste activated sludge generated in Bath
WWTP. The results show that the harvested activated sludge could consistently yield PHA with
high and controllable quality with fewer process elements, lower manufacturing costs and signifi-
cantly lower environmental impact compared to currently available bioplastics.

Barriers

Reclaimed water and its treatment products can pose environmental, health and safety risks, which
must be addressed during the development of resource recovery and water reuse systems. The pro-
ducts may contain pollutants and micropollutants like heavy metals, pharmaceuticals, personal
care products, industrial chemicals, pesticides, microplastics, etc., which may enter the food chain
through application to agricultural land. NBS can remove micropollutants often more effectively
than conventional WWTPs (Guenther et al. 2002; Kabir et al. 2015; Gattringer et al. 2016; Balabanič
et al. 2017), as conventional WWTPs are not designed to remove them. Due to their potential oestro-
genic, mutagenic and carcinogenic activity (World Health Organization 2011), their removal and fate
in NBS is of interest for the purpose of wastewater reuse and reclamation of other derived products.
An often-cited key barrier to the adoption of extensive technologies in densely populated areas

(CW, algae systems and EWS) is the surface area requirement. However, microbial fuel cell technol-
ogies, active/passive aeration and innovative structural set-ups (e.g., vertECO® (Zraunig et al. 2019))
are already making CWs applicable even to cities. Furthermore, unutilised and underutilised urban
spaces (including rooftops, facades, indoor spaces) could be used for nature-based urban wastewater
treatment, resource reclamation and additional benefits, such as biodiversity, climate change mitiga-
tion and aesthetic/regenerative effects for the population. In order to facilitate the uptake of
innovative rooftop and facade solutions, more demonstration projects are needed, to prove their func-
tionality at relevant scales and a higher variety of contexts.
For research and non-research installations, the lack of standards, existing legal frameworks and

lack of awareness of public administrative bodies make it very difficult to obtain building permits
for these non-conventional systems. Authorities stick to existing laws and specific articles also for
research purposes, as existing legal frameworks mostly do not include an exception for research. In
the Netherlands, so-called Green Deals create a testing space for innovations for a certain timeframe
(Rijksdienst voor Ondernemend Nederland 2019).
Further, the high number of derived end-products can result in competition between themselves, e.g.,

if lipids are extracted for biofuel production, the potential for biogas production is reduced. Practitioners
and public entities often lack the know-how to identify the optimal biorefinery design and choice of sec-
ondary products in their individual cases. This calls for increased knowledge sharing for the available
possibilities and selection parameters, including technical factors as well as economic factors (supply,
demand, production costs, prices). Finally, some of the mentioned technologies have yet to mature in
terms of technical readiness, the enabling legal and market framework, production costs and value
chain as well as comprehensive impact assessments before they can be widely applied.

Industrial waste and industrial wastewater. Several raw and intermediate materials can be
recovered from industrial waste streams using NBS. Studies at various scales exist for the recovery
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf
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of energy, carbon, nutrients, metals and chemicals from wastewater of pharmaceutical, chemical, food
processing and metal industries (Mansouri et al. 2017; O’Dwyer et al. 2018; Song et al. 2018; Diaz-
Elsayed et al. 2019). Table 2 gives an overview of recent and ongoing research projects recovering
secondary resources and products from waste incineration as well as metal, dairy, food and pulp
and paper industrial plants in cities.
Technologies and products

Phytomining. Phytomining is a ‘green’ alternative to opencast mining practices (Chaney et al. 2007)
often causing environmental pollution. It is applied to recover a range of metals (Ni, Co, Au) but most
often is used for Ni production in abandoned ferronickel mining sites (Osmani & Bani 2017; Osmani
et al. 2018a, 2018b) and in naturally metalliferous soils (Li et al. 2003; Bani et al. 2015, 2018) because
this raw material has gained high economic importance. The Ni-agromining chain consists of two
stages: (1) the cultivation of hyperaccumulator plants to obtain sufficient aerial biomass with a
high Ni concentration and (2) the transformation of the biomass to obtain valuable end-products.
Both in-situ and ex-situ experiments were carried out in Albania, Spain, Austria and Greece, and
Ni has been successfully recovered from bio-ores in pure form, as a mineral salt (ammonium nickel
sulphate hexahydrate) or as eco-catalysts (Simonnot et al. 2018).
Using phytomining technology, the resulting ash is a real bio-ore, containing up to 20 weight per-

centages of Ni. It is possible to obtain different Ni compounds (e.g., Ni metal, Ni-based catalysts,
Ni salts as ammonium nickel sulphate hexahydrate or oxides) by hydrometallurgical processes,
where washing and refining processes are involved (Zhang et al. 2016; Houzelot et al. 2017, 2018).
The cost of Ni is determined by the cost of the subsequent pyro- or hydrometallurgical processes.
The production of Ni compounds such as ammonium nickel sulphate hexahydrate is a better alterna-
tive for Ni metal production, because of the higher price (97.50 EUR for 500 g with 98% purity, and
134 EUR for 25 g with 99.999% purity (Sigma-Aldrich 2018)).
Constructed wetlands. The food industry produces highly nutrient-rich solid waste and wastewater,
which is a large untapped nutrient source. The HIGHWET project (Table 2) demonstrated
constructed wetlands with reduced area successfully treating wastewater from food processing
plants in Spain, Denmark and Belgium. The biomass can be processed to products mentioned
above (in the section ‘Urban wastewater’).
Microbial biotechnology. Microbial biotechnology offers the advantage of using natural, high-affinity
enzymes of different microorganisms that preferentially target the substrate of interest present in the
industrial effluent (e.g., soluble selenium and other chemical elements, organic acids) to produce
desirable end-products of industrial relevance (e.g., nanoparticles, biogas, biofuel). Examples of
microbial technologies at microscale include Se nanoparticle recovery from waste streams of coal-
fired power plants, bioelectrochemical metal recovery from metal and mining industry wastewaters,
anaerobic digestion of dairy industry wastewaters for biogas production, fermentation of dairy or
pulp and paper industry wastewaters for production of volatile fatty acids (VFAs) and/or hydrogen,
and conversion of methanol in pulp industry wastewaters to VFAs with acetogenesis (Table 2).
Se is an essential micronutrient and a critical raw material with wide-range industrial utilisation

(Hennebel et al. 2015). The current production of Se involves energy-intensive pyrometallurgical pro-
cessing and smelting of Cu and Pb-ores, where it is recovered as an impurity. As a solution to its
scarcity, Se could be recovered from industrial, secondary resources, such as effluents of flue gas
desulphurisation (FGD), using cost-effective and environmental-friendly biotechnological approaches
(Cordoba & Staicu 2018). Various bacterial groups can metabolise Se to generate cellular energy (i.e.,
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf



Table 2 | Overview of recoverable resources from industrial waste and wastewater streams in cities, by secondary resource stream, recoverable resource, technologies applied, products,
scale, TRL, region and project

Secondary resource
stream

Recoverable
resource Technologies applied Products Scale TRL Region Project

Project
period Reference

Bottom ash from
incinerated MSW

Metals Bioleaching Enriched
solution, Ga,
Co, Mg, Cu,
Zn, Al, Cr

Micro 3–4 Austria GrecoMet 2016–2019 https://www.alchemia-nova.
net/projects/grecomet/

Metal industry
contaminated soil

Agromining Nickel salt Meso 6 Mediterranean
climate

Life AgroMine 2016–2020 https://life-agromine.com/en/
homepage/

Metal industry WW Selenium,
nanoparticles

Bioremediation
coupled with
resource
recovery

Selenium
nanoparticles

Micro 3–4 Temperate
climate

Selenex 2018–2021 http://ddg.biol.uw.edu.pl/
projects/staicu-sonata/

Metals Microbial fuel cell Copper Micro 3–4 The
Netherlands,
UK, Sweden,
Finland,
Spain,
Luxembourg

BioElectroMET 2012–2016 http://www.bioelectromet.eu/

Dairy industry WW Carbohydrates Fermenter-
bioaugmentation

VFAs Micro 3–4 Sweden EnVFAPro 2017–2018 https://www.kth.se/sv/ket/
resource-recovery/
envfapro-1.703273

Energy Anaerobic
digestion

Methane Micro 3–4 Denmark ABWET 2015–2018 http://www.
internationaldoctorate.
unicas.it/abwet/

Food industry Wastewater Constructed
wetland

Nutrient-rich
biomass,
clean water

Micro 5 Spain,
Denmark,
Belgium

HIGHWET 2013–2015 https://cordis.europa.eu/
project/id/605445

Pulp industry craft mill
foul condensate

Organic carbon Acetogenesis
(anaerobic
digestion)

VFAs Micro 3–4 Italy ABWET 2015–2018 http://www.
internationaldoctorate.
unicas.it/abwet/

Pulp and paper
industry WW

Carbohydrates Dark fermentation Hydrogen,
VFAs

Micro 3–4 Italy ABWET 2015–2018 http://www.
internationaldoctorate.
unicas.it/abwet/

ABWET: Advanced biological waste-to-energy technologies. EnVFAPro: Enhancement of volatile fatty acid production from dairy wastewater. GrecoMet: Green recovery of metals. HIGHWET: Performance and validation of HIGH-rate constructed

WETlands. Selenex: Harvesting resources from industrial streams.
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ATP) through anaerobic respiration, in parallel with the production of solid Se nanoparticles (Ni et al.
2015), as displayed in Figure 2.
Figure 2 | Biological treatment and recovery of selenium using a biotechnological approach (modified from Cordoba &
Staicu 2018).
Copper recovery from metallurgical waste and process streams using microbial fuel cells (MFCs)
has been demonstrated. In MFCs, bacteria act as biocatalysts at the anode and generate current by
oxidation of organic or inorganic substrates. The current can be used at the cathode to reduce, e.g.,
metal ions to solid metal species. Biological oxidation of either acetate (Rodenas Motos et al.
2015) or tetrathionate (Sulonen et al. 2018) has been coupled to Cu recovery in laboratory-scale
MFCs. Furthermore, an MFC coupling acetate oxidation to Cu recovery was scaled-up to bio-anode
and cathode surface areas of 835 cm2 and 700 cm2, respectively (Rodenas Motos et al. 2017).
Dairy industry wastewater contains high amounts of biodegradable carbon (Slavov 2017) and is a

great source for the production of VFAs, which are valuable intermediate products of anaerobic diges-
tion used in the conventional chemical industry. VFA on the market include formic, acetic, propionic,
butyric, valeric and caproic acid. VFA have a wide range of applications, their recovery generates high
production yield and releases less GHG emissions than biogas production (Atasoy et al. 2018).
Bioaugmentation of the mixed cultures with pure Clostridium aceticum cultures proved to increase
acetic acid production by 96 times, bioaugmentation with C. butyricum increased butyric acid pro-
duction 120 times and Propionibacterium acidipropionici increased propionic acid production
around five times compared to the control experiments. This case study (EnVFAPro project,
Table 2) has shown that bio-based VFA production from waste streams can be environmentally
friendly and economically feasible.
A pilot study (HIGHWET project, Table 2) at industrial food processing plants in Spain and Den-

mark tested the effect of effluent recirculation, aeration regime and different phosphorus adsorbent
materials in a system that combines a hydrolytic up-flow sludge bed (HUSB) anaerobic digester as pri-
mary treatment, hybrid (vertical and horizontal flow (VF-HF)) constructed wetlands (CWs) and two
different phosphorus adsorbent materials for treatment of the wastewater characterised by high nutri-
ent loads. The project achieved a decrease of the required surface of conventional HFCWs and
improved the final effluent quality in the aerated and non-aerated line, but the aerated VFCW was
able to treat a four times higher loading rate with similar treatment efficiency than the non-aerated
VFCW (Pascual et al. 2018).
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf



Blue-Green Systems Vol 2 No 1
150 doi: 10.2166/bgs.2020.930

Downloaded from http://iw
by guest
on 12 July 2021
Dairy wastewaters contain lipids that are hydrolysed into long-chain fatty acids (LCFA) that may be
inhibitory to anaerobic microorganisms. Anaerobic conversion of LCFAs to methane was reported for
the first time at 10 °C and 20 °C (with lipid content of .1%) in batch bottles, where the role of aceto-
clastic methanogens from the genus Methanosaeta was highlighted (Singh et al. 2019). In the pulp
industry, recovery of chemicals from black liquor results in the production of condensates that
contain methanol up to 46 g/L. The pulp industry also produces thermomechanical pulping
wastewaters that are released at high temperatures (50–80 °C). Conversion of methanol from conden-
sates to VFA has been reported with an acetogenic culture in an up-flow anaerobic sludge bed reactor
(Eregowda et al. 2018). Thermomechanical pulping wastewater, on the other hand, has been anaero-
bically converted to hydrogen at 70 °C with a culture dominated by Thermoanaerobacterium sp.
(Dessì et al. 2018).
A variety of products can be recovered using microbial technologies, depending on the type of waste

stream and desired recovered product, including metals (Wang et al. 2019), nanoparticles (Goethem
et al. 2018), VFA (Zacharof & Lovitt 2014) and renewable energy carriers such as biogas and biofuel.
Among a wide variety of recovered products from industrial waste streams, the described products are
most promising with their potential as a raw material for post-processing. Most of the described tech-
nologies are still being developed at laboratory and/or pilot scales (e.g., bioelectrochemical systems,
VFA production) (Chen et al. 2017; Garcia-Aguirre et al. 2017; Jankowska et al. 2017), except biogas
production, which is established and implemented at full scale (Mauky et al. 2017; Martí-Herrero
et al. 2019). In addition to biogas, bioplastic production has also been applied at pilot scale (Tamis
et al. 2018). Mo et al. (2018) used food waste, fish waste and food processing waste to produce fish
feed through biotransformation and solid-state fermentation.

Barriers

The phytomining techno-economic model should be customised to country-specific data reflecting
differences in soil physicochemical properties in relation to the phytomining system implemented,
Ni concentrations in the soils, hyperaccumulator yields and metal prices. The process efficiency
and Ni salt purity are the main challenges of phytomining. Process parameters such as stirring
speed or reaction time can significantly influence efficiency and they should be thoroughly investi-
gated to assess their influence at each step of phytomining. One of the main limitations of energy
recovery is the combustion temperature. Previous experiments demonstrate that combining energy
recovery and utilisation of ashes for Ni recovery are compatible if the combustion temperature is
low enough to avoid Ni losses through fly ash or other outputs. Preliminary calculations for Ni phy-
tomining show promising results under the condition that heat released during incineration can be
valorised close to the processing facility.
The main limitations are related to the complex matrix of industrial effluents, which often contain

toxicants, that limit or prohibit bacterial growth. To overcome these hurdles, the recovery systems
need to employ mixed microbial communities (as opposed to pure bacterial cultures). These mixed
communities offer the advantage of protecting the microbial species of interest (e.g., metal respires
or methanogens) against the toxic environment of the industrial effluent. However, on the other
side, mixed communities also result in competition between various bacterial groups, some having
better fitness and thermodynamics than the ones of interest for resource recovery (e.g., more thermo-
dynamically adapted sulphate-reducing bacteria vs methanogens or metal oxidisers) (Hoelzle et al.
2014; Cetecioglu et al. 2019; Tang et al. 2019).
Another major challenge is the large variation in the composition and/or volume of the waste-

waters, which may result from varying feed material composition, periodic operation or production
intermissions due to, e.g., maintenance and cleaning. In addition, although it is a promising approach
to recover bio-based products from industrial and municipal wastewater, there are still some technical
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf
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challenges such as product recovery after anaerobic digestion and purity of the recovered products
(Puyol et al. 2017; Atasoy et al. 2018). Therefore, the microbial technologies should be able to
cope with these changes, where mixed microbial communities again are more resilient than pure cul-
tures. To reach full-scale adaptation, the microbial technologies should thus be able to handle high
organic loading rates, regarding also high nitrogen and phosphorous concentrations and ensure suffi-
cient wastewater treatment and resource recovery/product spectrum at varying wastewater
conditions. By scaling up these systems, broad communication with stakeholders is crucial for prepar-
ing the market with new bio-products such as VFA.
Finally, many of the technologies that enable recovery of products other than energy are still

in development and applied so far only at laboratory and pilot scales. The next step for these technol-
ogies will be scale-up to demo and flagship scales. However, already at this stage, the communication
with public and private stakeholders is essential to prepare the market, including legislative and
regulatory framework for the new bio-products.
Municipal solid waste. According to the European Commission (2019), municipal solid waste
(MSW) constitutes about 10% of total waste generated in the EU. Although this figure may not
seem too excessive at first glance, MSW is extensively prevalent and requires complex management
linked to the mixed composition and multiple points of collection, which require various treatment
methods. MSW includes waste streams from households and similar wastes from commerce,
offices, public institutions and selected municipal services, excluding municipal sewage and
construction and demolition waste (CDW). NBS applied to recover a wide range of intermediate
and final products from mixed or biodegradable MSW include composting, anaerobic digestion
and mechanical biological treatment (MBT). Research has also been conducted on bioleaching
from mixed MSW incineration ash. Table 3 gives an overview of recent and ongoing research
projects recovering secondary resources and products from MSW streams.
Technologies and products

Resource recovery from mixed MSW. Mechanical biological treatment (MBT) can enable recovery of
ferrous metal, non-ferrous metal, plastic and glass from mixed MSW, but is mainly applied to stabilise
MSW before landfilling. The biological steps include anaerobic digestion, composting and biodrying.
Where recycling and recovery activities are low, it can improve environmental and economic
performance (Trulli et al. 2018). However, MBT achieves only lower quality recyclates compared
to those derived from recyclables from separate household collection, and mostly only metals are
extracted. Digestate derived from mixed MSW is generally reported to be of lower quality than
from separately collected organic waste, largely due to contamination with, e.g., glass and
potentially toxic elements such as heavy metals (EPEM S.A. 2011). Biodrying is a partial
composting stage, where the action of aerobic microbes rapidly heats and dries the waste. This
process is used to produce a refuse-derived fuel that is dry and light for transport (Bogner et al. 2007).
Mixed (residual) MSW is often incinerated for electricity and heat production, and the incineration

ash landfilled. The GRecoMet project (Table 3) (alchemia-nova 2019b) applied Acidithiobacillus
bacteria (among other trials) to recover metals (finally selecting Cu, Cd and partially Co) from
MSW incineration ash. The diffusely dispersed metals are brought into solution through microbial
leaching, a process that efficiently extracts metals even from low-grade ores, such as MSW incinera-
tion ash (Chemiereport.at 2017). In the next steps, for enrichment of the dissolved metals, different
NBS were tested, namely, enrichment in living and dead microalgae, rhizofiltration and sorption
through peptides from microbial cells and waste biomass (biosorption). Hemp shives and sugar
beet residues showed the highest sorption rates. Recovery of the pure metals from the metal-enriched
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf



Table 3 | Overview of resources that can be recovered from different MSW streams, recovery technologies applied, recovered products, scale, TRL, region and project information

Secondary resource
stream

Recoverable
resource Technologies applied Products Scale TRL Region Project

Project
period Reference

Biodegradable
fraction of MSW

Energy,
nutrients

Separate collection at city level,
centralised AD (digestion) and
composting

Biogas, electricity
and thermal heat,
compost

Macro 8 Ljubljana,
Slovenia

Centralised AT and
composting at
city level, e.g.,
RCERO

2007–2015 http://www.rcero-ljubljana.eu/
upload/dokumenti/
rcero_ljubljana_brusura_ang.
pdf

Separate collection at city level,
centralised AD (digestion)

Methane for
transportation,
digestate
(fertiliser)

Macro 8 Reykjavik,
Iceland

Centralised
methane
recovery at city
level
CIRCLENERGY

2017–2018 https://www.carbonrecycling.
is/circlenergy

Nutrients,
lipids,
cellulose

Microbial conversion of
nutrients to high-value
compounds in a biorefinery
approach

Ectoine, PHA,
biogas, cellulose,
construction
materials

Meso,
macro

6 Spain DEEP PURPLE 2019–2023 https://deep-purple.eu/

Organic
carbon,
energy,
nutrients

Closed-vessel composting system
with integrated plant biofilter

Biomass, odour
removal, oxygen

Micro,
meso

6 Austria,
Greece,
Spain

HYDROUSA,
HOUSEFUL

2018–2022 https://www.alchemia-nova.
net/projects/houseful/

Food waste and
primary sludge

Carbohydrates Acetogenesis
(anaerobic digestion)

VFAs Micro 3–4 Sweden CarbonNextGen 2018–2020 https://resource-sip.se/
projects/nasta-generations-
koldioxidneutrala-
avloppsreningsverk-
carbonnextgen/

Food and garden
wasteþ
construction and
demolition waste
(CDW)

Green waste
compostþ
crushed
CDW
material

Green waste compost and CDW
are mixed 50:50

Improved soil-like
substrate

Micro,
meso

6 Scotland The James Hutton
Institute

2019–2021 https://www.hutton.ac.uk/
staff/luke-beesley

DEEP PURPLE: Conversion of diluted mixed urban bio-wastes into sustainable materials and products in flexible purple photobiorefineries. HOUSEFUL: Innovative circular solutions and services for new business opportunities in the EU housing

sector. HYDROUSA: Demonstration of water loops with innovative regenerative business models for the Mediterranean region. RCERO: Regional Waste Management Center of Ljubliana.
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biomass was achieved through hydro- and pyrometallurgical pathways. The results suggested hydro-
metallurgical recovery directly from the leachate to be the most feasible option.

Resource recovery from the biodegradable fraction. If biodegradable municipal waste (garden and
food waste from households, restaurants, supermarkets) is separated from other MSW at the source,
it can be used as a carbon and nutrient source to produce several safe (uncontaminated) and
valuable bio-based products (Atasoy et al. 2018). With 88 million tonnes of food waste produced in
the EU every year (Kibler et al. 2018), this represents a waste stream with great potential for
resource recovery. Composting and anaerobic digestion are commonly used processes.
Besides applying green waste compost (GWC) directly to fields and green spaces, it can also be

mixed with deconstruction materials (CDW) to create a functional soil-like substrate (Table 3, The
James Hutton Institute). CDW and GWC represent the mineral and organic parts of soil, respectively.
In experiments growing ryegrass Lolium perenne and reed canary grass Phalaris arundinacea, a 50:50
volumetric ratio substrate yielded significantly greater biomass than other mixing ratios, and greater
than that of the control soil (local topsoil). Such ‘technical’ soils and substrates can be produced from
a range of urban wastes and, after physical, biological and chemical testing and verification, are envi-
saged as possible replacements to degraded or sealed soils in urban environments, creating bulk soils
for the restoration of old capped landfill and mine site areas, and as alternative substrates for the
growth of bioenergy crops (Nehls et al. 2015). Monitoring of leachates from such created substrates
is required as materials such as CDW can contain high quantities of problematic components like
gypsum, for example, which results in sulphate leaching.
Biomethane production and further heat and electricity production are common resource recovery

technologies for kitchen waste (biodegradable fraction of MSW). Co-digestion of food waste with
other waste, such as municipal wastewater (sludge) has been found to achieve a substantial increase
of energy generation. Estimates of methane yields from various substrates can be found in the
Methane Yield Database: online infrastructure and bioresource for methane yield data and related
metadata (Murovec et al. 2015) (the database is freely accessible on the web page http://methane.
fe.uni-lj.si/). The digestate is used as crop fertiliser (or soil conditioner) for microalgae cultivation,
and in other cases further processed for biofuel and bioethanol production. As mentioned in the sec-
tion ‘Industrial waste and industrial wastewater’, VFA are valuable intermediate products of
anaerobic digestion. VFAs gained from food waste have also been processed to substrate for the pro-
duction of biofuels, such as methane, hydrogen (e.g., Saadiah et al. 2017) and biofuel (Wang et al.
2019) as well as biopolymers such as polyhydroxyalkanoates (PHAs) (Raganati et al. 2014; Domingos
et al. 2017). Physical, chemical and biological pre-treatment (via enzymes) methods exist to improve
the degradation of cellulose and hemicellulose solubilisation (Strazzera et al. 2018), sugars’ pro-
duction and thus of VFAs (Braguglia et al. 2018). Atasoy et al. (2018) found that the organic
fraction of MSW achieved the highest acidification and therefore highest yields after cheese whey
and molasses (up to 40%).

Barriers

While composting and anaerobic digestion are well-established processes at mesoscale, the decentra-
lised microscale for biogas production requires further research and development and is often
confronted with legal barriers. Further, research to optimise anaerobic digestion is focused on improv-
ing biogas yield, while neglecting the quality of digestate (Logan & Visvanathan 2019). Logan &
Visvanathan (2019) call for a shift from ‘biogas optimisation’ to ‘integrated biogas-digestate optimis-
ation’. Such an approach would consider potential value addition from digestate, which is
generally not commercially exploited. Value addition with products for high-value markets is still
in its infancy, with most attempts currently limited to laboratory or pilot scale.
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf
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Gaseous effluents. NBS can remove, contain and degrade gaseous contaminants into non-toxic or less
toxic substances. These processes use the natural ability of plants to metabolise nutrients. They can also
be enhanced by microbial and fungal communities colonising plant roots and above-ground organs of
plants (e.g., Wood et al. 2006; Xu et al. 2011). Together, they can purify indoor and outdoor air from
common pollutants including PMs (particulate matter), SO2, NOx, N2O, O3, VOCs (volatile organic
compounds) (Wei et al. 2017), while also utilising CO2 as a building block for plant biomass and
releasing O2. In doing so, these living biofilters can be used to transform polluted air into clean air
and simultaneously produce plant biomass which can be processed into a range of secondary materials.
However, while terrestrial plants provide their aesthetic value and other co-benefits, the pollutant

conversion and photosynthetic efficiency of microalgae are much higher. Microalgae (photosynthetic
microorganisms, here including prokaryotic cyanobacteria and eukaryotes) can convert 10–20% of
average solar energy in a mid-latitude region to biomass energy, versus 0.5% for the fastest-growing
terrestrial plant, switchgrass (Li et al. 2008). Besides their high growth rate, microalgae can tolerate
high CO2 concentrations in gas streams; e.g., Spirulina sp., Scenedesmus obliquus and Chlorella
vulgaris grow with up to 18% CO2 (Morais & Costa 2007), allowing for high conversion efficiencies
and enabling greater biomass harvests for further processing to biofuels including biogas, bio-oil, bio-
hydrogen (Li et al. 2008). In addition to biofuel, which is a low-value, high-volume product, a number
of high-value chemicals can be derived from microalgae and are already widely marketed, such as
omega fatty acids and astaxanthin (Borowitzka 2013). The commercial cultivation of microalgae
has rapidly increased over the last decades (Plaza et al. 2009).
NBS applied for resource recovery from gaseous effluents essentially include technologies using

plants, plant-surrounding microorganisms as well as microalgae photobioreactors (PBRs) to store
CO2 and produce oxygen and biomass for further uses. These technologies are designed to purify
ambient air, or by injecting gas directly into systems such as algae panels or tubes, or green walls.
Table 4 gives an overview of recent and ongoing research projects recovering secondary resources
and products from gaseous effluent streams in cities.

Technologies and products

The origin of plant-based air treatment goes back to the 1980s, when Wolverton et al. developed
the first systems for NASA (Wolverton & McDonald 1983; Wolverton & McDonald-McCaleb
1986; Wolverton & Wolverton 1993). Within the last years, several plant-based air treatment systems
have been developed at mesoscale, like Cloud Garden in the Netherlands (Cloud Garden 2019) and
Green City Solutions in Germany (Green City Solutions 2019).
Green walls and microalgae structures are the most popular applications, usually applied with the

foremost objective to purify ambient air in cities, i.e., bioremediation of indoor or outdoor air, binding
or degrading various air pollutants. Especially, indoor air purification can have significant human
health benefits as people in industrialised countries spend approximately 22 hours per day indoors.
Air pollutants, which are generated indoors, e.g., VOCs, often accumulate due to limited ventilation
(Pettit et al. 2018). Amid global warming, technologies such as active green walls, i.e., with active aera-
tion, will gain importance due to their co-benefits of reducing indoor temperatures by 4–6 °C if close
to an indoor wall (Fernandez-Cañero et al. 2012).
Outdoor structures with public visibility are typically designed to enhance the aesthetic value of

urban spaces, such as green walls and the microalgae structures installed by EcoLogicStudio in the
UK and other European countries. Green walls have been set up at all scales, from small indoor
units to outdoor multi-storey facades, e.g., by Grünwand (Techmetall 2019) and the famous ‘vertical
forest’, a high-rise apartment building in Milan designed by the architect Stefano Boeri, featuring
20,000 plants, 800 trees and over 100 different species. The vertical forest absorbs 40 tonnes of
CO2 and 1.5 tonnes of fine PM each year, generating 90 tonnes of oxygen per year (Bezemer 2017).
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf



Table 4 | Overview of resources that can be recovered from different gaseous effluent streams found in cities, recovery technologies applied, recovered products, scale, TRL, region and
project

Secondary
resource stream

Recoverable
resource Technologies applied Products Scale TRL Region Project

Project
period Reference

Vehicle exhaust
gases, road
traffic

CO2-C, clean
air

Glass tubular photobioreactors
using algae

Combustible biomass,
oxygen

Micro 7 Geneva,
Switzerland

Culture Urbaine 2014 https://urbannext.net/culture-
urbaine/

Outdoor air in
urban spaces

Clean air Plant-based green wall Filtered air Micro 5 EU Green INSTRUCT 2016–2020 https://www.greeninstruct.eu/
Large-scale green wall facade Filtered air Micro 8 Austria Grünwand 2009–2013 https://gruenwand.com/

CO2-C,
clean air

Mobile pods with tubular algae
PBR structures

Oxygen, canopy area Micro 3 Hungary Chlorella Oxygen
Pavilion

2012 Miklosi (2013)

Curtain style vertically positioned
algae reactor

Bioplastics, oxygen Micro 6 United Kingdom photo.Synthetica,
EcoLogicStudio

Since 2018 https://www.photosynthetica.co.uk/

Open algae tanks Animal feed (protein),
filtered air

Meso 7 Bangkok,
Thailand

EnerGaia Since 2009 https://energaia.com/

Bio-wall type moss system Filtered air Micro 6 Germany CityTree Since 2015 https://greencitysolutions.de/en/
CO2-C, energy,

clean air
Flat-panel photobioreactors

(PBRs) using algae
Heat, biogas, oxygen Micro 7 Hamburg,

Germany
Building with Bio-

Intelligent Quotient
(BIQ)

2011–2013 https://www.buildup.eu/en/practices/
cases/biq-house-first-algae-
powered-building-world

Wastewater treatment by open
raceway algae ponds, anaerobic
digestion, digestate dewatering,
lipid extraction, biogas
upgrading

Biofuel, biofertiliser,
biomethane

Macro 6 El Torno
Chiclana, Spain

All-Gas 2011–2016 http://www.all-gas.eu/en/

Industrial flue gas CO2-C,
clean air

Vertically positioned plastic discs
generating algae biofilms;
continuous harvesting

Dry biomass, oxygen Meso 5 Spain ALGADISK 2012–2014 https://algen.eu/node/153

CO2-C, energy,
clean air

Photobioreactor and
photofermentation, anaerobic
digestion of cyanobacteria
residue

Bioplastic
(polyhydroxybutric
acid, PHB), biogas,
nutrients for
bacteria cultivation,
fertiliser

Meso 6–7 Austria CO2USE 2012–2015 https://www.energy-innovation-
austria.at/article/co2use-2/?
lang=en

Indoor air Clean air Active hydroculture plant-based
air treatment chambers

Filtered and
humidified air

Micro 6 Denmark, UK,
Switzerland,
Spain

RECO2ST 2018–2022 https://reco2st.eu/

Indoor air
(households
and other
buildings), or
flue gas from
biogas CHP

CO2-C, energy,
clean air

Wall décor type algae biofilms;
combination with biogas
Combined Heat Power

Filtered air, biogas,
electricity, heat

Micro 7 Germany SOLAGA Since 2015 https://www.solaga.de

ALGADISK: Novel algae-based solution for CO2 capture and biomass production. Green INSTRUCT: Green INtegrated STRUCTural elements for retrofitting and new construction of buildings. ReCO2ST: Residential retrofit assessment platform and

demonstrations for near zero energy and CO2 emissions with optimum cost, health, comfort and environmental quality. SOLAGA: Living wall elements with algae.
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As listed in Table 4, NBS can be used to derive a number of products from gaseous effluents. Plant-
based technologies filter the air and convert CO2 to biomass and O2, producing opportunities for bio-
mass processing to various mentioned products, while also improving ambient air quality. Low-value,
high-volume products are mentioned in the section ‘Urban wastewater’. High-value chemicals derived
frommicroalgae include β-carotene, astaxanthin, docosahexaenoic acid, eicosahexaenoic acid, phyco-
bilin pigments and algal extracts for use in cosmetics as well as polyunsaturated fatty acids,
widespread ‘superfoods’ Chlorella and Spirulina (Borowitzka 2013), bioactive medicinal products,
antioxidants, colouring agents and vitamins (Khan et al. 2018). Aromatic essential oils can be derived
from plants used for phytoremediation. Processes such as steam distillation ensure that the oils are
free from unwanted contaminants including heavy metals (Pandey & Souza-Alonso 2019). The
following section describes case studies at micro, meso and macro level.

Micro. RECO2ST (Table 4) is an EU-funded building renovation project aimed to achieve major energy
savings through optimised refurbishment and integrated installation tools, including NBS, specifically,
two biotechnical air treatment systems for purification, cooling and humidification of indoor air. The
first is a mobile pot plant-based unit either as part of a retrofit or as a standalone unit. In the second
system, ambient indoor air is treated by directing ventilation through a ‘wintergarden’-like plant
chamber. Both systems are hydroculture, with active aeration and automated sensors measuring air
quality parameters. They can reduce PMs, VOCs, achieve stable indoor temperatures, rehydrate the
air and enrich building aesthetics. As a result, overall quality of life, human health and productivity
of the building inhabitants will be significantly improved. Current demo sites include apartment
blocks in Frederikshavn (Denmark), London (UK), Vevey (Switzerland) and Cadiz (Spain). The ideal
application is in office buildings, which are densely populated for many hours a day.

Meso. The BIQ-building (Table 4) in Hamburg, Germany, is the first algae-powered building in the
world (IBA Hamburg GmbH 2013). Microalgae are bred in the glass facades, providing sufficient
biomass to cover electricity and heat requirements of the whole building. Completed in 2013, BIQ is
a five-storey, 15-apartment passive house designed by the Austrian architectural firm Splitter-Werk
and funded by the Hamburg-based Climate Concept Foundation. The building features two types of
photobioreactor (PBR) facades, where algae are grown for energy production as well as for
controlling light and shade. The PBRs are filled with microalgae culture medium and supplemented
with CO2. Flue gas from a biogas-fuelled micro-CHP (combined heat and power) unit is injected into
the PBRs. Circulated culture medium is collected at a central location within the building where
recovered heat is drawn off by a heat exchanger and collected algal biomass is shipped to an off-site
biogas unit. For infrastructural and legal reasons, biogas is not generated within the building. The
PBR facades of BIQ generate 15 g total solids (TS) per m2 per day across 200 m2 (300-day indicator),
yielding 2,600 m3 methane and 6,000 kWh of net energy equivalent per day.
In the CO2USE project (Table 4), cyanobacteria convert off-gas from an industrial production plant

to biomass, which is further processed to bioplastic (PHB) as well as to biogas and digestate. The
digestate is used to provide nutrients for bacteria cultivation and as common agricultural fertiliser.
An ecological assessment showed that greenhouse gas emissions from PHB production can be up
to 75% lower than for conventional polypropylene (BMVIT 2017).

Macro. In the EU-funded All-Gas project (Table 4), microalgae are cultivated in high-rate algal ponds
(HRAP) with raceway design (with closed loop recirculation channels), filled with pre-treated urban
wastewater. CO2-containing flue gas from the biogas upgrading column is injected into the ponds
and converted to algal biomass and further to secondary bio-products. An anaerobic digester
converts the harvested algal biomass to biogas and digestate. Biofuel is gained through lipid
extraction from dried digestate. The residue from lipid extraction is distributed as biofertiliser. The
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf
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total 4 ha site located at a municipal WWTP in Chiclana, Spain, generates around 400 tonnes of
biomass per year.
Barriers

Challenges to comparison and further development of active botanical biofilters are the diverse exper-
imental approaches assessing their performance, including different structural designs, different types
and doses of pollutants as well as different time frames (Pettit et al. 2018).
Plant-based air purification systems are limited by their metabolic detoxifying capacity, thus requiring

significant area compared to common purification systems. However, vertical structures enable greater
plant density for floor space. Su & Lin (2015) found that, within an hour, a 6 m2 indoor green wall
could lower CO2 concentrations from 2,000 to 800 ppm in a 39 m3 room. In outdoor set-ups, the
reduction rate is much smaller, but the aesthetic and stress-reduction potentials of greener cities argue
for plant structures at larger scales. However, the maintenance required for healthy plants and their
microbial populations remains a major drawback (Pettit et al. 2018). For plant systems, the use of invasive
species poses a threat to sustainability and long-term feasibility (Pandey & Souza-Alonso 2019).
One side effect of plants, especially in cities, is their VOC emission. In that context, use of species

from the genus of Populus, Salix, Platanus and others might be problematic. Isoprene emission from
leaves of these species in summer months can increase formation of tropospheric ozone and other
secondary pollutants in air (Sharkey et al. 2008). Consequently, a selection of plants with low VOC
emissions themselves for plant-filter use is of great importance.
Another limitation is the diffusion of gaseous pollutants and associated removal inefficiencies,

which can be mitigated by active airflow through plant substrate, e.g., active green walls (Pettit
et al. 2018) or microalgae PBRs (Malinska & Zabochnicka-Swiatek 2010). On the other hand, high
contaminant concentrations can inhibit plant and algae growth, i.e., their purifying activity. While
microalgae growth is not limited by NOx, SOx concentrations above 400 ppm can lead to the for-
mation of sulphurous acids and lower the pH. If the pH reaches below 4, the productivity of
microalgae is reduced. This can be mitigated by applying NaOH to increase the pH (Malinska &
Zabochnicka-Swiatek 2010). When microalgae (or plants) are harvested and processed for biofortifi-
cation or fertiliser uses, careful analyses are necessary to exclude risk of contamination (Pandey &
Souza-Alonso 2019). Closed PBRs overcome problems of external contamination (Malinska &
Zabochnicka-Swiatek 2010). Regarding plant biofilters, it is suggested to use non-edible high-value
crops for the treatment (Pandey & Souza-Alonso 2019).
Finally, a major challenge is that many secondary commercial products that can be derived from

microalgae require further R&D to become profitable (Borowitzka 2013), such as PCB bioplastics
(BMVIT 2017). The design of advanced PBRs, methods to enhance microalgae growth rates, the har-
vesting and drying methods, product synthesis and biomass pre-treatment are cited as crucial to
improve cost-effectiveness of microalgae systems (Li et al. 2008; Malinska & Zabochnicka-Swiatek
2010; Khan et al. 2018). For mass microalgae production, flat plate and raceway PBRs are economi-
cally feasible, as opposed to horizontal tubular PBRs (Malinska & Zabochnicka-Swiatek 2010).
Another factor for commercialisation is the highly disparate sizes of the markets for biofuels and
high-value derivates, which may change in the light of current increased efforts to commercialise
and develop new microalgae products (Borowitzka 2013).
SOURCE-SEPARATED WASTE

By implementing source separation solutions, domestic waste streams can be collected with higher
nutrient levels and higher concentrations of organics (COD, BOD), for which clever sewage treatment
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf
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and recovery technologies have been conceived. Such technologies minimise the release of toxic sub-
stances and protect natural freshwaters from eutrophication due to excess nutrient loadings (Finger
et al. 2013). To obtain concentrated waste streams, dilution of solid and aqueous wastewater needs
to be prevented. First of all, a separate sewer system with a sanitary and storm sewer can increase pol-
lutant concentrations in wastewaters by around 85%, as calculated from typical German flow rates
(Brombach et al. 2005).
Second, several options have been proposed for source separation at the household level of either

urine (yellow water (YW)), using water-free urinals or source separation (NoMix) toilets and brown
water (feces), or black water (BW). The latter waste stream combines urine and feces but in the
selected case studies, dilution is avoided by means of vacuum toilets requiring low amounts of flush-
ing water, and further separated vacuum transport. Another option is waterless dry toilets with or
without urine separation. The collected dry toilet matter (DTM), depending on the type of toilet,
can contain feces, urine, toilet paper and structural material. The sanitary wastewater from the laun-
dry, kitchen, shower and bath is referred to as greywater (GW) and is separately collected as well.
Finally, organic waste produced in cities can also be separated. We note the difference between
kitchen waste (KW); bio-waste (Bio-W) referring to the combination of food waste and more gen-
eral, the biodegradable fraction of catering waste; vegetable, fruit and yard waste (VFY), which is
collected separately in several European cities; and green waste (GrW) collected in gardens and
urban green spaces.
Coupling source separation to decentralised treatment/recovery of domestic wastewater, dry toilet

matter and household waste (fractions) allows the recovery of valuable resources such as nutrients,
organics, energy and water more efficiently. Table 5 gives an overview of recent and ongoing research
projects recovering secondary resources and products from different source-separated waste and
wastewater streams in cities.

Technologies and products

Micro. Sanitation 360 aims to produce fertiliser from human urine inside the toilet. The natural and
fast enzymatic degradation of urea is chemically inhibited at pH 10 (Randall et al. 2016; Senecal &
Vinnerås 2017; Simha et al. 2018). Thereafter, the water in the YW is evaporated and ventilated away
leaving a fertiliser product with commercial-grade nutrient concentrations (.10% N, .1% P and
.3% K). The decentralised inside-the-toilet approach to urine management allows large-scale
implementation without major changes in the infrastructure, only requiring a new toilet and a
drying bed. The first pilot systems have been implemented in single urine-diverting toilets in
Sweden. A similar system has been implemented in the Autarky toilet developed at the Swiss
Federal Institute of Aquatic Science and Technology (EAWAG) in Switzerland, where the YW is
treated and used locally for fertiliser production (Larsen et al. 2015).
At the Forum Chriesbach office building in Duebendorf, Switzerland, a YW nutrient recovery

system for 220 people has been in operation since 2012 (EAWAG 2019). YW is collected with water-
less urinals and NoMix toilets and is directed to collection tanks in the basement. The urine is then
nitrified in an aerated bioreactor (Etter et al. 2013), followed by a polishing step with activated carbon
to eliminate pharmaceuticals and hormones. A vacuum distillation step reduces the liquid volume by
93% and eliminates pathogens. The product, a concentrated and processed urine-based fertiliser, con-
tains all primary and secondary nutrients of the collected urine and is a fully approved fertiliser in
Switzerland. It is produced and marketed as ‘Aurin’ by Vuna GmbH, a spin-off company of
EAWAG (VUNA GmbH 2019). The main success factor was the determination of the EAWAG
board to realise the new office building as a lighthouse project for integrated sustainable building prac-
tices, as well as the approval and support of the Swiss national authorities. The water and sanitation
system was an important part of this broader context.
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf



Table 5 | Overview of technologies applied to recover resources from source-separated urban waste(water), different secondary resource streams, recoverable resources, technologies
applied, recovered products, scale, TRL, region and project

Secondary resource
stream

Recoverable
resource Technologies applied Products Scale TRL Region Project Project period Reference

Source-separated
urban WWþ
kitchen waste

Reclaimed
water,
energy and
nutrients

Vacuum collection, AD, OLAND,
struvite precipitation, AD, heat
exchange, district heating

Biogas, struvite
fertiliser, thermal
energy (heat)

Meso 8 Sneek, The
Netherlands

Lemmerweg and
Noorderhoek
RUN4LIFE

2017–2021 http://run4life-project.eu/

Vacuum toilets and collection,
AD, struvite precipitation, AD
in a membrane bioreactor, RO,
heat exchange, district heating

Biogas, struvite
fertiliser, heat,
water reuse for
industry

Meso 8 Ghent,
Belgium

De Nieuwe Dokken
RUN4LIFE

2017–2021 http://run4life-project.eu/

Water-free urinals, vacuum
toilets, AD, struvite
precipitation

Biogas, struvite
fertiliser, thermal
energy (heat)

Meso 7–8 The Hague,
The
Netherlands

Rijkskantoor,
Rijnstraat, NL

2017 https://www.saniwijzer.
nl/projecten/
rijkskantoor-rijnstraat-
8/detail=94

Yellow water Nutrients Inside-the-toilet urine drying after
chemical stabilisation

Dry fertiliser Micro 7 Sweden Urine dehydration
technology for
sanitation 2.0.
Sanitation 360

2015–2018 https://www.slu.se/en/
departments/energy-
technology/projects/
kretslopp/productive-
on-site-sanitation-
system/

Water-free urinals, NoMix toilets,
nitrification, activated carbon,
distillation

Concentrated liquid
fertiliser ‘Aurin’
(VUNA GmbH)

Micro 8 Duebendorf,
Switzerland

VUNA – Nutrient
Recovery from
Urine

2010–2015 https://www.eawag.ch/
en/department/eng/
projects/vuna/

Grey waterþ dry toilet
matter

Nutrients,
organic
carbon

Constructed wetland for
greywater treatment; waterless
dry toilets, composting and
vermicomposting

Compost Meso 8 Cressy,
Geneva,
Switzerland

Cooperative Equilibre
@ Cressy

2011–2018 https://www.cooperative-
equilibre.ch/projects/
cressy/historique-de-
limmeuble-de-cressy/

Grey water Reclaimed
water and
nutrients

Green walls, vertical facade
farming, vegetarian roof
restaurants, aquaponics

Fertigation water Meso,
macro

7 Northern and
central EU

EdiCitNet 2018–2023 https://cordis.europa.eu/
project/rcn/216082/
factsheet/en

Blackwater Nutrients Separate BW collection,
centralised treatment with
either ammonia sanitisation or
AD with urea addition

Concentrated liquid
fertiliser

Meso 7 Uddevallaa,
Västervikb,
Strängnäsc,
Örebrod,
Västeråse

Sweden

Centralised BW
treatment for .10
households

Implementation since
a,b2013, c,2014,
d2015, e2018

https://pdfs.
semanticscholar.org/
f5dd/

EdiCitNet: Edible Cities Network Integrating Edible City Solutions for social resilient and sustainably productive cities. HOUSEFUL: Innovative circular solutions and services for new business opportunities in the EU housing sector.
a,b,c,d,eDates refer to implementation of projects listed in the Region column.
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Meso. The city of Sneek in the Netherlands has two areas with source separation systems:
Lemmerweg (since 2005) and Noorderhoek (since 2010). BW is collected by means of vacuum
collection (toilets) and transport systems that require about seven times less water (1 L per flush)
than conventional sanitation. The developed sanitation concept (Zeeman et al. 2008) was first
tested for several years with 32 houses at Lemmerweg, and subsequently applied for 232
households in Noorderhoek. The highly concentrated BW is mixed with ground KW and treated
anaerobically in an upflow anaerobic sludge bed (UASB) reactor (Lettinga et al. 1981). A similar
concept is now under construction for 550 houses in Amsterdam. The influent COD load is
degraded, on average, for 70% resulting in a yearly biogas production of 10.5 Nm3/IE/a (Wit et al.
2018). Biogas energy is recovered as heat and used in a district heating system. Nitrogen is
removed from the UASB effluent, using oxygen-limited autotrophic nitrification/denitrification
(OLAND) (Vlaeminck et al. 2009). Phosphate is recovered as struvite and locally reused as
fertiliser. GW is, together with the BW effluent, aerobically treated. GW has the highest
temperature and energy potential to recover, and heat recovery through heat exchangers allows the
transfer of most of the energy to the district heating system. A schematic representation of the
Figure 3 | Schematic representation of the projects in Sneek, The Netherlands (redrawn and adapted from Wit et al. 2018).
applied concept is given in Figure 3.
Similar examples are being set up throughout Europe. For example, the urban renewal project

‘Hþ ’ in Helsingborg, Sweden consists of an old port and industrial areas, in which 320 apartments
plus offices for 2,000 workers will have source separation systems. In order to reach its future sustain-
ability goals, the city of Helsingborg has established cooperation between the municipal waste, energy
and water companies. This Swedish eco-district is part of the Run4Life project, together with
De Nieuwe Dokken district in Ghent, Belgium, and a new pilot at the previously mentioned Lemmer-
weg, and a pilot site in the industrial park of Porto do Molle (Vigo, Spain).
In the De Nieuwe Dokken project, the same decentralised treatment scheme will be applied as in

the Noorderhoek project, similarly as depicted in Figure 3. The multi-step treatment concept is cur-
rently being set up for 400 households (1,265 IE), which will allow recovery of 1,600 kg/a struvite,
to be used as slow-release fertiliser in the local green areas and urban farming projects, and up to
800 MWhth/a through biogas utilisation and mostly GW excess heat recovery through heat exchan-
gers (part of the NEREUS project, funded by the EU Interreg 2Seas program 2014–2020). In total,
about one-third of the total heat demand of the urban area (2.1 GWh/a) can be provided by the decen-
tralised treatment plant (Buysschaert et al. 2018). In contrast to the Noorderhoek projects, water reuse
will be included after treatment of the GW in a membrane bioreactor (MBR), a cation exchange unit
and reverse osmosis (RO) to remove pathogens, nutrients and hardness. In total, more than
30,000 m3/a water will be reused as process water in a nearby factory. Furthermore, the excess
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf
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heat of the factory will be recovered by coupling it to the district heating system, thus meeting the
remaining two-thirds of the total heat demand. As such, this demonstration project couples recovery
of energy and water, and the industrial activity and urban metabolism within a city.
Another example of source separation and recovery of resources at meso level is in the Rijksgebouw

in The Hague, The Netherlands, which houses the Ministries of Foreign Affairs, Infrastructure and
Water Management. The main incentive of the project at the Rijnlaan is to reduce water use and
to recover nutrients and energy (Stichting 2017). In the basement of the building, source-separated
YW and BW of +6,000 office workers are treated. A part of the YW is collected in water-free urinals
(approximately 200 L/day) and more than 95% of the phosphate is recovered as struvite. The struvite
is applied in the facility as fertiliser in the enclosed garden of the office building. BW collected in
vacuum toilets (3 m3/day), and in the future combined with food waste (500 kg/day), is digested to
produce biogas. The biogas is used in a central heating boiler, which is providing the energy for a
hot water buffer tank to heat the building.
In the Jenfelder Au in Hamburg, Germany, the so-called Hamburg Water Cycle® is installed in a

new neighbourhood for approximately 830 residential units. As in the other above-mentioned projects
in Sneek, The Hague, Ghent and Helsingborg, BW (approximately 12 m³/day) is collected via vacuum
toilets and transported via a vacuum sewer to an anaerobic treatment system. In contrast with the
other projects mentioned above in the Jenfelder Au, a mesophilic completely stirred tank reactor
(CSTR) is implemented instead of a UASB reactor. Gas production in the Jenfelder Au is increased
by adding external substrate from grease separators (maximum 30 m³/day with approximately 6%
dry matter). The digestate of the CSTR is expected to be used in agriculture after a post-treatment
step (to be determined). Greywater will be treated via a fixed bed reactor in a first step. Further treat-
ment processes will be examined in a test unit in order to determine the most effective one for
different reuse purposes. The vacuum system has been in operation since 2017. The CSTR was
opened in June 2019. The construction of the fixed bed reactor started at the end of 2019.
In Cressy (Geneva, Switzerland) the cooperative society ‘Cooperative Equilibre’ (CE) realised a

three-storey/13-apartment building in 2011, which completely separates toilet waste from the water
cycle. The toilet waste is collected with non-separating dry toilets, together with wood-chippings as
structural material. The greywater is treated on-site in a constructed wetland. The DTM of each apart-
ment is vermicomposted in the basement in a separate 1 m3 container. Every 6–12 months,
approximately 100 litres of pre-composted DTM are manually conveyed to a second composting
step in the garden. After completion of the composting process (two years), the compost is used for
fertilising trees and shrubs in the garden. Since 2011, CE has realised two more projects with a
total of 103 apartments in Geneva following the idea of decentralised sanitation (including dry toilets)
in an urban setting.
In areas with sensitive water recipients in Sweden, it is not allowed to apply (treated) BW as such

into the environment. Lately, BW has been stored and sanitised in a large tank on a farm prior to
reuse as fertiliser. The systems either sanitise the feces with ammonia sanitisation (addition of urea
followed by .3 months storage) (Nordin et al. 2018), or a combination of biological (autothermal
thermophilic aerobic digestion, ATAD) treatment followed by urea addition. ATAD increases the
temperature allowing for less urea addition and shorter treatment time (Nordin & Vinnerås 2015).
These centralised BW treatment systems have been set up in several municipalities in Sweden. Udde-
valla has the largest number of connections with an annual treatment capacity of approximately
3,000 m3, corresponding to 200–300 households. In total, over 1,000 households are covered with
this type of system in over ten Swedish municipalities. In this way, nutrients are recycled for agricul-
ture, with less transport of fertilisers and water.

Macro. Source-separated GrW is collected separately in many European countries and converted to
energy and compost in large-scale centralised AT and composting facilities. In general, the waste
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf
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treatment facilities apply thermophilic (dry) digestion and the digestate requires post-composting to
stabilise. The compost is sold through commercial channels. This technology is used all over
Europe to recover biogas/methane from separately collected organic waste and the mechanically
separated fraction of organic waste from mixed waste. For example, RCERO in Ljubljana, Slovenia,
is processing waste for around one-third of Slovenia (700,000 people), which amounts to around
150,000 tonnes of mixed municipal waste and 20,000 tonnes of separately collected food waste
(Guardian 2019). The combined organic waste is treated in two-stage (thermophilic-mesophilic)
plug-flow anaerobic reactors. Biogas is converted via a CHP to electricity and heat, which are both
used on-site. The digestate (35,000 t/a) is dehydrated and further processed to produce 7,000 t/a
compost.
Centralised methane recovery (Table 5) allows the use of the methane in biogas produced from bio-

W, VFY and/or GrW at city level, in order to power, e.g., local transport. The city of Reykjavik, Ice-
land and its surrounding municipalities, home to about 150,000 inhabitants, collects all organic waste
(60% biomass, 40% food waste) in a landfill (a bioreactor is being constructed). The biogas from the
landfill has an exceptionally good quality with over 95% methane, which can be used directly in com-
bustion engines. A pipeline from the landfill delivers the methane to gas stations for cars and trucks.
About 2% of the personal cars run on methane, all of the city garbage trucks and some company
trucks. In 2018, the construction of a modern biogas reactor was started, and it is estimated that
methane production will triple, providing biofuel for up to 10% of the cars. A switch of the city
buses from diesel to methane is under discussion. These actions are part of an ambitious climate
action plan from the Icelandic government. The current government aims to ban registration of
new gasoline and diesel buses by 2035 to become carbon neutral by 2040.

Barriers

Barriers for implementation of the above-mentioned concepts are related to the economy (of scale)
and safety of operation. For example, the lack of sufficiently safe handling practices in the case of
nutrient recovery from faeces or DTM poses a barrier. The removal of organic micropollutants and
other contaminants such as microplastics, and hygienic safety of the recovered products are important
as well. Recovery of COD and P is easier, since technologies are commercially available, but the
recovery of N (and K) as a separate product is a problem. Only for streams with a very high N con-
centration, like urine (YW), are N-recovery technologies available, but during storage of urine a
significant part of the nitrogen (about 50%) is potentially lost to the atmosphere due to premature
hydrolysis to ammonia in, e.g., piping. Stripping of ammonia is technologically feasible but is currently
not implemented because of the high energy and chemical demand. Another proven technique for N
(and other nutrients) recovery from urine is nitrification (Udert & Wächter 2012), followed by a
polishing step with activated carbon and vacuum distillation as applied for the urine collected in
the EAWAG building. Another barrier for urine collection is the market availability of NoMix toilets.
Several models have been removed from the market due to problems during use. Only dry toilets and
water-free urinals are proven technologies. Recently, the new NoMix toilet ‘Safe’ was introduced and
will probably be marketed at the beginning of 2020. A series of pilot projects in Switzerland and
abroad are expected (EAWAG 2019).
When considering the reuse of products from domestic wastewater, for example as fertiliser in

(urban) agriculture, the product quality is essential for environmental protection, as well as hygienic
safety and user acceptance. In the case of dry toilets, the reuse of compost produced from DTM faces
regulatory barriers if the compost is used beyond the owned plot of land. Another example of quality
issues is contamination with microplastics since the implemented technologies for reuse of digestate
and compost from municipal bio-waste do not completely remove microplastics (Weithmann et al.
2018). For example, Slovenia allows up to 0.5% (dry weight) of plastics that is larger than 2 mm in
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf
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compost and up to 2% (dry weight) of plastics in digestate. Technologies for achieving high-quality
products, like membrane filtration, heating, AOP, activated carbon are available but will increase
costs. The balance between risks and costs is to be established. In many European countries, the
legal framework is currently limiting the possibilities of reusing products from wastewater in
agriculture.
Scale is another factor of importance. The concept applied in Sneek, Ghent and Helsingborg is not

suited for single or a few houses. Wit et al. (2018) calculate that this system becomes competitive with
conventional sanitation (references: 30,000 and 100,000 inhabitants) at a scale of around 3,000
inhabitants (price of nutrient products is set at zero). In contrast, the concept applied in Cressy is lim-
ited to a maximum of three storeys, due to space constraints. Furthermore, the existing sanitation
infrastructure represents an additional barrier since source separation sanitation requires new infra-
structure. Most industrialised countries, however, are characterised by a high-density sewer
network (with a very long lifetime) connected to municipal wastewater treatment plants; sewer and
wastewater treatment plants have different lifetimes. According to Zeeman (2012), a gradual replace-
ment is the only affordable way to introduce ‘New Sanitation’ at a larger scale, and the development
of a transition strategy is required. Close cooperation between involved stakeholders, like that estab-
lished in Sneek, Ghent and Helsingborg is crucial.
Another important aspect to convince the stakeholders and to remove the roadblocks for imple-

menting new eco-technologies in an urban settlement is the integration of the local community and
a sound business model, based on the development of new waste-based and circular value chains.
Therefore, energy service companies (ESCO) can be set up to organise the technical maintenance
and district services. For example, in the De Nieuwe Dokken project in Ghent, Belgium, the ESCO
is a mixed private–public–citizen initiative in which the local inhabitants are represented, together
with investors and public stakeholders such as the local water utility, FARYS. The local community
will benefit directly from the revenues of the recovered products and the local district heating system.
In the two projects at Sneek, The Netherlands, the conventional division of tasks was chosen in a
cooperation between the housing cooperation – responsible for the indoor infrastructure (toilet and
piping), the municipality – responsible for the outdoor infrastructure (vacuum station and sewer)
and the water board – responsible for the treatment/recovery technologies. As in Ghent, the inhabi-
tants pay the usual taxes and nothing more. A residents’ satisfaction survey was done twice in the
project in Sneek. Residents are predominantly satisfied with the system and consider it handy and
hygienic, although some people had to get used to the vacuum toilet and kitchen grinder. The pro-
vided demonstration and the available information were highly appreciated (Wit et al. 2018).
DISCUSSION AND CONCLUSION

Resource recovery systems for urban residue streams comprise collection, transport, treatment/recov-
ery and reuse. It is crucial to consider each step as, e.g., collection and transport will have an effect on
applicable technologies for recovery and moreover on quality of products for reuse. When more
dilution is allowed during collection and transport, the recovery technology becomes less (energy) effi-
cient and more complex.
Common barriers

Considering barriers mentioned in the sections ‘Urban wastewater’, ‘Industrial waste and industrial
wastewater’, ‘Municipal solid waste’ and ‘Gaseous effluents’, the realisation of the manifold potentials
of NBS for circular cities faces a number of challenges. They can be divided into barriers related to
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf
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lack of awareness, current legislation, regulations and the organisation of urban infrastructures as well
as technical barriers, raising the need for both further technical and social innovation.

Lack of awareness for proven capabilities of NBS

Even though they sometimes perform better than conventional grey technologies (e.g., see the section
‘Urban wastewater’), NBS are de-prioritised. Despite many years of strong scientific track record, the
capabilities of plants and microbes to convert nutrients into biomass, clean water and air, extraction
of metals and other materials are not yet well known. Especially resource recovery projects using NBS
in the narrow sense, i.e., as the European Commission understands them, plant-based systems deliver-
ing ecosystem services, are rare. Many NBS projects work to communicate their successes to
policymakers and urban planners. Particularly large innovation and demonstration projects have
the power to build trust and political willingness for broader implementation of NBS, and to over-
come the lack of trust in NBS, even in industry. Capital expenditures for NBS are roughly on a par
with conventional grey systems (depending on the type of systems compared), but NBS incur lower
operational costs and offer additional benefits. Therefore, not only economic, but also environmental
and social criteria can incentivise a shift from well-known grey technologies to NBS.

Legislative, regulatory and organisational barriers

The main barriers are related to uncertainties of new system financing (new business models, etc.) and
the legislation in place (Houston (CSR Europe) et al. 2018). Further, once a resource becomes waste, a
resource recovery effort often has to go through waste legislation, thus apply and fulfil all criteria for
waste management. Even if applied in small scale, the efforts for application and documentation are
similar to the requirements to run large recycling facilities. Also, current legislation does not always
allow the direct reuse of secondary products. For example, the Netherlands currently faces ongoing
discussions on how to deal with compost produced in the city. As local household compost is usually
not tested and consequentially not approved, it cannot be easily applied across the city. Standards and
legal frameworks need to adapt to scientific progress, but even research itself (not only implemen-
tation) is often already challenged by regulations, when there is no exemption clause in place for
research purposes. A certain flexibility of administration processes and obligations could significantly
stimulate wider implementation of NBS.
While the recovery of high-value products requires investments available only at macro- (and in

some cases meso-) scale, micro- and mesoscale NBS bear the greatest potential for efficient nutrient
and clean water recovery through direct reuse. As mentioned above, separate nutrient recovery with
NBS is not feasible, but after pre-treatment, direct reuse of NBS-recovered secondary fertigation water
and fertiliser/soil conditioner for urban agriculture can keep nutrients (and water) in highly efficient
short cycles. This requires new management models in cooperation among municipalities and com-
munities (neighbourhoods), innovation of the division of responsibilities among households/
residents/local communities and municipalities (bottom up) coupled with spatial planning and simpli-
fication of applicable administrative hurdles (top down). The opportunities of resource recovery for
value creation can be leveraged to incentivise decentralised ownership and maintenance.
Large advances have been achieved in reducing the area requirements of NBS, most notably con-

structed wetlands. Yet, availability of space in cities is still an often-cited barrier for functions such as
CO2 capture and wastewater treatment. There is need for more demo case studies and comparable
evaluations that can provide standardised data on the ratio of surface area to functional efficiency
for different technologies, climate and other conditions to support the planning process. Meanwhile,
current planning and design models and tools used for centralised infrastructure approaches are not
suitable for decentralised approaches and the integration of NBS into city-scapes. This calls for research
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf
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to identify the optimal scale, management scheme and logistics for existing specific conditions. Spatial
planning innovations could facilitate the introduction of NBS to unutilised and underutilised infrastruc-
tures (rooftops, facades, indoor spaces). This could, in turn, allow for plant structures at larger scales,
thus maximising the aesthetic and stress-reduction potentials of greener cities.
Further, the wide range of secondary end-products can lead to competition among different options.

Therefore, there is a need for increased assessments of supply and demand factors, setting optimal
configurations of NBS and blended green-blue-grey infrastructure and making the right choice of
end-products.

Remaining technical barriers

Recovery of products other than energy is gaining momentum and there is a call for process optimis-
ation towards product purity versus energy yield optimisation (e.g., ‘integrated biogas-digestate
optimisation’ (Logan & Visvanathan 2019)). Many technologies that enable recovery of value-
added products are still in development and applied so far only at laboratory and pilot scales. The
next step for these technologies will be scale-up to demo and flagship scales, to prove the hygienic
safety of waste(water)-derived products and to further diversify profitable high-value secondary pro-
ducts. Already at this stage, the communication with public and private stakeholders is essential to
prepare the market including legislative and regulatory framework for the new bio-products. While
NBS can provide essential functions for resource recovery, with significant additional benefits, further
processing is usually required to achieve product purity required for commercialisation. Further, the
toxicity of some raw industrial or municipal waste streams limits or even prohibits plant and microbial
growth. In the field of source separation and decentralised applications, further research is needed to
tackle the challenges mainly related to lack of economy (of scale) and safety of operation.

End-of-life management versus circularity by design

All these solutions look into recovery of secondary resources once they become waste. In this sense,
they try to solve problems only at the end of the life cycle and have to take into account that many or
most of the actual urban resource stream systems are not designed to be recovered. If you design a
system from scratch with circular design in mind, the resource recovery would also be designed to
happen with as little energy input as possible. The process can then even be designed to keep the
resource value at the highest possible level (Bocken et al. 2016). By mixing resources with others,
one has to apply more energy to again recover the value of one resource. In this sense, separation
at or close to the source can be favourable for resource recovery purposes, although we should
take into consideration the additional infrastructure needs and their associated grey energy (Larsen
2011). Direct metabolisation of organic nutrients from waste streams in agricultural systems can be
one of the most favourable options (Capodaglio 2017).
The use of stored solar energy in organic resources for decentralised energy generation can also be a

good approach, especially in combination with recovery processes. Since CO2 is usually the last step
in biomass energy systems, such a system can at best be climate-neutral. For more sustainable process
designs, one additional aim can be the direct reuse of nutrients by building up biomass and simul-
taneously converting again CO2 into biomass, as it is the building block of plants and many other
phototrophic organisms. For reasonable carbon capture this biomass should then be either used in
long-term storage systems like buildings, for furniture, etc., or should steadily be composted and inte-
grated as increased soil carbon content. To take resource recovery with NBS to the next level,
biorefinery approaches, also at a decentralised level, can be included. In this setting we have to
look more into the feedstock quantity and quality of the different resource streams and the conversion
to products. In the best case, the decentralised smaller biorefineries at the city level can pre-treat a
aponline.com/bgs/article-pdf/2/1/138/890238/bgs0020138.pdf
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certain organic residue stream and the conversion to bulk products can happen at a more centralised
level (alchemia-nova 2019a). Appropriate logistics and a combination of zero km conversion of nutri-
ents into food and exchange with the surrounding areas can be a good approach for cities. Cities can
become ‘major circular bioeconomy hubs’ (European Commission 2018a).
The way forward

In this review paper, we identified projects, technologies and barriers for application of nature-based
solutions for resource recovery in the framework of circular economy in cities. Our recommendations
for further efforts are as follows:

• Replication of existing nature-based technologies for resource recovery in more cities and regional
proof of concept for enabling further uptake.

• Upscaling existing and proven NBS resource recovery systems to bigger areas and for bigger settle-
ments/regions/quarters.

• Raise the interest of investment schemes to fund more NBS cases.

• Demonstrate and stress the multifunctionality of NBS in new environments (e.g., industrial effluents
or processes).

• Cooperate systematically with more actors along value chains and raise awareness.

• Share the know-how of NBS openly in developing or underprivileged countries.

• Using a value approach model as suitable means for a circular economy evaluation (e.g., value hill
as tool (Achterberg & Fischer 2019)) together with other circular indicators (European Commission
– Eurostat 2019).

• Comparison of direct reuse (metabolisation) of nutrients in agricultural systems vs technical recov-
ery and shipping of nutrients back to the fields far away from the source.

• Comparing full cost accounting methods to direct nutrient conversion to agricultural produce with
conventional farming systems.

• Awareness-raising for necessity of nutrient reuse from human systems and the hygienic quality of
NBS.
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