
ARTICLE

Spearheading future omics analyses using dyngen,
a multi-modal simulator of single cells
Robrecht Cannoodt 1,2,3,5, Wouter Saelens1,2,4,5, Louise Deconinck 1,2 & Yvan Saeys 1,2✉

We present dyngen, a multi-modal simulation engine for studying dynamic cellular processes

at single-cell resolution. dyngen is more flexible than current single-cell simulation engines,

and allows better method development and benchmarking, thereby stimulating development

and testing of computational methods. We demonstrate its potential for spearheading

computational methods on three applications: aligning cell developmental trajectories, cell-

specific regulatory network inference and estimation of RNA velocity.

https://doi.org/10.1038/s41467-021-24152-2 OPEN

1 Data Mining and Modelling for Biomedicine group, VIB Center for Inflammation Research, Ghent, Belgium. 2 Department of Applied Mathematics,
Computer Science, and Statistics, Ghent University, Ghent, Belgium. 3 Data Intuitive, Lebbeke, Belgium. 4 Institute of Bioengineering, School of Life Sciences,
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. 5These authors contributed equally: Robrecht Cannoodt, Wouter Saelens.
✉email: yvan.saeys@ugent.be

NATURE COMMUNICATIONS | (2021) 12:3942 | https://doi.org/10.1038/s41467-021-24152-2 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24152-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24152-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24152-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24152-2&domain=pdf
http://orcid.org/0000-0003-3641-729X
http://orcid.org/0000-0003-3641-729X
http://orcid.org/0000-0003-3641-729X
http://orcid.org/0000-0003-3641-729X
http://orcid.org/0000-0003-3641-729X
http://orcid.org/0000-0001-8100-6823
http://orcid.org/0000-0001-8100-6823
http://orcid.org/0000-0001-8100-6823
http://orcid.org/0000-0001-8100-6823
http://orcid.org/0000-0001-8100-6823
http://orcid.org/0000-0002-0415-1506
http://orcid.org/0000-0002-0415-1506
http://orcid.org/0000-0002-0415-1506
http://orcid.org/0000-0002-0415-1506
http://orcid.org/0000-0002-0415-1506
mailto:yvan.saeys@ugent.be
www.nature.com/naturecommunications
www.nature.com/naturecommunications

S ingle-cell simulation engines are becoming increasingly
important for testing and benchmarking computational
methods, a pressing need in the widely expanding field of

single-cell biology. Complementary to real biological data, syn-
thetic data provides a valuable alternative where the actual
ground truth is completely known and thus can be compared to,
in order to make quantitative evaluations of computational
methods that aim to reconstruct this ground truth1. In addition,
simulation engines are more flexible when it comes to stress-
testing computational methods, for example by varying the
parameters of the simulation, such as the amount of noise,
samples, and cells measured, allowing benchmarking of methods
over a wide range of possible scenarios. In this way, they can even
guide the design of real biological experiments, finding out the
best conditions to be used as input for subsequent computational
pipelines.

Another, more experimental use of simulation engines is their
important role in spearheading the development of computa-
tional methods, possibly even before real data is available. In this
way, simulation engines can be used to assess the value of novel
experimental protocols or treatments. Simulation engines are also
increasingly important when it comes to finding alternatives to
animal models, for example for drug testing and precision med-
icine. In such scenarios, cellular simulations can act as digital
twins, offering unlimited experimentation in silico2.

Simulating realistic data requires that the underlying biology is
recapitulated as best as possible, and in the case of tran-
scriptomics data this typically involves modelling the underlying
gene regulatory networks. Simulators of “bulk” microarray or
RNA-sequencing profiles simulate biological processes (e.g.
transcription, translation) by translating a database of known
regulatory interactions into a set of ordinary differential equations
(ODE)3–6. These methods have been instrumental in performing
benchmarking studies7–9. However, the advent of single-cell
omics introduced several new types of analyses (e.g. trajectory
inference, RNA velocity, cell-specific network inference) which
exploit the higher resolution of single-cell versus bulk omics10. In
addition, the data characteristics of single-cell omics are vastly
different from bulk omics, typically having much lower library
sizes and a higher dropout rate, but also a high number of
profiles11. The low library sizes, in particular, are problematic as
ODEs are ill-suited for performing low-molecule simulations12.
This necessitates the development of single-cell simulators.

To this end, single-cell omics simulators emulate the technical
procedures from single-cell omics protocols. Simulators such as
Splatter1, powsimR13, PROSSTT14, and SymSim15) have already
been widely used to compare single-cell methods16–19 and per-
form independent benchmarks20–22. However, by focusing more
on simulating the single-cell omics protocol (e.g. RNA capture,
amplification, sequencing) and less on the underlying biology
(e.g. transcription, splicing, translation), their applicability and
reusability is limited towards the specific application for which
they were designed (e.g. benchmarking clustering or differential
expression methods), and extending these tools to include addi-
tional modalities or experimental conditions is challenging.

We introduce dyngen, a method for simulating cellular
dynamics at a single-cell, single-transcript resolution (Fig. 1). This
problem is tackled in three fully configurable main steps. First,
biological processes are mimicked by translating a gene regulatory
network into a set of reactions (regulation, transcription, splicing,
translation). Second, individual cells are simulated using Gilles-
pie’s stochastic simulation algorithm (SSA)12, which is designed
to work well in low-molecule simulations. Finally, real reference
datasets are used to emulate single-cell omics profiling protocols.

Throughout a simulation, dyngen tracks many layers of
information, including the abundance of any molecule in the cell,

the progression of the cell along a dynamic process, and the
activation strength of individual regulatory interactions. In
addition, dyngen can simulate a large variety of dynamic pro-
cesses (e.g. cyclic, branching, disconnected) as well as a broad
range of experimental conditions (e.g. batch effects and time-
series, perturbation and single-cell knockdown experiments). For
these reasons, dyngen can cater to a wide range of benchmarking
applications, including trajectory inference, trajectory alignment,
and trajectory differential expression (Supplementary Table 1).

Results
We demonstrate dyngen’s broad applicability by evaluating three
types of computational approaches for which no simulation
engines exist yet: cell-specific network inference, trajectory
alignment and RNA velocity (Fig. 2). We emphasise that our
main aim here is to illustrate the potential of dyngen for these
evaluations, rather than performing large-scale benchmarking,
which would require assessing many more quantitative and
qualitative aspects of each method23.

Use-case “trajectory alignment”. Trajectory alignment methods
align trajectories from different samples and allow studying the
differences between the different trajectories. For example, by
comparing the transcriptomic profiles of cells from a diseased
patient to a healthy control, it might be possible to detect tran-
scriptomics differences (differential expression) of particular cells
along a developmental process, or to detect an early stop of the
trajectory of the diseased patient. Currently, trajectory alignment
is limited to aligning linear trajectories, though other topologies
of a trajectory could be aligned as well. Dynamic Time Warping
(DTW)24 is a method designed for aligning temporal sequences
for speech recognition but has since been used to compare gene
expression kinetics from many different biological processes25–28.
cellAlign28 uses DTW to perform trajectory alignment, but also
includes interpolation and scaling of the single-cell data as a
preprocessing step. We evaluate the performance of DTW and
cellAlign by simulating 40 datasets, each containing two linear
trajectories generated with the same gene regulatory network but
with slightly different simulation kinetics. We assess the accuracy
of the obtained alignments by comparing the generated alignment
path with the worst possible alignment that could be performed
(Supplementary Fig. 1D), named the Area Between Worst And
Prediction (ABWAP) score. Overall, cellAlign performs sig-
nificantly better than DTW (Supplementary Fig. 1), which is
likely due to the interpolation and scaling steps provided by
cellAlign, reducing noise in the data and improving the com-
parability of the trajectories. Note that, in this comparison, only
linear trajectory alignment is performed. While dyngen can
generate non-linear trajectories (e.g. cyclic or branching), both
aligning non-linear trajectories and constructing a quantitative
accuracy metric for non-linear trajectory alignment is not trivial
and an avenue for future work.

Use-case “RNA velocity”. RNA velocity methods use the rela-
tive ratio between pre-mRNA and mature mRNA reads to predict
the rate of increase/decrease of RNA molecule abundance, as this
can be used to predict the directionality of single-cell differ-
entiation in trajectories29,30. Already two algorithms are currently
available for estimating the RNA velocity vector from spliced and
unspliced counts: velocyto30 and scvelo31. Yet, to date, no
quantitative assessment of their accuracy has been performed,
mainly due to the difficulty in obtaining real ground-truth data to
do so. In contrast, the ground-truth RNA velocity can be easily
extracted from a dyngen simulation, as it is possible to store the
rate at which mRNA molecules are being transcribed and
degraded at any particular point in time. We executed velocyto
and scvelo (with 2 different parameter settings, stochastic and

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24152-2

2 NATURE COMMUNICATIONS | (2021) 12:3942 | https://doi.org/10.1038/s41467-021-24152-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

dynamical) on 42 datasets with a variety of backbones (including
linear, bifurcating, cyclic, disconnected). We evaluated the pre-
dictions using two metrics (Supplementary Fig. 2), one which
directly compares the predicted RNA velocity of each gene with
the ground-truth RNA velocity (called the “velocity correlation”),
and one which compares the direction of the ground-truth tra-
jectory embedded in a dimensionality reduction with the average
RNA velocity of cells in that neighbourhood (called the “velocity

arrow cosine”). While both velocyto and scvelo obtained high
scores for the velocity arrow cosine metric (overall 25th percentile
= 0.606), the velocity correlation is rather low (overall 75th
percentile= 0.156). This means that predicting the RNA velocity
(i.e. transcription rate minus the decay rate) for particular indi-
vidual genes can be challenging, but the combined information is
very informative in determining the directionality of cell pro-
gression in the trajectory. In terms of velocity correlation, no

Fig. 1 Showcase of dyngen functionality. A Changes in abundance levels are driven strictly by gene regulatory reactions. B The input Gene Regulatory
Network (GRN) is defined such that it models a dynamic process of interest. C The reactions define how abundance levels of molecules change at any
particular time point. D Firing many reactions can significantly alter the cellular state over time. E dyngen keeps track of the likelihood of a reaction firing
during small intervals of time, called the propensity, as well as the actual number of firings. F Similarly, dyngen can also keep track of the regulatory activity
of every interaction. G A benchmark of trajectory inference methods has already been performed using the cell state ground-truth21. H The cell state
ground-truth enables evaluating trajectory alignment methods. I The reaction propensity ground-truth enables evaluating RNA velocity methods. J The
cellwise regulatory network ground-truth enables evaluating cell-specific gene regulatory network inference methods.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24152-2 ARTICLE

NATURE COMMUNICATIONS | (2021) 12:3942 | https://doi.org/10.1038/s41467-021-24152-2 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications

method performed significantly better than the other, whereas
“scvelo stochastic” performed slightly worse than “scvelo dyna-
mical” and velocyto in terms of velocity arrow cosine score. Note
that, given that some genes are more informative in determining
the overall directionality of cell progression, performing a feature
selection before computing the embedded dimensionality reduc-
tion might result in significantly improved velocity arrow cosine
scores.

Use-case “Cell-specific network inference” (CSNI). CSNI
methods predict not only which transcription factors regulate
which target genes, but also aim to identify how active each
interaction is in each of the cells, since interactions can be turned
off and on depending on the cellular state. While a few pioneering
CSNI approaches have already been developed32–34, a quantita-
tive assessment of their performance is until now lacking. This is
not surprising, as neither real nor in silico datasets of cell-specific
or even cell-type-specific interactions exist that are large enough
so that it can be used as a ground-truth for evaluating CSNI
methods. Extracting the ground-truth dynamic network in

dyngen is straightforward though, given that we can calculate
how target gene expression would change without the regulator
being present. We used this ground-truth to compare the per-
formance of three CSNI methods (Supplementary Fig. 3):
LIONESS33, SSN34, and SCENIC32. For each dataset, we com-
puted the mean Area Under the Receiver Operating
Characteristic-curve (AUROC) and Area Under the Precision-
Recall curve (AUPR) scores of the individual cells. Comparing the
mean AUROC and AUPR showed that pySCENIC significantly
outperforms both LIONESS and SSN, and in turn that LIONESS
significantly outperforms SSN. The poor performance of SSN is
expected, as its methodology for predicting a cell-specific is
simply computing the difference in Pearson correlation values
applied to the whole dataset and the whole dataset minus one
sample. This strategy performs poorly in large datasets where cell
correlations are high, as the removal of one cell will not yield
large differences in correlation values and will result in mostly
noise. Overall, pySCENIC almost always performs better than
LIONESS, except for a few datasets where LIONESS does manage

Ground−truth

Sample

Diseased

Healthy

Prediction

cellAlign

DTW

0.00 0.25 0.50 0.75 1.00
ABWAP score

Evaluation

A Bmid

EndC

EndD

scvelo
dynamical

scvelo
stochastic

velocyto

0.0 0.1 0.2 0.3 0.4
Velocity correlation

0.00 0.25 0.50 0.75 1.00
Velocity arrow cosine

−1.0

−0.5

0.0

0.5

1.0

Regulatory
strength in cell 1

SSN*

pySCENIC

LIONESS
+ Pearson

0.45 0.55 0.65 0.75
mean AUROC

0.00 0.04 0.08 0.12
mean AUPR

A

B

C

Fig. 2 dyngen provides ground-truth data for a variety of applications (left), which can be used to quantitatively evaluate methods (right). Box plots
denote the Q0 to Q4 quartile values. A Trajectory alignment aligns two trajectories between samples. We evaluate Dynamic Time Warping (DTW) and
cellAlign when aligning two linear trajectories with different kinetic parameters based on the area differences between the worst possible alignment and
the predicted alignment (Area Between Worst And Prediction, or ABWAP). B RNA velocity calculates for each cell the direction in which the expression of
each gene is moving. We evaluated scVelo and velocyto by comparing these vectors with the known velocity vector (velocity correlation) and with the
known direction of the cellular trajectory in a dimensionality reduction (velocity arrow cosine). C Cell-specific network inference (CSNI) predicts the
regulatory network of every individual cell. We evaluate each cell-specific regulatory network with typical metrics for network inference: the Area Under
the Receiver Operating Characteristics-curve (AUROC) and Area Under the Precision-Recall curve (AUPR). We evaluate three CSNI methods by
computing the mean AUROC and AUPR across all cells.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24152-2

4 NATURE COMMUNICATIONS | (2021) 12:3942 | https://doi.org/10.1038/s41467-021-24152-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

to obtain a higher AUROC score. However, by using a different
internal network inference (e.g. GENIE335 or pySCENIC’s
GRNBoost236) could significantly increase the performance
obtained by LIONESS.

Discussion
dyngen’s single-cell simulations can be used to evaluate common
single-cell omics computational methods such as clustering, batch
correction, trajectory inference, and network inference. However,
the framework is flexible enough to be adaptable to a broad range
of applications, including methods that integrate clustering, net-
work inference, and trajectory inference. In this respect, dyngen
may promote the development of tools in the single-cell field
similarly as other simulators have done in the past5,37. Addi-
tionally, one could anticipate technological developments in
single-cell multi-omics. In this way, dyngen allows designing and
evaluating the performance and robustness of new types of
computational analyses before experimental data becomes avail-
able, comparing which experimental protocol is the most cost-
effective in producing qualitative and robust results in down-
stream analysis. One major assumption of dyngen is that cells are
assumed to be well-mixed and independent from each other.
Subdividing a cell into multiple 2D or 3D subvolumes or allowing
cells to exchange molecules, respectively, could pave the way to
better study key cellular processes such as cell division, inter-
cellular communication, and migration38.

Methods
The workflow to generate in silico single-cell data consists of six main steps
(Supplementary Fig. 4).

Defining the module network. One of the main processes involved in cellular
dynamic processes is gene regulation, where regulatory cascades and feedback
loops lead to progressive changes in expression and decision making. The exact
way a cell chooses a certain path during its differentiation is still an active research
field, although certain models have already emerged and been tested in vivo. One
driver of bifurcation is mutual antagonism, where two genes strongly repress each
other39,40, forcing one of the two to become inactive41. Such mutual antagonism
can be modelled and simulated42,43. Although the two-gene model is simple and
elegant, the reality is frequently more complex, with multiple genes (grouped into
modules) repressing each other44.

To start a dyngen simulation, the user needs to define a module network. The
module network describes how sets of genes regulate each other and is what mainly
determines which dynamic processes occur within the simulated cells.

A module network consists of modules connected together by regulatory
interactions, which can be either upregulating or downregulating. A module may
have basal expression, which means genes in this module will be transcribed
without the presence of transcription factor molecules. A module marked as “active
during the burn phase” means that this module will be allowed to generate
expression of its genes during an initial warm-up phase. At the end of the dyngen
process, cells will not be sampled from the burn phase simulations. Interactions
between modules have a strength (which is a positive integer) and an effect (+1 for
upregulating, −1 for downregulating).

Several examples of module networks are given in Supplementary Fig. 5. A
simple chain of modules (where one module upregulates the next) results in a
linear process. By having the last module repress the first module, the process
becomes cyclic. Two modules repressing each other is the basis of a bifurcating
process, though several chains of modules have to be attached in order to achieve
progression before and after the bifurcation process. Finally, a converging process
has a bifurcation occurring during the burn phase, after which any differences in
module regulation is removed.

Note that these examples represent the bare minimum in terms of the number
of modules used. Using longer chains of modules is typically desired. In addition,
the fate decisions made in this example of a bifurcation is reversible, meaning cells
can be reprogrammed to go down a different differentiation path. If this effect is
undesirable, more safeguards need to be put in place to prevent reprogramming
from occurring.

Generating the gene regulatory network. The GRN is generated based on the
given module network in four main steps (Supplementary Fig. 6).

Step 1, sampling the transcription factors (TF). The TFs are the main drivers of
the molecular changes in the simulation. The user provides a backbone and the
number of TFs to generate. Each TF is assigned to a module such that each module

has at least x parameters (default x= 1). A TF inherits the ‘burn’ and ‘basal
expression’ from the module it belongs to.

Step 2, generating the TF interactions. Let each TF be regulated according to the
interactions in the backbone. These interactions inherit the effect, strength, and
independence parameters from the interactions in the backbone. A TF can only be
regulated by other TFs or itself.

Step 3, sampling the target subnetwork. A user-defined number of target genes
are added to the GRN. Target genes are regulated by a TF or another target gene,
but are always downstream of at least one TF. To sample the interactions between
target genes, one of the many FANTOM545 GRNs is sampled. The currently
existing TFs are mapped to regulators in the FANTOM5 GRN. The targets are
drawn from the FANTOM5 GRN weighted by their page rank value, to create an
induced GRN. For each target, at most x regulators are sampled from the induced
FANTOM5 GRN (default x= 5). The interactions connecting a target gene and its
regulators are added to the GRN.

Step 4, sampling the housekeeping subnetwork. Housekeeping genes are
completely separate from any TFs or target genes. A user-defined set of
housekeeping genes is also sampled from the FANTOM5 GRN. The interactions of
the FANTOM5 GRN are first subsampled such that the maximum in-degree of
each gene is x (default x= 5). A random gene is sampled and a breadth-first-search
is performed to sample the desired number of housekeeping genes.

Convert gene regulatory network to a set of reactions. Simulating a cell’s GRN
makes use of a stochastic framework which tracks the abundance levels of mole-
cules over time in a discrete quantity. For every gene G, the abundance levels of
three molecules are tracked, namely of corresponding pre-mRNAs, mature mRNAs
and proteins, which are represented by the terms xG, yG, and zG respectively. The
GRN defines how a reaction affects the abundance levels of molecules and how
likely it will occur. Gibson and Bruck46 provide a good introduction to modelling
gene regulation with stochastic frameworks, on which many of the concepts below
are based.

For every gene in the GRN a set of reactions are defined, namely transcription,
splicing, translation, and degradation. Each reaction consists of a propensity
function—a formula f(.) to calculate the probability f(.) × dt of it occurring during a
time interval dt—and the effect—how it will affect the current state if triggered.

The effects of each reaction mimic the respective biological processes
(Supplementary Table 2, middle). Transcription of gene G results in the creation of
a single pre-mRNA molecule xG. Splicing turns one pre-mRNA xG into a mature
mRNA xG. Translation uses a mature mRNA yG to produce a protein zG. Pre-
mRNA, mRNA, and protein degradation results in the removal of a xG, yG, and zG
molecule, respectively.

The propensity of all reactions except transcription are all linear functions
(Supplementary Table 2, right) of the abundance level of some molecule multiplied
by a per-gene constant (Supplementary Table 3). The propensity of transcription of
a gene G depends on the abundance levels of its TFs. The per-gene and per-
interaction constants are based on the median reported production-rates and half-
lives of molecules measured of 5000 mammalian genes47, except that the
transcription rate has been amplified by a factor of 10.

The propensity of the transcription of a gene G is inspired by thermodynamic
models of gene regulation48, in which the promoter of G can be bound or unbound
by a set of N transcription factors Hi. Let f(z1, z2,…, zN) denote the propensity
function of G, in function of the abundance levels of the transcription factors. The
following subsections explain and define the propensity function when N= 1, N=
2, and finally for an arbitrary N.

Propensity of transcription when N= 1. In the simplest case when N= 1, the
promoter can be in one of two states. In state S0, the promoter is not bound by any
transcription factors, and in state S1 the promoter is bound by H1. Each state Sj is
linked with a relative activation αj, a number between 0 and 1 representing the
activity of the promoter at this particular state. The propensity function is thus
equal to the expected value of the activity of the promoter multiplied by the pre-
mRNA production rate of G.

f ðy1; y2; ¼ ; yN Þ ¼ xpr � ∑
2N�1

j¼0
αj � PðSjÞ ð1Þ

For N= 1, P(S1) is equal to the Hill equation, where ki represents the
concentration of Hi at half-occupation and ni represents the Hill coefficient.
Typically, ni is between [1, 10]

PðS1Þ ¼
yn11

kn11 þ yn11
ð2Þ

¼ ðy1=k1Þn1
1þ ðy1=k1Þn1

ð3Þ

The Hill equation can be simplified by letting νi ¼ yi
ki

� �ni
.

PðS1Þ ¼
ν1

1þ ν1
ð4Þ

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24152-2 ARTICLE

NATURE COMMUNICATIONS | (2021) 12:3942 | https://doi.org/10.1038/s41467-021-24152-2 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications

Since P(S0)= 1− P(S1), the activation function is formulated and simplified as
follows.

f ðy1Þ ¼ xpr � α0 � PðS0Þ þ α1 � PðS1Þ
� � ð5Þ

¼ xpr � α0 �
1

1þ ν1
þ α1 �

ν1
1þ ν1

� �
ð6Þ

¼ xpr � α0 þ α1 � ν1
1þ ν1

ð7Þ
Propensity of transcription when N= 2. When N= 2, there are four states Sj. The
relative activations αj can be defined such that H1 and H2 are independent
(additive) or synergistic (multiplicative). In order to define the propensity of
transcription f(.), the Hill equation P(Sj) is extended for two transcription factors.

Let wj be the numerator of P(Sj), defined as the product of all transcription
factors bound in that state:

w0 ¼ 1 ð8Þ

w1 ¼ ν1 ð9Þ

w2 ¼ ν2 ð10Þ

w3 ¼ ν1 � ν2 ð11Þ
The denominator of P(Sj) is then equal to the sum of all wj. The probability of

state Sj is thus defined as:

PðSjÞ ¼
wj

∑j < 2N

j¼0 wj
ð12Þ

¼ wj

1þ ν1 þ ν2 þ ν1 � ν2
ð13Þ

¼ wjQi≤N
i¼1 ðνi þ 1Þ ð14Þ

Substituting P(Sj) and wj into f(.) results in the following equation:

f ðy1; y2Þ ¼ xpr � ∑
2N�1

j¼0
αj � PðSjÞ ð15Þ

¼ xpr �
∑2N�1

j¼0 αj � wjQi ≤N
i¼1 ðνi þ 1Þ

ð16Þ

¼ xpr � α0 þ α1 � ν1 þ α2 � ν2 þ α3 � ν1 � ν2
ðν1 þ 1Þ � ðν2 þ 1Þ ð17Þ

Propensity of transcription for an arbitrary N. For an arbitrary N, there are 2N states
Sj. The relative activations αj can be defined such that H1 and H2 are independent
(additive) or synergistic (multiplicative). In order to define the propensity of
transcription f(.), the Hill equation P(Sj) is extended for N transcription factors.

Let wj be the numerator of P(Sj), defined as the product of all transcription
factors bound in that state:

wj ¼
Yi ≤N
i¼1
ðjmod iÞ ¼ 1 ?νi : 1 ð18Þ

The denominator of P(Sj) is then equal to the sum of all wj. The probability of
state Sj is thus defined as:

PðSjÞ ¼
wj

∑j < 2N

j¼0 wj
ð19Þ

¼ wjQi≤N
i¼1 ðνi þ 1Þ ð20Þ

Substituting P(Sj) into f(.) yields:

f ðy1; y2; ¼ ; yN Þ ¼ xpr � ∑
2N�1

j¼0
αj � PðSjÞ ð21Þ

¼ xpr �
∑2N�1

j¼0 αj � wjQi ≤N
i¼1 ðνi þ 1Þ

ð22Þ

Propensity of transcription for a large N. For large values of N, computing f(.) is
practically infeasible as it requires performing 2N summations. In order to greatly
simplify f(.), αj could be defined as 0 when one of the regulators inhibits tran-
scription and 1 otherwise.

αj ¼
0 if 9 i : j mod i ¼ 1 and Hi represses G

1 otherwise

�
ð23Þ

Substituting Eq. (23) into Eq. (22) and defining R= {1, 2,…,N} and R+=
{i∣HiactivatesG} yields the simplified propensity function:

f ðy1; y2; ¼ ; yN Þ ¼ xpr �
Q

i2Rþ ðνi þ 1ÞQ
i2Rðνi þ 1Þ ð24Þ

Independence, synergism, and basal expression. The definition of αj as in Eq. (23)
presents two main limitations. Firstly, since α0= 1, it is impossible to tweak the
propensity of transcription when no transcription factors are bound. Secondly, it is
not possible to tweak the independence and synergism of multiple regulators.

Let ba ∈ [0, 1] denote the basal expression strength G (i.e. how much will G be
expressed when no transcription factors are bound), and sy ∈ [0, 1] denote the
synergism of regulators Hi of G, the transcription propensity becomes:

f ðy1; y2; ¼ ; yN Þ ¼ xpr � ba� syjR
þj þQ

i2Rþ ðνi þ sy ÞQ
i2Rðνi þ 1Þ ð25Þ

Simulate single cells. dyngen uses Gillespie’s SSA12 to simulate dynamic pro-
cesses. An SSA simulation is an iterative process where at each iteration one
reaction is triggered.

Each reaction consists of its propensity—a formula to calculate the probability
of the reaction occurring during an infinitesimal time interval—and the effect—
how it will affect the current state if triggered. Each time a reaction is triggered, the
simulation time is incremented by τ ¼ 1

∑jpropj
ln 1

r

� �
, with r ∈ U (0, 1) and propj the

propensity value of the jth reaction for the current state of the simulation.
GillespieSSA2 is an optimised library for performing SSA simulations. The

propensity functions are compiled to C++ and SSA approximations can be used
which allow triggering many reactions simultaneously at each iteration. The
framework also allows storing the abundance levels of molecules only after a
specific interval has passed since the previous census. By setting the census interval
to 0, the whole simulation’s trajectory is retained but many of these time points will
contain very similar information. In addition to the abundance levels, also the
propensity values and the number of firings of each of the reactions at each of the
time steps can be retained.

Simulate experiment. From the SSA simulation we obtain the abundance levels of
all the molecules at every state. We need to replicate technical effects introduced by
experimental protocols in order to obtain data that is similar to real data. For this,
the cells are sampled from the simulations and molecules are sampled for each of
the cells. Gene capture rates and library sizes are empirically derived from real
datasets to match real technical variation.

Sample cells. In this step, N cells are sampled from the simulations. Two approaches
are implemented: sampling from an unsynchronised population of single cells
(snapshot) or sampling at multiple time points in a synchronised population (time
series).

Snapshot. The backbone consists of several states linked together by transition
edges with length Li, to which the different states in the different simulations have
been mapped (Supplementary Fig. 7A). From each transition, Ni ¼ N= Li

∑Li
cells are

sampled uniformly, rounded such that ∑Ni=N.
Time series. Assuming that the final time of the simulation is T, the interval [0,

T] is divided into k equal intervals of width w separated by k− 1 gaps of width g.
Ni=N/k cells are sampled uniformly from each interval (Supplementary Fig. 7B),
rounded such that ∑Ni=N. By default, k= 8 and g= 0.75. For usual dyngen
simulations, 10 ≤ T ≤ 20. For larger values of T, k and g should be increased
accordingly.

Sample molecules. Molecules are sampled from the simulation to replicate how
molecules are experimentally sampled. A real dataset is downloaded from a
repository of single-cell RNA-seq datasets49. For each in silico cell i, draw its library
size lsi from the distribution of transcript counts per cell in the real dataset. The
capture rate crj of each in silico molecule type j is drawn from N(1, 0.05). Finally,
for each cell i, draw lsi molecules from the multinomial distribution with prob-
abilities crj × abi,j with abi,j the molecule abundance level of molecule j in cell i.

Comparison between a dyngen and a reference dataset. Comparison between a
dyngen dataset and the reference dataset it used in terms of characteristic single-
cell omics features showed that dyngen produces datasets with highly similar data
characteristics (Supplementary Note 1). Supplementary Note 1 was generated using
countsimQC50.

Simulating batch effects. Simulating batch effects can be performed in multiple
ways. One such way is to perform the first two steps of the creation of a dyngen
model (defining the module network and generating the GRN). For each desired
batch, create a separate model for which random kinetics are generated and per-
form all subsequent dyngen steps (convert to reactions, simulate gold standard,
simulate single cells, simulate experiment). Since each separate model has different
underlying kinetics, the combined output will resemble having batch effects.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24152-2

6 NATURE COMMUNICATIONS | (2021) 12:3942 | https://doi.org/10.1038/s41467-021-24152-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

Determining the ground-truth trajectory. To construct the ground-truth tra-
jectory, the user needs to provide the ground-truth state network alongside the
initial module network (Supplementary Fig. 8). Each edge in the state network
specifies which modules are allowed to change in expression in transitioning from
one state to another. For each edge, a simulation is run using the end state of an
upstream branch as the initial expression vector, and only allowing the modules as
predefined by the attribute to change.

As an example, consider the cyclic trajectory shown in Supplementary Fig. 8.
State S0 begins with an expression vector of all zero values. To simulate the
transition from S0 to S1, regulation of the genes in modules A, B, and C are turned
on. After a predefined period of time, the end state of this transition is considered
the expression vector of state S1. To simulate the transition from S1 to S2,
regulation of the genes in modules D and E are turned on, while the regulation of
genes in module C is turned off. During this simulation, the expression of genes in
modules A, B, D, and E is thus allowed to change. The end state of the simulation is
considered the expression vector of state S2.

For each of the branches in the state network, an expression matrix and the
corresponding progression time along that branch are retained. To map a
simulated cell to the ground-truth, the correlation between its expression values
and the expression matrix of the ground-truth trajectory is calculated, and the cell
is mapped to the position in the ground-truth trajectory that has the highest
correlation.

Determining the cell-specific ground-truth regulatory network. Calculating the
regulatory effect of a regulator R on a target T (Supplementary Fig. 4F) requires
determining the contribution of R in the propensity function of the transcription of
T with respect to other regulators. This information is useful, amongst others, for
benchmarking cell-specific network inference methods.

The regulatory effect of R on T at a particular state S is defined as the change in
the propensity of transcription when R is set to zero, scaled by the inverse of the
pre-mRNA production rate of T. More formally:

regeffectG ¼
proptransGðSÞ � proptransGðS½zT 0�Þ

xprG
ð26Þ

Determining the regulatory effect for all interactions and cells in the dataset
yields the complete cell-specific ground-truth GRN. The regulatory effect lies
between [−1, 1], where −1 represents complete inhibition of T by R, 1 represents
maximal activation of T by R, and 0 represents inactivity of the regulatory
interaction between R and T.

Comparison of cell-specific network inference methods. 42 datasets were
generated using the 14 different predefined backbones and three different seeds.
For every cell in the dataset, the transcriptomics profile and the corresponding cell-
specific ground-truth regulatory network was determined.

We selected three cell-specific NI methods: SCENIC32, LIONESS33,51, and
SSN34.

LIONESS33 runs a NI method multiple times to construct cell-specific GRNs.
LIONESS first infers a GRN with all of the samples. A second GRN is inferred with
all samples except one particular profile. The cell-specific GRN for that particular
profile is defined as the difference between the two GRN matrices. This process is
repeated for all profiles, resulting in a cell-specific GRN. By default, LIONESS uses
PANDA52 to infer GRNs, but since dyngen does not produce motif data and motif
data is required by PANDA, PANDA is inapplicable in this context. Instead, we
used the lionessR53 implementation of LIONESS, which uses by default the Pearson
correlation as a NI method. We marked results from this implementation as
“LIONESS+ Pearson”.

SSN34 follows, in essence, the exact same methodology as LIONESS except that
it specifically only uses the Pearson correlation. It is worth noting that the
LIONESS preprint was released before the publication of SSN. Since no
implementation was provided by the authors, we implemented SSN in R using
basic R and tidyverse functions54 and marked results from this implementation as
“SSN*”.

SCENIC32 consists of four main steps. First, classical network inference is
performed with stochastic gradient boosting machines using arboreto36.
Second, the top 10 regulators of every target gene are selected. Interactions are
grouped together in ‘modules’; each module contains one regulator and all of its
targets. Next, the modules are filtered using motif analysis. Finally, for each module
and each cell, an activity score is calculated using AUCell. As a post-processing of
this output, all modules and the corresponding activity scores are combined back
into a cell-specific GRN consisting of (cell, regulator, target, score) pairs. For this
analysis, the Python implementation of SCENIC was used, namely pySCENIC55.
Since dyngen does not generate motif data, step 3 in this analysis is skipped.

The AUROC and AUPR metrics are common metrics for evaluating a predicted
GRN with a ground-truth GRN56. To compare a predicted cell-specific GRN with
the ground-truth cell-specific GRN, the top 10,000 interactions per cell is retained,
and the mean AUROC and AUPR scores are calculated across all cells.

We compared the mean AUROC and AUPR scores obtained by the three CSNI
methods across all datasets by performing pairwise non-parametric paired two-
sided Durbin–Conover tests57 using pairwiseComparisons58. Test statistics

and p values for the all pairwise combinations are reported in the Source Data file.
Reported p values are adjusted for multiple testing using Holm correction59.

Comparison of RNA velocity methods. Three datasets were generated for each of
the 14 different predefined backbones, resulting in a collection of 42 datasets.
Throughout each of the simulation, the propensity of the transcription and mRNA
decay is collected, as the RNA velocity of a gene at any point in the simulation is
the difference between the transcription propensity and the mRNA decay
propensity.

We applied two RNA velocity methods: velocyto30, as implemented in the
velocyto.py package, and scvelo method31, as implemented in the scvelo
package. For scvelo, we chose two parameter settings for “mode”, namely
“stochastic” and “dynamical”. For both methods, we used the same normalised data
as provided by dyngen, with no extra cell or feature filtering, but otherwise
matched the parameters to their respective tutorial vignettes as well as possible.

We compared each RNA velocity prediction to the ground-truth using two
metrics: the velocity correlation and the velocity arrow cosine. For the velocity
correlation, we extracted a ground truth RNA velocity by subtracting for each
mRNA molecule the propensity of its production by the propensity of its
degradation. If the expression of an mRNA will increase in the future, this value is
positive, while it is negative if it is going to decrease. For each gene, we determined
its velocity correlation by calculating the Spearman rank correlation between the
ground truth velocity with the observed velocity. For the velocity arrow cosine, we
determined a set of 100 trajectory waypoints uniformly spread on the trajectory.
For each waypoint, we weighted each cell based on a Gaussian kernel on its
geodesic distance from the waypoint. These weights were used to calculate a
weighted average velocity vector of each waypoint. We then calculated for each
waypoint the cosine similarity between this velocity vector and the known direction
of the trajectory.

We compared the velocity correlation and velocity arrow cosine scores obtained
by velocyto and scvelo across all datasets by performing pairwise non-parametric
paired two-sided Durbin–Conover tests57 using pairwiseComparisons58.
Test statistics and p values for the all pairwise combinations are reported in the
Source Data file. Reported p values are adjusted for multiple testing using Holm
correction59.

Comparison of trajectory alignment. Four custom linear backbones of varying
sizes were constructed. For each of these backbones, 10 datasets were generated
with 10 different seeds, resulting in a total of 40 datasets. Every dataset is generated
in three main steps. First, the GRN is generated based on the given backbone. Next,
generating the kinetics, gold standard, and cells is performed twice, resulting in two
sub-datasets. Finally, the two sub-datasets are combined and cells are sampled from
the combined dataset. Since the two sub-datasets were simulated with different
kinetic parameters, the combined dataset will contain two trajectories.

On each combined dataset we applied two trajectory alignment methods,
DTW24 and cellAlign28. DTW is designed to align temporal sequences by dilating
or contracting the sequences to best match each other. cellAlign uses DTW to
perform this alignment, but first interpolates and rescales the input data in order to
better cope with single-cell omics data.

To evaluate a trajectory alignment method on a combined dataset we computed
the geodesic distances of each cell from the start of the trajectory, also called the
pseudotime. For each dataset, the pseudotime values are rescaled between 0 and 1 to
allow for easier comparison. A trajectory alignment produces a sequence of index
pairs [(i0, j0), (i1, j1), …, (iN, jN)], where i0 and j0 are equal to 0 (the first position in
both pseudotime series), iN and jN are equal to the respective last positions in the
pair of pseudotime series, and [i0, i1, …, iN] and [j0, j1, …, jN] are in ascending
order and can contain duplicates values. The ABWAP metric is defined as follows,
where pt1 and pt2 are the unit pseudotime vectors. See Supplementary Fig. 1D for a
visual interpretation of this metric.

ABWAP ¼ 1� area under curveðpt1½i0::iN � þ pt2½j0::jN �; absðpt1½i0::iN � � pt2½j0::jN �ÞÞ
ð27Þ

We compared the ABWAP scores obtained by DTW and cellAlign across all
datasets by performing pairwise non-parametric paired two-sided Durbin–Conover
tests57 using pairwiseComparisons58. Test statistics and p values for the all
pairwise combinations are reported in the Source Data file. Reported p values are
adjusted for multiple testing using Holm correction59.

Comparison of scalability and runtime. Simulating a bifurcating cycle dataset
with 10,000 genes and 10,000 required in total 1147 s (Supplementary Note 2).
Fixing the number of genes and varying the number of cells showed that the
execution time of dyngen scales linearly w.r.t. the number of cells (Supplementary
Note 2). Fixing the number of cells and varying the number of genes also showed
that the execution time of dyngen scales linearly w.r.t. the number of genes
(Supplementary Note 2). These timings were measured using 30 (out of 32) threads
using a AMD Ryzen 9 5950X clocked at 3.4GHz.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24152-2 ARTICLE

NATURE COMMUNICATIONS | (2021) 12:3942 | https://doi.org/10.1038/s41467-021-24152-2 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data for box plots in Fig. 2 and Supplementary Figs. 1–3 are provided with this
paper. All code and data required to reproduce the analysis are available on GitHub at
https://github.com/dynverse/dyngen_manuscript. The datasets generated for the
different use cases are available on Zenodo with record number 4637926 (https://doi.org/
10.5281/zenodo.4637926). Source data are provided with this paper.

Code availability
Results in this manuscript were generated with R 4.0.3 and dyngen 1.0.0. dyngen is
available as an open-source software package at https://cran.r-project.org/
package=dyngenand also on Zenodo with record number 4751443 (https://doi.org/
10.5281/zenodo.4751443). The analyses performed in this manuscript are available on
GitHub at https://github.com/dynverse/dyngen_manuscript. The version numbers of
downstream dependencies of dyngen and dyngen_manuscript used in this study are:
anndata 0.7.5.1, assertthat 0.2.1, babelwhale 1.0.1, bit 4.0.4, bit64 4.0.5, carrier 0.1.0,
cellAlign 0.1.0, codetools 0.2-18, colorspace 2.0-0, compiler 4.0.4, crayon 1.4.1.9000, data.
table 1.13.4, DBI 1.1.1, debugme 1.1.0, desc 1.2.0, digest 0.6.27, dplyr 1.0.5, dtw 1.22-3,
dynparam 1.0.1, dynutils 1.0.6, dynwrap 1.2.2, ellipsis 0.3.1, fansi 0.4.2, farver 2.1.0,
future 1.20.1, future.apply 1.7.0, generics 0.1.0, ggforce 0.3.2, ggplot2 3.3.3, ggraph 2.0.4,
ggrepel 0.9.0, GillespieSSA2 0.2.7, globals 0.14.0, glue 1.4.2, graphlayouts 0.7.1, grid 4.0.4,
gridExtra 2.3, gtable 0.3.0, gtools 3.8.2, hdf5r 1.3.3, hms 1.0.0, igraph 1.2.6, irlba 2.3.3,
jsonlite 1.7.2, lattice 0.20-41, lifecycle 1.0.0, lisi 1.0, listenv 0.8.0, lmds 0.1.0, magrittr 2.0.1,
MASS 7.3-53, Matrix 1.3-2, matrixStats 0.57.0, munsell 0.5.0, parallel 4.0.4, parallelly
1.21.0, patchwork 1.1.1, pbapply 1.4-3, pheatmap 1.0.12, pillar 1.5.1, pkgconfig 2.0.3, plyr
1.8.6, polyclip 1.10-0, pracma 2.2.9, processx 3.4.5, proxy 0.4-24, proxyC 0.1.5, ps 1.6.0,
purrr 0.3.4, R6 2.5.0, RANN 2.6.1, rappdirs 0.3.3, RColorBrewer 1.1-2, Rcpp 1.0.6,
RcppParallel 5.0.2, RcppXPtrUtils 0.1.1, readr 1.4.0, remotes 2.2.0, reshape2 1.4.4,
reticulate 1.18-9007, rlang 0.4.10, rprojroot 2.0.2, scales 1.1.1, sctransform 0.3.2, scvelo
0.1.0.9000, stringi 1.5.3, stringr 1.4.0, tibble 3.0.5, tidygraph 1.2.0, tidyr 1.1.2, tidyselect
1.1.0, tools 4.0.4, tweenr 1.0.1, utf8 1.1.4, vctrs 0.3.6, viridis 0.5.1, viridisLite 0.3.0,
yaml 2.2.1.

Received: 23 June 2020; Accepted: 27 May 2021;

References
1. Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA

sequencing data. Genome Biol. 18, 174 https://doi.org/10.1186/s13059-017-
1305-0 (2017).

2. Björnsson, B. et al. Digital twins to personalize medicine. Genome Med. 12, 4
https://doi.org/10.1186/s13073-019-0701-3 (2019).

3. Roy, S., Werner-Washburne, M. & Lane, T. A system for generating
transcription regulatory networks with combinatorial control of transcription.
Bioinformatics 24, 1318–1320 https://doi.org/10.1093/bioinformatics/btn126
(2008).

4. Hache, H., Wierling, C., Lehrach, H. & Herwig, R. GeNGe: Systematic
generation of gene regulatory networks. Bioinformatics 25, 1205–1207 https://
doi.org/10.1093/bioinformatics/btp115 (2009).

5. Schaffter, T., Marbach, D. & Floreano, D. GeneNetWeaver: In silico
benchmark generation and performance profiling of network inference
methods. Bioinformatics 27, 2263–2270 https://doi.org/10.1093/
bioinformatics/btr373 (2011).

6. Van den Bulcke, T. et al. SynTReN: A generator of synthetic gene expression
data for design and analysis of structure learning algorithms. BMC Bioinform.
7, 43 https://doi.org/10.1186/1471-2105-7-43 (2006).

7. Prill, R. J. et al. Towards a Rigorous Assessment of Systems Biology Models:
The DREAM3 Challenges. PLoS ONE 5, e9202 https://doi.org/10.1371/journal.
pone.0009202 (2010).

8. Marbach, D. et al. Revealing strengths and weaknesses of methods for gene
network inference. Proc. Natl Acad. Sci. 107, 6286–6291 https://doi.org/
10.1073/pnas.0913357107 (2010).

9. Marbach, D. et al. Wisdom of Crowds for Robust Gene Network Inference.
Nat. Methods 9, 796–804 https://doi.org/10.1038/nmeth.2016 (2012).

10. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq
analysis: a tutorial. Mol. Syst. Biol. 15, e8746 https://doi.org/10.15252/
msb.20188746 (2019).

11. Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C.
Normalizing single-cell RNA sequencing data: challenges and opportunities.
Nat. Methods 14, 565–571 https://doi.org/10.1038/nmeth.4292 (2017).

12. Gillespie, D. T. Exact stochastic simulation of coupled chemical
reactions. J. Phys. Chem. 81, 2340–2361 https://doi.org/10.1021/j100540a008
(1977).

13. Vieth, B., Ziegenhain, C., Parekh, S., Enard, W. & Hellmann, I. powsimR:
Power analysis for bulk and single cell RNA-seq experiments. Bioinformatics
33, 3486–3488 https://doi.org/10.1093/bioinformatics/btx435 (2017).

14. Papadopoulos, N., Gonzalo, P. R. & Söding, J. PROSSTT: Probabilistic
simulation of single-cell RNA-seq data for complex differentiation processes.
Bioinformatics 35, 3517–3519 https://doi.org/10.1093/bioinformatics/btz078
(2019).

15. Zhang, X., Xu, C. & Yosef, N. Simulating multiple faceted variability in single
cell RNA sequencing. Nat. Commun. 10, 1–16 https://doi.org/10.1038/s41467-
019-10500-w (2019).

16. Street, K. et al. Slingshot: Cell Lineage and Pseudotime Inference for Single-
Cell Transcriptomics. BMC Genomics 19, 477 https://doi.org/10.1186/s12864-
018-4772-0 (2018).

17. Parra, R. G. et al. Reconstructing complex lineage trees from scRNA-seq data
using MERLoT. Nucleic Acids Res. 47, 8961–8974 https://doi.org/10.1093/nar/
gkz706 (2019).

18. LummertzdaRocha, E. et al. Reconstruction of complex single-cell trajectories
using CellRouter. Nat. Commun. 9, 892 https://doi.org/10.1038/s41467-018-
03214-y (2018).

19. Lin, Y. et al. scClassify: Sample size estimation and multiscale classification of
cells using single and multiple reference. Mol. Syst. Biol. 16, e9389 https://doi.
org/10.15252/msb.20199389 (2020).

20. Duò, A., Robinson, M. D. & Soneson, C. A systematic performance evaluation
of clustering methods for single-cell RNA-seq data. F1000Res. 7, 1141 https://
doi.org/10.12688/f1000research.15666.2 (2018).

21. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-
cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 https://doi.org/
10.1038/s41587-019-0071-9 (2019).

22. Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell
differential expression analysis. Na. Methods 15, 255–261 https://doi.org/
10.1038/nmeth.4612 (2018).

23. Weber, L. M. et al. Essential guidelines for computational method
benchmarking. Genome Biol. 20, 125 https://doi.org/10.1186/s13059-019-
1738-8 (2019).

24. Giorgino, T. Computing and Visualizing Dynamic Time Warping Alignments
in R: The dtw Package. Journal of Statistical Software, https://doi.org/
10.18637/jss.v031.i07 (2009).

25. Cacchiarelli, D. et al. Aligning single-cell developmental and reprogramming
trajectories identifies molecular determinants of myogenic reprogramming
outcome. Cell Syst. 7, 258–268.e3 https://doi.org/10.1016/j.cels.2018.07.006
(2018).

26. Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific
features of brain development. Nature 574, 418–422 https://doi.org/10.1038/
s41586-019-1654-9 (2019).

27. McFaline-Figueroa, J. L. et al. A pooled single-cell genetic screen identifies
regulatory checkpoints in the continuum of the epithelial-to-mesenchymal
transition. Nat. Genet. 51, 1389–1398 https://doi.org/10.1038/s41588-019-
0489-5 (2019).

28. Alpert, A., Moore, L. S., Dubovik, T. & Shen-Orr, S. S. Alignment of single-cell
trajectories to compare cellular expression dynamics. Nat. Methods 15,
267–270 https://doi.org/10.1038/nmeth.4628 (2018).

29. Zeisel, A. et al. Coupled pre-mRNA and mRNA dynamics unveil operational
strategies underlying transcriptional responses to stimuli. Mol. Syst. Biol. 7,
529 https://doi.org/10.1038/msb.2011.62 (2011).

30. Manno, G. L. et al. RNA Velocity of Single Cells. Nature 560, 494–498 https://
doi.org/10.1038/s41586-018-0414-6 (2018).

31. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA
velocity to transient cell states through dynamical modeling. Nat. Biotechnol.
38 1408–1414 https://doi.org/10.1038/s41587-020-0591-3 (2020).

32. Aibar, S. et al. SCENIC: single-cell regulatory network inference and
clustering. Nat. Methods 14, 1083–1086 https://doi.org/10.1038/nmeth.4463
(2017).

33. Kuijjer, M. L., Tung, M. G., Yuan, G., Quackenbush, J. & Glass, K. Estimating
sample-specific regulatory networks. iScience 14, 226–240 https://doi.org/
10.1016/j.isci.2019.03.021 (2019).

34. Liu, X., Wang, Y., Ji, H., Aihara, K. & Chen, L. Personalized characterization
of diseases using sample-specific networks. Nucleic Acids Res. 44, e164–e164
https://doi.org/10.1093/nar/gkw772 (2016).

35. Huynh-Thu, V. et al. Inferring regulatory networks from expression data
using tree-based methods. PLoS ONE 5, e12776 https://doi.org/10.1371/
journal.pone.0012776 (2010).

36. Moerman, T. et al. GRNBoost2 and Arboreto: efficient and scalable inference
of gene regulatory networks. Bioinformatics 35, 2159–2161 https://doi.org/
10.1093/bioinformatics/bty916 (2019).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24152-2

8 NATURE COMMUNICATIONS | (2021) 12:3942 | https://doi.org/10.1038/s41467-021-24152-2 | www.nature.com/naturecommunications

https://github.com/dynverse/dyngen_manuscript
https://doi.org/10.5281/zenodo.4637926
https://doi.org/10.5281/zenodo.4637926
https://cran.r-project.org/package=dyngen
https://cran.r-project.org/package=dyngen
https://doi.org/10.5281/zenodo.4751443
https://doi.org/10.5281/zenodo.4751443
https://github.com/dynverse/dyngen_manuscript
https://doi.org/10.1186/s13059-017-1305-0
https://doi.org/10.1186/s13059-017-1305-0
https://doi.org/10.1186/s13073-019-0701-3
https://doi.org/10.1093/bioinformatics/btn126
https://doi.org/10.1093/bioinformatics/btp115
https://doi.org/10.1093/bioinformatics/btp115
https://doi.org/10.1093/bioinformatics/btr373
https://doi.org/10.1093/bioinformatics/btr373
https://doi.org/10.1186/1471-2105-7-43
https://doi.org/10.1371/journal.pone.0009202
https://doi.org/10.1371/journal.pone.0009202
https://doi.org/10.1073/pnas.0913357107
https://doi.org/10.1073/pnas.0913357107
https://doi.org/10.1038/nmeth.2016
https://doi.org/10.15252/msb.20188746
https://doi.org/10.15252/msb.20188746
https://doi.org/10.1038/nmeth.4292
https://doi.org/10.1021/j100540a008
https://doi.org/10.1093/bioinformatics/btx435
https://doi.org/10.1093/bioinformatics/btz078
https://doi.org/10.1038/s41467-019-10500-w
https://doi.org/10.1038/s41467-019-10500-w
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1093/nar/gkz706
https://doi.org/10.1093/nar/gkz706
https://doi.org/10.1038/s41467-018-03214-y
https://doi.org/10.1038/s41467-018-03214-y
https://doi.org/10.15252/msb.20199389
https://doi.org/10.15252/msb.20199389
https://doi.org/10.12688/f1000research.15666.2
https://doi.org/10.12688/f1000research.15666.2
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/nmeth.4612
https://doi.org/10.1038/nmeth.4612
https://doi.org/10.1186/s13059-019-1738-8
https://doi.org/10.1186/s13059-019-1738-8
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.1016/j.cels.2018.07.006
https://doi.org/10.1038/s41586-019-1654-9
https://doi.org/10.1038/s41586-019-1654-9
https://doi.org/10.1038/s41588-019-0489-5
https://doi.org/10.1038/s41588-019-0489-5
https://doi.org/10.1038/nmeth.4628
https://doi.org/10.1038/msb.2011.62
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1016/j.isci.2019.03.021
https://doi.org/10.1016/j.isci.2019.03.021
https://doi.org/10.1093/nar/gkw772
https://doi.org/10.1371/journal.pone.0012776
https://doi.org/10.1371/journal.pone.0012776
https://doi.org/10.1093/bioinformatics/bty916
https://doi.org/10.1093/bioinformatics/bty916
www.nature.com/naturecommunications

37. Ewing, A. D. et al. Combining tumor genome simulation with crowdsourcing
to benchmark somatic single-nucleotide-variant detection. Nat. Methods 12,
623–630 https://doi.org/10.1038/nmeth.3407 (2015).

38. Smith, S. & Grima, R. Spatial stochastic intracellular kinetics: a review of
modelling approaches. Bull. Math. Biol. 81, 2960–3009 https://doi.org/
10.1007/s11538-018-0443-1 (2019).

39. Rekhtman, N., Radparvar, F., Evans, T. & Skoultchi, A. I. Direct interaction of
hematopoietic transcription factors PU.1 and GATA-1: functional antagonism
in erythroid cells. Genes Dev. 13, 1398–1411 https://doi.org/10.1101/
gad.13.11.1398 (1999).

40. Xu, H. et al. Regulation of bifurcating B cell trajectories by mutual antagonism
between transcription factors IRF4 and IRF8. Nat. Immunol. 16, 1274–1281
(2015).

41. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587 https://
doi.org/10.1038/nature08533 (2009).

42. Wang, J., Zhang, K., Xu, L. & Wang, E. Quantifying the Waddington
landscape and biological paths for development and differentiation. Proc. Natl
Acad. Sci. 108, 8257–8262 https://doi.org/10.1073/pnas.1017017108 (2011).

43. Ferrell, J. E. Bistability, Bifurcations, and Waddington’s Epigenetic Landscape.
Current Biology 22, R458–R466 https://doi.org/10.1016/j.cub.2012.03.045
(2012).

44. Yosef, N. et al. Dynamic regulatory network controlling {TH17} cell
differentiation. Nature 496, 461–468 (2013).

45. Lizio, M. et al. Gateways to the FANTOM5 promoter level mammalian
expression atlas. Genome Biology 16, 22 https://doi.org/10.1186/s13059-014-
0560-6 (2015).

46. Gibson, M. A. & Bruck, J. A probabilistic model of a prokaryotic gene and its
regulation. Computational Methods in Molecular Biology: From Genotype to
Phenotype. (MIT press, 2000).

47. Schwanhäusser, B. et al. Global quantification of mammalian gene expression
control. Nature 473, 337–342 https://doi.org/10.1038/nature10098 (2011).

48. Schilstra, M. J. & Nehaniv, C. L. Bio-Logic: Gene Expression and the Laws of
Combinatorial Logic. Artif. Life 14, 121–133 https://doi.org/10.1162/
artl.2008.14.1.121 (2008).

49. Cannoodt, R., Saelens, W., Todorov, H. & Saeys, Y. Single-cell -omics datasets
containing a trajectory. Zenodo, https://doi.org/10.5281/zenodo.1211532
(2018).

50. Soneson, C. & Robinson, M. D. Towards unified quality verification of
synthetic count data with countsimQC. Bioinformatics 34, 691–692 https://
doi.org/10.1093/bioinformatics/btx631 (2018).

51. Kuijjer, M. L., Tung, M., Yuan, G., Quackenbush, J. & Glass, K. Estimating
sample-specific regulatory networks. iScience. 14, 226–240 https://doi.org/
10.1016/j.isci.2019.03.021 (2019).

52. Glass, K., Huttenhower, C., Quackenbush, J. & Yuan, G.-C. Passing messages
between biological networks to refine predicted interactions. PLOS ONE 8,
e64832 https://doi.org/10.1371/journal.pone.0064832 (2013).

53. Kuijjer, M. L., Hsieh, P.-H., Quackenbush, J. & Glass, K. lionessR: single
sample network inference in R. BMC Cancer 19, 1003 https://doi.org/10.1186/
s12885-019-6235-7 (2019).

54. Wickham, H. et al. Welcome to the Tidyverse. https://doi.org/10.21105/
joss.01686 (2019).

55. Van de Sande, B. et al. A scalable SCENIC workflow for single-cell gene
regulatory network analysis. Nat. Protoc. 15, 2247–2276 https://doi.org/
10.1038/s41596-020-0336-2 (2020).

56. Marbach, D., Schaffter, T., Mattiussi, C. & Floreano, D. Generating realistic in
silico gene networks for performance assessment of reverse engineering

methods. J. Comput. Biol. 16, 229–239 https://doi.org/10.1089/cmb.2008.09TT
(2009).

57. Conover, W. J. & Iman, R. L. On multiple-comparisons procedures. Technical
report, Technical report, Los Alamos Scientific Laboratory (1979).

58. Patil I. pairwiseComparisons: Multiple Pairwise Comparison Tests. https://
CRAN.R-project.org/package=pairwiseComparisons (2019).

59. Holm S. A simple sequentially rejective multiple test procedure. Scand. J. Stat.
6, 65–70 (1979).

Acknowledgements
This project has been made possible in part by grant number 2020-218899 from the
Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foun-
dation. This research received funding from the Flemish Government under the
“Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” program.

Author contributions
W.S. and R.C. designed the study. R.C., W.S., and L.D. performed the experiments and
analysed the data. R.C. and W.S. implemented the dyngen software package. R.C., W.S.,
L.D., and Y.S. wrote the manuscript. Y.S. supervised the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-24152-2.

Correspondence and requests for materials should be addressed to Y.S.

Peer review informationNature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24152-2 ARTICLE

NATURE COMMUNICATIONS | (2021) 12:3942 | https://doi.org/10.1038/s41467-021-24152-2 | www.nature.com/naturecommunications 9

https://doi.org/10.1038/nmeth.3407
https://doi.org/10.1007/s11538-018-0443-1
https://doi.org/10.1007/s11538-018-0443-1
https://doi.org/10.1101/gad.13.11.1398
https://doi.org/10.1101/gad.13.11.1398
https://doi.org/10.1038/nature08533
https://doi.org/10.1038/nature08533
https://doi.org/10.1073/pnas.1017017108
https://doi.org/10.1016/j.cub.2012.03.045
https://doi.org/10.1186/s13059-014-0560-6
https://doi.org/10.1186/s13059-014-0560-6
https://doi.org/10.1038/nature10098
https://doi.org/10.1162/artl.2008.14.1.121
https://doi.org/10.1162/artl.2008.14.1.121
https://doi.org/10.5281/zenodo.1211532
https://doi.org/10.1093/bioinformatics/btx631
https://doi.org/10.1093/bioinformatics/btx631
https://doi.org/10.1016/j.isci.2019.03.021
https://doi.org/10.1016/j.isci.2019.03.021
https://doi.org/10.1371/journal.pone.0064832
https://doi.org/10.1186/s12885-019-6235-7
https://doi.org/10.1186/s12885-019-6235-7
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
https://doi.org/10.1038/s41596-020-0336-2
https://doi.org/10.1038/s41596-020-0336-2
https://doi.org/10.1089/cmb.2008.09TT
https://CRAN.R-project.org/package=pairwiseComparisons
https://CRAN.R-project.org/package=pairwiseComparisons
https://doi.org/10.1038/s41467-021-24152-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells
	Results
	Discussion
	Methods
	Defining the module network
	Generating the gene regulatory network
	Convert gene regulatory network to a set of reactions
	Propensity of transcription when N = 1
	Propensity of transcription when N = 2
	Propensity of transcription for an arbitrary N
	Propensity of transcription for a large N
	Independence, synergism, and basal expression
	Simulate single cells
	Simulate experiment
	Sample cells
	Sample molecules
	Comparison between a dyngen and a reference dataset
	Simulating batch effects
	Determining the ground-truth trajectory
	Determining the cell-specific ground-truth regulatory network
	Comparison of cell-specific network inference methods
	Comparison of RNA velocity methods
	Comparison of trajectory alignment
	Comparison of scalability and runtime

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

