
TRACE CLASS AND HILBERT-SCHMIDT PSEUDO DIFFERENTIAL

OPERATORS ON STEP TWO NILPOTENT LIE GROUPS

VISHVESH KUMAR AND SHYAM SWARUP MONDAL

Abstract. Let G be a step two nilpotent Lie group. In this paper, we give necessary and
sufficient conditions on the operator valued symbols σ such that the associated pseudo-
differential operators Tσ on G are in the class of Hilbert-Schmidt operators. As a key
step to prove this, we define (µ, ν)-Weyl transform on G and derive a trace formula for
(µ, ν)-Weyl transform with symbols in L2

(
R2n

)
. We show that Hilbert-Schmidt pseudo-

differential operators on L2(G) are same as Hilbert-Schmidt (µ, ν)-Weyl transform with
symbol in L2(R2n+r+k × R2n+r+k). Further, we present a characterization of the trace
class pseudo-differential operators on G and provide a trace formula for these trace class
operators.

1. Introduction

The theory of pseudo-differential operators is one of the essential tools in modern contem-
porary mathematics. Pseudo-differential operators are widely used in harmonic analysis,
PDE, geometry, mathematical physics, time-frequency analysis, imaging, and computations
[14]. Kohn and Nirenberg [15] first introduced the theory of pseudo-differential operators
and later used by Hörmander [14] for solving the problems in partial differential equations.

Let σ be a measurable function on Rn×Rn. Then the (global) pseudo-differential operator
Tσ associated with the symbol σ is defined by

(Tσf) (x) = (2π)−n/2
∫
Rn
eix·ξσ(x, ξ)f̂(ξ)dξ, x ∈ Rn

for all f in the Schwartz space S (Rn) on Rn, provided that the integral exists. Here f̂
denotes the Euclidean Fourier transform of f and is defined by

f̂(ξ) = (2π)−n/2
∫
Rn
e−ix·ξf(x)dx, ξ ∈ Rn.

The formation of a pseudo-differential operator is mainly based on the Fourier inversion
formula given by

f(x) = (2π)−n/2
∫
Rn
eix·ξ f̂(ξ)dξ, x ∈ Rn

for all f in S (Rn). To define the pseudo-differential operators on other noncommutative
groups, we first observe that Rn is a locally compact abelian group and its dual groups is also
Rn and a pseudo-differential operators can be defined using the inverse Fourier transform on
Rn. These observations allow one to extend the definition of pseudo-differential operators
to other noncommutative groups provided that we have an Fourier inversion formula for
the Fourier transform on the groups. Using this idea, pseudo-differential operators on
different classes of groups such as S1,Z, finite abelian groups, locally compact abelian
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groups, affine groups, compact groups, compact Lie groups, homogeneous spaces of compact
groups, Heisenberg group, and on general locally compact type I groups have been defined
and studied broadly by several researchers. We refer to [2, 4, 12, 13, 16, 20, 30, 17, 18, 26, 27]
and references therein.

Ruzhansky and Fischer developed the global theory of pseudo-differential operators on
Heisenberg group, more generally on graded Lie groups [12, 13]. Also, Ruzhansky and
Mantoiu investigated the global quantization on locally compact unimodular type I groups
and on nilpotent Lie groups [21, 22]. Particularly in [21], the authors presented two ap-
proaches to justify the global quantization formula for unimodular type I groups. The first
approach is based on the cross product C∗-algebra associated with certain C∗-dynamical
systems and the second way based on the suitably defined Wigner transform and Weyl sys-
tem. They introduced and studied the τ -quantization, where τ is any measurable function
on a unimodular group. Further, using suitably defined Fourier-Wigner τ -transform, they
explained quantization by Weyl system which actually coincides with τ -quantization. As an
application of this quantization, they proved the belongingness of these pseudo-differential
operators to the Schatten class, in particular, Hilbert-Schmidt class. Our quantization can
be seen as a particular case of the quantization defined by Ruzhansky and Mantoiu [21].

Over the years, a considerable attention has been devoted by several researchers for
finding the criteria for Schatten class of pseudo-differential operators in terms of symbols.
Ruzhansky and Delgado investigated this in details in many different settings; for example,
using the matrix-valued symbols on compact Lie groups in [7, 6, 10, 9] they successfully
characterized these classes of operators on compact Lie groups (see also [19]). Later, they
with their collaborators extended these results to compact manifolds and to more general
on Hilbert spaces [8, 10] using the non-harmonic analysis developed by Ruzhansky and
Tokmagambetov [28].

A well known-result in the theory of pseudo-differential operators on Rn is that if σ ∈
L2 (Rn × Rn) then Tσ is a bounded linear operator from L2 (Rn) into L2 (Rn). Furthermore,
the resulting bounded linear operator Tσ is in Hilbert-Schimdt class as explained in [30].
In this direction, a characterization of trace class pseudo-differential operators on compact
and Hausdorff groups and on homogeneous space of compact and Hausdorff group obtained
in [23] and [16] respectively. Further, this result has been extended to non-compact non-
abelian groups. Dasgupta and Wong in [3, 5] provided necessary and sufficient conditions
on the symbols such that the corresponding pseudo-differential operators on the Heisenberg
group are in Hilbert-Schmidt class. Mingkai and Jianxun [31] studied the properties of
pseudo-differential on H-type group. Recently, a similar result was established by Dasgupta
and Kumar for pseudo-differential operators on the abstract Heisenberg group [4]. In this
paper, we extend these results to step two nilpotent Lie group G. Note that, Heisenberg
group and H-type groups are particular type of step two nilpotent Lie groups.

We obtain conditions on the symbol σ such that the corresponding pseudo-differential
operator Tσ is a bounded linear operator on L2(G). Further, we show that under some
additional conditions on the symbol the corresponding pseudo-differential operators on G is
a Hilbert-Schmidt operator. We define (µ, ν)-Weyl transform on G and show that these class
of Hilbert-Schmidt operators can be identified with (µ, ν)-Weyl transforms with symbols in
L2
(
R2n+r+k × R2n+r+k

)
. Also, we derive a trace formula for the (µ, ν)-Weyl transform.

Further, we present a characterization of the trace class pseudo-differential operators on G
and provide a trace formula for these trace class operators.

The presentation of this manuscript is divided into five sections apart from the introduc-
tion: In Section 2, we recall basic harmonic analysis on the step two nilpotent Lie group
G and define the pseudo-differential operators on the group G. In Section 3, we study
L2-boundedness property of pseudo-differential operators on G. We also prove that if two
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symbols with some conditions give arise to same pseudo-differential operator then the sym-
bols must be same. In Section 4, we define and obtain a trace formula for (µ, ν)-Weyl
transform. We provide a necessary and sufficient condition on the symbol σ such that the
corresponding pseudo-differential operator Tσ on G is a Hilbert-Schmidt operator. Finally,
we characterize the trace class pseudo-differential operators on G and find a trace formula
for these trace class operators in Section 5.

2. Preliminary

In this section we recall some basics of harmonic analysis on step two nilpotent Lie groups
to make the paper self contained. A complete account of representation theory for two step
connected, simply connected nilpotent Lie groups can be found in [24, 1, 25].

2.1. Step two nilpotent Lie groups. Let G be a two step connected, simply connected
nilpotent Lie group. Then its Lie algebra g has the decomposition g = v⊕ z, where z is the
centre of g and v is any subspace of g complementary to z. Let us choose an inner product on
g so that v and z are orthogonal. Fix an orthonormal basis B = {V1, V2 · · · , Vm, T1, · · · , Tk}
such that v = spanR {V1, V2 · · · , Vm} and z = spanR {T1, · · · , Tk} . We can identify G with
v ⊕ z and write (V + T ) for exp(V + T ) and denote it by (V, T ), where V ∈ v and T ∈ z.
By the Baker-Campbell-Hausdorff formula, the group product law on G is given by

(V, T )
(
V ′, T ′

)
=

(
V + V ′, T + T ′ +

1

2

[
V, V ′

])
for all V, V ′ ∈ v and T, T ′ ∈ z. Let g∗ and z∗ be the real dual of g and z respectively. For
each ν ∈ z∗, consider the bilinear form Bν on v defined by

Bν(V, V ′) = ν([V, V ′])

for all V, V ′ ∈ v. Let

rν = {V ∈ v : ν([V, V ′]) = 0 for all V ′ ∈ v}
and mν denote the orthogonal complement of rν in v. Then the set

U = {ν ∈ z∗ : dim(mν) is maximum}
is a Zariski open subset of z∗. If rν = {0} for each ν ∈ U , then the Lie algebra is called an
MW algebra and the corresponding Lie group is called an MW group.

2.2. Without MW-condition. In the case rν 6= {0} for each ν ∈ U and Bν |mν is non-
degenerate and hence dimmν is 2n. Then there exists an orthonormal basis

{X1(ν), Y1(ν), · · · , Xn(ν), Yn(ν), Z1(ν), · · · , Zr(ν)}
of v and positive numbers di(ν) > 0 such that

(1) rν = spanR {Z1(ν), · · · , Zr(ν)},

(2) ν ([Xi(ν), Yj(ν)]) = δi,jdj(ν), 1 ≤ i, j ≤ n and
ν ([Xi(ν), Xj(ν)]) = 0, ν ([Yi(ν), Yj(ν)]) = 0 for 1 ≤ i, j ≤ n,

(3) spanR {X1(ν), · · · , Xn(ν), Z1(ν), · · · , Zr(ν), T1, · · · , Tk} = hν is a polarization for ν.

We call the basis

{X1(ν), · · · , Xn(ν), Y1(ν), · · · , Yn(ν), Z1(ν), · · · , Zr(ν), T1, · · · , Tk}
of g as almost symplectic basis. Let

ξν = spanR {X1(ν) · · · , Xn(ν)} and ην = spanR {Y1(ν), · · · , Yn(ν)} .
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Then we have the decomposition g = ξν ⊕ ην ⊕ rν ⊕ z. For X ∈ ξν , Y ∈ ην , Z ∈ rν , and
T ∈ z, we denote the element exp(X + Y + Z + T ) of G by (X,Y, Z, T ). Moreover, we can
express

(X,Y, Z, T ) =

n∑
j=1

xj(ν)Xj(ν) +

n∑
j=1

yj(ν)Yj(ν) +

r∑
j=1

zj(ν)Zj(ν) +

k∑
j=1

tjTj

and denote it by (x, y, z, t) suppressing the dependence of ν which will be understood from
the context.

Since ν|[hν , hν ] = 0; hence for µ ∈ r∗ν we define character σµ,ν of Hν = exp (hν) by

σµ,ν(X,Z, T ) = eiµ(Z)+iν(T ) for all (X,Z, T ) ∈ Hν .

The irreducible unitary representations πµ,ν of G realized on L2 (ην) can be described as
follows:

(πµ,ν(X,Y, Z, T )φ)
(
Y ′
)

= eiν(T+[Y ′+(1/2)Y,X−Y ′+Z])eiµ(z)φ
(
Y + Y ′

)
for all φ ∈ L2 (ην) . Using the almost symplectic basis we have the following description

(πµ,ν(x, y, z, t)φ) (ξ) = ei
∑k
j=1 νjtj+i

∑r
j=1 µjzj+i

∑n
j=1 dj(ν)(xjξj+

1
2
xjyj)φ(ξ + y)

for all φ ∈ L2 (ην).
The Fourier transform of f ∈ L1(G) is defined by

f̂(µ, ν) =

∫
z

∫
rν

∫
ην

∫
ξν

f(x, y, z, t)πµ,ν(x, y, z, t) dxdydzdt

for all ν ∈ U , µ ∈ r∗ν . Let

fν(x, y, z) =

∫
z
ei

∑k
j=1 νjtjf(x, y, z, t) dt

and

fµ,ν(x, y) =

∫
rν

∫
z
ei

∑k
j=1 νjtj+i

∑r
j=1 µjzjf(x, y, z, t) dtdz(1)

for all ν ∈ U and µ ∈ r∗ν . For ν ∈ U , Pf(ν) =
∏n
j=1 dj(ν) is called the Pfaffian of ν. For

f ∈ L1 ∩ L2(G), f̂(µ, ν) is an Hilbert-Schmidt operator and

Pf(ν)‖f̂(µ, ν)‖2S2
= (2π)n

∫
ην

∫
ξν

|fµ,ν(x, y)|2 dxdy,

where ‖ · ‖S2 stands for the norm in the Hilbert space S2 of all Hilbert-Schmidt operators
on L2 (ην). Moreover, the Plancherel formula reads as

(2π)−(n+r+k)
∫
U

∫
r∗ν

‖f̂(µ, ν)‖2S2
Pf(ν)dµdν =

∫
G
|f(x, y, z, t)|2 dxdydzdt

for all L2-functions by density argument. For f ∈ S(G), the Schwartz space of G, the
following inversion formula holds:

f(x, y, z, t) = (2π)−(n+r+k)
∫
U

∫
r∗ν

tr
(
πµ,ν(x, y, z, t)∗f̂(µ, ν)

)
Pf(ν) dµdν.

Let B
(
L2 (ην)

)
denote the C∗ -algebra of all bounded linear operators on L2 (ην). We

call the mapping σ : G × Ĝ → B(L2(ην)) an operator valued symbol. We define the
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pseudo-differential operator Tσ : L2(G)→ L2(G) corresponding to the symbol σ by

(Tσf)(x, y, z, t) = (2π)−(n+r+k)
∫
U

∫
r∗ν

tr
(
πµ,ν(x, y, z, t)∗σ(x, y, z, t, µ, ν)f̂(µ, ν)

)
Pf(ν) dµdν

for all f ∈ S(G).

2.3. With MW condition. In this case rν = {0} and the the irreducible unitary repre-
sentations are parametrized by the Zariski open set U = {ν ∈ z∗ : Bν is nondegenerate}
and is given by

(πν(x, y, t)φ) (ξ) = ei
∑k
j=1 νjtj+i

∑n
j=1 dj(ν)(xjξj+

1
2
xjyj)φ(ξ + y)

for all φ ∈ L2 (ην) . The Fourier transform of f ∈ L1(G) is defined by

f̂(ν) =

∫
z

∫
ην

∫
ξν

f(x, y, t)πν(x, y, t) dxdydt

for all ν ∈ U . Also let

fν(x, y) =

∫
z
ei

∑k
j=1 νjtjf(x, y, t) dxdydt

for all ν ∈ U . If f ∈ L1 ∩ L2(G) then f̂(ν) is an Hilbert-Schmidt operator and

Pf(ν)‖f̂(ν)‖2S2
= (2π)n

∫
ην

∫
ξν

|fν(x, y)|2 dxdy.

The Plancherel formula takes the following form

(2π)−(n+k)
∫
U
‖f̂(ν)‖2S2

Pf(ν)dν =

∫
G
|f(x, y, t)|2 dxdydt

for all L2-functions by density argument. Moreover, for f ∈ S(G), we have the following
inversion formula:

f(x, y, t) = (2π)−(n+k)
∫
U

tr
(
πµ,ν(x, y, t)∗f̂(ν)

)
Pf(ν)dν.

Let B
(
L2 (ην)

)
denote the C∗ -algebra of all bounded linear operators on L2 (ην). We

call the mapping σ : G × Ĝ → B(L2(ην)) an operator valued symbol. We define the
pseudo-differential operator Tσ : L2(G)→ L2(G) corresponding to the symbol σ by

(Tσf)(x, y, t) = (2π)−(n+k)
∫
U

tr
(
πµ,ν(x, y, t)∗σ(x, y, t, ν)f̂(ν)

)
Pf(ν)dν

for all f ∈ S(G).

Remark 2.1. The step two nilpotent Lie group G (without MW condition) can be realized
(as a set) by R2n+r+k and we can identify r∗ν with Rr and U with a full measure set in
Rk. Therefore the set of all irreducible unitary representation of G that participate in the
Plancherel formula can be identified with Rr+k. In this paper, we will only consider G to
be a step two nilpotent Lie group without MW-condition. However, for MW-condition, the
calculation will be similar and one can look at [31].
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3. Boundedness

This section is devoted to study the L2-boundedness of pseudo-differential operators on
step two nilpotent Lie group G. We begin with the definition of r-Schatten-von Neumann
class of operators. If H is a complex Hilbert space, a linear compact operator A : H → H
belongs to the r-Schatten-von Neumann class Sr(H) if

∞∑
n=1

(sn(A))r <∞,

where sn(A) denote the singular values of A, i.e. the eigenvalues of |A| =
√
A∗A with

multiplicities counted. For 1 ≤ r <∞, the class Sr(H) is a Banach space endowed with the
norm

‖A‖Sr =

( ∞∑
n=1

(sn(A))r
) 1

r

.

For 0 < r < 1, the ‖ · ‖Sr as above only defines a quasi-norm with respect to which Sr(H)
is complete. An operator belongs to the class S1(H) is known as Trace class operator. Also,
an operator belongs to S2(H) is known as Hilbert-Schmidt operator.

Now, we are ready to state the following result on L2-boundedness of pseudo-differential
operators on G. Indeed, we have the following proposition.

Proposition 3.1. Let σ : G× Ĝ→ S2 be a symbol such that∫
U

∫
r∗ν

∫
g
‖σ(x, y, z, t, µ, ν)‖2S2

dxdydzdtPf(ν)dµdν <∞.

Then, the corresponding pseudo-differential operator Tσ is bounded on L2(G).

Proof. Let f ∈ L2 (G) . Then by Minkowski’s integral inequality and Plancherel theorem,
we have

‖Tσf‖L2(G) =

{∫
g
|(Tσf)(x, y, z, t)|2 dxdydzdt

}1/2

= (2π)−(n+r+k)


∫
g

∣∣∣∣∣
∫
U

∫
r∗ν

tr
(
πµ,ν(x, y, z, t)∗σ(x, y, z, t, µ, ν)f̂(µ, ν)

)
Pf(ν)dµdν

∣∣∣∣∣
2

dxdydzdt


1/2

≤ (2π)−(n+r+k)
∫
U

∫
r∗ν

{∫
g

∣∣∣tr(πµ,ν(x, y, z, t)∗σ(x, y, z, t, µ, ν)f̂(µ, ν)
)∣∣∣2 dxdydzdt}1/2

Pf(ν)dµdν

≤ (2π)−(n+r+k)
∫
U

∫
r∗ν

{∫
g
‖σ(x, y, z, t, µ, ν)‖2S2

‖f̂(µ, ν)‖2S2
dxdydzdt

}1/2

Pf(ν)dµdν

= (2π)−(n+r+k)
∫
U

∫
r∗ν

‖f̂(µ, ν)‖S2

{∫
g
‖σ(x, y, z, t, µ, ν)‖2S2

dxdydzdt

}1/2

Pf(ν)dµdν

≤ (2π)−(n+r+k)

{∫
U

∫
r∗ν

‖f̂(µ, ν)‖2S2
Pf(ν)dµdν

} 1
2

×

{∫
U

∫
r∗ν

∫
g
‖σ(x, y, z, t, µ, ν)‖2S2

dxdydzdtPf(ν)dµdν

}1/2
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= ‖f‖L2(G)

{∫
U

∫
r∗ν

∫
g
‖σ(x, y, z, t, µ, ν)‖2S2

dxdydzdtPf(ν)dµdν

}1/2

.

This shows that Tσ : L2 (G)→ L2 (G) is a bounded operator. �

We presented the proof of Proposition 3.1 due to simplicity of the proof in this case. A
more general result in terms of Schatten-von-Neumann class follows from Corollary 3.18 of
[21]. Thus, Proposition 3.1 is a particular case of Theorem 3.2 below.

Theorem 3.2. Let 1 ≤ p ≤ 2 with Lebesgue conjugate p′ and let σ : G × Ĝ → Sp be a
operator-valued symbol such that∫

U

∫
r∗ν

∫
g
‖σ(x, y, z, t, µ, ν)‖pSp dxdydzdtPf(ν)dµdν <∞.

Then the pseudo-differential operator Tσ : L2(G)→ L2(G) is in the p′-Schatten class Sp′(G).

In order to prove our main result, we need to observe the following fact. If two symbols
with some conditions give arise to same pseudo-differential operator then the symbols must
be same. We prove this result in the following theorem.

Theorem 3.3. Let σ : G×Ĝ→ S2 be a symbol such that it satisfies the following properties:

(i)

∫
U

∫
r∗ν

∫
g
‖σ(x, y, z, t, µ, ν)‖2S2

dxdydzdtPf(ν)dµdν <∞,

(ii)

∫
U

∫
r∗ν

‖σ(x, y, z, t, µ, ν)‖S2 Pf(ν)dµdν <∞, ∀ (x, y, x, t) ∈ G,

(iii) sup
(x,y,z,t,µ,ν)∈G×Ĝ

‖σ(x, y, z, t, µ, ν)‖S2 <∞,

(iv) the mapping G × Ĝ 3 (x, y, z, t, µ, ν) 7→ πµ,ν(x, y, z, t)∗σ(x, y, z, t, µ, ν) ∈ S2 is weakly
continuous.

Then, Tσf = 0 for all f in L2 (G) only if σ(x, y, z, t, µ, ν) = 0 for almost all (x, y, z, t, µ, ν) ∈
G× Ĝ.

Proof. For (x, y, z, t) ∈ G, let us define the function f(x,y,z,t) ∈ L2(G) by

̂f(x,y,z,t)(µ, ν) = σ(x, y, z, t, µ, ν)∗πµ,ν(x, y, z, t)

for all ν ∈ U and µ ∈ r∗ν . Thus, for all (x′, y′, z′, t′) ∈ G, we have(
Tσf(x,y,z,t)

) (
x′, y′, z′, t′

)
= (2π)−(n+r+k)

∫
U

∫
r∗ν

tr
(
πµ,ν(x′, y′, z′, t′)∗σ(x′, y′, z′, t′, µ, ν) ̂f(x,y,z,t)(µ, ν)

)
Pf(ν)dµdν

= (2π)−(n+r+k)
∫
U

∫
r∗ν

tr
[
πµ,ν(x′, y′, z′, t′)∗σ(x′, y′, z′, t′, µ, ν)

× σ(x, y, z, t, µ, ν)∗πµ,ν(x, y, z, t)] Pf(ν)dµdν.

Take (x0, y0, z0, t0) ∈ G. By the weakly continuous mapping property (iv), we have that

tr
(
πµ,ν(x′, y′, z′, t′)∗σ(x′, y′, z′, t′, µ, ν)σ(x, y, z, t, µ, ν)∗πµ,ν(x, y, z, t)

)
→ tr (πµ,ν(x0, y0, z0, t0)

∗σ(x0, y0, z0, t0, µ, ν)σ(x, y, z, t, µ, ν)∗πµ,ν(x, y, z, t))
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as (x′, y′, z′, t′)→ (x0, y0, z0, t0) in G. Now, using the property (iii), there exists a constant

C such that for all (x′, y′, z′, t′, µ, ν) ∈ G× Ĝ, we have∣∣tr (πµ,ν(x′, y′, z′, t′)∗σ(x′, y′, z′, t′, µ, ν)σ(x, y, z, t, µ, ν)∗πµ,ν(x, y, z, t)
)∣∣

≤ C‖σ(x, y, z, t, µ, ν)‖S2 .

Since, for all (x, y, x, t) ∈ G,∫
U

∫
r∗ν

‖σ(x, y, z, t, µ, ν)‖S2 Pf(ν)dµdν <∞,

by Lebesgue’s dominated convergence theorem, we have∫
U

∫
r∗ν

tr
(
πµ,ν(x′, y′, z′, t′)∗σ(x′, y′, z′, t′, µ, ν) ̂f(x,y,z,t)(µ, ν)

)
Pf(ν)dµdν

→
∫
U

∫
r∗ν

tr
(
πµ,ν(x0, y0, z0, t0)

∗σ(x0, y0, z0, t0, µ, ν) ̂f(x,y,z,t)(µ, ν)
)

Pf(ν)dµdν

as (x′, y′, z′, t′) → (x0, y0, z0, t0) in G. Therefore, Tσf(x,y,z,t) is continuous on G. Letting
(x0, y0, z0, t0) = (x, y, z, t), we obtain(

Tσf(x,y,z,t)
)

(x, y, z, t)

= (2π)−(n+r+k)
∫
U

∫
r∗ν

tr (σ(x, y, z, t, µ, ν)σ(x, y, z, t, µ, ν)∗) Pf(ν)dµdν

= (2π)−(n+r+k)
∫
U

∫
r∗ν

‖σ(x, y, z, t, µ, ν)‖S2 Pf(ν)dµdν = 0.

Thus, ‖σ(x, y, z, t, µ, ν)‖S2 = 0 for almost all ν ∈ U and µ ∈ r∗ν . Hence the symbol

σ(x, y, z, t, µ, ν) = 0 for almost all (x, y, z, t, µ, ν) ∈ G× Ĝ. �

4. Hilbert-Schmidt operators

In this section, we define (µ, ν)-Weyl transform and find a trace formula for the class of
(µ, ν)-Weyl transform on G. Using the trace formula, we characterize the Hilbert-Schmidt
pseudo-differential operators in terms of their corresponding symbols.

Since ξν and ην both can be identified with Rn, in this section, we use the notation Rn,
ξν or ην interchangeably according to our convenience. Let x, y ∈ Rn and let ν ∈ U , µ ∈ r∗ν .
Then, for every measurable function φ on Rn, the function πµ,ν(x, y)φ on Rn is defined by

πµ,ν(x, y)φ(ξ) = exp

i n∑
j=1

dj(ν)

(
xjξj +

1

2
xjyj

)φ(ξ + y), x, y ∈ Rn,

where πµ,ν(x, y) stands for πµ,ν(x, y, 0, 0).
For f, g ∈ L2 (Rn) , the (µ, ν)-Fourier-Wigner transform of f and g is defined by

Vµ,ν(f, g)(p, q) = Pf(ν)1/2(2π)−n/2 〈πµ,ν(p, q)f, g〉 ,

where 〈, 〉 is the inner product in L2 (Rn) . Then

Vµ,ν(f, g)(p, q) = Pf(ν)1/2(2π)−n/2 〈πµ,ν(p, q)f, g〉

= Pf(ν)1/2(2π)−n/2
∫
Rn
ei

∑n
j=1 dj(ν)(pjxj+

1
2
pjqj)f(x+ q)g(x)dx

= Pf(ν)1/2(2π)−n/2
∫
Rn
ei

∑n
j=1 dj(ν)pjxjf(x+

q

2
)g(x− q

2
)dx.
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We define the Fourier transform by

(Fν(f)) (y) = Pf(ν)1/2(2π)−n/2
∫
Rn
f(x)e−i

∑n
j=1 dj(ν)xjyjdx, y ∈ Rn,

where ν ∈ U , f ∈ L1 (Rn) and the inverse Fourier transform is defined by(
F−1ν (f)

)
(x) = Pf(ν)1/2(2π)−n/2

∫
Rn
f(x)ei

∑n
j=1 dj(ν)xjyjdy x ∈ Rn.

Now, we are going to compute the Fourier transform of the (µ, ν)-Fourier-Wigner trans-
form. Similar to [29], we define

Iε(x, ξ)

= Pf(ν)3/2(2π)−3n/2
∫
Rn

∫
Rn

∫
Rn
e−

ε2|p|2
2 e−i

∑n
j=1 dj(ν)(xjpj+qjξj−pjyj)f(y +

q

2
)g(y − q

2
)dqdpdy

= Pf(ν)3/2(2π)−n
∫
Rn
e−i

∑n
j=1 djqjξj

∫
Rn

∫
Rn
ε−ne

∑n
j=1 dj(ν)

2|xj−yj |
2

2ε2 f(y +
q

2
)g(y − q

2
)dqdpdy.

As ε→ 0, we have

(Fν (Vµ,ν(f, g))) (x, ξ) = Pf(ν)1/2(2π)−n/2
∫
Rn
e−i

∑n
j=1 dj(ν)qjξjf(x+

q

2
)g(x− q

2
)dq,

where f, g ∈ L2 (Rn) . Then the (µ, ν)-Wigner transform Wµ,ν(f, g) of f and g is defined by

Wµ,ν(f, g)(x, ξ) = (Fν (Vµ,ν(f, g))) (x, ξ)

= Pf(ν)1/2(2π)−n/2
∫
Rn
e−i

∑n
j=1 dj(ν)qjξjf(x+

q

2
)g(x− q

2
)dq

for all f, g ∈ L2 (Rn) .
Let u be a function in the Schwartz space S

(
R2n

)
. For ν ∈ U and µ ∈ r∗ν , we define

Wµ,ν
u to be the (µ, ν)-Weyl transform associated to the function u by

〈Wµ,ν
u f, g〉 = Pf(ν)1/2(2π)−n/2

∫
Rn

∫
Rn
u(x, ξ)Wµ,ν(f, g)(x, ξ)dxdξ

= Pf(ν)1/2(2π)−n/2
∫
Rn

∫
Rn

(Fνu) (p, q)Vµ,ν(f, g)(p, q)dpdq

= Pf(ν)(2π)−n
∫
Rn

∫
Rn

(Fνu) (p, q) 〈πµ,ν(p, q)f, g〉 dpdq.

Thus we can also write

Wµ,ν
u = Pf(ν)(2π)−n

∫
Rn

∫
Rn

(Fνu) (p, q)πµ,ν(p, q)dpdq.(2)

For u ∈ L2(R2n), we define DPf(ν)u(x, ξ) = u (x1d1(ν), · · · , xndn(ν), ξ). Then the (µ, ν)-
Weyl transform also can be expressed in terms of the dialation DPf(ν), which we prove in
the following theorem.

Theorem 4.1. Let u and v be two functions on the Schwartz space S(R2n). Then, we have
the following.

(a) Wµ,ν
u = WDPf(ν)−1u.

(b) The trace formula for the (µ, ν)-Weyl transform is given by

tr(Wµ,ν
u ) = Pf(ν)(2π)−n

∫
Rn

∫
Rn
u(x, ξ)dxdξ.

(c) tr (Wµ,ν
u Wµ,ν

v ) = Pf(ν)(2π)−n
∫
Rn

∫
Rn
u(x, ξ)v(x, ξ)dxdξ.
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Proof. (a) For all f ∈ L2(Rn), from (2), a direct compuutation gives

Wµ,ν
u f(x) = Pf(ν)(2π)−n

∫
Rn

∫
Rn

(Fνu) (p, q)πµ,ν(p, q)f(x)dpdq.

= Pf(ν)2(2π)−2n
∫
Rn

∫
Rn

∫
Rn

∫
Rn
u(p, q)e−i

∑n
j=1 dj(ν)(pjyj+qjξj)

× ei
∑n
j=1 dj(ν)(pjxj+

1
2
pjqj)f(x+ q)dydξdpdq.

Under the substitution p 7→ p
Pf(ν) =

(
p1

d1(ν)
, · · · , pn

dn(ν)

)
and ξ 7→

(
ξ1

d1(ν)
, · · · , ξn

dn(ν)

)
, we get

Wµ,ν
u f(x) = Pf(ν)2(2π)−2n

∫
Rn

∫
Rn

∫
Rn

∫
Rn
u

(
p

Pf(ν)
, q

)
e−i(p·y+q·ξ)dy

dξ

Pf(ν)

× ei(p·x+
1
2
p·q)f(x+ q)

dp

Pf(ν)
dq

= (2π)−n
∫
Rn

∫
Rn

̂DPf(ν)−1u(p, q)π(p, q)f(x)dpdq

= WDPf(ν)−1uf(x).

(b) Using the trace formula given in [11], we have

tr(Wµ,ν
u ) = tr(WDPf(ν)−1u)

= (2π)−n
∫
Rn

∫
Rn
DPf(ν)−1u(x, ξ)dxdξ

= Pf(ν)(2π)−n
∫
Rn

∫
Rn
u(x, ξ)dxdξ.

(c) Again, form Theorem 2.1 of [11], we have

tr (Wµ,ν
u Wµ,ν

v ) = tr
(
WDPf(ν)−1uWDPf(ν)−1v

)
= (2π)−n

∫
Rn

∫
Rn
DPf(ν)−1u(x, ξ)DPf(ν)−1v(x, ξ)dxdξ

= Pf(ν)(2π)−n
∫
Rn

∫
Rn
u(x, ξ)v(x, ξ)dxdξ.

�

Before stating our main theorem of this section, we observe the following fact.

Theorem 4.2. Let f ∈ L1(G). Then

f̂(µ, ν) = (2π)nWµ,ν

F−1
ν (fµ,ν)

for every ν ∈ U and µ ∈ r∗ν , where fµ,ν is defined in (1).



TRACE CLASS AND HILBERT-SCHMIDT PSEUDO DIFFERENTIAL OPERATORS 11

Proof. Let φ ∈ S (Rn) . Then

(f̂(µ, ν)φ)(ξ) =

∫
z

∫
rν

∫
ην

∫
ξν

f(x, y, z, t)πµ,ν(x, y, z, t)φ(ξ)dxdydzdt

=

∫
z

∫
rν

∫
ην

∫
ξν

f(x, y, z, t)ei
∑k
j=1 νjtj+i

∑r
j=1 µjzjπµ,ν(x, y)φ(ξ)dxdydzdt

=

∫
ξν

∫
ην

fµ,ν(x, y)πµ,ν(x, y)φ(ξ)dxdy

=

∫
ξν

∫
ην

(
Fν
(
F−1ν fµ,ν

))
(x, y)πµ,ν(x, y)φ(ξ)dxdy.

Therefore

f̂(µ, ν) = Pf(ν)−1(2π)nWµ,ν

F−1
ν (fµ,ν)

.

�

Now we are in a position to obtain a necessary and sufficient condition on symbol such
that the corresponding pseudo-differential operator is a Hilbert-Schmidt operator. Indeed,
we have the following theorem.

Theorem 4.3. Let σ be a symbol such that it satisfies the hypotheses of Theorem 3.3. Then
the corresponding pseudo-differential operator Tσ is a Hilbert-Schmidt operator if and only
if

σ(x, y, z, t, µ, ν) = Pf(ν)−1πµ,ν(x, y, z, t)Wµ,ν
Fν(α(x,y,z,t)−µ,−ν),

where (x, y, z, t, µ, ν) ∈ G× Ĝ and α : G→ L2(G) is a weakly continuous mapping such that
it satisfies

(i)

∫
z

∫
rν

∫
ην

∫
ξν

‖α(x, y, z, t) (·, ·, ·, ·)‖L2(G) dxdydzdt <∞,

(ii) sup
(x,y,z,t,µ,ν)∈G×Ĝ

Pf(ν)−1/2
∥∥α(x, y, z, t)−µ,−ν

∥∥
L2(R2n)

<∞,

(iii)

∫
U

∫
r∗ν

∥∥α(x, y, z, t)−µ,−ν
∥∥
L2(R2n)

Pf(ν))1/2dµdν <∞, a.e. (x, y, z, t) ∈ G.

Proof. Let f ∈ S(G). Using Theorem 4.2 and Part (c) of Theorem 4.1, we have

(Tσf)(x, y, z, t)

= (2π)−(n+r+k)
∫
U

∫
r∗ν

tr
(
πµ,ν(x, y, z, t)∗σ(x, y, z, t, µ, ν)f̂(µ, ν)

)
Pf(ν)dµdν

= (2π)−(r+k)
∫
U

∫
r∗ν

tr
(
Wµ,ν

Pf(ν)−1Fν(α(x,y,z,t)−µ,−ν)W
µ,ν

Pf(ν)−1F−1
ν (fµ,ν)

)
Pf(ν)dµdν

= (2π)−(n+r+k)
∫
ξν

∫
ην

∫
U

∫
r∗ν

Fν(α(x, y, z, t)−µ,−ν)(x′, y′)F−1ν (fµ,ν)(x′, y′)dx′dy′dµdν

= (2π)−(n+r+k)
∫
ξν

∫
ην

∫
U

∫
r∗ν

α(x, y, z, t)−µ,−ν(x′, y′)fµ,ν(x′, y′)dx′dy′dµdν

= (2π)−(n+r+k)
∫
ξν

∫
ην

∫
U

∫
r∗ν

α(x, y, z, t)(x′, y′, µ, ν)f(x′, y′, µ, ν)dx′dy′dµdν.

Therefore Tσ is an almost everywhere integral operator with kernel

K
(
x, y, z, t, x′, y′, µ, ν

)
= (2π)−(n+r+k)α(x, y, z, t)

(
x′, y′, µ, ν

)
,(3)
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where (x, y, z, t), (x′, y′, µ, ν) ∈ G. Using Fubini’s theorem and Plancherel theorem, we get∫
z

∫
rν

∫
ην

∫
ξν

∫
z

∫
rν

∫
ην

∫
ξν

∣∣K (x, y, z, t, x′, y′, µ, ν)∣∣2 dxdydzdtdx′dy′dµdν
= (2π)−2(n+r+k)

∫
z

∫
rν

∫
ην

∫
ξν

∫
z

∫
rν

∫
ην

∫
ξν

∣∣α(x, y, z, t)
(
x′, y′, µ, ν

)∣∣2 dxdydzdtdx′dy′dµdν
= (2π)−2(n+r+k)

∫
z

∫
rν

∫
ην

∫
ξν

‖α(x, y, z, t) (·, ·, ·, ·)‖L2(G) dxdydzdt <∞.

Thus, Tσ : L2(G)→ L2(G) is a Hilbert-Schmidt operator.
Conversely, suppose that Tσ : L2(G)→ L2(G) is a Hilbert-Schmidt operator. Then there

exists a function α ∈ L2 (G×G) such that for all f ∈ L2(G), we have

Tσf(x, y, z, t) =

∫
z

∫
rν

∫
ην

∫
ξν

α
(
x, y, z, t, x′, y′, µ, ν

)
f
(
x′, y′, µ, ν

)
dx′dy′dµdν.

Let α : G→ L2(G) be the mapping defined by

α(x, y, z, t)
(
x′, y′, µ, ν

)
= α

(
x, y, z, t, x′, y′, µ, ν

)
, (x, y, z, t), (x′, y′, µ, ν) ∈ G.

From part (v) of Theorem 7.5 of [29], we have that

‖σ(x, y, z, t, µ, ν)‖S2 = (2π)−n/2 Pf(ν)−1/2
∥∥α(x, y, z, t)−µ,−ν

∥∥
L2(R2n)

for all (x, y, z, t, µ, ν) ∈ G × Ĝ. Then, reversing the argument for sufficiency and using
Theorem 3.3, we get the converse. �

An immediate corollary of the above theorem is the following result.

Theorem 4.4. Let α ∈ L2 (G×G) such that∫
z

∫
rν

∫
ην

∫
ξν

|α (x, y, z, t, x, y, z, t) |dxdydzdt <∞.

Let σ : G× Ĝ→ B
(
L2 (ην)

)
be the symbol as in Theorem 4.3. Then, Tσ : L2 (G)→ L2 (G)

is a trace class operator and the trace is given by

tr (Tσ) = (2π)−(2n+r+k)
∫
z

∫
rν

∫
ην

∫
ξν

α (x, y, z, t, x, y, z, t) dxdydzdt.

Proof. The proof of Theorem 4.4 follows from the formula (3) on the kernel of the pseudo-
differential operator in the proof of Theorem 4.3. �

We end this section by showing a relationship between Hilbert-Schmidt pseudo-differential
operators on L2(G) and (µ, ν)-Weyl transforms with symbol in L2

(
R2n+r+k

)
. The twisting

operator T : L2
(
R2n

)
→ L2

(
R2n

)
is defined by

(Tf)(x, y) = f
(
x+

y

2
, x− y

2

)
, x, y ∈ Rn

for all f ∈ L(R2n). Clearly T is a unitary operator and its the inverse is given by(
T−1f

)
(x, y) = f

(
x+ y

2
, x− y

)
, x, y ∈ Rn.

Let us define the operator Kν : L2
(
R2n

)
→ L2

(
R2n

)
by

(Kνf) (x, y) =
(
T−1F2

ν f
)

(y, x), x, y ∈ Rn,

where F2
ν is the Fourier transform with respect to the second variable. From Theorem 7.5

of [29], we obtain the following theorem.
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Theorem 4.5. Let σ ∈ L2
(
R2n

)
. Then Wµ,ν

σ is a Hilbert-Schmidt operator with kernel

Pf(ν)1/2(2π)−
n
2Kνσ. More precisely,

(Wµ,ν
σ f) (x) = Pf(ν)1/2(2π)−

n
2

∫
Rn
Kνσ(x, y)f(y)dy, x ∈ Rn.

Theorem 4.6. Let τ ∈ L2
(
R2n+r+k × R2n+r+k

)
. Then

Wµ,ν
τ = Tσ,

where σ : G× Ĝ→ S2 is a symbol such that

(1) ∫
g

∫
U

∫
r∗ν

‖σ (x, y, z, t, µ, ν) ‖2S2
dxdydzdtPf(ν)dµdν <∞,

(2)

σ(x, y, z, t, µ, ν) = Pf(ν)−1πµ,ν(x, y, z, t)Wµ,ν
Fν(α(x,y,z,t)−µ,−ν)

for all (x, y, z, t, µ, ν) ∈ G× Ĝ and

(3) α : G→ L2(G) is related to τ by

α(x, y, z, t)
(
x′, y′, z′, t′

)
= Pf(ν)

1
2 (2π)

r+k
2 Kντ(x, y, z, t, x′, y′, z′, t′)

for all (x, y, z, t), (x′, y′, z′, t′) ∈ G.

Conversely, suppose σ : G× Ĝ→ S2 is a symbol such that

(1) ∫
g

∫
U

∫
r∗ν

‖σ (x, y, z, t, µ, ν) ‖2S2
dxdydzdtPf(ν)dµdν <∞,

(2)

σ(x, y, z, t, µ, ν) = Pf(ν)−1πµ,ν(x, y, z, t)Wµ,ν
Fν(α(x,y,z,t)−µ,−ν)

for all (x, y, z, t, µ, ν) ∈ G× Ĝ, where α : G→ L2(G) is a mapping such that∫
g
‖α(x, y, z, t)‖2S2

dxdydzdt <∞.

Then Tσ = Wµ,ν
τ , where

τ = Pf(ν)−
1
2 (2π)−

r+k
2 K−1ν β

and β is a function on G×G given by

β
(
x, y, z, t, x′, y′, z′, t′

)
= α(x, y, z, t)

(
x′, y′, z′, t′

)
, (x, y, z, t), (x′, y′, z′, t′) ∈ G.

Proof. The proof of Theorem 4.6 follows from the relation (3) and Theorem 4.5. �

5. Trace class Operators

In this section, we obtain a necessary and sufficient condition on the symbol σ so that
the corresponditing pseudo-differential operator Tσ is a trace class operator and we derive
the trace formula of the operator Tσ. Indeed, we have the following theorem.

Theorem 5.1. Let σ : G × Ĝ → S2 be a symbol such that it satisfying the conditions of
Theorem 3.3. Then Tσ is a trace class operator if and only if

σ(x, y, z, t, µ, ν) = Pf(ν)−1πµ,ν(x, y, z, t)Wµ,ν
Fν(α(x,y,z,t)−µ,−ν), (x, y, z, t, µ, ν) ∈ G× Ĝ,
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where α : G → L2(G) is a mapping such that the conditions of Theorem 4.3 are satisfied
and

α(x, y, z, t)
(
x′, y′, z′, t′

)
=

∫
g
α1(x, y, z, t)

(
x′′, y′′, z′′, t′′

)
α2

(
x′′, y′′, z′′, t′′

) (
x′, y′, z′, t′

)
dx′′dy′′dz′′t′′

for all (x, y, z, t), (x′, y′, z′, t′) ∈ G, α1 : G→ L2(G) satisfies∫
g
‖α1(x, y, z, t)‖2L2(G) dxdydzdt <∞

and α2 : G→ L2(G) satisfies∫
g
‖α2(x, y, z, t)‖2L2(G) dxdydzdt <∞.

Moreover, if Tσ : L2(G)→ L2(G) is a trace class operator, then we have the trace formula

tr (Tσ) =

∫
g
α(x, y, z, t)(x, y, z, t)dxdydzdt

=

∫
g

∫
g
α1(x, y, z, t)

(
x′′, y′′, z′′, t′′

)
α2

(
x′′, y′′, z′′, t′′

)
(x, y, z, t)dx′′dy′′dz′′dt′′dxdydzdt.

Proof. The proof of this theorem follows from Theorem 4.3 and the fact that every trace
class operator can be written as a product of two Hilbert-Schmidt operators. �
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