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Beyond pairwise network similarity: exploring
mediation and suppression between networks
Lucas Lacasa 1,2✉, Sebastiano Stramaglia 3,4✉ & Daniele Marinazzo 5,6✉

Network similarity measures quantify how and when two networks are symmetrically related,

including measures of statistical association such as pairwise distance or other correlation

measures between networks or between the layers of a multiplex network, but neither can

directly unveil whether there are hidden confounding network factors nor can they estimate

when such correlation is underpinned by a causal relation. In this work we extend this

pairwise conceptual framework to triplets of networks and quantify how and when a network

is related to a second network (of the same number of nodes) directly or via the indirect

mediation or interaction with a third network. Accordingly, we develop a simple and intuitive

set-theoretic approach to quantify mediation and suppression between networks. We vali-

date our theory with synthetic models and further apply it to triplets (multiplex) of real-world

networks, unveiling mediation and suppression effects which emerge when considering dif-

ferent modes of interaction in online social networks and different routes of information

processing in the nervous system.
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Networks are usually seen as a parsimonious model to
describe the backbone architecture of complex systems1.
Accordingly, comparing different systems boils down to

comparing their architecture, leading to the notion of network
similarity measure2–8. In graph theory, two graphs are isomorphic
if there exists a vertex permutation that maps one network into the
other, naturally leading to a binary (and not very useful in real-
world systems) notion of similarity. More useful approaches
proceed by projecting networks into a suite of properties sum-
marised in some vector p (e.g. degree distribution, centrality
vectors, eigenspectra, etc.) and, subsequently constructing a
similarity metric D by which two networks A and B are close in
the space spanned by p if DðA;BÞ ¼ jjpA � pBjj is “small”. Other
ideas include the formalisation of graph kernels2, comparing
networks by comparing the statistics of random walks running
over them9,10, or using statistical approaches such as estimating
topological correlations between networks11,12. While in all these
approaches we typically have DðA;BÞ ¼ DðB;AÞ, i.e. a symme-
trical relation, in many cases this undirected relation is hiding an
actual direction (whether causal or not). As an example, consider
social networks. The different layers in which the set of contacts of
an individual (i.e., “its social network”) are typically correlated: my
friends offline tend to be also friends on Facebook. However, such
relation is directional: when a new link—i.e, a new social rela-
tionship—is created, then it is likely that such a link will be
replicated within my online social network too (Facebook, Insta-
gram), but it is less likely to observe a quantitatively similar effect
when the direction of influence is inverted. So the offline and the
online social network of a person are probably similar, but such
similarity has a direction. Furthermore, in many cases such
influence is not direct (not causal). Sometimes, there is a hidden
network C that indeed confounds or mediates the relation between
A and B. For instance, the Facebook and Instagram networks of a
certain individual are correlated not because there is a direct,
causal relationship between them, but because both these net-
works are indeed related to the actual (offline) social network of
the person.

In this work, we are interested in understanding and dis-
ambiguating when the relation between two networks A and B
(where for instance A r B if DðA;BÞ < ϵ) is a direct one, and
when it is underpinned by the hidden interaction with a third
network C. We address these questions building on terminology
from mediation analysis, a statistical framework centred on the
notion of “causal paths”, and mainly used in epidemiology and
psychometrics13,14. The aim of mediation analysis is to clarify the
nature of the relationship between two variables X and Y, by
elucidating the role of a third hypothetical variable Z. These roles
can include mediation, when Z conveys the information from X
to Y and/or vice versa15, and suppressor, where Z increases the
predictive validity of X in predicting Y or vice versa16. We
introduce a set-theoretical approach where concepts such as
network mediation or network suppression emerge naturally.

We benchmark our theory with simple generative models and
then apply it to a range of empirical networks, where we unveil
and discuss the concomitant roles of mediation and suppression.

Results
Theoretical setup. Let A;B; C be three unweighted networks with
adjacency matrices A, B, C, all with the same node set and
respective edge sets a, b and c (i.e. they can also be identified with
the layers of a multiplex network). Let us define the network-
Jaccard index of two networks NJ ðA;BÞ as the Jaccard index over
their edge sets

NJ ðA;BÞ :¼ Jða; bÞ ¼ ja \ bj
ja∪ bj : ð1Þ

NJ ðA;BÞ is a similarity metric, and a distance can be easily
defined as dðA;BÞ ¼ 1� NJ ðA;BÞ. This quantity alone can be
used to initially establish if two networks are related. Regardless
of the fact that such a relation is effectively undirected or
otherwise is causal (influence), in order to explore whether such
relation is underpinned by a third network C we need to quantify
the effect of conditioning such relation on C (in the sense of
causal mediation analysis15). Let us then define the partial net-
work—Jaccard index NJpðA;B; CÞ of two networks A;B condi-
tioned on a third one C as the Jaccard index over the edge subsets
of A and B formed by those edges which are absent in C:

NJpðA;B; CÞ ¼ jða \ bÞ n cj
jða∪ bÞ n cj : ð2Þ

Let us see intuitively the effect of conditioning with respect to C in
this way. Suppose initially that C is totally independent from A
and B. Then we may expect that the Jaccard index, on average,
will be the same if evaluated just on the links which are absent in
C, so NJpðA;B; CÞ � NJ ðA;BÞ. Suppose on the other hand that
A is influencing B indirectly, with the mediation of C. Then,
intuitively, removing the links of C would effectively push the
partial Jaccard index to zero. A similar scenario takes place if A
and B are indirectly related through direct relation to a con-
founding factor C. Finally, C could be suppressing the influence of
A in B. For example, imagine that B somewhat depends on
whether A and C interact synergistically, e.g., if links in C are
more likely to occur if they are in one network but not on the
other (probabilistic XOR gate); then removing the links of C will
enhance the partial Jaccard index.

To distinguish these three scenarios, we define the Jaccard net
difference

Δ½A;B; C� :¼ Δ ¼ NJpðA;B; CÞ � NJ ðA;BÞ: ð3Þ
Intuitively, if C is independent of the relation between A and B
then Δ ≈ 0, if it mediates or confounds such relation then Δ < 0,
and if it acts as a suppressor then Δ > 0.

In what follows we construct simple generative models of
independent, mediated and suppressor interactions, detailed as
algorithms, we prove that these correctly generate these three
types of trivariate relations, and depict numerical simulations of
the outcome for finite networks.

Independency. A simple generative model of independency is
given by three independent, Erdős–Rényi-type models, where in
each of the networks each possible link independently occurs with
probability p, see Algorithm 1.

The following theorem can be proved.
Theorem 2.1. Let A, B and C be as in Algorithm 1. Then for

large networks EðΔÞ ¼ 0 and the expected values of NJpðA;B; CÞ
and NJ ðA;BÞ are equal to p/(2− p).

The proof of this theorem is given in Supplementary Note 1.
We conclude that, on average, NJp and NJ are nearly equal for
uncorrelated networks generated in this way, as partialisation
with respect to an independent network C does not have any
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effect. In Fig. 1, we illustrate this case for finite networks with N
= 50 nodes and p= 0.5, finding that indeed Δ ≈ 0 and that
NJpðA;B; CÞ � NJ ðA;BÞ � 1=3, in good agreement with the
theorem.

Mediation. Suppose now that A and B are both dependent on C,
i.e. such that if there is a link in C, then there is a link in A and B
(see Fig. 2 for an illustration of such case, and Algorithm 2 for a
formal recipe of this generative model).

This describes a situation where C mediates the relation
between A and B (or, alternatively, C is confounding that
relation). Partializing with respect to C removes the dependence
between A and B due to C, which intuitively leads to Δ < 0. The
following theorem can be proved:

Theorem 2.2. Let A, B and C be as in Algorithm 2. If A and B
share at least one edge besides the common edges shared with C,
then Δ < 0.

The proof of this theorem can also be found in Supplementary
Note 2. In Fig. 1, we show numerical results for finite networks
with N= 50, with p= 0.5.

Suppression. Finally, let us consider the case where B depends on
the interaction of A and C such that, an edge occurs in B with a
certain probability if it appears inA but not in C or alternatively if
it appears in C but not in A (see Fig. 2 for an illustration). This is

akin to a probabilistic XOR gate. Then on average
NJpðA;B; CÞ>NJ ðA;BÞ, i.e. partializing with respect to C in this
case evidences suppression effects.

Algorithm 3 encapsulates the generative model. The following
theorem can be proved:

Theorem 2.3. Let A, B and C be as in Algorithm 3. Then
EðΔÞ > 0.

The proof for this theorem is contained in Supplementary
Note 3. In Fig. 1, we show numerical results for finite networks
with N= 50, with p= 0.5 and q= 1, which are in full agreement
with the theorem.

Coexistence of mediation and suppression effects. When we
abandon ideal cases where only suppression or only mediation
are present, and we go towards a mixture of the two, it becomes
evident that both effects can be hidden and a single Δ cannot in
principle tell us if the system evidences only one out of the two
mechanisms. To investigate the coexistence of both mechanisms,
we run a simulation in which Algorithms 2 and 3 above are
combined: in each step with probability 1− μ we take Algorithm
2, and with probability μ we take Algorithm 3. Since each algo-
rithm is performed independently, the resulting model linearly
interpolates between mediation and suppression, such that
measurable Δ= (1− μ)Δmed+ μΔsyn, where Δmed and Δsyn are

Fig. 1 Pure models of independency, mediation and suppression. We plot the partial network—Jaccard index NJpðA;B; CÞ vs the network—Jaccard index
NJ ðA;BÞ of networks A and B conditioned on a third network C, calculated on 1000 realisations of triplets of networks of N= 50 nodes wired such that C
plays no effect (green crosses), plays a mediating effect (violet dots) or a suppression effect (red crosses) in the relation between A and B. These
interactions are constructed using the generative models described in Algorithms 1, 2 and 3 (p= 0.5 in every case, and q= 1). For completeness, we also
depict the histograms P(Δ) of Jaccard net differences Δ, which certify that these algorithms generate networks where C play an independent role (Δ≈ 0), a
mediating role (Δ < 0) or a suppressing role (Δ > 0).
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hidden. The results are depicted in Fig. 3a, for different instances
of parameter p and q= 1. We can have negative, null or positive
values of Δ underpinned by a balance of both mediation and
suppression mechanisms, and actually for the concrete set of
parameters, the effect of mediation in Δ is slightly stronger than
the effect of suppression (this unbalance gets more pronounced
for q < 1). This simple interpolating model thus leads us to con-
clude that, in real cases, we might for instance be naively mea-
suring Δ < 0 and misleadingly concluding that there is only
mediation where in fact both mediation and suppression could be
at play. Accordingly, a measure describing the effects of

suppression and mediation is not enough to describe and resolve
the simultaneous presence of both.

In order to disentangle both effects, we now introduce
Algorithm 4, which applies both for constructing null models
for mediation (M) and suppression (S). To construct a surrogate
where all suppression has been removed, starting from A;B; C,
we perform a selective rewiring in B, where only those links in B
which are also present in A but not in C (or that also appear in C
but not in A) are rewired randomly. Similarly, to construct a
surrogate where all mediation has been removed, starting from
A;B; C, we perform a selective rewiring in B, where only those
links in B which are also present in A and in C are rewired
randomly.

We then compute again the net Jaccard difference on the
rewired versions, which are being labelled ΔS (applied to the case
where suppression is removed) and ΔM (applied to the case where
mediation is removed), respectively. The heuristic is then simple:
if there is, e.g., hidden suppression in the data (respective
mediation), then ΔS < Δ (respectively ΔM > Δ), whereas if such
mechanism is absent then ΔS ≈ Δ (ΔM ≈ Δ).

Now, we also need to take into account finite-size effects which
irremediably add spurious mediation and suppression effects (i.e.
triplets of purely random, uncorrelated networks will show small

Fig. 3 Interpolating model. a Values of Jaccard net difference Δ (see the text), obtained averaging 50 realisations of an interpolating model giving a blend
of mediation and suppression (see the text), where each network has N= 300 nodes and varying model parameter p, as a function of the interpolation
parameter μ (in each of the N (N− 1) steps we apply Algorithm 2 with probability 1− μ and Algorithm 3 with μ). b Revised version of the left panel, this
time selectively removing all suppression and mediation effects according to our theoretical framework. The original curve, for an interpolating model
generating a blend of mediation and suppression, is depicted in black. The blue curve (R) is pure randomisation, which generates Δ≈ 0. The dotted green
line (S) corresponds to a selective rewiring that removes all hidden suppression: in that case, the curve is kept always below zero (increasing μ increases
the amount of Algorithm 3, but then is selectively rewired, thus effectively randomising the networks and pushing Δ to zero). The pink curve (M) is the
result of a selectively rewiring that removes all hidden mediation: in that case the curve is pushed to the regime Δ > 0. As μ increases, the amount of
Algorithm 3 (generating suppression) is increased, hence pushing Δ to larger values. The dashed yellow (S,R) and pink (M,R) lines are the result of
selectively rewiring on the randomised networks, and only highlight the residual values of suppression or mediation which occur by chance (as a finite-size
effect) in randomised networks.

Fig. 2 Adjacency matrices cartoons displaying mediation and suppression.
Pictorical representations of triplets of adjacency matrices, where only the
position of the edges (ones in the matrix) are highlighted as symbols (dots
of different colours, crosses). Symbols are chosen to schematically highlight
how mediation and suppression operate. In the top row, network C is
mediating the relation between networks A and B (Algorithm 2) and as
such most of those edges which are common to A and B are due to the fact
that both networks A and B share these edges with network C. In the
bottom row, network C acts as a suppressor between A and B (Algorithm
3). Edges which are common to A and C are suppressed in B (yellow dots),
and otherwise A and C synergistically interact and B inherits edges which
are present in one but not the other network (black dots and red crosses).
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but non-zero mediation and suppression due to chance). To
counterbalance such effects, we also proceed to selectively remove
suppression and mediation from a completely randomly rewired
version of B, which we call B2, leading to two new indices: ΔRS

and ΔRM. We can finally combine these to produce normalised
indices of mediation (�m) and suppression (�s) by normalising
them dividing over the maximum possible value of suppression
(mediation) attainable by a generative model such as Algorithm 3
(2) to the triplet of networks, i.e.

�m ¼ ΔS � ΔR;S

Mmax
; �s ¼ ΔM � ΔR;M

Smax
: ð4Þ

Accordingly, the role that C plays in the relation of A and B is
described by the duple ð�m;�sÞ.

In addition, a significance value for these indices could be
defined as:

σS;M ¼ ΔfS;Mg � ΔR;S;M

std ðΔR;S;MÞ

�
�
�
�
�

�
�
�
�
�
; ð5Þ

where ⋅ {S,M} simply means that the expression equally applies for
mediation and suppression, depending on what label we take. It is
worth to stress that for large networks the finite-size effects
become less common, and ΔR,{S,M} will tend to zero, for all the
realisations, resulting in a small standard deviation, and in any
value of suppression and mediation being highly significant.

For illustration, in the left panel of Fig. 4 we show the effects of
the sequence of selective rewirings on Δ applied to a particular
example of three independent, Erdős–Rényi networks with
N= 300 nodes and wiring probability p= 0.3 (i.e., Algorithm
1). The original value of Δ is very close to zero, as well as the ones
obtained from full randomisation of B. Since in this example the
networks are independent, any mediation or suppression is only a
spurious residual due to finite-size effects, thus this residual is
flagged out in similar terms by a selective rewiring on the actual
network B (ΔX) or on its full randomisation (ΔRX), hence the
violet and green histograms overlap, and similarly the pink and
pale blue ones also overlap. As an additional illustration, we
applied the sequence of selective rewirings on the results of the
interpolating model. Results are shown in Fig. 3b.

Empirical networks. We now turn to real-world networks and
consider four types of 3-layer multiplex networks, including (i)
different modes of social interaction in Twitter during the 2014’s
New York City Climate March (NYC), (ii) different types of social
interaction—proximity, phone call/text message, Facebook—as
collected in Denmark (Copenhagen), (iii) different interpersonal
relations inside a corporation (Lazega law firm) and (iv) different
synaptic junctions in a neuronal network (C. elegans), see Table 1
for details.

To begin with, in Fig. 5 we confirm that, with the exception of
the pair NYC Retweets vs Replies, all other possible pairs of layers
in the four examples are indeed genuinely related—i.e., showing
substantially more similarity than a null model. In each case, we
plot NJ ðA;BÞ (blue bars) and as a reference, as black lines we
also plot the average result of NJ ðA;BÞ (±one standard
deviation) after A;B have been appropriately randomised. We
confirm that the similarity between each pair of networks is not
the result of a finite-size effect and thus exploring the role of a
third network (C) is justified.

We then turn to analyse the role of C. For illustration, the
whole selective rewiring process described in Algorithm 4 is
depicted with detail for a specific example (the case of the C.
elegans multiplex where we explore the role that the electrical
synapses layer play in the relation between the monadic and the
polyadic layers) in the right panel of Fig. 4. We provide the
original value Δ0, and the distributions of the Δ values obtained
after each of the rewiring procedure, concluding that this network
indeed shows non-negligible mediation and suppression effects.

The normalised indices of mediation and suppression for the
rest of permutations in all the real-world multiplex networks are
reported in Fig. 6. The first thing we can observe is that overall
there is substantially more mediation than suppression, although
we also observe the latter mechanism. All effects are statistically
significant (σ≫ 1 in every case) except for the suppression in the
Lazega advice layer and the NYC Retweet layer, where σ ≈ 2 in
both cases.

In the case of the Copenhagen multiplex, the only layer which
evidences a significant role in the relation of the other two is the
phone/sms layer, which we show displays both mediation and
suppression effects, although the former is notably stronger. For
the proximity network, we considered averaged values over the

Fig. 4 Illustration of Algorithm 4. We illustrate the procedure of how to disentangle mediation and suppression in two examples. a Selective rewiring
applied on a triplet of independent networks generated by Algorithm 1, with N= 300 nodes and P= 0.3 (these values are taken arbitrarily and chosen for
illustration). The original value of the net Jaccard difference (close to zero) is denoted Δ0, which is close to zero according to an agreement with Theorem
2.1. Each selective rewiring is repeated 500 times, and histograms representing the distributions of the outputs across all realisations are built. The
selective removal of suppression and mediation yields only a marginal change in the Jaccard net difference Δ, similar to the one performed on a
randomised version, which indicates that the amount of suppression and mediation in this configuration is residual and only due to finite-size effects, as
expected since C is independent of A;B by construction. b Similar to a but applied on the C Elegans triplet, where network C is assigned to the electrical
layer. The actual value Δ0 < 0, initially suggesting mediation. The selective removal of suppression (mediation) significantly push the histograms towards
more negative (positive) values of Δ—much more than such selective removal performed on randomisation—suggesting that there exist a significant
amount of mediation and suppression.
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whole 4 weeks, and used an adjacency matrix of a density
comparable to the one of Facebook links, corresponding to the
closest proximity range. Also, the phone network was built
irrespective of the timing of the interaction.

In the case of the Lazega law firm, all three layers display very
high mediation, but such effect is notably stronger for the co-
working network, i.e. within this firm dyadic friendships are
related to the dyadic advisory relations, and this is mediated by
the fact that these are co-working. Only the friendship layer
displays a suppressor effect (the one played by the advice layer is
non-significant), i.e. pairs of individuals that are not co-working
can have an advisory relationship (or otherwise) because they are
friends, or pairs of co-working will also have an advisory
relationship without the needs of them being friends.

In the case of the Twitter triplet (NYC), only the Replies
network shows a mediating effect.

Finally, in the nervous system multiplex (C. elegans), we can
see that all layers display some amount of mediation and
suppression. The electrical synapses layer is the one displaying a
stronger suppressing effect, whereas the monadic chemical layer
is the one that displays a larger mediation role. The increased

suppression role of the layer of electrical synapses reflects the
evidence that chemical and electrical synapses closely interact and
serve related functions17, so that when either of the chemical
layers is taken as C the presence of the other chemical layer
accounts for a reduced suppression/mediation.

As a final analysis, and in order to show how suppression and
mediation can be functionally modulated within a particular real-
world example, we examine the role played by the proximity layer
in the relation between the Facebook and phone calls/SMS layers
when such layer is systematically varied. In this multiplex, the
proximity network is originally reconstructed using Bluetooth
signal strength between participants, by assigning a link between
each pair of nodes whose relative Bluetooth strength, averaged
over the whole period of the recording (4 weeks) belongs to a
given range. In order to build different proximity networks (each
of them accounting for a different spatial scale) and at the same
time keeping the edge density constant, we build non-overlapping
Bluetooth intensity ranges by taking into account the original
Bluetooth intensity distribution (see the inset of Fig. 7). In this
way, ranges are non-uniform but the number of edges in each of
this range is the same, hence the resulting proximity networks
have all the same edge density while describing different scales of
physical proximity. The intuition is that only the smaller scale is a
meaningful proximity network, and for larger spatial scales the

Table 1 Summary of network specificities.

Summary of empirical networks

Triplet Type N Network #1 Network #2 Network #3

C. elegans Neuronal; directed; unweighted 279 Monadic (1639 edges) Polyadic (3193 edges) Electrical (1031 edges)
NYC Twitter; directed; weighted 102439 Retweet (213754 edges) Mentions (131679 edges) Replies (8062 edges)
Lazega law firm Social (offline); directed; unweighted 71 Co-work (892 edges) Friendship (575 edges) Advice (1104 edges)
Copenhagen Social (offline/online); undirected;

weighted
751 proximity (13020 edges) Facebook (12847 edges) Calls/SMS (1760 edges)

The first three examples are multiplex networks collected from comunelab.fbk.eu/data.php, whereas the fourth one was found through icon.colorado.edu. The C. elegans multiplex describes the
Caenorhabditis elegans connectome, where layers correspond to different synaptic junctions: chemical monadic ("MonoSyn"), polyadic ("PolySyn") and electrical ("ElectrJ")20,21. The NYC multiplex
describes Twitter activity during an exceptional event, the NYC Climate March in 2014, and layers correspond to retweet, mentions and replies22. The Lazega law firm depicts three kinds of social
relationships (Co-work, Friendship and advice) between partners and associates of a corporate law partnership23,24. Finally, the Copenhagen multiplex describes social interaction in three layers
corresponding to phone calls and text messages (merged), Facebook friendships and proximity as measured with the strength of Bluetooth signal25.

Fig. 5 Similarity between pairs of real-world networks. Values of the
network—Jaccard index NJðA;BÞ computed on the four empirical multiplex
networks considered, see Table 1 (for each multiplex, we consider the three
pair permutations). As a reference, black horizontal lines display
NJnullðA;BÞ which computes the average over several randomisations of
layers A;B (red lines correspond to ± one standard deviation. We conclude
that all pair of layers are genuinely related with the possible exception of
the pair NYC Twitter replies vs NYC Twitter retweet.

Fig. 6 Normalised suppression-mediation plane for real-world networks.
We display the normalised indices of mediation and suppression for four
real-world multiplex networks. For each multiplex we permute the role of
network C across the three layers, and for each case the specific layer
which plays the role of C is highlighted in parenthesis. Dot clouds are the
result of repeating the rewiring procedures 500 times (for multiplexes with
a large number of nodes, the figure displays very little dispersion, and the
cloud is only perceptible for the Lazega triplet which is indeed the smallest
multiplex).
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resulting proximity networks do not really imply any real
interaction between the nodes. Then, for each resulting proximity
network, we estimate the role it plays in the relation between the
other two networks and plot it in the ð�m;�sÞ-plane. Results are
shown in the outer panel (a) of Fig. 7. For proximity networks
describing large spatial scales, the network is essentially indepen-
dent of the other two, and it is only when the proximity network
captures a smaller spatial scale (i.e., when links describe real
physical proximity) that an indirect effect (notably, mediation)
gets amplified (see panel b of the same figure). This evidence
would speak to the fact that taking Facebook links as a proxy of a
wider and less compromising community-based relationship, one
tends to communicate by phone/SMS with people who are closer
in daily life (same classroom/dorm/sports club).

Conclusion
In this paper, we have proposed a simple strategy to assess the
role that a given network might play in shaping the relation
between two other networks, thus enlarging the paradigm of
network similarity beyond the classical pairwise comparison. This
approach is aligned to a recent endeavour that aims at going
beyond dyadic interactions in the characterisation of complex
systems18, and takes inspiration from the causal mediation
literature15,19. We make use of a set-theoretic approach to define
a similarity metric between a pair of networks and to further
explore if such a relation is independent of, mediated by, or
suppressed by a third network that might be hidden. We intro-
duce simple generative models that, we prove, produce pure
mediation and suppression. We then explore the coexistence
between mediation and suppression and develop a procedure to
disentangle both indirect effects. The whole methodology is
subsequently applied to a range of real-world, three-layer multi-
plex networks, and we unveil previously unnoticed mediation and
suppression effects in social and neuronal networks which we also
briefly interpreted.

Altogether, this works aims to set the scene for the develop-
ment of concepts such as Network Causality. We hope that this
work sparks further research in several areas. First, the simplicity

and tractability of our selected approach make it easily applicable
across the disciplines (in that sense, note that user-friendly ver-
sions of all codes are freely available). Second, our approach can
be readily generalised to consider not just isolated triplets of
networks. Indeed, one can sequentially apply this protocol to a
multiplex network of an arbitrary number of layers, or to a
temporal network, and accordingly derive concepts of causality
and directionality in those contexts.

As it currently stands, our method is applicable to both
directed and undirected networks, but the current version does
not take into account weights, something which could be taken
into account in further generalisations. At the same time, observe
that this work focuses on the special case where two networks are
considered to be related if they are close according to a distance
based on Jaccard’s index. This is a concrete choice that was
selected for simplicity, however, the conceptual framework is
much more general and flexible, and mediation and suppression
between networks can be explored in a variety of ways. For
instance, further work could explore (i) different distance func-
tions—including those that do not require the networks to have
the same number of nodes, thus extending the formalism to deal
with multilayer networks—and (ii) other types of relations
beyond graph distances.

Data availability
All relevant data are in the public domain and have been appropriately referenced.

Code availability
All codes are available at https://github.com/danielemarinazzo/partialjaccard.
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