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The scaling of social interactions 
across animal species
Luis E. C. Rocha1,2*, Jan Ryckebusch2, Koen Schoors1,4 & Matthew Smith3

Social animals self-organise to create groups to increase protection against predators and 
productivity. One-to-one interactions are the building blocks of these emergent social structures 
and may correspond to friendship, grooming, communication, among other social relations. These 
structures should be robust to failures and provide efficient communication to compensate the costs 
of forming and maintaining the social contacts but the specific purpose of each social interaction 
regulates the evolution of the respective social networks. We collate 611 animal social networks 
and show that the number of social contacts E scales with group size N as a super-linear power-law 
E = CN

β for various species of animals, including humans, other mammals and non-mammals. We 
identify that the power-law exponent β varies according to the social function of the interactions as 
β = 1+ a/4 , with a ≈ 1, 2, 3, 4 . By fitting a multi-layer model to our data, we observe that the cost 
to cross social groups also varies according to social function. Relatively low costs are observed for 
physical contact, grooming and group membership which lead to small groups with high and constant 
social clustering. Offline friendship has similar patterns while online friendship shows weak social 
structures. The intermediate case of spatial proximity (with β = 1.5 and clustering dependency on 
network size quantitatively similar to friendship) suggests that proximity interactions may be as 
relevant for the spread of infectious diseases as for social processes like friendship.

Social animals including humans live in groups to optimise the multiplicative benefits of social interactions such 
as protection, coordination, cooperation, access to information, and fitness, while balancing the competition, 
disease risk, and stress costs of group  living1–3. Social interactions are fundamentally dyadic yet sufficiently 
diverse to link multiple animals or humans in connected social  structures1,4,5. The purpose of social interactions 
is also diverse and spans a range of processes including communication, trust, grooming, dominance, or simply 
the loosely defined idea of  friendship1,4,6. Correlations between social interactions, as for example dominance 
and physical contact, friendship ties maintained through communication, or the intertwined relation between 
trust and spatial proximity, reveal the complexity of social phenomena and suggest that common principles may 
underlie the formation of social ties.

A fundamental question concerns how the number of social connections depends on group size, and whether 
there are any emerging patterns in this relationship. The answer may reveal whether interaction patterns become 
more complex with size in order to maintain efficient social structures within the group. The cost to establish 
and maintain social contacts in small groups is relatively low but increases in larger  groups7. This increasing 
costs leads to peer selection, either by necessity or affinity, up to a species-specific cognitive saturation point in 
the number of contacts one can  manage8. Assuming that all members of a social group are reachable via social 
ties, in the limiting scenarios, a group of size N individuals may have a fragile star-like structure with E = N − 1 
social ties to minimise social interactions (lowest cost) or a fully connected clique with E = N(N − 1)/2 ties 
(highest cost).

Evolutionary arguments support that social groups specialise and optimise social interactions to save 
resources while keeping or increasing the group  efficiency9–11, as for example in response to predators (ecologi-
cal conditions)12 or to  fitness13,14. There is also the argument that human social networks have an optimal size 
to optimise information transfer within  groups15. Research on urban systems shows that human societies also 
organise in groups (e.g. cities) to optimise resources like infra-structure and to increase intellectual, social and 
economic  outputs16,17. These observations lead us to hypothesise that across species and social contexts, the 
number of social contacts E scales with group size N as E = CNβ , where C and β are positive constants.

Until recently, measuring social interactions was laborious. Past research relied on observations of animal 
and human behaviour or self-reporting of social contacts through  questionnaires4. A natural limitation of these 
techniques is the size of the observed populations and potential recalling errors, as for example the inability 
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to accurately identify or quantify each  interaction1,4. Electronic devices (e.g. mobile  phones18 or proximity 
 sensors19,20) and online platforms now provide means for passive and accurate recording of spatio-temporal 
location, communication between animals and between humans, among other forms of animal or human inter-
actions. State-of-the-art electronic data collection is scalable but its ability to detect authentic social interactions 
may be questioned and should be treated  cautiously21,22.

We collate extensive data to show empirically that the number of social contacts scales super-linearly (i.e. 
β > 1 ) with group size and that social interactions can be categorised in different exponents β independently 
of the animal species. We provide evidence that this scaling is necessary to maintain fundamental complex 
network structures irrespective of existing group sizes. We also fit our data to a social network model and show 
that a multi-layer structure and the cost of crossing social layers may explain the estimated scaling exponents.

Results
The data sets were collated using online databases of animal and human social networks previously analysed by 
other authors. All networks were reviewed for consistency and the data sets were standardised such that only 
unique pairs of social contacts were counted, i.e. self-loops, weighting, timings of contacts, and directions were 
removed. Social interactions were identified and labelled in the original studies by domain experts via direct 
observation (animal interactions), questionnaires (offline friendship), electronic devices (spatial proximity), and 
online platforms (online friendship) (see SI). To minimise potential ambiguities, each network was constructed 
based on the specific definition of social interaction in the respective original study. Table 1 shows the number 
of networks for each type of social interaction and animal class, including captive and free-ranging animals. 
The network size varies across species and social interactions because of experimental settings, characteristics 
and limitations of the study populations, e.g. the observation capacity of researchers, cost of technical devices, 
free-range vs. confined animals, online platforms, or animals living in small groups (see SI).

Scaling of social interactions. The networks of social interactions were grouped in categories following 
the type of social interactions as reported in the original studies (Table 1). Figure 1 shows the scaling between the 
number of social contacts E and size N (i.e. the number of interacting individuals) for each of the 6 original cat-
egories. We assume that the scaling of social relations is independent of species and test our hypothesis E = CNβ 
by fitting a power-law to the data using logarithmic transformed variables to evenly distribute the data points:

The fitting exercise gives super-linear power-law exponents (i.e. β > 1 ) and strong linear correlations 
( 0.55 < r < 0.99 ) for all categories of social interactions (Table 2). Assuming a small error ǫ in β̂ , the exponents 
follow the general law ( β = 1+ a/4 ) with a ≈ 1 for online friendship ( ǫ = 12% ), a ≈ 2 for spatial proximity 
( ǫ = 4% ), a ≈ 3 for group membership ( ǫ = 2.6% ) and offline friendship ( ǫ = 5% ), and a ≈ 4 for physical 
contacts ( ǫ = 1% ) and grooming ( ǫ = 6% ), despite differences in species and sample sizes (Fig. 1).

This super-linear scaling indicates increasing densification of social contacts, that is, larger social groups 
have on average more social contacts per-capita than the smaller ones. It is not surprising that β > 1 because the 
number of social connections must scale at least linearly with group size ( E ∝ N ) to maintain the social network 
connected; this is known as the percolation threshold in random  networks23. If E ≈ N , small perturbations may 
fragment the network, breaking down the group structure. Furthermore, β > 1 suggests that a super-linear 
number of contacts are necessary to create and maintain the complex social network structures for the groups 
to function cost-efficiently irrespective of size.

Social network structure. We study the network structures for each of the six types of social interac-
tions (see “Methods”). The clustering coefficient 〈cc〉 is a local measure of the level of sociality between common 
contacts of a focal individual (i.e. the fraction of social triangles). Its intensity indicates an evolutionary group 
advantage as for example fitness  benefits24,25. Networks with higher clustering are relatively more robust since 

(1)logE = logC + β logN .

Table 1.  Number of networks for each type of social interaction and animal class. In a total of 611 networks, 
there are 179 cases of human and 432 cases of non-human social interactions, including 281 captive and 151 
free-ranging animals.

Social interaction 
type

Mammalian non-
primates

Mammalian 
primates

Mammalian 
humans Actinopterygii Aves Insecta Reptilia Total

A: physical contact 0 4 0 0 2 244 0 250

B: grooming 0 23 0 0 0 0 0 23

C: group member-
ship 4 0 0 7 5 0 0 16

D: spatial prox-
imity 63 58 88 9 0 12 1 231

E: offline friend-
ship 0 0 67 0 0 0 0 67

F: online friend-
ship 0 0 24 0 0 0 0 24

Total 67 85 179 16 7 256 1 611
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the deletion of a social connection would not significantly affect interaction and communication among close 
contacts. In our social networks, 〈cc〉 is constant for varying network size for all types of social contacts (Fig. 2). 
In random networks, the clustering coefficient decays with increasing network size as �cc� = �k�/N , where 〈k〉 
is the average number of contacts (or edges) in the  network23. The inset of Fig. 2F shows the results for the ran-
domised versions of the same online friendship networks (see SI for the other categories). In all categories, there 
is a higher clustering coefficient than expected on the basis of randomised social contacts (see caption Fig. 2). 
Since the average degree is defined as �k� = 2E/N , we have �cc� = �k�/N = 2E/N2 and thus would need E ∝ N2 
to have constant clustering in random networks. Evolutionary theory implies that more complex structures may 
emerge in such social systems to optimise resources, e.g. to reap the fitness related benefits, and thus relatively 
less social contacts become necessary to reach the same level of clustering across group  sizes24,25. For example, for 
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Figure 1.  The number of social connections E versus the group size N across species. Empirical data (each 
symbol corresponds to a different species) and regression curves (dashed lines) for all 6 categories of social 
interactions: (A) physical contact ( β̂A = 2.01 , 95% CI [1.98, 2.04], n = 250 ); (B) grooming ( β̂B = 1.94 , 95% CI 
[1.53, 2.36], n = 23 ); (C) group membership ( β̂C = 1.73 , 95% CI [1.47, 1.99], n = 16 ); (D) spatial proximity 
( β̂D = 1.52 , 95% CI [1.45, 1.59], n = 231 ), with 38% human and 62% non-human networks; (E) offline 
friendship ( β̂E = 1.79 , 95% CI [1.30, 2.29], n = 67 ); (F) online friendship ( β̂F = 1.22 , 95% CI [1.06, 1.37], 
n = 24 ). Details of the fitting in Table 2. All axes are in log-scale.

Table 2.  Best fitting exponents for the 6 types of social interactions. The variable n gives for each type of social 
interaction the number of different networks that was included in the fit. Orthogonal regression is used to 
account for measurement errors in both axes.

Social interaction type n

β̂ Ĉ

Pearson correlation p-valueBest fit 95%CI Best fit 95%CI

A: physical contact 250 2.01 [1.98,2.04] 0.75 [0.33,1.68] 0.96 < 0.01

B: grooming 23 1.94 [1.53,2.36] 0.28 [0.09,0.86] 0.82 < 0.01

C: group membership 16 1.73 [1.47,1.99] 0.33 [0.29,0.37] 0.89 < 0.01

D: spatial proximity 231 1.52 [1.45,1.59] 0.44 [0.34,0.58] 0.55 < 0.01

E: offline friendship 67 1.79 [1.30,2.29] 0.10 [0.01,0.65] 0.57 < 0.01

F: online friendship 24 1.22 [1.06,1.37] 0.44 [0.06,3.36] 0.99 < 0.01
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some classes of random heterogeneous networks, �cch� = A/N , where the proportionality constant A depends 
on the heterogeneity of the distribution of contacts among individuals and is lower than 〈k〉23.

The average length of the shortest-paths 〈l〉 measures the average distance between any pairs of individu-
als in the social network and quantifies the communication potential between parts of the  network26. Shorter 
average distances (i.e. �l� ≪ N  , resulting in the small-world  effect27) indicate that information flows quickly 
over the network, which is a fundamental characteristic of efficient group  organisation28. For physical contacts, 
grooming, and group membership, 〈l〉 is constant and slightly higher than one (Fig. 2A–C). For spatial prox-
imity and offline friendship, the values increase with size following quantitatively similar trends (Fig. 2D,E). 
The results for online friendship suggest a constant trend (Fig. 2F). In all cases, the average path-length is 
〈l〉 < 6 , which is the small-world horizon observed  empirically23. For all 6 categories, the random versions of 
the same networks give constant relations albeit generally with lower values (see SI). In theoretical random 
networks, the average distance increases slowly with the network size as �l� ≈ log(N)/ log(�k�)23. Nevertheless, 
the average path-length 〈l〉 is approximately constant across group sizes if E ∝ Nβ for β > 1 , since in this case 
�l� ≈ log(N)/ log(2Nβ−1) ≈ 1/(β − 1) . Smaller β thus leads to higher 〈l〉 , as observed in the analysed networks. 
In some classes of heterogeneous random networks, 〈l〉 is also nearly constant with network  size23. The density of 
contacts explains the low 〈l〉 for physical contact, grooming and group membership. The discrepancy of spatial 
proximity, offline and online friendship with the random case indicates that more complex network structures 
are being formed in larger groups for these types of social interactions. In sparse networks, like those, a high 
level of local clustering increases the distance between random pairs of network nodes because of local spots of 
connectivity  redundancy23. Taken together, the constant clustering across network sizes (Fig. 2) implies that the 
average distance will necessarily increase (Fig. 3), unless followed by a sufficient increase in the number of con-
nections (to maintain low average distances as the group increases). The growth in offline friendship followed by 
a seemingly constant pattern for online friendship (which has larger sizes) suggests a potential saturation in 〈l〉 for 
human friendship in line with the small-world horizon observed in previous  studies23. Although communication 
remains efficient (because �l� ≪ N ), the benefits of forming larger groups do not compensate the costs of opti-
mising certain network structures, as is the case for other types of social interactions involving physical contact.

〈 c
c〉

〈c
c〉

N N N

NNN

〈c
c〉

〈 c
c〉

A B C

D E F

groomingphysical contact group membership

offline friendship online friendshipspatial proximity

〈c
c〉

〈 c
c〉

12 48 192 12 24 48

12 48 1926 24 96

6 24

384 1536 24576 393216

Figure 2.  Network clustering structures. The average clustering coefficient 〈cc〉 between close contacts 
vs. network size for (A) physical contact (median values for the empirical Memp = 0.94 and randomised 
Mrand = 0.88 versions of the same networks); (B) grooming ( Memp = 0.68 and Mrand = 0.56 ); (C) group 
membership ( Memp = 0.79 and Mrand = 0.69 ); (D) spatial proximity ( Memp = 0.50 and Mrand = 0.22 ); 
(E) offline friendship ( Memp = 0.37 and Mrand = 0.07 ); (F) online friendship ( Memp = 0.04 and 
Mrand = 3.5 · 10−5 ); the inset is the distribution for the random version of the same networks. Dashed 
horizontal lines are the median values of the empirical networks. Log-binned (x-axes) Tukey box plots with 
diamonds representing outliers.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12584  | https://doi.org/10.1038/s41598-021-92025-1

www.nature.com/scientificreports/

Multi-layer model. Multi-layer models can be used to represent the underlying generative mechanisms 
through which individuals combine skills and affinity to build up more complex social groups. From single 
individuals to the entire population, individuals may be stratified in layers (or levels) corresponding to differ-
ent  groups29. For example, living in households (layer 1) within neighbourhoods (layer 2) that in turn are part 
of cities (layer 3), and so on, seems natural for humans. While people mostly interact with those in the same 
group (e.g. within the same household), interactions across groups are less  frequent30 (e.g. between different 
households in the same neighbourhood). Interactions across groups at the same layer are necessary to define 
higher-order groups, i.e. a group at the next higher layer, as for example a neighbourhood is a result of interac-
tions between individuals from different households. Multi-layer models have been used to explain spatial rela-
tions in  vascular31 and  infrastructure17 systems. We argue that such models are also of value for social groups, 
not necessarily spatially bound, since multi-layer organisation has been observed across animal species in which 
a relation between group sizes in different layers vary from nearly 2.5 in primates to about 3 for other mammals 
including  humans14,32. This means that individuals are organised as multiples of 3, for example, in groups of 5 
(layer 1), 15 (layer 2), 45 (layer 3), and so on. The model detailed below does not aim to reproduce all structures 
of the 611 analysed networks but focuses on the scaling exponents β.

The self-similar multi-layer group structure is mathematically represented as a branching tree with a group at 
layer h split into b sub-groups at layer h− 1 (Fig. 4). At the highest layer hmax , all individuals belong to a single 
social group, i.e. N = bhmax , and at the lowest layer ( hmin = 0 ), each group is formed by a single unique individual. 
In this model, individuals i and j make a social contact (i, j) with probability p�h(i, j) dependent on the distance 
�h between the layers that separate them. Closer individuals (e.g. at distance �h = 1 because they are living 
in the same neighbourhood or belonging to the same social group) are more likely to interact than individuals 
living far apart (e.g. at distance �h = 2 because they are living in different cities or belonging to different social 
groups), i.e. p�h(i, j) decreases with �h . The multi-layer tree-like structure only defines the distance �h between 
the groups that is in turn used to form contacts in the social network (Fig. 4); the resulting social network only 
has tree-like structure for sparse networks, i.e. when E ≪ N2 . The self-similarity between layers implies that 
p�h(i, j)/p�h−1(i, j) = const33. A power-law of the form p�h ∝ c−�h , with c > 1 , satisfies this relationship. The 
parameter c represents the cost to make social interactions across layers, that we assume is lower than the cost 
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Figure 3.  Network path structures. The average shortest path-length 〈l〉 vs. network size in the networks of (A) 
physical contact (median values for the empirical Memp = 1.10 and randomised Mrand = 1.05 versions of the 
original network); (B) grooming ( Memp = 1.39 and Mrand = 1.29 ); (C) group membership ( Memp = 1.30 and 
Mrand = 1.09 ); (D) spatial proximity ( Memp = 2.16 and Mrand = 2.00 ); (E) offline friendship ( Memp = 3.19 and 
Mrand = 3.36 ); (F) online friendship ( Memp = 4.66 and Mrand = 4.97 ). Dashed horizontal lines are the median 
values of the empirical networks. Log-binned (x-axes) Tukey box plots with diamonds representing outliers.
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to create a new layer, i.e. c < b , because multiple contacts are necessary to establish a new layer. For a given 
individual i, the expected number of social connections 〈e〉i is:

For 1 ≤ c < b , the sum converges:

Since N = bhmax and chmax = bhmax logb(c) , we get:

Therefore, the total number of social connections is:

The multi-layer model implies that β = 2− logb(c) . Assuming that b = 2.514, the cost of connections is 
thus cA = 1 for physical contact ( βA ≈ 2 ), cB = 1 for grooming ( βB ≈ 2 ), cC = 1.26 for group membership 
( βC ≈ 1.75 ), cD = 1.58 for spatial proximity ( βD ≈ 1.5 ), cE = 1.26 for offline friendship ( βE ≈ 1.75 ) and 
cF = 1.99 for online friendship ( βF ≈ 1.25 ). This cost is associated to crossing (virtual) barriers between social 
groups that might cause the creation of larger groups. The low cost ( c = 1 ) for physical contact and grooming 
means that p�h = 1 , i.e. the probability to form connections is independent of the social distance �h , collapsing 
the assumption of multi-layer structure. For such types of social interactions, the connections within the same 
social group are favoured; individuals do not groom in different social groups nor make persistent physical con-
tacts, except physical contacts for conflict that would not be reflected in our data. This effect is related to the high 
clustering coefficient reported in previous sections and may explain the relatively small size of such networks. 
The number of social contacts for such activities is limited within the same social group.

Online friendship, on the other hand, is costly ( c ≈ 1.99 ) in terms of crossing social boundaries to connect 
individuals from different social  groups34, e.g. with different tastes, ideas, location, age, and so on. Socially closer 
individuals would be favoured here as well since it is harder to be friends with dissimilar people than with those 
similar to each  other30. However, given that online connections are cheap to establish and maintain (i.e. do 
not need nurturing and resources), the multi-layer structure becomes relevant with a non-negligible number 
of socially distant connections being formed. Furthermore, online friendship typically mixes (real) friends, 
acquaintances, relatives, and co-workers, each belonging to different social groups, with some individuals acting 
as social brokers. For example, online friendship is more easily established between those studying in the same 
school than at different schools; however, inter-school friendship is facilitated by the online platform, though 
socially costly (lack of face-to-face interactions, no common friends, building trust). For networks derived from 
mobile phone communication in urban populations, a scaling exponent β = 1.15 has been  reported35–37. Such 
mobile communication data sets mix professional and personal relations which possibly also leads to higher 
costs in the sense of crossing social boundaries. In one study, a constant clustering coefficient has been also 
observed suggesting that similar underlying principles may explain the formation of such social or commu-
nication  structures37. The multi-layer structure becomes less relevant for offline friendship ( c ≈ 1.32 ) that are 
typically more spatially constrained in our data. For example, students or prison inmates will report friendship 
with those around them. In schools, from where most of our data come from, the social structure is seen at the 
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∑
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Figure 4.  Multi-layer social model. The underlying multi-layer structure (left) defines the probability 
p�h(i, j) ∝ c−�h of forming connections between individuals i and j in the social network (right). If c = 1 , 
everyone interacts with everyone else leading to a fully connected network whereas for higher c, interactions 
between closer individuals (lower h) are more common. For example, the distance �hA,B = 1 and �hA,D = 2 . 
With cost c = 1 , edges (A, B) and (A, D) are equally likely ( p1 = p2 ∝ 1 ), whereas with higher cost, e.g. c = 2 , 
edge (A, B) is more likely ( p1 ∝ 1/2 ) to occur than edge (A, D) ( p2 ∝ 1/4).
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class and school layers only. Given experimental limitations, it is often not possible to report friends outside the 
study setting, which could reveal higher social layers, e.g. neighbourhood friends. It is possible that the exponent 
β for friendship is thus between what we estimated for offline and online friendship if all layers of friends and 
not only those in the same study setting were reported.

Our analysis finds an intermediate exponent ( β = 1.5 ) and cost ( c ≈ 1.58 ) for spatial proximity. Spatial 
proximity is a particular type of social interaction. Grooming, physical contact and human friendship are well-
defined interactions identified, respectively, by observing joint activities or by directly inquiring individuals. 
However, spatial proximity interactions are measured by sensors or direct observation and capture a mixture of 
social situations. Spatial proximity might reflect affinity, trust and friendship between individuals and animals 
sharing the same  space30, e.g. persistent spatial proximity between pairs of  cows38, or behavioural or trait similar-
ity, i.e. homophily, as for example friends visiting a  museum39 or health-care workers in  hospitals40. On the other 
hand, spatial proximity interactions might simply reflect spatial constrains forcing individuals and animals to 
be in close proximity during periods of time, e.g. a group of visitors of an art  exhibition39 or confined  animals38. 
Nevertheless, also in the later, affinity and trust are reflected in the proximity contacts. As discussed above, it is 
possible that friendship at the society layer likely follows patterns intermediate to those observed in the online 
( β = 1.25 ) and offline ( β = 1.75 ) categories. The existing literature associating friendship to time that individuals 
spent  together30 and the observation that spatial proximity contacts follow an intermediate exponent ( β = 1.5 ) 
suggest a potential link between these social interactions. We cannot make a strong association between the 
two types of social interactions due to lack of data of offline friendship in larger populations. Previous model-
ling exercises in urban populations suggest that βB = 1.5 can be explained by mobility ( H = 2 , where H is the 
Hausdorff dimension of a path in space) over two dimensional ( D = 2 ) spaces based on the assumption that 
fully-mixed populations may fully explore a given  area17. While this assumption may hold within, e.g. schools, 
museums or barns, it does not apply on larger spatial areas since humans and animals are territorial and tend to 
spend most of time within certain  locations41 or with certain  individuals30. On the other hand, the same model 
suggests that contacts per-capita scale as 0.25 (i.e. β = 1.25 ) under the same conditions (i.e. H = D = 2 ). This 
fits well to our findings for offline friendship, where people may virtually explore the whole social space and 
potentially interact with different individuals.

Conclusions
Our findings reveal key aspects of the organisation of animal social networks. Though primates and non-primates 
(including humans) are more represented than other animals in our data set, the universal scaling relations 
E = CNβ between the number of social contacts E and size N suggest common organisation principles across 
animal species that can be explained by multi-layer models designed to maintain the functioning of the social 
 groups14,32. Different scaling exponents following the general relation β = 1+ a/4 , with a ≈ 1, 2, 3, 4 allow us 
to distinguish types of social interactions and to infer network structures underlying those interactions. For all 
types of social interactions, the local clustering remains constant for increasing network sizes albeit having dif-
ferent intensity in each case. Physical contacts, grooming and group membership have similar constant median 
values that are higher than observed for spatial proximity, offline and online friendships. The average path-length 
is also constant and follow the small-world pattern (i.e. �l� ≪ N  ) for most cases with the exception of spatial 
proximity and offline friendship where a quantitatively similar positive trend is observed with values below the 
small-world horizon of �l� ≈ 6 previously observed in social  networks23.

One may argue that humans differ from other animals by developing more efficient social network struc-
tures, with relatively less contacts for larger network sizes, and thus lowering the scaling exponents. There is a 
quantifiable relationship with brain and group sizes, along with the complexity of the interactions. Humans are 
able to process the cognitive demand of other forms of relationships such as friendship, rather than mating and 
dominance relations that often occur within other animals and  species42. The common scaling pattern observed 
across species and particularly for spatial proximity weakens the hypothesis that animals differ. Our results 
suggest that the type of social interaction, and to a lesser extent, the group size, are more relevant to determine 
the scaling exponents than the animal species. We reached this conclusion by combining data from different 
species. More statistical power could be achieved with a larger sample of network data for specific combinations 
of social interactions and species in order to study these relations separately. Given the multi-layer structure of 
social networks and experimental constraints, offline friendship data sets are limited to relatively small social 
 circles30. If one could map higher social layers, the scaling exponent could decrease, likely to the same value as 
observed for spatial proximity. If this is confirmed in future studies, we will be able to infer that spatial proximity 
is a proxy of friendship across animals  species30.

Physical contact, grooming and group membership are associated with more robust and topologically efficient 
networks (since clustering is higher and path-lengths are shorter) than friendship and proximity interactions. 
This social cohesion is a result of homophily and coordination to maintain group functioning, which likely 
creates smaller groups in these categories relative to friendship and proximity categories because of the cost of 
nurturing contacts. The frequency and number of social interactions leading to stable social contacts are also 
important to regulate diffusion processes such as  communication26,  innovation16,17, infectious  diseases19,43 and 
social  phenomena30,44. Our results suggest that physical contacts and grooming are more efficient than proxim-
ity to facilitate spread phenomena at the population (network) level. Online friendships are associated to looser 
social structures easier to fragment as the groups increase in size. The relatively high cost of nurturing too many 
online social contacts across social layers restrains the opportunities to generate higher clustering or common 
friends, and create redundant structures, as observed in the smaller networks related to activities necessary to 
keep the group functioning.
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Although we focus on temporally stable social  networks45, the availability of temporal information and 
intensity of certain social interactions could also help to understand the formation and dissolution of social 
contacts and how particular network structures are formed. Future research should add a quality measure to 
social interactions (e.g. via weights or temporal dynamics) to investigate the varying importance of creating and 
maintaining particular  structures46. Strong super-linear scaling implies prohibitive social costs to maintain larger 
groups for some types of social interactions. The questions on whether there is a maximum or optimal group 
size in which efficient groups can exist and fitness is  maximised47, or whether more complex network structures 
are necessary to sustain larger groups, remain open.

Methods
Data. The data sets used in this study were collected using public network data repositories. A list of reposi-
tories and a full list of the original references for the 611 data sets are available in the SI. The 6 types of social 
interactions: physical contact, grooming, group membership, spatial proximity, offline friendship and online 
friendship were identified and labelled in the original studies by domain experts via direct observation (animal 
interactions), questionnaires (offline friendship), electronic devices (spatial proximity), and online platforms 
(online friendship). All 611 networks were standardised for the analysis, including the removal of self-loops, 
edge directions, and edge weights.

Networks. A network G of size N is defined as a set of N nodes i and a set of E edges (i, j) connecting nodes 
i and j. A node represents either a person or an animal. An edge represents a social connection of a specific type. 
In an undirected network, edges are reciprocal, i.e. (i, j) = (j, i) . In a network without self-loops, there is no edge 
(i, i).

The clustering coefficient of a node i is given by:

where ei is the number of edges (connections) between the ni nodes directly connected to node i. The average 
clustering coefficient of the network G is thus:

The topological distance between the nodes i and j is the length of the shortest-path lij in number of edges. It is 
calculated within the largest connected component of the network G. In the largest connected component, there 
is at least one path between any pairs of nodes i and j. The average shortest-path length is:
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