
Supplemental materials and methods 

Supplemental Method S1. Watering 

All plants were watered daily up to their target gravimetric soil water content. Three target 

gravimetric soil water contents defining the treatments were based on a soil water retention 

curve calculated for the potting soil (Supplemental Fig. S10), showing the relation between 

soil water potential and soil gravimetric water content. 2.4 g water/g dry soil was chosen for 

the Control treatment, because it has a soil water potential of around -10 kPa, which is close 

to field capacity. 1.4 g water/g dry soil was chosen for the Drought treatment, corresponding 

to a soil water potential of around -100  kPa. 1.8 g water/g dry soil was chosen for the Mild 

treatment, leading to an intermediate water potential around -28 kPa. All drought-treated pots 

started at the well-watered target soil water content and were switched to their drought 

conditions at either the V5-stage (vegetative stage drought) or the V12-stage (reproductive 

stage drought). It took several days for the soil to dry down until below the target soil water 

content and for the pots to receive daily watering again. In the first experiment (March-May 

2015) plants were subjected to Control, Mild and Drought treatments. In later experiment only 

the Control and Drought treatments were used. For the leaf 4 length trial, only plants 

receiving the Control (2.4g/g) treatment are considered here.  

It was necessary to correct the observed weight of the pot for the changing plant weight in 

order to accurately determine soil water content. In the first experiment, this was done by 

subtracting the mean plant weight per treatment measured at the most recent destructive 

sampling time point. For the second to fourth experiment, a Gompertz growth curve (Winsor, 

1932) was fitted to the plant fresh weight measurements, of each treatment separately, over 

time, to predict plant weight as a function of plant age. These predictions were then used to 

correct the measured weight of the pot. 

Supplemental Method S2. Destructive sampling 

In the first experiment, 250 plants were destructively sampled throughout development, from 

the V5-stage until silking (supplemental data S1). The biomass variables fresh and dry weight 

of roots, leaves, stem and ears were measured for all sampled plants. Starting from the V9-

stage, the height of nodes 9, 12, 15, 18 and 20 was determined to measure internode and stem 

growth. Also starting from the V9-stage, the highest ranked developing ear was sampled and 

stored in an ethanol:acetic acid (3:1) mixture, to later determine ear traits such as length, 

spikelet row number and number of spikelets per row. 

The three later experiments had a distinct sampling scheme from the first experiment. 

Different sets of plants were sampled for transcriptome/metabolome on the one hand and 

destructive phenotyping on the other hand. Only phenotype data from the destructively 

sampled ears (length, kernel row number and number of kernels per row, supplemental data 

S2) is used in this study. Results of the transcriptome and metabolome analysis will be 

reported elsewhere. 

Supplemental Method S3. Repeated observations and measurements 

In all experiments, plants were visually inspected daily to check their developmental stage. 

The timing of the V5-stage, leaf 9 appearance, leaf 12 appearance, leaf 15 appearance, leaf 18 

appearance, the V12-stage, ear appearance and location, tassel appearance, anthesis and 
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silking were recorded (supplemental data S3). Additionally, in the first experiment, 100 plants 

(20 for each of the treatments Control, V5-Drought, V12-Drought, V5-Mild and V12-Mild) 

were selected for daily measurements of the length of the growing leaves 9, 12, 15 and 18. 

The growth of leaf 6 was measured for all plants on the platform, including the border plants 

(14 out of 392 plants had not emerged in the first experiment, resulting in 378 plants divided 

unevenly over 5 watering treatments). During the leaf 4 length trial, the length of leaf 4 was 

measured daily for 12 Control treated plants, starting from leaf emergence from the whorl to 

the end of leaf growth. Leaf length measurements were performed by placing a ruler at soil 

level at the base of the plant and stretching out the leaf upwards along the ruler.  

Supplemental Method S4. Biomass prediction model 

Plants subjected to the various watering treatments in the first experiment were destructively 

sampled throughout development. Plant biomass-related traits, such as stem and leaf fresh and 

dry weight were measured from the V5-stage onwards until the silking stage, resulting in 236 

distinct data points (69 Control, 63 V5-Drought, 61 V5-Mild, 23 V12-Drought, 20 V12-Mild) 

with both ground truth biomass data and image-derived plant projected area data 

(supplemental data S5).  

Linear models (lm function, R stats package (R Core Team, 2020)) for predicting total or 

above-ground fresh weight or dry weight were evaluated using leave-one-out-cross-validation 

(LOOCV), where a prediction is made for each data point using a model that was trained for 

all other data points (Supplemental table S5). These out-of-bag predictions were then 

compared to the ground truth values using metrics such as R2 and the mean-absolute-

percentage-error (MAPE) (De Myttenaere et al., 2016) to determine the performance of the 

model (supplemental table S12). The best performing models were selected using a 

combination of F tests for nonzero model coefficients, adjusted R2, LOOCV out-of-bag R2 

and LOOCV out-of-bag MAPE. The final models (eq. 4; eq.5) were trained on all available 

data points and predicted the total aboveground fresh weight based on the average projected 

area for all sideview perspectives, the projected area for the top-view camera and the 

interaction between these two factors and the total aboveground dry weight using a 2nd degree 

polynomial based on the average projected area for all sideview perspectives: 

 

𝐹𝑊𝑎𝑏𝑜𝑣𝑒 = 𝑎0 + 𝑎1 × 𝐴𝑚𝑒𝑎𝑛.𝑠𝑖𝑑𝑒𝑣𝑖𝑒𝑤 + 𝑎2 × 𝐴𝑡𝑜𝑝𝑣𝑖𝑒𝑤 + 𝑎3 × 𝐴𝑚𝑒𝑎𝑛.𝑠𝑖𝑑𝑒𝑣𝑖𝑒𝑤 × 𝐴𝑡𝑜𝑝𝑣𝑖𝑒𝑤 

𝐷𝑊𝑎𝑏𝑜𝑣𝑒 = 𝑎0 + 𝑎1 × 𝐴𝑚𝑒𝑎𝑛.𝑠𝑖𝑑𝑒𝑣𝑖𝑒𝑤
2 + 𝑎2 × 𝐴𝑚𝑒𝑎𝑛.𝑠𝑖𝑑𝑒𝑣𝑖𝑒𝑤 

 

where 𝐹𝑊𝑎𝑏𝑜𝑣𝑒 and 𝐷𝑊𝑎𝑏𝑜𝑣𝑒 are the aboveground fresh weight and dry weight in g, 

𝐴𝑚𝑒𝑎𝑛.𝑠𝑖𝑑𝑒𝑣𝑖𝑒𝑤 is the average projected area for all sideview images in mm2 and 𝐴𝑡𝑜𝑝𝑣𝑖𝑒𝑤 is 

the projected area for the top-view image in mm2. R-scripts used for training the linear 

models, performing the LOOCV and making predictions and accompanying example input 

datasets for training (experiment 1, supplemental data S5) and predictions (experiment 4) 

have been made available through Zenodo (https://doi.org/10.5281/zenodo.4323615). Further 

details regarding the plant biomass modelling can be found in supplemental result S1 and 

supplemental discussion S1. 

The models used to estimate biomass of imaged plants throughout their development were 

trained on all available imaging and measured biomass data points gathered in the first 



experiment. Plant fresh weight and dry weight were predicted for each plant in the second, 

third and fourth experiment for each day using the data derived from the daily images. As 

plants were destructively sampled throughout these experiments, the number of replicates for 

the images decreased over time. Exact numbers of individual plants used for each distinct 

DAE can be found in supplemental tables S8-S11 and range between 29 and 366 for the 

Control treatment, 61 and 370 for the V5-Drought treatment and 27 and 137 for the V12-

Drought treatment. By 62 DAE the mean silking age of Control plants had passed and the few 

(15) remaining Control plants were behind developmentally, not accurately representing the 

population, so biomass estimation results were no longer representative and were not analyzed 

further.  

Fresh and dry weight accumulation rates were calculated for each day in the second, third and 

fourth experiment by dividing the difference in weight between that day and the previous day 

over the difference in time between the moment of imaging and the previous moment of 

imaging. A cubic smoothing spline (smooth.spline function, R stats package (R Core Team, 

2020)) was fitted to the fresh and dry weight accumulation rates of each treatment. The values 

of the smoothing splines for the fresh and dry weight accumulation rates were divided by their 

maximal value in the Control treatment in order to normalize the data to a scale of 0-1 for 

comparison with the organ growth rates. 

Fresh weight, dry weight and their accumulation rates were analyzed using identical methods. 

Data were grouped per treatment and per plant age, expressed as days after emergence (DAE). 

Normality of distribution and equality of variance between treatments were tested for each 

day. These conditions were not met in many days, so we chose to use the non-parametric 

Mann-Whitney U test. These tests were performed for each day to test if the distribution for 

the Control treatment on the one hand and the distributions for the V5-Drought or V12-

Drought treatment on the other hand were significantly different. The resulting p-values were 

corrected for multiple testing using the Holm-Bonferroni method (Holm, 1979).  

Supplemental Method S5. Experimental setup 

Experiments were conducted in the Phenovision plant phenotyping platform (supplemental 

Fig. S1). Phenovision is a conveyor belt-based platform, composed of 14 lines with 28 

individual positions on each line, leading to a total capacity of 392 pots. The first and final 

line and the first and final plant on each line were treated as border plants, to eliminate border 

effects. In total, there were 80 border positions and 312 experimental positions. Plants on the 

platform were watered daily. Watering was automated through the use of three weighing-

watering stations, which supplied water to the pots until they reached a predetermined 

gravimetric soil water content, allowing us to subject the plant to specific watering/drought 

treatments. Plants on the platform were imaged daily. The platform was equipped with three 

imaging systems: a top-view thermal infrared system, an RGB imaging system (combining 

two sideview cameras with one top-view camera) and a hyperspectral imaging system, 

composed of two top-view scanners, capable of imaging in the range from 400nm to 2500nm. 

In this study only the data from the RGB imaging system is considered. Four experiments 

were conducted in the periods March-May and September-November in the years 2015 and 

2016. Additionally, leaf 4 measurements were taken during a small trial occurring in February 

2015. 

Supplemental Method S6. Environment 
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All experiments took place in the Phenovision greenhouse, which features automated high-

pressure sodium vapor grow lights, heating, humidification and ventilation. In all experiments 

daytime was from 06:00-22:00. During this period the photosynthetically active radiation 

depended on solar radiation (mean of 250 µmol photons*m-2* s-1) but was maintained above 

150 µmol photons*m-2* s-1 to obtain a 16 h day length. In all experiments, the climate was set 

to a mild ‘seedling’ scheme from the start of the experiment until the first plants reached the 

V5-stage, at which point the climate settings were changed to a harsher setting. During the 

seedling stage of the first experiment daytime temperatures were set to 23°C and nighttime 

temperatures to 22°C, with daytime relative humidity set to 65% (corresponding to vapor 

pressure deficit (VPD) ~1 kPa) and nighttime relative humidity to 55% (corresponding to 

VPD ~1.2 kPa). During the seedling stages in the later experiments, daytime and nighttime 

temperatures were also 23°C and 22°C respectively but VPD was set to ~1.5 kPa.  

After the first plants reached the V5-stage, the system was set to provide a gradual diurnal 

gradient, with temperature set to range between 22°C and 28°C and VPD set to range between 

0.95 kPa and 2kPa, with the highest values for temperature and VPD to be reached in the 

afternoon. Photosynthetically active radiation, relative humidity, VPD and temperature were 

continuously monitored above the growth zone of the platform by four environmental 

monitoring stations containing an SKH 2053 humidity and temperature sensor, and a PAR 

SKL 2625 sensor (Skye Instruments, UK).  

Supplemental Method S7. Leaf growth analysis 

During the first experiment, daily leaf length measurements during the growth of leaves 6, 9, 

12, 15 and 18 resulted in leaf length profiles over time, which were analyzed to determine 

LER, LED, FLL and the timing of growth. An issue occurring during the growth period of 

leaves 12, 15 and 18 was that the stem below the node of these leaves was elongating during 

the growth period of these leaves. As leaf length was measured from the soil to the tip of the 

leaf, part of the leaf growth measured this way was in fact stem growth. The leaf length data 

was corrected for this by subtracting the stem length up to the node concerned from the leaf 

length and the growth functions were fitted to the corrected leaf length data. 
Two growth functions were fitted to the resulting leaf length profiles: a beta-sigmoid growth 

function (eq. 1) (Yin et al., 2003; Voorend et al., 2014) and a three-piece linear growth 

function (eq. 2) (supplemental Fig. S3B; supplemental Fig. S4A-C) :  

𝑦 = 𝑎 ∗ (1 +
𝑡𝑒−𝑡

𝑡𝑒−𝑡𝑚
) ∗ (

𝑡

𝑡𝑒
)

𝑡𝑒
𝑡𝑒−𝑡𝑚           𝑡 < 𝑡𝑒 

𝑦 = 𝑎                                                                  𝑡 ≥ 𝑡𝑒 

with y the leaf length, t the plant age, a the final leaf length, te the plant age at the end of 

growth and tm the plant age at the moment of maximal growth. 

𝑦 = 0                                   𝑡 ≤ 𝑡1 

𝑦 = 𝑚 ∗ (
𝑡 − 𝑡1

𝑡2 − 𝑡1
)           𝑡 > 𝑡1& 𝑡 < 𝑡2 

𝑦 = 𝑚                                 𝑡 ≥ 𝑡2 

with y the leaf length, t the plant age, m the final leaf length, t1 the plant age at the start of 

growth and t2 the plant age at the end of growth. 



The beta-sigmoid growth function was used to determine the LER over time, the maximal 

LER and the final leaf length. Mean LER, start and end of leaf growth and LED were 

determined from the three-piece linear function. The number of independent plants measured 

per treatment and leaf rank was 12 for leaf 4 under Control conditions, 74 for leaf 6 under 

Control conditions and 20 for leaves 9, 12, 15 and 18 under Control and V5-Drought 

conditions and leaves 15 and 18 under V12-Drought conditions. Fitting the growth curves was 

not successful for all replicates though and the resulting numbers of fitted curves was reduced 

for leaves 4 and 18 under Control conditions (n=11 and n=18), leaves 15 and 18 under V5-

Drought conditions (n=18 and n=19, respectively) and leaf 18 under V12-Drought conditions 

(n=15).  Full details can be found in supplemental table S1. For leaf 9 in the V5-Drought 

treatment and all observed leaves in the V12-Drought treatment, start of leaf growth occurred 

before the start of the drought treatment and the resulting values for the Control treatment 

were used. The mean and standard deviation of the measurements of interest were determined 

per treatment and leaf. Leaf emergence from the whorl was observed separately for all plants 

in the experiment, leading to a much higher number of replicates, but was otherwise handled 

the same as the measurements originating from the growth curves. All variables were tested 

for normality and equal variance using the Shapiro-Wilk normality test and F-test for equality 

of variances. If conditions for normality and equal variance were met, the drought treatment 

was compared to the Control treatment using a two-sample t-test, otherwise the Wilcoxon-

Mann-Whitney test was used. The threshold for statistical significance was set at p<0.05. 

To compare leaf growth to the other organs, the cumulative LER was calculated for each 

treatment at each time point as the sum of the LER of leaves 4, 6, 9, 12, 15 and 18, which 

were determined as the first derivatives of the respective fitted beta-sigmoid growth curves. A 

cubic smoothing spline was fitted to the cumulative LER of each treatment, to compensate for 

the discontinuous nature of the cumulative LER caused by the lack of data for leaves between 

the measured leaves. The smoothed curve functioned as a proxy for the true cumulative LER, 

which would have had a similar shape but much higher values. Finally the values of the 

smoothing splines for cumulative LER were divided by the maximal value in the Control 

treatment in order to normalize the data to a scale of 0-1 for comparison with the growth of 

the other organs and biomass accumulation rate. All analyses were performed in R version 

3.6.3 (R Core Team, 2020). 

Supplemental Method S8 Stem growth analysis 

In the first experiment, the height of nodes 9, 12, 15, 18 and 20 was determined for plants 

destructively sampled after the V9-stage. In total these node height measurements were taken 

for 119 plants (48 Control plants, 49 V5-Drought plants and 22 V12-Drought plants, the latter 

in combination with 15 control treated plants sampled at V12-stage or earlier). Full details can 

be found in supplemental table S2. 

This resulted in measurements of stem length up to a certain node or, by taking the difference 

between two nodes, measurements of stem fraction length (the length of a group of 

internodes) over plant age. Both beta-sigmoid (eq.1) (Yin et al., 2003; Voorend et al., 2014) 

and three-piece linear growth functions (eq.2) (see materials and methods S6: leaf growth 

analysis) were fitted to these measurements over time (supplemental Fig. S3A; supplemental 

Fig. S4D-F). The beta-sigmoid growth function was used to determine the elongation rates 

over time, the maximal elongation rates and the final length. Average elongation rate, start 
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and end of growth and elongation duration were determined using the three-piece linear 

growth function. 95% CI were calculated for these measurements using a bootstrap method: 

data was separated into treatments and for each treatment 10,000 new datasets of the same 

size as the original dataset were sampled with replacement. For each of these datasets, the 

beta-sigmoid and three-piece linear growth functions were fitted to the length data and 

parameters were derived, resulting in a distribution of parameter values for each treatment. As 

these distributions were often skewed, a bias-corrected and accelerated 95% CI (Zhou et al., 

2011) was determined. If the 95% CIs in a comparison do not overlap, this indicates a 

significant difference at p<0.05. If they do overlap, a significant difference at p<0.05 is still 

possible but harder to establish (Cumming and Finch, 2005). In this case, the differences were 

assessed between the first 1,000 bootstrap parameter values for the Control treatment and the 

first 1,000 bootstrap parameter values for each of the drought treatments, leading to a 

distribution of 106 difference values. The bias-corrected and accelerated 95% CI was 

determined for these difference values. If 0 was not included within the CI, the difference was 

significantly different from 0 at the p<0.05 level.  

The growth functions were used to estimate the average stem length up to nodes 9, 12, 15, 18 

and 20 at each day for each treatment. These estimates were used to correct the ‘full leaf 

length’ (from soil to leaf tip, see above). The height of node 20 was used as a proxy for whole 

stem length and the first derivative of the beta-sigmoid growth function fitted to the height of 

node 20 over time was used as a measurement of stem elongation rate.  In order to compare 

stem growth to the growth of the other organs, the values of stem elongation rate were divided 

by the maximal value in the Control treatment in order to normalize the data to a scale of 0-1 

for comparison with the growth of the other organs and biomass accumulation rate. 

Supplemental Method S9. Ear growth and development 

Ear development was analysed by destructive point measurements throughout the four main 

experiments (289 plants in total, 119 Control, 116 V5-Drought and 54 V12-Drought. The 

values of 15 Control plants younger than V12-Stage were added to the V12-Drought data to 

reach 69 data points for V12-Drought (supplemental data S2). The length of these ear samples 

was measured and the number of ear rows and spikelets per row were determined using a 

stereomicroscope or by the naked eye, depending on the size of the sample. Not all traits 

could be measured for each ear, final sample sizes for ear length were 97, 101 and 69 for 

Control, V5-Drought and V12-Drought conditions, respectively. Sampling continued until 

silking, at which point leaf and stem growth had concluded and only the ear was still growing. 

As ear growth occurred hidden within the husk leaves, it was not possible for the RGB 

imaging system to track ear growth. The experiment was therefore concluded at silking, 

allowing for other experiments to make full use of the imaging capabilities of the platform. 

Because the ear data did not comprise the entire growth period, it was not possible to fit a 

sigmoid growth function to the ear length measurements and an exponential growth function 

(eq.3) was fitted instead (Supplemental Fig. S4G; Supplemental Fig. S3C). Ear growth rate 

was determined as the first derivative of this function. Ear growth rate was also normalized to 

a scale of 0-1 by dividing by the highest value in the Control treatment for comparison with 

the growth of the other organs and biomass accumulation rate. 

𝑦 = (1 + 𝑎)𝑡−𝑡0 − 1 

 



with y the ear length, t the current plant age, t0 the plant age at the start of ear growth and a 

the ear length at the start of ear growth. 

For each treatment, a 95% CI was calculated for the time point at which the ear elongation 

rate reached 0.1 mm/h (or 2.4 mm/day) using a bootstrap method. Data were separated into 

treatments, for each treatment 10,000 new datasets of the same size as the original dataset 

were sampled with replacement. For each of these datasets the exponential growth function 

(eq. 3) was fitted to the length data and the time point at which the ear elongation rate reached 

the threshold was determined from the first derivative, resulting in a distribution of estimates 

for each treatment. The 2.5% and 97.5% quantile were taken as the limits of the 95% CI. If 

the 95% CIs of different treatments did not overlap, this indicated a significant difference at 

p<0.05. Full details can be found in supplemental table S4.  

Plants older than the average age at which their treatment reached an ear elongation rate of 0.1 

mm/h were considered to have reached their final spikelet number. This resulted in a dataset 

containing 181 plants: 74 Control, 66 V5-Drought and 41 V12-Drought measurements for ear 

rows and 73 Control, 66 V5-Drought and 41 V12-Drought and for spikelets per row and 

spikelets per ear (supplemental data S4). Data for husk leaf emergence, silking, tassel 

emergence and anthesis were observed independently, not only on sampled plants. Full details 

can be found in supplemental table S3 and supplemental data S3. The mean and standard 

deviation were determined per treatment for the final ear traits and the developmental timing 

observations. They were tested for normality and equal variance using the Shapiro-Wilk 

normality test and F-test for equality of variances. If conditions for normality and equal 

variance were met, the drought treatment was compared to the Control treatment using a two-

sample t-test, otherwise the Wilcoxon-Mann-Whitney test was used. 

Supplemental Method S10. RGB imaging setup and plant pixel segmentation 

The RGB imaging setup was made up of three RGB cameras, located in a closed-off cabin, to 

eliminate light from outside the cabin to enter. Plants were positioned on a rotating lift which 

allowed for imaging at different angles by the three RGB cameras: one top-view camera and 

two sideview cameras, one at 0° and another at -30°, relative to the sightline perpendicular to 

the background screen (supplemental Fig. S11A). The top-view image was taken at a lift 

rotation of 0°, while the sideview images were taken at lift rotations of 0°, 60° and 120° 

leading to a total of 6 sideview images, at angles -30°, 0°, 30°, 60°, 90° and 120°, capturing 

an almost hemispheric view of the maize plant. All three cameras were Allied Vision 

Technologies Prosilica GE4000C (Allied Vision Technologies GmbH, Germany) 11 

megapixel cameras equipped with a Canon EF 24 mm f/1.4L II USM lens (Canon Inc., 

Japan). Images were stored in JPEG format with a resolution of 2673*4009 pixels.  

The camera setup was calibrated using chessboard calibration (Gábor, OpenCV: Camera 

calibration with OpenCV), where a chessboard image with known dimensions was imaged at 

various positions in order to determine the relation between measurements in pixel values and 

their real-world values. In applications based on 2D images, these calibrations were 

determined for the average location of a plant. For the S0 camera (sideview at 0°, 60° and 

120°) this value was 0.674mm/pixel, for the S1 camera (sideview at -30°, 30° and 90°) this 

value was 0.671mm/pixel. For the T0 top-view camera, the resolution was determined at half 

the plant height, using the formula 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1.507108 ∗
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

4008 𝑝𝑖𝑥𝑒𝑙
 with distance the 



distance between the camera and the point at half plant height. This distance was calculated 

based on the height of the lift and the height of the plant derived from the sideview images. 

Plant pixel segmentation was based on a background subtraction followed by support vector 

machine classification using Mahalanobis distance (Bradski and Kaehler, 2008).  The support 

vector machine classification model was trained with manually segmented data, classifying 

pixels into classes such as “plant”, “soil”, “background_white” and “background_other”. 

After plant segmentation the convex hull of the plant was determined and parameters such as 

number of pixels, amount of edges of the convex hull, the area within the convex hull, the 

height and the width of the convex hull were determined. These values were converted to real 

world values using the camera calibration, converting the number of pixels into plant 

projected area and the convex hull height of the sideview images into plant height.  
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Supplemental results 

Supplemental results S1. Treatment specific biomass modeling 

Prediction accuracy was treatment dependent. Most noticeably there was an overestimation of 

the fresh weight of fully grown V5-Drought treated plants and an underestimation of the fresh 

weight of fully grown Control treated plants. The accuracy for the other treatments was 

intermediate, ranging from a tendency to overestimate for the V5-Mild treatment, to a 

tendency to underestimate for the V12-Drought and V12-Mild treatments. This tendency to 

overestimate the fresh weight of drought-treated plants was caused by a difference in 

underlying fresh weight density (g/mm2) between the different treatments (supplemental Fig. 

S5A). By separately fitting a simplified linear model with only mean sideview projected area 

as a factor to each treatment, the fresh weight density was estimated as 0.001495 g/mm2 for 

V5-Drought and 0.001846g/mm2 for Control (supplemental table S6). The simplified models 

removed the issues of treatment specific under- and overestimation, but these models were 

still further improved by adding the top-view projected area (supplemental Fig. S6; 

supplemental table S7).When we fitted the full model that also contained top-view projected 

area and the interaction term to the individual treatments, the fresh weight density estimates 

for sideview projected plant area became almost equal (0.001513 g/mm2 and 0.001528 g/mm2 

for Control and V5-Drought, respectively). There was a difference in the interaction factor, 

which is 4.210*10-10 g/mm4 for Control and -7.459*10-10g/mm4 for V5-Drought, indicating 

that the fresh weight density on the sideview image for the V5-Drought treated plants 

decreased with increasing top-view projected plant area. Plant water content and stem-to-leaf 

ratio were two factors likely to play a major role in plant density. Here, the lower fresh weight 

density was not due to differences in plant water content, as plant water content was higher 

for fully-grown V5-Drought treated plants than for fully-grown Control treated plants 

(supplemental Fig. S7A). Stem biomass did represent a lower fraction of total shoot biomass 

in fully grown V5-Drought treated plants compared to fully grown Control plants, both for 

fresh and dry weights (supplemental Fig. S7B-C). Comparing the density of fresh weight per 

unit of mean sideview projected plant area to the fraction of stem fresh weight over leaf fresh 

weight in fully grown plants revealed a significant positive correlation (Pearson’s r= 0.62, 

p<0.05), with the V5-Drought treated plants at the low end of the spectrum for both density 

and stem/leaf ratio (supplemental Fig. S7D). Plant top-view projected area increased during 

the period of leaf growth, but did not increase during the period of stem growth, as the stem 

was not visible in the top-view image, while plant sideview projected area kept increasing 

throughout shoot growth (supplemental Fig. S8A-B). Thus, it was possible that the top-view 

projected area functioned as a proxy for development, as a plant with higher top-view 

projected area was more likely to have started stem growth. The relationship between 

sideview projected plant area, top-view projected plant area, the predicted aboveground fresh 

weight and the path plants took through this area is shown in  supplemental Fig. S8C-E. For 

plants of all treatments, sideview and top-view projected plant area were strongly correlated 

(Pearson’s r=0.96, p<2.2*10-16 for all points before 40 DAE (n=18638)) at the beginning of 

growth, as only leaves, which were visible in both views, were growing. Around 40 DAE this 

correlation was strongly reduced (Pearson’s r=0.27, p<2.2*10-16 for all points of 40 DAE or 

later (n=7921)), as stem growth had accelerated in all treatments. From then the top-view 

projected area was determined by the leaf area, while sideview projected area was determined 

by both leaves and stem. In all three treatments, the approximately vertical contour lines 

indicated the larger role of the sideview projected area in predicting plant fresh weight.  



A linear relationship existed between fresh weight and sideview projected plant area, while 

there was a quadratic relationship between dry weight and sideview projected plant area 

(supplemental Fig. S5A-B). This meant that in plants with a higher sideview projected area, 

each mm2 represented more dry weight than a mm2 in a plant with a lower sideview projected 

area. Plants with a higher sideview projected area had, in fact, a higher dry weight density 

(g/mm2), while the fresh weight density (g/mm2) was independent of the sideview projected 

area. This indicated that an increase in sideview projected area was coupled with an increase 

in plant dry matter content (dry weight/fresh weight) (supplemental Fig. S5C).  

Top-view projected plant area contributed to the fresh weight prediction while it was not 

retained for the dry weight prediction model (supplemental table S5). For small plants with a 

top-view projected plant area of less than 0.2 m2, there was a significant correlation between 

top-view projected plant area on the one hand and FW or DW on the other hand (Pearson’s r 

value of 0.82 for FW, p<0.05 and 0.72 for DW, p<0.05) (supplemental Fig. S5D-E). For 

plants with a top-view projected plant area larger than 0.2 m2, there was still a significant 

correlation with FW but not with DW (Pearson’s r value of 0.36 for FW, p<0.05 and 0.09 for 

DW, p=0.29). Comparing the fraction of stem fresh weight in total aboveground fresh weight 

to the mean sideview projected plant area revealed that the stem contribution to aboveground 

fresh weight ranged from less than 5% for plants with mean sideview projected plant areas of 

0.05 m2 (plant age of 20-25 DAE, before the start of stem elongation), to 30%-40% for plants 

with mean sideview projected plant areas of more than 0.2 m2 (plant age mostly above 40 

DAE, supplemental Fig. S5F). Thus, as expected, stems were a major factor in determining 

fresh and dry weights of older plants. 

Treatment-specific models were evaluated using LOOCV. Treatment-specific datasets for the 

V5 and V12 treatments contained Control measurements taken before the respective V5- and 

V12-Stages (16.3 and 39.6 DAE, respectively).  This led to a dataset of 69 observations for 

the Control dataset, 68 observations for the V5-Drought dataset (5 Control treatment, 63 V5-

Drought treatment), 66 observations for the V5-Mild dataset (5 Control treatment, 61 V5-

Drought treatment), 61 observations for the V12-Drought dataset (38 Control treatment, 23 

V12-Drought treatment) and 58 observations for the V12-Mild dataset (38 Control treatment, 

20 V12-Mild treatment) (supplemental data S5). Simple models contained only the intercept 

and the mean sideview projected area term and full models featured mean sideview projected 

area and top-view projected area, as in eq. 4. 

  



Supplemental discussion 

Supplemental discussion S1. Biomass modeling 

Our linear 2D image-based plant biomass prediction models reached similar prediction 

performance as models used in other studies. Klukas et al. (2014) report Pearson’s r values of 

0.9552 and 0.8370 for correlations between fresh weight or dry weight and digital volume, 

and these are derived from projected plant area on RGB images for maize plants and a root-

mean-squared-relative-error (RMSRE) of 21.7% for fresh weight when testing their prediction 

model on an independent data set. Ge et al. (2016) find R2 values for the correlation of fresh 

weight and dry weight with plant pixel count of 0.993 and 0.952 for young plants up to 26 

days after sowing. Cabrera-Bosquet et al. (2016) report an R2 value of 0.972 for the prediction 

of shoot fresh weight for plants between 15 and 50 days after emergence. Zhang et al. (2017) 

report an R2 of 0.98 and MAPE of 12.31% for fresh weight predictions and an R2 of 0.97 and 

MAPE of 15.85% for dry weight predictions on plants from seedling to tasseling stages.  

Our fresh-weight prediction model slightly outperformed the dry weight prediction model. 

This might be related to the simpler relationship between plant fresh weight and the plant 

projected area on the sideview images compared with that of dry weight. For plant fresh 

weight this was a linear relationship, while this was a quadratic relationship for plant dry 

weight. The quadratic relationship of plant dry weight to projected area might be a 

representation of a developmental factor: as plants grow older, their projected area increased 

and at the same time, the dry matter as a fraction of total mass increased, thus the dry weight 

increased more than linearly with the plant projected area. In this case, plant projected area 

functioned as a proxy for both plant volume and plant age, which determined the dry weight 

per unit of projected plant area. This can be contrasted to the approach used by Golzarian et 

al. (2011), who improve a linear dry weight prediction model for wheat by including density 

(labelled as Plant Specific Weight) as a linear function of plant age.  

The fresh weight of fully grown V5-Drought treated plants was consistently overestimated by 

the biomass prediction model, while there was a tendency to underestimate the fresh weight of 

the fully grown Control plants. Biases in biomass estimation models due to genotype and 

treatment variations have been reported before (Golzarian et al., 2011; Ge et al., 2016; Liang 

et al., 2018) and are attributed to differences in density, i.e., the relationship between plant 

projected area and biomass. Golzarian et al (2011) consider density as a function of plant age, 

while Chen et al. (2018) take a machine-learning approach and include traits related to plant 

physiology, which may explain differences in density, in addition to plant morphology and 

size. We found a correlation between plant fresh weight density and the fraction of stem fresh 

weight over leaf fresh weight in fully grown plants. Our hypothesis was that stem biomass 

was much more compact, in terms of projected plant area per unit of biomass, than leaf 

biomass, meaning that two plants with the same projected plant area could differ greatly in 

biomass, depending on the ratio of stem to leaf biomass. A plant with a higher stem/leaf ratio 

contained more biomass than a plant with a lower stem/leaf ratio with the same projected 

plant area. In the models trained on the specific treatments, the interaction term accounted for 

this by reducing the sideview fresh weight density of V5-Drought treated plants with high 

top-view projected area, a sign they were close to their final leaf area and that stem growth 

had started. The biomass prediction models could be improved by further separating plant 



pixels on the image into pixels attributable to leaves or stem, which would allow stem pixels 

to carry more weight in both the literal and figurative sense. 
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