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Abstract

We investigate Jacobi fields and conjugate points in the context of sprays. We first prove
that the conjugate points of a spray remain preserved under a projective change. Then, we
establish conditions on the projective factor so that the projectively deformed spray meets
the conditions of a proposition that ensures the existence of conjugate points. We discuss
our methods by means of illustrative examples, throughout the paper.
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1 Introduction

Jacobi fields and conjugate points play an essential role in the study of Riemannian and Finsler
manifolds. Jacobi fields can be thought of as vector fields along a geodesic that measures the
infinitesimal variation of a 1-parameter family of geodesics. Two points along a geodesic are
conjugate if there exists a non-trivial Jacobi field along that curve that vanishes on both points.
It is clear that both the absence and the existence of conjugate points are of interest and that
conjugate points, for this reason, have always been investigated extensively in the literature (see,
for instance, [10, 15] or [12] to mention just a few references.)

The geodesic equations of both Riemannian and Finsler metrics are essentially coupled systems
of second-order ordinary differential equations (sodes from now on). In the context of sodes
the role of the curvature and the Levi-Civita connection is played by the so-called Jacobi endo-
morphism Φ and the covariant dynamical derivative ∇ (see Section 2 for their definition, and for
most of the preliminaries). In a recent paper [11] we have discussed conjugate points for sodes
and in this paper we will mainly rely on the following proposition:

Proposition 1. [11] Let c be a base integral curve of a sode S, through m0 = c(0). If

(1) Φ has an eigenfunction λ that remains constant and strictly positive along c, i.e. λc(t) =
λ0 > 0 for all t,
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(2) there exists a non-vanishing vector field V (t) ∈ X(c) along c that lies in Dλc, and which
is such that ∇cV (t) = 0,

then the points c
(
kπ√
λ

)
are conjugate to m0.

The proof of this property is centered around the construction of the Jacobi field J(t) =
sin(
√
λt)V (t).

We have also shown that the existence of a parallel vector field (as called for in part (2))
can be guaranteed by requiring that the so-called ‘bracket condition’ is satisfied, [∇Φ,Φ] = 0
(everywhere, or at least on the Φ-eigendistribution of λ). This condition is quite familiar in the
context of sodes. For example, it is one of the conditions for a sode to belong to “Case II” of
the “Inverse problem of Lagrangian mechanics” (see e.g. [7]), and it is one of many conditions
for a sode to be “separable” (see e.g. [13]).

The geodesic equations of a Riemannian or Finsler metric are more specific than just sodes.
Because of the inherent homogeneity properties, they can be characterized by a special subclass
of sodes, namely the type of vector fields on the tangent manifold that are called sprays. On
the other hand, the dynamical systems that are associated to sprays are of interest in their own
right. There exist sprays, even among those associated to linear connections, that are not the
canonical spray of a Riemannian or Finsler metric (see e.g. [2, 18] for the canonical connection
of a Lie group). Another example is the one that has been refered to as ‘Shen’s circles’ in [6]
(and was introduced by Shen in Section 4 of [15]). That spray is only the canonical spray of a
Finsler function, after a projective change.

In this contribution we will focus on the added features of Proposition 1 when the sode is in
fact a spray. For example, it is interesting in this context that a sode is a spray if and only
if ċ and tċ are both Jacobi fields along each geodesic c. It is clear that there exist sprays that
do not posses the bracket property. The spray of ‘Shen’s circles’ is an example in case. That
does, however, not necessarily mean that we can not use the above proposition, because, in the
context of sprays, we can utilize some extra freedom to enforce the bracket condition.

A projective change of a spray S is a spray S̃ = S − 2P∆, where P is a positive homogeneous
function and ∆ is the Liouville vector field. It is well-known that a projective change of the spray
does not affect the geodesics of the spray, when viewed as point sets. A projective change may
however influence the diagonalization property of the Jacobi endomorphism (see Proposition 4).
In Section 3 we will show that also conjugate points remain unaffected by a projective change
(Theorem 1). This means that, even when the spray S does not satisfy the bracket condition,
we may look for a projective change P such that S̃ does (see e.g. Proposition 3). At the end
of Section 4 we focus our attention to isotropic sprays. This is an important subclass of sprays
since, for example, all 2 dimensional sprays are isotropic.

In Section 5 we discuss some examples. We have mainly focused on examples that have circles
as geodesics, in view of their accessible geometric interpretation (see also [17]). Let M be an
open subset of the Euclidean plane, with Euclidean coordinates (x, y), and let (ẋ, ẏ) be the
corresponding fibre coordinates on the slit tangent bundle T ◦M . In [8] it is shown that, if a
Finsler metric of Randers type whose Riemannian part is conformal to the Euclidean metric
has only circles as geodesics, then its Riemannian part must be of constant Gaussian curvature.
Up to a Möbius transformation, up to multiplication by a positive constant and the addition
of an arbitrary total derivative, such a Finsler metric belongs to one of the following three
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one-parameter families of Randers metrics (with parameter τ):

(A) Fτ (x, y, ẋ, ẏ) =
√
ẋ2 + ẏ2 + τ(yẋ− xẏ)

(B) Fτ (x, y, ẋ, ẏ) =

√
ẋ2 + ẏ2 + τ(yẋ− xẏ)

2(1 + (x2 + y2))

(C) Fτ (x, y, ẋ, ẏ) =

√
ẋ2 + ẏ2 + τ(yẋ− xẏ)

2(1− (x2 + y2))
.

We use these three Finsler metrics as a running example throughout the paper.

Finally, in Section 6, we point out that the methods we use all rely on the Picard-Lindelöf
theorem about existence and uniqueness of solutions of ordinary differential equations. As a
consequence, the vector field V (t) of Proposition 1 is often only defined on a limited interval.
We will use one of the Finsler metrics above to show how an analysis of cut and conjugate points
can, besides, help us to reach a conclusion about conjugate points.

2 Preliminaries

Let M be a manifold. A second-order differential equation field S (from now on sode, in short)
is a vector field on the tangent manifold TM with the property that all its integral curves are
lifted curves ċ(t) of curves c(t) in M (the so-called base integral curves of S), i.e. they satisfy

c̈(t) = S(ċ(t)).

The notion of a Jacobi field has been extended to sodes in [5] (see also [4]). The definition is
based on the notion of a variational vector field.

A 1-parameter family of integral curves of a vector field Y ∈ X(M) is a map ζ :] − ε, ε[×I ⊂
R2 → M such that for every u ∈] − ε, ε[ the curve ζu : I → M , given by ζu(t) := ζ(u, t) is an
integral curve of Y . The vector field Z along ζ0 defined by Z(t) = ∂ζ

∂u(0, t) is said to be the
variational vector field defined by the 1-parameter family.

In case the vector field Y is a sode S - taking into account that the integral curves of S are
all lifted curves - the variation ζ(u, t) can be written as ζ(u, t) = ∂γ

∂t (u, t), where γ(u, t) is a
1-parameter family of base integral curves of the sode. If we denote by W (t) the variational
vector field of the base family, that is if

W (t) =
∂γ

∂u
(0, t),

then Z(t) = W c(t).

Let c be a base integral curve of a sode S. A Jacobi field along c is a vector field J(t) along c,
whose complete lift is a variational vector field along the integral curve ċ by integral curves of
S.

Equivalenty, Jacobi fields can be characterized as solutions of a system of second-order ordinary
linear differential equations, the so-called generalized Jacobi equations. In order to introduce
them we first recall two important operators that one can associate to a sode (but see [14] for
a short review on this material).
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Let τ : TM →M be the tangent bundle projection. A vector field along τ is a map X : TM →
TM with the property that τ ◦ X = τ . Any vector field Y on M induces a (so-called) ‘basic’
vector field X = Y ◦ τ along τ . In natural coordinates (xi, ẋi) on TM , a vector field X along τ
can locally be expressed as

X = Xi(x, ẋ)
∂

∂xi

where
∂

∂xi
are the coordinate vector fields on M , in their intepretation as vector fields along τ .

For example, we may always view the identity v 7→ v in a canonical way as a vector field along
τ . If we denote the correspoding section as T, then

T = ẋi
∂

∂xi
.

A sode is locally given by

S = ẋi
∂

∂xi
+ f i(x, ẋ)

∂

∂ẋi
.

Its dynamical covariant derivative ∇ acts as a derivative on vector fields along τ , in the sense
that for f ∈ C∞(TM),

∇(fX) = f∇X + S(f)X.

The action of ∇ on coordinate vector fields is

∇ ∂

∂xj
= Γij

∂

∂xi
= −1

2

∂f i

∂ẋj
∂

∂xi
.

The Jacobi endomorphism Φ of S is a type (1,1) tensor field along τ , which in coordinates is
given by

Φ

(
∂

∂xj

)
= Φi

j

∂

∂xi
=

(
−∂f

i

∂xj
− ΓkjΓ

i
k − S(Γij)

)
∂

∂xi
.

For any v ∈ TmM , we may consider the endomorphism Φv : TmM → TmM . The collection of
those for v = ċ(t) can be interpreted as an operator Φc that maps vector fields along c to vector

fields along c. When W (t) = W i(t)
∂

∂xi

∣∣∣∣
c(t)

is such a vector field, then

Φc(W (t)) = Φi
j(ċ(t))W

j(t)
∂

∂xi

∣∣∣∣
c(t)

.

Likewise, by the relation

∇cW (t) =

(
d

dt
W i(t) + Γij(ċ(t))W

j(t)

)
∂

∂xi

∣∣∣∣
c(t)

we define an operator ∇c with the property

∇c(µ(t)W (t)) = µ̇(t)W (t) + µ(t)∇cW (t), µ ∈ C∞(R).

In [5] it is shown (see e.g. also Theorem 2.7 of [4]) that a vector field J(t) along a base integral
curve c of a sode S is a Jacobi field if and only if it satisfies the (generalized) Jacobi equation

∇c∇cJ(t) + Φc(J(t)) = 0.
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Definition 1. Let c be a base integral curve of a sode S, through m0 = c(0). If there exists a
Jacobi field J(t), not identically zero, with the property that J(0) = J(t1) = 0, then the point
m1 = c(t1) is called a conjugate point of m0 along c.

If a geodesic variation γ(u, t) has fixed endpoints, say γ(u, 0) = m0 and γ(u, t1) = m1, its in-
duced Jacobi vector field ∂γ

∂u(0, t) vanishes trivially on those points. These types of conjugate
points will be called meeting points. In general, not every Jacobi field are generated this way.

Nevertheless, to any given Jacobi field J(t) with J(0) = J(t1) = 0 one can attach a variation
with at least one fixed endpoint under the assumption of geodesically forward completeness.
This means that every geodesic is assumed to be infinitely forward exdentable. This case, one
can consider the geodesic variation using the exponential mapping of the spray:

γ(u, t) = exp t(v + uw),

where ċ(0) = v and ∇cJ(0) = w. Each element of this family emanates from c(0) and the
correcponding variational vector field solves the same inital value problem as J(t). (see Lemma
14.2.1 in [15]).

3 Projective classes of sprays and conjugate points

Recall that a sode S is said to be a spray if [∆, S] = S, where ∆ = TV is the Liouville vector
field. Furthermore, a spray can equivalently be charaterized by the property ∇T = 0. In that
case also Φ(T) = 0. This means that λ = 0 is an eigenfunction of any spray.

Throughout the paper we will denote by Dλ the eigendistribution of Φ corresponding to an
eigenfunction λ ∈ C∞(TM). For later reference, we start with a technical lemma.

Lemma 1. Let S be a spray. Let λ be an eigenfunction of Φ, and X ∈ Dλ a corresponding
eigen vector field along τ . Then, also [∆, XV]V ∈ Dλ.

Proof. Consider the operator ∇∆ : X(τ)→ X(τ) defined by

∇∆(X) := [∆, XV]V.

It is shown in [16] that, for a spray S, ∇∆(Φ) = 2Φ. This means that for all X ∈ X(τ),

∇∆(Φ(X))− Φ(∇∆X) = 2Φ(X).

Suppose now that X ∈ Dλ. Then

∇∆(Φ) = [∆, λXV]V − Φ([∆, XV]V) = ∆(λ)X + λ[∆, XV]V − Φ([∆, XV]V).

In [16] it is also shown that ∆λ = 2λ, from which it follows that

2λX = 2λX + λ[∆, XV]V − Φ([∆, XV]V),

whence our claim.
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Throughout the paper we will make use of some well-known facts about geodesics, pregeodesics
and projective changes. We will summarize some of them here, but for the proofs and more
details on Lemma 2 and Lemma 3 we refer to [16] (Section 8.4).

Lemma 2. Let c : I →M be a geodesic of a spray S and consider the parameter transformation
θ : Ĩ → I, θ(s) = as + b for some a, b ∈ R with a > 0, and Ĩ an open interval. Then
c̃ = c ◦ θ : Ĩ →M is again a geodesic of S.

In case the sode is a spray, the coefficients f i satisfy

f i(x, λẋ) = λ2f i(x, ẋ)

for all λ > 0. If the coordinate expression of the geodesic c(t) of a spray is given by xi(t), then
these functions satisfy

ẍi(t) = f i(x(t), ẋ(t)),

which holds also true for c̃(s), with xi(s) = xi(θ(s)), in view of the homogeneity property.

In what follows, we will often make use of the proposition that we have mentioned in the Intro-
duction (Proposition 1). Let’s consider the class of Finsler metrics (B) (see the Introduction)
by means of example.

Example. We consider the geodesics of the Finsler function

Fτ =

√
ẋ2 + ẏ2 + τ(yẋ− xẏ)

2(1 + x2 + y2)
.

One may verify that from all circles that are centered around the origin, only those of radius

r =
∣∣∣ 1
τ±
√
τ2+1

∣∣∣ are geodesics. For each value of τ , the canonical spray of the corresponding

Finsler function satisfies the bracket condition [∇Φ,Φ] = 0. We are therefore in a situation
where we only need to check condition (1) of Proposition 1.

In case τ = 0 the metric is Riemannian and it corresponds to the standard metric of the sphere
after stereographic projection. Then, the above mentioned two circles coincide and they form
the stereographic projection of the equator. It is well known that antipodal points are the only
conjugate points on the sphere. The non-zero eigenvalue of the Jacobi endomorphism along the
geodesic in question has the constant value of 1. In this case, one may verify that

V (t) = cos(t)
∂

∂x

∣∣∣∣
c(t)

+ sin(t)
∂

∂y

∣∣∣∣
c(t)

.

is a parallel eigenvector-field, defined for all values of t.

When τ is different from zero, there are two different geodesic circles centered at the origin, but
they still have the property that λ has the constant value of 1 along them. In this case, the
Jacobi equation along these circles is independent of τ (and is in fact identical with the τ = 0
case). As a consequence, for each value of τ , the canonical spray of the Finsler function admits
conjugate points along these geodesics at the parameter value π and its integer multipliers.

It is clear that we could apply Proposition 1 in this example, because of the bracket property.
In what follows, we will focus on the situation when the spray does not satisfy this condition.

Definition 2. Let S be a spray on M .
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• A curve c : I →M is called a pregeodesic of S, if there exists a parameter transformation
θ : Ĩ → I with strictly positive derivative, so that c̃ = c ◦ θ is a geodesic of S. In that case,
we say that the curve c can be positively reparametrized to be a geodesic.

• A spray S̃ is projectively related to S if there exists a (1-homogeneous) function P on TM
such that S̃ = S − 2P∆.

The set of all sprays that are projectively related to each other is called a projective class of
sprays. The following lemma provides a relation between the concepts of Definition 2.

Lemma 3. Let S and S̃ be two projectively related sprays, S̃ = S − 2P∆. If c(t) : I →M is a
geodesic of S, then it is a pregeodesic of S̃.

The proof is based on the fact that, for any smooth function h : I → R, the differential equation

θ′′ + (h ◦ θ)(θ′)2 = 0

admits a smooth solution, satisfying the inital condition θ(0) = 0 and θ̇(t) > 0. In case h is
2P ◦ ċ that solution θ(s) can be used to show that c̃(s) = c(θ(s)) is a geodesic of S.

The parameter transformation of Lemma 2 (with b = 0) fits within this context, since the choice
P = 0 leads to the differential equation θ′′ = 0. This means that, again for arbitrary P , the
transformation θ(s) is not unique. For example, also θ̂(s) = aθ(s) (with a > 0) will be an
adequate transformation.

Our exploration of conjugate points for sprays is based on the following theorem.

Theorem 1. The conjugate points of a spray are preserved under a projective change.

Proof. Let us assume that the points m0 = c(0) and m1 = c(t1) are conjugate points along the
geodesic c(t) of the spray S, for the Jacobi field J(t) along c(t). Assume that the Jacobi field
J comes from the 1-parameter family of solutions, γ(u, t), with γ(0, t) = c(t) and γ(u, 0) = m0.
Then

J(t) =
∂

∂u

∣∣∣∣
u=0

γ(u, t).

Consider a projective change of S with projective factor P , that is S̃ := S−2P∆. We construct
a Jacobi field for S̃.

Step 1. Since γu(t) = γ(u, t) is a geodesic of S for each u, it is a pregeodesic of S̃ in view of
Lemma 3. This means that we can find for each u a parameter transformation θu(s) such that
γ̃u(s) := γu(θu(s)) is a geodesic of S̃. The functions θu are solutions of

θ′′u + 2(P ◦ γ̇u ◦ θu)(θ′u)2 = 0

and satisfy the inital condition θu(0) = 0. The family γ̃(u, s) := γ̃u(s) that we find in this way
is then a 1-parameter family of geodesics for S̃ around γ̃(0, s) = γ̃0(s) = c(θ0(s)) = c̃(s). The
initial condition ensures that all members of the reparametrized family start at the same point
γ̃(u, 0) = c(θu(0)) = c(0) = m0.

Step 2. Since the members of the new family γ̃u(s) are identical with the members of the old
one when consideres as point sets, we know that they all intersect the transversal line γt1(u),
but possibly at different parameter values s.
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In this step, we wish to ensure that the reparametrized family reaches the line γt1(u) at a
common parameter value s1. For this reason we consider the parameter transformation θ0 that
corresponds to γ0 := c. Let us denote the real number t−1

0 (t1) by s1. Since t0 is a strictly
increasing function, going through the origin, it follows that s1 is positive, and we may consider
the positive number au = t1

tu(s1) for each u. The function θ̂(u, s) := auθu(s) then has the property

that θ̂(u, 0) = 0 and θ̂(u, s1) = t1 are constant in u. As we remarked before we now have a
parameter transformation that maps the geodesic γu(t) of S to the geodesic γ̂u(s) := γ(u, θ̂(u, s))
of S̃. Since a0 = 1, θ̂(0, s) = θ0(s) and the new family γ̂(u, s) := γ̂u(s) is still centered around
γ̂(0, s) = c̃(s). Moreover, it has the property that γ̂(u, 0) = c(θ̂(u, 0)) = c(0) = m0, for all u.

Step 3. The Jacobi field of the family γ̂(u, s) of geodesics of S̃ is given by

Ĵ(s) =
∂

∂u

∣∣∣∣
u=0

(
γ̂(u, s)

)
=
∂γ

∂u
(0, θ̂(0, s)) +

∂γ

∂t
(0, θ̂(0, s))

∂θ̂

∂u
(0, s)

= J(θ0(s)) + ċ(θ0(s))
∂θ̂

∂u
(0, s).

Since θ0(0) = 0, J(0) = 0 and θ̂(u, 0) = 0 (for all u), we have Ĵ(0) = 0. Likewise, from
θ0(s1) = t1, J(t1) = 0 and θ̂(u, 0) = t1 (for all u), it follows that Ĵ(s1) = 0. We may therefore
conclude that c̃(0) = c(θ0(0)) = c(0) = m0 and c̃(s1) = c(θ0(s1)) = c(t1) = m1 are also conjugate
points for the spray S̃.

We now relate Theorem 1 to Proposition 1. Say that a spray S does not satisfy all the conditions
of Proposition 1. Since all sprays of the class have the same conjugate points, we can make use
of the freedom in the projective factor P to search for a spray S̃ = S−2P∆ within the projective
class of S that does satisfy all the necessary conditions.

First, we recall (from e.g. [3] or [16]) how ∇ and Φ change after a projective deformation. The
Jacobi endomorphism of S̃ = S − 2P∆ is given by:

Φ̃(X) = Φ(X) + aX + b(X)T, (1)

where a = P 2 − S(P ) and b(X) = 3XH(P ) − PXV(P ) − XV(S(P )). Since for sprays Φ(T) =
Φ̃(T) = 0, it is easy to see that b(T) = −a.

Likewise, the action of the dynamical covariant derivative of S̃ can be written as

∇̃X = ∇X − 2P [∆, XV]V +XV(P )T− PX. (2)

Throughout the paper we assume that Φ is diagonalizable, but this property is not necessarily
preserved under a projective change. The following lemma provides us conditions under which
Φ̃ is diagonalizable. From Φ(T) = 0 we may conclude that T is always an eigenvector with
eigenvalue 0. We will denote the other eigenfunctions by λ2, . . . λn. Herein it is understood that
some of them may be equal, and that some of them may be zero.

Lemma 4. Suppose that the Jacobi endomorphism Φ of a spray S is diagonalizable, and consider
a projective change S̃ := S − 2P∆. Then Φ̃ is diagonalizable if and only if one of the following
conditions are satisfied:

(1) a 6= −λj for any j in 2, . . . , n,
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(2) a = −λj for some j in 2, . . . , n and b(X) = 0 for all X ∈ Dλj .

In each of these cases,

(1) if λ is an eigenfunction of Φ then λ̃ := λ+ a is an eigenfunction of Φ̃,

(2) if X ∈ Dλ, then X̃ := (λ+ a)X + b(X)T ∈ D̃λ̃.

Proof. Since we assume that Φ is diagonalizable, we may fix an eigenbasis (T, X2, . . . Xn). Let
(bi) be the components of the one-form b, w.r.t this basis. The matrix of Φ̃ w.r.t the eigenbasis
of Φ is then 

0 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

+


a 0 . . . 0
0 a . . . 0
...

...
. . .

...
0 0 . . . a

+


b1 b2 . . . bn
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 .
Given that b1 = b(T) = −a, this matrix becomes

0 b2 . . . bn
0 λ2 + a . . . 0
...

...
. . .

...
0 0 . . . λn + a

 .
It is easy to see that its eigenvalues are λ̃1 = 0 and {λ̃i = λi + a}i=2..n. Moreover, one may
readily check that

X̃1 = T, X̃i = b(Xi)T + (λi + a)Xi

are eigenvectors for Φ̃ for the eigenvalues λ̃1 = 0 and λ̃i, respectively. These vectors will form a
new basis if and only if the matrix

1 0 . . . 0
b1 λ2 + a . . . 0
...

...
. . .

...
b2 0 . . . λn + a

 .
has non-vanishing determinant. When a 6= −λi for any i within 2, . . . n, this is the case.

Assume now that a = −λi, for some eigenvalue λi within 2, . . . n that has multiplicity m (which
may or not be zero). In that case, the above vector fields do not form a basis, and we need
to replace the m vectors {X̃i+α}α=0,...,m−1 by m linear independent eigenvectors of Φ̃ with new
eigenvalue 0. In general, a vector x1T +

∑m−1
α=0 xi+αXi+α +

∑
β xβXβ (where β runs over the

rest) will be such if all xβ = 0 and
∑m−1

α=0 xi+αb(Xi+α) = 0. This last equation can only deliver
m independent vectors if all b(Xi+α) = 0.

A projective factor for which a = 0 is called a weak Funk function in [16]. Although it changes
Φ, it does not change its eigenvalues. Then, the diagonalizability of Φ develops, as follows.

Lemma 5. Suppose that the Jacobi endomorphism Φ of a spray S is diagonalizable, and consider
a projective change S̃ := S − 2P∆ by a weak Funk function. Then Φ̃ is diagonalizable if and
only if one of the following conditions are satisfied:

9



(1) The eigendistribution D0 of λ = 0 is 1 dimensional,

(2) b(X) = 0 for all X ∈ D0.

In each of these cases,

(1) if λ is an eigenfunction of Φ then it is also an eigenfunction of Φ̃,

(2) if X ∈ Dλ, then X̃ := λX + b(X)T ∈ D̃λ.

In the context of our method, eigenvectors corresponding to the zero eigenfunction play no role.
For this reason one may relax the condition of diagonalizability on Φ by requiring that the
algebraic and geometric multiplicity agree only for the non-zero eigenfunctions. Nevertheless,
in what follows, we will assume that one of the conditions of Lemma 4 is satisfied, whenever we
consider a spray and a projective change. In fact, all our examples fall into case (1) of Lemmma 4.
One finds examples belonging to case (2) for instance in [9], where the authors investigate
questions about the metrizability of sprays and holonomy invariant projective changes.

4 The bracket property

In [11], we have shown that the existence of the parallel vector field in part (2) of Proposition 1
can be guaranteed by requiring the condition [∇Φ,Φ] = 0 on the spray. When restricted to an
eigendistribution of Φ, this condition can be characterized as follows.

Proposition 2. [11] Let λ be an eigenfunction of Φ. The following statements are equivalent:

1. [∇Φ,Φ](Dλ) = 0,

2. ∇Φ(Dλ) ⊂ Dλ,

3. ∇Dλ ⊂ Dλ.

We investigate whether the bracket property can be achieved by applying a projective change:

Proposition 3. Consider a spray S and a projective change by P and let λ̃ = λ+a be a non-zero
eigenfunction of Φ̃. Then the condition [∇̃Φ̃, Φ̃] = 0 is satisfied on D̃λ̃ if and only if

Φ(∇X)− λ∇X =

(
− (∇b) +

(
− S(λ+ a)

λ+ a
+ P

)
b+ (λ+ a)dV(P )

)
(X)T on Dλ. (3)

Proof. Let λ̃ be an eigenfunction of Φ̃. From the proof of Lemma 4 we know that λ := λ̃−a is a
non-zero eigenfunction of Φ, and that the set {X̃i}i=1..dim(Dλ) := {(λ+a)Xi+b(Xi)T}i=1..dim(Dλ)

(with Xi ∈ Dλ) spans D̃λ̃. According to condition (3) in Proposition 2, an equivalent condition

for [∇̃Φ̃, Φ̃] = 0 to hold true is that

Φ̃(∇̃X̃) = λ̃∇̃X̃

10



for all X ∈ Dλ. Relation (2) leads to

Φ̃
(
∇X̃ − 2P [∆, X̃V]V + X̃V(P )T− PX̃

)
= λ̃

(
∇X̃ − 2P [∆, X̃V]V + X̃V(P )T− PX̃

)
⇐⇒ Φ̃(∇X̃)− λ̃2P [∆, X̃V]V − λ̃P X̃ = λ̃∇X̃ − λ̃2P [∆, X̃V]V + λ̃X̃V(P )T− λ̃P X̃

⇐⇒ Φ̃(∇X̃) = λ̃∇X̃ + λ̃X̃V(P )T,

where in the first step we have used that T ∈ D̃0. We now use relation (1) to rewrite the left-
hand side in terms of quantities corresponding to the starting spray. For computational reasons

we evaluate the expression at X̃
λ+a instead of X̃.

Φ̃

(
∇ X̃

λ+ a

)
= Φ̃

(
∇X + S

(
b(X)

λ+ a

)
T

)
= Φ̃(∇X) = Φ(∇X) + a∇X + b(∇X)T.

Doing the same on the right-hand side leads to

λ̃∇
(

X̃

λ+ a

)
+

(
λ̃
X̃V

λ+ a

)
(P )T

= (λ+ a)∇
(
X +

b(X)

λ+ a
T

)
+ (λ+ a)

(
XV(P ) +

b(X)

λ+ a
∆(P )

)
T

= (λ+ a)∇X + (λ+ a)S

(
b(X)

λ+ a

)
T + (λ+ a)XV(P )T + b(X)PT

= (λ+ a)∇X + S(b(X))T− b(X)
S(λ+ a)

λ+ a
T + (λ+ a)XV(P )T + b(X)PT.

When we compare the two sides, we see that the property Φ̃(∇̃X̃) = λ̃∇̃X̃ is equivalent with

Φ(∇X)− λ∇X =

(
− b(∇X) + S(b(X))− b(X)

S(λ+ a)

λ+ a
+ (λ+ a)XV(P ) + b(X)P

)
T

=

(
− (∇b)(X) +

(
− S(λ+ a)

λ+ a
+ P

)
b(X) + (λ+ a)dV(P )X

)
T.

Proposition 3 can be simplified when the starting spray S already satisfies [∇Φ,Φ] = 0 on Dλ.
In such a case, the left-hand side of equation (3) vanishes.

In view of the first condition in Proposition 1, we may reach an even simplier expression if λ̃
is a first integral of S̃. If that is the case, all geodesics are constant along λ̃ and the factor
−S(λ+a)

λ+a +P simplifies to −4P +P = −3P . For instance, locally symmetric sodes fall into that
category (see [11], Section 5 for details). The condition on the projective factor that guarantees
this property can be calculated as follows.

Lemma 6. Consider a spray S and a projective change by P . Then, for any non-zero eigen-
function λ of Φ the following two conditions are equivalent:

1. S̃(λ̃) = 0

2. S(S(P ))− 6PS(P ) + 4P (λ+ P 2)− S(λ) = 0. (4)
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Proof.

S̃(λ̃) = S(λ+ a)− 2P∆(λ+ a)

= S(λ) + 2PS(P )− S(S(P ))− 4P (λ+ a)

= −
(
S(S(P )− 2PS(P ) + 4P (λ+ P 2 − S(P ))− S(λ)

)
= −

(
S(S(P )− 6PS(P ) + 4P (λ+ P 2)− S(λ)

)
.

We summarize all the previous observations:

Proposition 4. Consider a spray S that satisfies [∇Φ,Φ] = 0 on Dλ for an eigenfunction λ
of Φ. Consider a projective change by P that satisfies equation (4). Then, S̃ meets the bracket
property if and only if

(∇b) + 3Pb− (λ+ a)dVP = 0 on Dλ. (5)

In most situations, however, the starting spray does not satisfy [∇Φ,Φ] = 0 on Dλ . We give a
further characterization, in case the spray is isotropic.

Definition 3. A spray S is called isotropic if its Jacobi endomorphism is of the form

Φ(Y ) = λY + c(Y )T, ∀Y ∈ X(τ),

for some one-form c.

The matrix of an isotropic spray in a standard basis is of the form


λ 0 . . . 0
0 λ . . . 0
...

...
. . .

...
0 0 . . . λ

+


c1ẋ1 c2ẋ1 . . . cnẋ1

c1ẋ2 c2ẋ2 . . . cnq̇2
...

...
. . .

...
c1ẋn c2ẋn . . . cnẋn

 =


λ+ c1ẋ1 c2ẋ1 . . . cnẋ1

c1ẋ2 λ+ c2ẋ2 . . . cnẋ2
...

...
. . .

...
c1ẋn c2ẋn . . . λ+ cnẋn

 .
It is clear that it has only two eigenvalues, zero with multiplicity 1, and λ with multiplicity
(n − 1). An isotropic spray is therefore always diagonalizable. An isotropic spray remains
isotropic after a projective change:

Φ̃(Y ) = λY + c(Y )T + aY + b(Y )T.

The nonzero eigenvalue of Φ̃ is now λ+ a and its corresponding one-form is c+ b. As a conse-
quence, the projectively changed Φ is also diagonalizable and a vector Y is an eigenvector of Φ̃
corresponding to the nonzero eigenfunction λ+ a if and only if (b+ c)(Y ) = 0.

Proposition 5. Let S be an isotropic spray, and consider a projective change S̃ := S − 2P∆.
The bracket property holds true for S̃ if

∇(c+ b) +

(
P − S(λ+ a)

λ+ a

)
b+ (λ+ a)dV P = 0 on Dλ. (6)

Proof. When we plug in the explicit form of Φ into expression (3) of Proposition 3, we find

(−c− b)(∇X) + S(b(X))− b(X)
S(λ+ a)

λ+ a
+ (λ+ a)XV(P ) + b(X)P = 0

holds true for all X ∈ Dλ. Since c(T) = 0, this reduces to the expression in the statement.
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5 Some worked-out examples

Example. Consider the following spray on R3

S = ẋ
∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z
+ (ẏż + ẋż)

∂

∂ẋ
+ (−ẋż + ẏż)

∂

∂ẏ
+ ż2 ∂

∂ż
.

One may calculate that the function λ = ż2

2 is an eigenfunction of the Jacobi endomorphism
Φ, but that it does not remain constant along solutions, since S(λ) 6= 0. However, the spray
satisfies [∇Φ,Φ] = 0, so we are in the situation of Proposition 4. Consider a geodesic with ż 6= 0.
As an ansatz, we wish to find a constant A ∈ R, such that the projective change by factor

P = A · ż

satisfies the equation (4) in Proposition 6. One finds that this equation takes the form

ż3(2A− 1)(2A2 − 2A+ 1) = 0

with only real solution A = 1
2 . This corresponds with the projective factor P = 1

2 ż, which

also satisfies the equation (5). Now, the non-zero eigenfunction of the modified spray S̃ is

λ̃ = λ + a = ż2

2 −
ż2

4 = ż2

4 . It remains constant along geodesics and, since it is positive,
Proposition 1 guarantees the existence of conjugate points along the geodesic.

Example. ’Shen’s circles’. Consider the following spray on R2

S = ẋ
∂

∂x
+ ẏ

∂

∂y
− 2τ ẏ

√
ẋ2 + ẏ2

∂

∂ẋ
+ 2τ ẋ

√
ẋ2 + ẏ2

∂

∂ẏ
,

where τ is an arbitrary positive number (see [6, 15]). Since the spray does not satisfy [∇Φ,Φ] = 0
we need a solution of the equation (6). One may verify that the projective factor

P =
τ2
√
ẋ2 + ẏ2(xẋ+ yẏ)

τ(xẏ − yẋ)−
√
ẋ2 + ẏ2

satisfies equation (6) and that the corresponding new spray,

S̃ = ẋ
∂

∂x
+ ẏ

∂

∂y
+

2τ(τx(ẋ2 + ẏ2)− ẏ
√
ẋ2 + ẏ2)

√
ẋ2 + ẏ2

τyẋ− τxẏ +
√
ẋ2 + ẏ2

∂

∂ẋ

+
2τ(τy(ẋ2 + ẏ2) + ẋ

√
ẋ2 + ẏ2)

√
ẋ2 + ẏ2

τyẋ− τxẏ +
√
ẋ2 + ẏ2

∂

∂ẏ
,

is, in fact, the geodesic spray of the Finsler function

Fτ =

√
ẋ2 + ẏ2 + τ(yẋ− xẏ)

2
,

which is given in the class (A) in the classification of [8] we had mentioned in the Introduction.
Its geodesics are circles of radius 1

2τ . We would like to use Proposition 1 to find conjugate
points along the geodesic c(t) = 1

2τ (cos(t), sin(t)). Along the geodesic, it so happens that the
Jacobi endomorphism does not depend on the parameter τ . Its nonzero eigenfunction has always
the constant value 1. Therefore we conclude that the points c

(
kπ√
λ

)
= c(kπ) are conjugate to

c(0) = ( 1
2τ , 0) along c(t).
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The conjugate points at time kπ, with k even, are identical with c(0). Since the geodesics
emanating from that point are circles of a fixed radius, they will all go through the same point
again. In other words, there exists a geodesic variation with a constant curve as a transversal
at times kπ, so that the induced Jacobi field vanishes at these times.

We would like to find the Jacobi field that vanishes at times kπ, for any k. From the proof of
Proposition 1 we know that the Jacobi field we are interested in is of the type J(t) = V (t) sin(t),
where V (t) is a parallel eigenvector field. This is a vector field along c(t) that satisfies∇cV (t) = 0
and ΦcV (t) = 1 · V (t). Since in the current context V (t) = cos(t) ∂

∂x |c(t) + sin(t) ∂
∂,y |c(t) satisfies

the above mentioned two conditions, a Jacobi field is given by

J(t) = sin(t) cos(t)
∂

∂x

∣∣∣∣
c(t)

+ sin(t)2 ∂

∂y

∣∣∣∣
c(t)

.

This field has the property, that ∇cJ(t) = ∂
∂x |c(t). With the help of Maple we have plotted below

some of the transversals, corresponding to the variation

γ(u, s) = exp(s(v + uw))

with v = ċ(0) and w = ∇cJ(0) and exp the exponential mapping of the spray S̃. The plot shows
the case τ = 1. One can observe that the vanishing of the velocity of the curves corresponds to
the cusp points.

Transversal curves of the geodesic
variation γ(u, s).

6 Cut points and conjugate points

In the examples of Section 3 and Section 5 we have found Jacobi fields with the help of a non-
vanishing parallel eigenvector field V (t). This vector field was defined for all parameter values
along the whole curve. Because of the local nature of our methods, it can happen, though, that
V (t) is not defined on a big enough domain and therefore we have to explore other methods to
find the conjugate points. For this purpose we will recall the definition of cut points and their
connection to conjugate points in the context of Finsler geometry. We will need the assumption
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that the geodesics of the underlying Finsler manifold are indefinitely forward extendible; such
spaces are called forward geodesically complete Finsler manifolds.

Definition 4. Let (M,F ) be a forward geodesically complete Finsler manifold and c(t) be a
geodesic. We define the conjugate value con(c) and the cut value cut(c) of c(t) as

• con(c) = sup{r ∈ R : no point c(t) with 0 ≤ t ≤ r is conjugate to c(0)},

• cut(c) = sup{r ∈ R : c(t) globally minimizes Finslerian length until c(r)}.

The points on c(t) correspoinding to these parameter values are called the first conjugate point
and the cut point of c(t).

With a global minimizer we mean a geodesic, with the property that no other continious
piecewise-differentiable curve exists with the same endpoints, but having shorter length. From [1]
(Section 8) we recall a proposition about the connection between the cut and the first conjugate
point.

Proposition 6. Let (M,F ) be a forward geodesically complete Finsler manifold and c(t) be a
geodesic. Then cut(c) ≤ con(c) and at least of the following two scenarios must hold

(1) cut(c) = con(c)

(2) there exists two distinct geodesics of the same length connecting c and its cut point.

The first part of the theorem says that the first conjugate point can not appear before the cut
point. From the second half we conclude that in case cut(c) 6= con(c), there must exist two
distinct geodesics of the same length connecting c and its cut point.

Example. Let S̃ be the canonical spray of the Finsler function

Fτ =

√
ẋ2 + ẏ2 + τ(yẋ− xẏ)

2
,

corresponding to the class (A) in the Introduction (and to the example of ‘Shen’s circles’ in
Section 5). We consider the geodesic c(t) = 1

2(cos(t), sin(t)) at the parameter value t = π.
Since the geodesics of this spray are circles of radius 1

2 (parametrized counter-clockwise), there
is a unique geodesic connecting c(0) to c(r) if r = π and there are two if r 6= π. Let ε be a
small positive number. The length of c(t) between c(0) and c(π + ε) equals

∫ π+ε
0 F (ċ(t))dt =∫ π+ε

0
1
8dt = π+ε

8 , while the length of the second geodesic, say γ1(t) is 2 sin(ε)+π−ε
8 .
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Given that the inequality ε < sin(ε) holds true for positive ε we conclude that c(t) fails to be
a global minimizer after the parameter value π. The exact opposite happens if we consider the
parameter value t = π−ε. In this case c(t) will be a shorter curve with length π−ε

8 as opposed to

the other geodesic, say γ2(t), whose length is greater by sin(ε)
4 than that of c(t). As a conclusion

the cut point of c(t) is c(π). Since c(0) and c(π) can not be connected with two distinct geodesics,
case (1) of Proposition 6. applies, that is, the cut point c(π) is the first conjugate point, at the
same time.

Example. In this example only geometric considerations help us to find conjugate points.
Consider the canonical spray of the Finsler function

F =

√
ẋ2 + ẏ2 + yẋ− xẏ
2(1− x2 − y2)

.

This Finsler function corrresponds to the class (C) of the classification of the Introduction, with
τ = 1. Its geodesics are so-called horocycles. These are circles (again, parametrized counter-
clockwise) which are located inside the unit circle and which are tangent to it. We choose the
geodesic c(t) = 1

2(cos(t− π
2 ), sin(t− π

2 )+1). One may verify that the canonical spray is such that
its Jacobi endomorphism Φ satisfies the bracket property [∇Φ,Φ] = 0. Moreover, the nonzero
eigenfunction of Φ has the constant value 1

4 along c(t).

We are therefore in a situation where our methods apply. The problem, however, is that the
parallel eigenvector field V (t) has the form

V (t) =
1√

sin(t) + 1

(
(− sin(t)− 1)

∂

∂x

∣∣∣∣
c(t)

+ cos(t)
∂

∂y

∣∣∣∣
c(t)

)
,

and that it can not be extended further then 3π
2 along the curve c(t). Our methods would require

the vector field to be defined at least on the domain [0, π√
1
4

] = [0, 2π]. We have therefore left

no explicit expression of the Jacobi field. Nevertheless, after some calculation we can draw a
similair conclusion as in the previous example.
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The longer and the shorter geodesic
connecting c(0) and c(π + ε).

Now, the length of the longer geodesic c(t) can readily calculated to be π+ε
4 , while the shorter

geodesic γ(t) will be of length π−ε
4 . We may therefore conclude that the cut point c(π) again

agrees with the first conjugate point.

Acknowledgments

TM thanks the Research Foundation – Flanders (FWO) for its support through Research Grant
1510818N.

References

[1] D. Bao, S.S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry, Springer
(2000).

[2] I. Bucataru, T. Milkovszki and Z. Muzsnay, Invariant Metrizability and Projective Metriz-
ability on Lie Groups and Homogeneous Spaces, Mediterranean Journal of Mathematics 13
(2016) 4567–4580.

[3] I. Bucataru and Z. Muzsnay, Projective and Finsler metrizability: parameterization-rigidity
of the geodesics, International Journal of Mathematics 23 (2012) 1250099 (15 pages).
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