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Abstract: 

Accurate thermochemistry estimation of polycyclic molecules is crucial for kinetic modeling 

of chemical processes that use renewable and alternative feedstocks. In kinetic model 

generators, molecular properties are estimated rapidly with group additivity, but this method is 

known to have limitations for polycyclic structures. This issue has been resolved in our work 

by combining a geometry-based molecular representation with a deep neural network trained 

on ab initio data. Each molecule is transformed into a probabilistic vector from its interatomic 

distances, bond angles and dihedral angles. The model is tested on a small experimental dataset 

(200 molecules) from literature, a new medium-sized set (4000 molecules) with both open-shell 

and closed-shell species, calculated at CBS-QB3 level with empirical corrections, and a large 

G4MP2-level QM9-based dataset (40000 molecules). Heat capacities between 298.15 K and 

2500 K are calculated in the medium set with an average deviation of about 1.5 J mol−1 K−1 

and the standard entropy at 298.15 K is predicted with an average error below 4 J mol−1 K−1. 

The standard enthalpy of formation at 298.15 K has an average out-of-sample error below 

4 kJ mol−1 on a QM9 training set size of around 15k molecules. By fitting NASA polynomials, 

the enthalpy of formation at higher temperatures can be calculated with the same accuracy as 

the standard enthalpy of formation. Uncertainty quantification by means of the ensemble 

standard deviation is included to indicate when molecules are evaluated that are on the edge or 

outside of the application range of the model.   
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1. Introduction 

Estimating molecular properties is a crucial component of many applications in the fields of 

chemistry, chemical engineering and materials science. In chemical reaction engineering, the 

creation of kinetic models requires accurate thermodynamic data, such as enthalpies of 

formation, entropies and heat capacities. A typical kinetic model can contain thousands of 

species and tens of thousands of reactions [1, 2], with the model size increasing exponentially 

with the number of heavy (non-hydrogen) atoms in the reactant molecule [3]. Due to the 

transition to alternative feedstocks, such as lignin, plastic waste or heavy oils, new processes 

and hence new kinetic models must be created to understand how these feedstocks are converted 

into useful chemicals and chemical building blocks [4, 5]. Some of these feedstocks contain 

many large molecules and are converted using pyrolytic processes, in which many radical 

species and polycyclic compounds are generated [6]. Since determining all thermochemical 

properties experimentally is unfeasible, computational methods are required. In most methods, 

a trade-off is made between accuracy and time. In computational chemistry methods, the term 

“chemical accuracy” is used to indicate a level of accuracy that matches experimental accuracy 

[7, 8]. The most commonly used values in literature are 4 kJ mol-1 or 1 kcal mol-1 (4.184 kJ 

mol-1) [4, 9]. Another definition for chemical accuracy is 1.4 kcal mol-1 (5.9 kJ mol-1), which 

corresponds to the change in rate-determining free energy of activation at room temperature 

that is needed to change the rate of a chemical reaction by one order of magnitude [10]. Ruscic 

[9] imposes the strictest definition by stating that the 95% confidence interval should be lower 

than 1 kcal mol-1 (4.184 kJ mol-1). A similar error of 1 cal mol-1 K-1 on the entropy will also 

cause an error of about a factor two on the rate coefficient. 
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High-level ab initio quantum chemistry methods are commonly employed to calculate 

thermochemical properties of core species since they are able to obtain chemically accurate 

results [11]. However, calculating all properties with high-level methods remains too 

computationally demanding. A first solution is to use density functional theory (DFT) methods. 

Popular functionals such as B3LYP [12, 13] are less computationally expensive than high-level 

ab initio methods, but far less accurate and hence not recommended for creating highly accurate 

kinetic models [14, 15]. New, more accurate functionals have been created, but at a higher 

computational cost [16]. Automatic kinetic network generators, such as RMG [17] and Genesys 

[18], make use of Benson group additivity schemes [19] to make fast and accurate predictions 

of thermochemical properties, without having to determine molecular geometries. Despite 

being able to reach chemical accuracy at a much smaller cost than ab initio methods [20], this 

method also has several disadvantages. Its applicability range is limited to molecules for which 

group additive values (GAV) have been calculated and determining new GAV requires time 

and experience. In addition, extra ring-strain corrections must be included when dealing with 

cyclic species. This causes extra difficulties as it is impossible to calculate ring-strain 

corrections for all possible ring structures. Even with extended algorithms property predictions 

of polycyclic species lack high accuracy [21]. 

In the last decade, machine learning methods have been used to predict a wide range of 

molecular properties. As early as 2003, neural networks were applied to improve the 

performance of density functional theory predictions of enthalpies of formation  Regarding the 

data, molecular representations and models – the three major requirements for machine learning 

in chemical engineering – there are some variations. Because large amounts of experimental or 

high-level ab initio data are hard to find, it is common to train models on large open datasets 

with molecular properties calculated at a lower level-of-theory. QM9 [22] is the best-known 
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quantum chemical benchmark, containing geometries and properties of 134k drug-like 

molecules, calculated at B3LYP/6-31G(2df,p) level-of-theory. Experimental data is less 

available and usually scattered across the literature. As an illustration, Yalamanchi et al. [23] 

composed a small dataset of only 192 experimental datapoints for predicting enthalpies of 

formation with machine learning.  

In machine learning applications, molecules are, in many cases, translated into a numerical 

vector of fixed size, which is called the molecular representation. A molecular representation 

can either be fixed or learned, depending on whether the algorithm will always return the same 

vector for a molecule (fixed) or will learn a task-specific, database-dependent vector (learned) 

[24]. Representations can also be distinguished based on the molecular information that is 

needed to create the vector. Topology-based representations only require the two-dimensional 

connectivity, typically with some additional atomic features. Message-passing neural networks 

[25], which are popular in property prediction [24, 26], use learned topology-based 

representations inspired by the fixed extended-connectivity fingerprints (ECFP) [27]. 

Geometry-based representations, on the other hand, are created from the three-dimensional 

molecular coordinates [28-31]. These representations are used for regression models, such as 

support vector regression, kernel ridge regression or artificial neural networks. 

In this study, the fixed Histograms of Distances, Angles and Dihedrals (HDAD) representation 

by Faber et al. [30] is modified into a learned representation, named Gaussian Learned (GauL) 

HDAD. This representation is used to predict the standard enthalpy of formation, standard 

entropy and the heat capacity at 46 temperatures of cyclic and polycyclic hydrocarbons and 

oxygenates. The performance of the model on two literature datasets is presented together with 

the performance on a new dataset, which also contains radical species. Radical species are 

usually not included in datasets for machine learning, but play a crucial role in modeling of 
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many chemical processes such as pyrolysis or combustion. The relation between the learned 

GauL HDAD representation and the target property is also discussed. Finally, a comparison is 

made with directed message-passing neural networks [24], the state-of-the-art in machine 

learning-based property prediction.  

2. Methods 

2.1. Datasets 

A dataset, named “Lignin QM”, containing the standard enthalpy of formation, the standard 

entropy and heat capacities at 46 temperatures of 3926 cyclic and polycyclic hydrocarbons and 

oxygenates is constructed. Part of the data has been published by Ince [32-34], Khandavilli [35, 

36] and Vermeire [37, 38]. The remainder is unpublished work by Carstensen. All properties 

are calculated with the CBS-QB3 method [39, 40], to which spin-orbit corrections (SOC) [41] 

and empirical bond additive corrections (BAC) [42] are added for calculating the enthalpy of 

formation. With SOC and BAC, the calculated standard enthalpy of formation is chemically 

accurate, as well as the standard entropy and heat capacities [43]. The standard entropy contains 

symmetry corrections for internal and external rotations. Lignin QM includes heat capacity 

values which are calculated at 298.15 K and from 300 to 2500 K with an interval of 50 K. All 

molecules in Lignin QM have 0 or 1 free radical, at least 1 and maximum 5 rings, ring sizes 

between 3 and 10 atoms, and 3 to 24 heavy (non-hydrogen) atoms. Species with atoms other 

than hydrogen, carbon or oxygen are not included as data availability of molecules with other 

heteroatoms is limited. The geometries optimized at B3LYP/6-31G(2df,p) level are available 

for all species, along with SMILES [44] and InChI [45].  
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Figure 1: Distribution of the standard entropy (a) and the heat capacity at 298.15 K (b) 

as function of the number of heavy atoms in the Lignin QM dataset. The distributions 

in (c) and (d) are the normalized counterparts of respectively (a) and (b). 

Figure 1a and b show the distribution of the standard entropy and the heat capacity at 298.15 

K as a function of the number of heavy atoms. Both properties increase with increasing number 

of heavy atoms, in contrast to the standard enthalpy of formation, shown in Figure 2a, which 

does not exhibit such behavior. In machine learning it is common to rescale data to a certain 

range. Before training on entropy or heat capacity data, a normalization factor based depending 

on 𝑛𝐻𝐴, the number of heavy atoms of the corresponding molecule, was sought to reduce the 

increasing behavior of the properties. This scaling factor was taken as ln(𝑛𝐻𝐴)
3

2, inspired by the 

(a) (b) 

(c) (d) 
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logarithmic contribution of the partition function to the entropy. The normalized distributions, 

which do not exhibit a strong linear trend, are illustrated in Figure 1c and d. 

 
Figure 2: Distribution of enthalpies of formation as function of the number of heavy 

atoms in the (a) Lignin QM, (b) QM9-G4MP2 and (c) KAUST datasets 

Two datasets containing enthalpies of formation of cyclic molecules are taken from literature 

to compare the performance of the GauL Histograms with other property prediction methods. 

Yalamanchi et al. [23] use a small dataset, suited for modeling combustion processes, to which 

we will refer as the KAUST dataset. It contains experimental values of 192 cyclic hydrocarbons 

with 4 to 14 carbon atoms, collected from the work of Ghahremanpour et al. [46], the CRC 

Handbook of Chemistry and Physics [47], and Minenkov et al. [48]. This dataset does not 

include radical species nor three-membered rings.  

QM9 [22] is the most commonly used database for molecular property prediction, originally 

created for drug discovery purposes from the GDB-17 space of small drug-like molecules [49]. 

Li et al. [50] have trained machine learning models on QM9 subsets for kinetic modeling 

purposes. However, since it contains many highly strained structures that are of low importance 

in combustion and pyrolysis, and lacks reactive intermediates (e.g. radical species), QM9 

should only be used, in this context, for testing machine learning models and for transfer 

learning [51]. Curtiss and co-workers [52] calculated the enthalpy of formation for all 133296 

molecules in QM9 with the high level-of-theory G4MP2 method [53]. From this QM9-G4MP2 

(a) (b) (c) 
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dataset, 42161 cyclic and polycyclic hydrocarbons and oxygenates are extracted to evaluate the 

learning curve of GauL Histograms. Figure 2 shows the distribution of enthalpies of formation 

as function of the number of heavy (non-hydrogen) atoms in the molecule. Lignin QM contains 

more large molecules than the other data sets and covers an enthalpy range of over 1700 kJ mol-

1, which is similar to the range of QM9-based datasets. The enthalpy values in the KAUST 

dataset are spread over a much smaller range, within the application range of Lignin QM. 

2.2. Representation  

The original Histograms of Distances, Angles and Dihedrals (HDAD) are created by Faber and 

Hutchison, and outperformed other methods for predicting atomization energies in the QM9 

dataset when used in combination with kernel ridge regression [30]. New methods have 

outperformed HDAD [31, 54-58], but due to the simplicity of the method and the possibility to 

physically understand the representation, HDAD is chosen as a starting point. However, this 

representation also has some disadvantages. It is a fixed, geometry-based molecular 

representation which requires manual selection of the important features. In this study, HDAD 

is upgraded into Gaussian Learned (GauL) HDAD – an automated, learned representation that 

incorporates on-the-fly geometry generation. The workflow for creating a molecular 

representation is illustrated in Figure 3. 



11 of 36 

 

 

Figure 3: Workflow for creating a GauL HDAD molecular representation from a 

string-based identifier or a 3D molecular geometry. 

 Input 

The first step consists of converting the molecule into an RDKit [59] object. Three input formats 

are accepted: 3D molecular coordinates saved in .mol files, SMILES [44] and InChI [45]. 

When a string-based identifier (SMILES or InChI) is used, 3D coordinates are generated in 

RDKit by embedding [60] and optimized with the MMFF94 forcefield [61].  
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 Geometry Features 

All interatomic distances, bond angles and dihedral angles in each molecule are collected and 

labeled. For a given molecule with n atoms, the interatomic distance features are the Euclidean 

distances between two atoms ai (i = 1, …, n – 1) and aj (j = i + 1, …, n). Notice that this includes 

many more distances than just strict bond lengths. As a result, interactions between non-nearest 

neighbor atoms are included. Distances are labeled by the symbols of the two atoms, sorted 

alphabetically. A distance between a carbon atom and a hydrogen atom is, thus, labeled CH. 

Due to the importance of CC and CO distances in hydrocarbons and oxygenates, these bonds 

are further divided for better coverage in the Gaussian mixture models. This is explained in 

detail in the supporting information. 

The angular features are the bond angles formed between two consecutive bonds. Faber et al. 

calculate the angles as “the principal angles formed by the two vectors spanning from each atom 

ai to every subset of 2 of its 3 neighboring atoms, aj and ak” [30]. This leads to large number of 

angles smaller than 1 radian, which have no physical meaning. In this study, these non-physical 

angles are not calculated. The angles are labeled in a similar way as the distances: an angle 

between a carbon, a hydrogen, and an oxygen atom, is labeled CHO. 

Dihedral angles are the third type of geometry features collected. Dihedrals or torsion angles 

are the angles between the planes, formed by two consecutive bonds. The two planes have two 

atoms in common. Because the dihedral value can be calculated in various ways, only the 

positive, acute angle is taken. Therefore, the dihedral value lies between 0 and 
𝜋

2
. The labeling 

is done analogous to the distances and the angles. As an example, a dihedral between two carbon 

atoms, a hydrogen atom, and an oxygen atom, is a CCHO dihedral. 
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  Histograms 

The geometry features of all molecules are combined and grouped by their label type. Figure 3 

shows the histograms for the carbon-hydrogen distance (CH), the bond angle between two 

carbon-carbon bonds (CCC) and the dihedral angle for two carbon atoms, a hydrogen atom and 

an oxygen atom (CCHO) in the lignin QM dataset. The carbon-hydrogen bond length is clearly 

recognized as a single peak in the first histogram. The other peaks represent distances between 

non-neighboring carbon and hydrogen atoms. In the CCC histogram, several peaks can be 

distinguished: a peak between 1 and 1.1 rad for the CCC angle in three-membered rings, around 

1.55 rad a peak for CCC angles in four-membered rings and the two main peaks in the middle 

are attributed to sp3 hybridization (1.91 rad) and sp2 hybridization (2.1 rad). Since these 

histograms are for cyclic species, the peaks are broadened due to strain. The CCHO dihedral 

histogram shows three large peaks, of which the largest, at 0 rad, is for 4 atoms in the same 

plane. 

 Gaussian Mixture Models 

The molecular representation is created from the histograms by first selecting the important 

peaks in each histogram. In Faber et al. [30], this is done by manually selecting relevant peaks. 

Because this is a cumbersome task which requires knowledge about the features, GauL 

Histograms use Gaussian mixture models to identify the major peaks. Counting the number of 

peaks (𝐾) in a histogram remains a manual step. 𝐾  is a value between 1 and 10 for each 

histogram. Although this step can be automated by e.g. Bayesian optimization, this is not done 

to limit the required computational resources.  

Gaussian mixture modeling is an unsupervised machine learning technique that uses the 

expectation-maximization (EM) algorithm [62] to identify different clusters of unlabeled data, 
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in this case the different values for each distance, angle or dihedral. The input is a file with the 

number of peaks per histogram (i.e. per geometry label). For each label, 𝐾 gaussian fits are 

initialized with an arbitrary standard deviation 𝜎𝑘 = 0.5  and mean 𝜇𝑘 =
𝑘−1

𝐾
⋅ 𝑟𝑚𝑎𝑥(𝑘 =

1, … , 𝐾), with 𝑟𝑚𝑎𝑥 the largest value per label. The gaussian distribution is defined in eq (1). 

𝑔𝑘(𝑟) =
1

𝜎𝑘√2𝜋
exp (−

(𝑟 − 𝜇𝑘)2

2𝜎𝑘
2 ) (1) 

Every iteration step 𝑗, there is an expectation (E) step and a maximization (M) step. In the 

expectation step, the probability 𝑤𝑖𝑘 that a distance, angle or dihedral value 𝑟𝑖 (𝑖 = 1, … , 𝑁) in 

the label dataset with size 𝑁 is located at the 𝑘-th gaussian is calculated as shown in eq (2). 

𝑤𝑖𝑘 =
𝑔𝑘(𝑟𝑖)

∑ 𝑔𝑚(𝑟𝑖)
𝐾
𝑚=1

 (2) 

Calculating equation (2) for all values per label yields an 𝑁 × 𝐾 matrix 𝑾. The sum of every 

column 𝑁𝑘 is then the effective value assigned to mixture component 𝑘, given by eq (3). 

𝑁𝑘 = ∑ 𝑤𝑖𝑘

𝑁

𝑖=1

 (3) 

After every E-step, the log-likelihood log ℓ(𝚯) is calculated as a measure for the goodness-of-

fit, with 𝚯 the complete set of parameters 𝜇𝑘 and 𝜎𝑘. The log-likelihood is defined in eq (4). 

log ℓ(𝚯) = ∑ log ∑ 𝑔𝑘(𝑟𝑖)

𝐾

𝑘=1

𝑁

𝑖=1

 (4) 

The iterations stop when the stopping criterion, shown in eq (5), is satisfied. The tolerance value 

is taken as 10-5. A smaller value did not improve the model performance any further.  

|
log ℓ(𝚯)𝑛𝑒𝑤

log ℓ(𝚯)𝑜𝑙𝑑
− 1| < 10−5 (5) 
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When the log-likelihood has not converged, the algorithm proceeds to the M-step with 

recalculation of the means and standard deviations, as given by eqs (6) and (7). 

𝜇𝑘 =
1

𝑁𝑘
∑ 𝑤𝑖𝑘

𝑁

𝑖=1

⋅ 𝑟𝑖 (6) 

𝜎𝑘 =
1

𝑁𝑘
∑ 𝑤𝑖𝑘

𝑁

𝑖=1

⋅ (𝑟𝑖 − 𝜇𝑘)2 (7) 

If convergence is not reached after 100 iterations, the parameters at the last iteration are taken 

as final parameters, since the EM algorithm increases monotonically in likelihood. 

 Feature Vector 

The molecular representation that is used as input in the machine learning model is a fixed-size 

feature vector of which the size equals the total number of gaussian fits for all histograms. 

Fixed-size indicates that every molecule in the same dataset is represented by a vector of equal 

length. The size of this vector can be different when using a different dataset, due to the 

prevalence of different distances, angles and dihedrals. For every distance, angle and dihedral 

in a molecule, 𝑤𝑖𝑘 is calculated with eq (2). This value is the probability that a feature value is 

found under a certain gaussian. For each molecule, the vectors of all features are condensed to 

a single feature vector by summing all contributions to each bin. An extra value is added to that 

vector indicating whether or not the molecule has a free radical, which is the eventual molecular 

representation.  

2.3. Machine Learning Models 

The fixed-size feature vector is used as input for an artificial neural network (ANN). All ANN 

models are implemented in Python using the deep learning framework Keras [63], with 
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TensorFlow [64] as backend. The complete code is available as open-source software on the 

GitHub repository https://github.com/mrodobbe/GauL-HDAD.  

The ANN architecture is optimized with the Hyperband algorithm [65], as implemented in the 

Keras-tuner package [66]. All ANN have a depth of 5 with the middle layer being significantly 

smaller than the other layers. The hidden layers have bias, have no dropout layers and are 

connected with each other using a leaky ReLU [67] activation function. Depending on the 

dataset, the hidden layer sizes are different. The different architectures are included in the 

supporting information. 

Nested cross-validation, with 10 folds in the outer loop, is used for splitting the datasets, with 

fixed random seed for reproducibility. Within each of the 10 outer folds, another k-fold cross-

validation is run to determine the best internal training and validation set out of the 90% training 

data. In the inner loop, the number of folds is set to 9, which corresponds to an eventual 

training/validation/test ratio of 80/10/10. The inner loop model with the lowest validation root-

mean-square error (RMSE) and the inner loop ensemble are chosen to test the test set of the 

corresponding outer fold. 

2.4. Directed Message-Passing Neural Networks 

Message-passing neural networks (MPNN) are topology-based (i.e. starting from the molecular 

graph) property prediction models that have gained a lot of interest because of their accuracy 

[68-70]. In this work, we use the state-of-the-art directed MPNN that is implemented in the 

open-source software package chemprop [24], which is available at 

https://github.com/chemprop/chemprop. For general information about MPNN, the reader is 

referred to Gilmer et al. [25], and for details about chemprop, we refer to the original paper by 

Yang et al. [24]. The performance on the Lignin QM dataset is tested with 10-fold cross 

https://github.com/mrodobbe/GauL-HDAD
https://github.com/chemprop/chemprop
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validation, considering the same splits as for the GauL HDAD model. Bayesian optimization 

[71] with the python package Hyperopt [72], as implemented in chemprop, is performed to 

determine the appropriate hyperparameters. 

3. Results and Discussion 

3.1. Lignin QM 

 Prediction Accuracy 

The Lignin QM prediction results are listed in Table 1 by means of the mean absolute error 

(MAE) and root-mean-square error (RMSE) of the ensembles, averaged over all folds with their 

respective standard deviation. For all properties, GauL HDAD outperforms chemprop, with a 

difference in RMSE of nearly a factor 2. The difference in MAE is smaller, which indicates that 

there are some large outliers present in chemprop predictions. Neither of the methods is able to 

reach chemical accuracy for enthalpy predictions. Standard entropy and heat capacities are 

predicted with absolute errors below 4 J mol-1 K-1. To meet the strictest definition of 

thermochemical accuracy, the 95% confidence interval – approximately twice the RMSE – 

must be below 1 kcal mol-1 (4.184 kJ mol-1) or 1 cal mol-1 K-1. For none of the properties, this 

definition is met. In addition, the error on the initial ab initio calculations must be taken into 

account, as well. Therefore, this method should be seen as an additional tool next to group 

additivity and not as a replacement for all thermochemistry estimation methods. The machine 

learning model is a valuable tool for calculating properties of less important species for which 

group additive values or corrections are missing or not accurate. However, it also meets a 

sufficient accuracy for all species in a network so that key species in kinetic networks can be 
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identified via e.g. sensitivity analyses. It is recommended that properties of these key species 

are still calculated with high-level-of-theory ab initio methods. 

Table 1: Nested 10-fold cross-validation test set performance of the enthalpy of formation 

( 𝚫𝐇°𝟐𝟗𝟖 ), standard entropy ( 𝐒°𝟐𝟗𝟖 ) and heat capacity ( 𝐜𝐩,𝐚𝐯𝐠 , averaged over 46 

temperatures) for the Lignin QM dataset, evaluated with GauL HDAD and chemprop. 

1For chemprop, the cp,298 prediction accuracy is reported.  

𝚫𝐇°𝟐𝟗𝟖 [kJ mol-1] MAE  RMSE 

GauL HDAD 9.34 ± 0.39 15.89 ± 1.22 

chemprop 15.43 ± 1.54 29.67 ± 4.34 

𝐒°𝟐𝟗𝟖 [J mol-1 K-1] MAE  RMSE 

GauL HDAD 3.86 ± 0.18 5.32 ± 0.35 

chemprop 5.90 ± 0.51 10.79 ± 1.58 

𝐜𝐩,𝐚𝐯𝐠 [J mol-1 K-1] MAE  RMSE 

GauL HDAD 1.47 ± 0.05 2.59 ± 0.64 

chemprop1 3.10 ± 0.42 5.33 ± 1.82 

Figure 4 shows the parity plots for the GauL HDAD model tested in the second fold, which is 

representative for the other folds. The heat capacities of only 6 molecules have an absolute error 

over 20 J mol-1 K-1. All of these molecules count at least 16 heavy atoms, which means that 

these species are larger than the average molecule in the dataset. In Figure 1 and Figure 2, it 

was illustrated that the data for molecules with over 15 heavy atoms is rather scarce. The heat 

capacities that are poorly predicted by chemprop are large molecules too, often the same species 

that are predicted poorly by GauL HDAD. However, when one very similar molecule (e.g. cis-

trans isomers) is available, GauL HDAD is far more accurate than chemprop. A possible 

explanation is that GauL HDAD can better estimate the size of a molecule, while chemprop – 

a convolutional model – focuses more on the functional groups in the molecule.  
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The entropy predictions are in many respects similar to heat capacity predictions. Most of the 

poor predictions from GauL HDAD correspond to large molecules in scarce data regions. 

However, nearly all the molecules with the largest errors for entropies predicted by chemprop 

count five or fewer heavy atoms. This behavior can be linked with Figure 1c. Due to the 

normalization of entropies by ln(𝑛𝐻𝐴)
3

2, the normalized value for small species is higher than 

for larger molecules. The result is a systematic underestimation for small molecules by 

chemprop. It is suggested by the entropy and heat capacity results that GauL HDAD is the better 

option when predicting properties that are strongly geometry-related. 
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Figure 4: Parity plots for GauL HDAD (left) and chemprop (right) predictions of Lignin 

QM standard enthalpy of formation (top), standard entropy (middle) and heat capacity 

at 298.15 K (bottom) with error bars of respectively 20 kJ mol-1, 10 J mol-1 K-1 and 5 J 

mol-1 K-1. 

 Enthalpy Prediction at Higher Temperatures 

Most chemical processes are not performed at room temperature and therefore thermochemistry 

at higher temperatures is needed. In combustion processes, the engineering enthalpy of 

formation Δ𝐻𝑓(𝑇) is calculated from the standard enthalpy of formation Δ𝐻𝑓,298.15 𝐾
0  and the 

heat capacity 𝑐𝑝 as given by eq (8). 

Δ𝐻𝑓(𝑇) = Δ𝐻𝑓,298.15 𝐾
0 + ∫ 𝑐𝑝(𝑇)𝑑𝑇

𝑇

298.15 𝐾

 (8) 

The heat capacity function is obtained by fitting the heat capacity at different temperatures to 

the found NASA polynomial coefficients [73], as shown in eq (9), where 𝑅 is the ideal gas 

constant (8.314 J mol-1 K-1) . 

𝑐𝑝(𝑇) = 𝑅(𝑎1 + 𝑎2𝑇 + 𝑎3𝑇2 + 𝑎4𝑇3 + 𝑎5𝑇4) (9) 

The prediction errors on the engineering enthalpy of formation at a selection of temperatures is 

given in  

Table 2, by means of the MAE and the RMSE. Notice that the value at 298.15 K is, by 

definition, equal to the standard enthalpy of formation, reported in Table 1. There is only a 

small increase in error noticed at higher temperatures, smaller than the error on single heat 

capacity values. Since the heat capacity error is almost removed by polynomial fitting, the error 

on higher-temperature enthalpy of formation values can be approximated by the standard 

enthalpy of formation error.  
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Table 2: Prediction error on the engineering enthalpy at different temperatures. All 

results in kJ mol-1. 

T[K] 298.15 600 1000 1500 2000 2500 

MAE 9.34 9.41 9.47 9.52 9.57 9.67 

RMSE 15.89 15.95 16.00 16.02 16.04 16.11 

 Interpretability of Enthalpy Predictions 

Standard entropy and heat capacity are molecular properties that are strongly related to the size 

of a molecule and their prediction errors are related to data scarcity for molecules with more 

than 15 heavy atoms. Enthalpy of formation is a molecular property that does not increase with 

the number of heavy atoms (see also Figure 2) and prediction errors cannot simply be assigned 

to this data scarcity. The first explanation for larger deviations for enthalpy of formation 

predictions is the range of the values. While standard entropy and heat capacity values span a 

range of around 500 J mol−1 K−1 , this is around 1700 kJ mol−1  for enthalpy values. The 

second explanation of why some molecules have poorer estimations is related to the GauL 

HDAD representation and how the neural network learns to predict an enthalpy from this 

representation. The artificial neural network has an architecture with five hidden layers. Since 

the size of the third hidden layer is significantly smaller, it is regarded as the actual learned 

molecular representation.  

In Figure 5, the middle layer of the GauL HDAD model, trained on the Lignin QM Enthalpy 

dataset, is graphically represented. The middle layer dimension is first reduced to 9 with 

singular value decomposition, for computational reasons, and then from 9 to 2 by t-distributed 

stochastic neighbor embedding (t-SNE) [74]. Each circle in the figure is a molecule from the 

training or internal validation set and the triangles denote test set molecules. The circles are 
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colored by the molecule’s true label (in this case the ab initio enthalpy of formation) and the 

triangles by the absolute prediction error on a logarithmic (ln) scale. Although absolute 

distances in t-SNE plots do not have a physical meaning, due to the stochastic nature of t-SNE, 

the molecules are clearly clustered into smaller groups of molecules with a similar output value. 

Poorly predicted molecules are usually found “within” a cluster with molecules that are not 

related or maximally resemble the molecules graphically.  

 

Figure 5: First and second t-SNE component for the learned molecular representation 

(i.e. the middle hidden layer in the ANN) for enthalpy of formation prediction in the 

Lignin QM dataset. The learned features clearly depend on the target property. 

One such example is a 2-(hydroperoxymethyl)-5-methylfuran radical, which is the poorest 

prediction in this fold. Figure 6 zooms in on this molecule’s neighborhood in Figure 5. It is 

easy to recognize that most of the molecules in this small cluster contain a phenyl radical, with 

two substituents and two oxygen atoms. The 2-(hydroperoxymethyl)-5-methylfuran radical 

does not fit in this group and is possibly just an outlier, also since only few species with peroxide 
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bonds are included in the dataset. It is not possible to explain from this plot why a certain value 

is predicted. Nevertheless, these plots have been used for fine-tuning the number of gaussians 

in a histogram by inspecting the differences between a poorly predicted molecule and the 

molecules around. It should be remarked that although t-SNE is a stochastic algorithm, which 

will return different plots in different runs, the clusters remain the same, but with different 

coordinates. 

 
Figure 6: Zooming in on the neighborhood of the poorest predicted value in Figure 5. 

 Uncertainty Estimation 

Ensemble averaging helps discovering outliers by not only averaging the predictions, but also 

returning the standard deviation on these predictions. The standard deviation is in first place a 

measure for how well the models agree with each other. However, molecules with a larger 

standard deviation on the predictions tend to have a larger average error too. This is also seen 

when taking a random cut-off at 7 kJ mol-1. About 21% of the Lignin QM molecules have a 

standard deviation over 7 kJ mol-1 and the prediction RMSE for these molecules is 28.8 kJ mol-
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1, compared to 15.8 kJ mol-1 overall. The other 79% have an RMSE of 10.0 kJ mol-1. This 

uncertainty estimation method is ideal for active learning, as was also shown by Li et al. [50]. 

 Input Format 

GauL HDAD currently accepts molecules in three input formats: stored as a SMILES or InChI 

string, or as the explicit geometry stored in an individual .mol file. Figure 7 illustrates that 

the way a molecule is stored has an effect on the eventual prediction accuracy. For these results, 

no internal cross-validation was used and these predictions are thus not ensemble averaged. As 

already mentioned above, when the input is a string-based identifier, the three-dimensional 

coordinates are generated by embedding and optimized with a force field. Computationally 

there are no differences – RDKit can optimize geometries of hundreds of molecules in less than 

a minute. However, the performance of forcefield optimized geometries is inferior to DFT 

optimized geometries. This can be due to the selection of different conformers, in which DFT 

is more consistent than forcefields, but also because forcefield-optimized geometries are less 

accurate than DFT optimized geometries. More surprising is the significant difference in 

enthalpy prediction accuracy between SMILES and InChI, which is an RDKit issue. The role 

of the molecular geometry is less important in entropy and heat capacity values than for the 

prediction of the enthalpy of formation. When considering different conformers, consistent and 

accurate geometry calculation is crucial. 
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Figure 7: Comparison of the three GauL HDAD input modes, tested on the Lignin QM 

dataset. Lower is better. 

Corannulene (IUPAC name: dibenzo[ghi,mno]fluoranthene [75]) is a polycyclic aromatic 

hydrocarbon, which can be visualized as the hydrogen-terminated cap of buckminsterfullerene 

(C60) [76]. Figure 8 shows its molecular structure. This C20H10 isomer is predicted poorly with 

all input methods and has the largest standard deviation when using ensemble averaging.  

 
Figure 8: The 2D molecular structure of corannulene with its IUPAC name. 

However, the absolute error when using DFT optimized coordinates is far lower than when 

geometries are embedded and optimized using forcefields. Corannulene is an example of where 

the forcefield approach fails. This structure has a bowl-shaped curvature [77], but due the 

aromatic rings, the whole structure is embedded in the xy-plane. The lack of a z-axis gradient 
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leads to an “optimized” planar structure. Since there are no similar molecules in the dataset, it 

is – even with correct geometry – predicted inaccurately. 

A numerous number of species has a nearly identical geometry (i.e. equal distances, angles and 

dihedrals) when optimized with forcefields or with DFT. Yet, the prediction for one input type 

is significantly less accurate than for another. Since neural networks are black-box models, 

retracing what the model learns, is a nearly impossible task. However, the histograms (see 

Figure 3) can be compared for all input modes and there, small difference are noticed, 

especially for “rare” bond lengths. Inconsistent calculation of these distances can lead to 

different histograms and hence different Gaussian mixture models. Since the feature vector 

representation is directly impacted by the mixture models, a similar geometry can be 

represented differently, depending on how the distances, angles and dihedrals are calculated. 

However, this does not explain yet why the forcefield-optimized geometries differ when using 

SMILES or InChI. Nearly all molecules for which there is a large difference in prediction 

between SMILES and InChI are either (oxygenated) polycyclic aromatic hydrocarbons or 

radical species with unsaturated bonds. These species have resonance structures and delocalized 

electrons. InChI identifiers do not take mesomerism into account [45] and the structure is 

systematically deviating from the SMILES. Both the SMILES and InChI were, however, 

defined in RDKit based on the .mol files in the dataset. For radical species, this leads to the 

radical being assigned to another atom, which results in different distances, angles and 

dihedrals. Polycyclic aromatic hydrocarbons, such as butalene (visualized as two fused 

cyclobutadiene molecules) are seen as non-aromatic species. When using InChI input, the cross-

ring bond is seen as a rather short bond of about 1.309 Å, while for SMILES this bond length 

is 1.521 Å and B3LYP calculates it as 1.570 Å, which is also found by Warner and Jones [78]. 

All other bond lengths in this molecule were underestimated when using InChI input, which 
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makes it a different molecule for GauL HDAD. This problem is related to the InChI definition 

and not related to RDKit or the GauL algorithm. When handling radical and aromatic species, 

it is recommended to make use of SMILES instead of InChI, which are not appropriate for 

models involving mesomeric radicals. 

3.2. Literature Datasets 

 QM9-G4MP2 

The GauL HDAD algorithm is trained and tested on the standard enthalpy of formation values 

of (poly)cyclic hydrocarbons and oxygenates in QM9-G4MP2, to evaluate the model’s learning 

curve. Using the same approach as above and after optimizing hyperparameters, an MAE of 

2.52 ± 0.06 kJ mol−1 and an RMSE of 4.36 ± 0.46 kJ mol−1 are obtained for a training set 

size of 37945 molecules and using B3LYP-level geometries. 

Figure 9 presents the prediction errors (MAE and RMSE) as a function of the training set size. 

The training set size is varied between 100 and 37945 molecules (90% of the dataset) and the 

test set is always the remaining molecules in the dataset; the test set size ranges from 42061 to 

4216 molecules. In Figure 9, the shaded area is defined as the average plus/minus one times 

the standard deviation over the different folds. The MAE drops below 4.184 kJ mol-1 at a 

training set size of around 15000 molecules. The model systematically improves with 

increasing the training set size and the errors exhibit a linear decay on a log-log scale. Von 

Lilienfeld et al. [79] reported similar learning curves for different representations, evaluated on 

atomization energies in the original QM9. 
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Figure 9: Learning curve for the enthalpy of formation of QM9-G4MP2 molecules 

(42161 cyclic and polycyclic hydrocarbons and oxygenates) predicted with the GauL 

HDAD method. Mean absolute error (MAE) and root-mean-square error (RMSE) as a 

function of the training set size, the test set being all other molecules in the dataset. The 

shaded area is defined by the standard deviation on the predictions. The dashed 

horizontal line corresponds to chemical accuracy. 

 KAUST 

Yalamanchi et al. [23] trained a support vector regression model on a set of 192 experimentally 

measured enthalpies of formation [46-48]. This dataset of cyclic hydrocarbons is used to 

evaluate the performance on small datasets. Two molecules of which the SMILES could not be 

parsed by RDKit are omitted, reducing the dataset to 190. The results are reported in Table 3, 

by means of the mean absolute error (MAE), the root-mean-square error (RMSE) and the 

maximal absolute error (maxAE). Six models are presented in Table 3, of which KAUST 

contains the results as they were reported by Yalamanchi et al. [23]. The GauL HDAD 

algorithm is trained on the KAUST dataset, following the same procedure as above. Since the 
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geometries of the molecules are not available in the dataset, the SMILES identifier is used as 

input for the algorithm. There is no significant difference between the MAE of the KAUST 

algorithm and GauL HDAD, but the GauL RMSE is smaller, as well as the maximal error. 

Since the molecules in the KAUST dataset are located inside of the Lignin QM range, they are 

tested without any training on the KAUST dataset (Lignin in Table 3). Remarkably, the 

accuracy is almost exactly the same value as when trained on the KAUST dataset. Two 

important notes must be considered: the molecules are tested on a model that used SMILES as 

input and 30 molecules are overlapping in both datasets, albeit with different labels. Although 

the model that uses DFT coordinates is more accurate, the test accuracy is much poorer. The 

reason for the performance difference that the consistency in the calculation of geometry 

features is crucial, as discussed above. The complete Lignin QM consists of about 2000 

oxygenated species, while the KAUST dataset contains hydrocarbons only. For that reason, the 

oxygenates are excluded and the KAUST dataset is tested on a model trained on hydrocarbons 

from Lignin QM only (Lignin HC in Table 3). This does, however, not improve, but worsen 

the accuracy. It is suggested that the model trained on the complete Lignin QM dataset performs 

better, because it simply contains more geometric information as oxygenated species consist 

mainly out of carbon and hydrogen.  

The test on Lignin QM models does not reflect the true model performance since the Lignin 

QM data are calculated at CBS-QB3 level and the KAUST dataset contains experimental data. 

One way to get rid of this error is by using Δ-machine learning [80], but this is not possible 

since not all molecules in the KAUST dataset are calculated at CBS-QB3 level. Another method 

is using transfer learning [51, 70], where the model trained on one dataset is used to train another 

dataset for a limited number of epochs, 50 in this work (Transfer Lignin and Transfer Lignin 

HC in Table 3). For the training of the KAUST molecules, 10-fold cross validation is used 
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again. The results improve, compared to the direct training. It is believed that the prediction 

error does not further drop, because the KAUST dataset is very small, compared to the Lignin 

QM dataset. More epochs led to overtraining and results comparable to the direct testing. 

Table 3: Prediction accuracies on the KAUST dataset as reported by Yalamanchi et al. 

[23] (KAUST), predicted directly by GauL HDAD, tested after training on the full Lignin 

QM dataset (Lignin) and the hydrocarbons in Lignin QM (Lignin HC), using transfer 

learning with models trained on the full Lignin QM dataset (Transfer Lignin) and the 

hydrocarbons in Lignin QM (Transfer Lignin HC) 

[kJ mol-1] MAE RMSE maxAE 

KAUST 9.77 15.00 118.23 

GauL HDAD 9.60 12.90 51.58 

Lignin 9.81 12.97 48.65 

Lignin HC 10.14 14.09 65.34 

Transfer Lignin 8.20 11.19 44.43 

Transfer Lignin HC 9.29 12.46 45.87 

4. Conclusions 

A neural network-based method is presented for high-accuracy predictions of the standard 

enthalpy of formation, standard entropy and heat capacity of cyclic and polycyclic 

hydrocarbons and oxygenates. The prediction accuracy is determined by an interplay of the 

training data, the molecular representation and the neural network architecture. The backbone 

is a dataset named “Lignin QM”, containing the standard enthalpy of formation, the standard 

entropy and heat capacities at 46 temperatures of 3926 cyclic and polycyclic hydrocarbons and 

oxygenates, calculated with high-level-of-theory ab initio methods. In order to capture the 

difference correctly between an open-shell molecule and its closed-shell equivalent, a molecular 

representation named GauL HDAD is developed that makes use of the three-dimensional 
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molecular geometry. Using a geometry that is optimized at density functional theory level leads 

to significantly more accurate machine learning models and predictions than when using 

forcefields.  

GauL HDAD outperforms message-passing neural networks for predicting enthalpy, entropy 

and heat capacity values. Entropy and heat capacity, which are strongly geometry-related, are 

predicted with a mean absolute error lower than 4 J mol-1 K-1. The standard enthalpy of 

formation is less influenced by the size of a molecule and needs either denser datasets or more 

training to become chemically accurate. Evaluation on the cyclic and polycyclic hydrocarbons 

and oxygenates in QM9 showed that a mean absolute error below 4 kJ mol-1 is obtainable with 

a training size of about 10k species. Outlier analysis shows that molecules with a poorly 

predicted enthalpy usually contain multiple distances, angles or dihedrals that are unique in the 

dataset. As a warning sign for using the model outside of the application range, ensemble 

averaging is used and the standard deviation is used as uncertainty estimation on the predictions.  

The high accuracies reported for thermochemical properties in a small, medium and large-sized 

dataset, with and without radicals, show that the GauL HDAD model is a reliable and promising 

prediction tool. However, the predictions are not chemically accurate and are based on ab initio 

calculations that have some deviation, too. Crucial species in kinetic models still require high-

level calculations but machine learning models offer a new tool, next to group additivity, in 

automatic network generation tools. More open datasets containing high-level-of-theory ab 

initio data or experimental data combined with active learning and Δ-machine learning might 

pave the way towards chemically accurate learned thermochemistry predictions.   
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