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Abstract— Remote sensing using multisensor platforms has
been systematically applied for monitoring and optimizing human
activities. Several advanced techniques have been developed
to enhance and extract the spatially and spectrally semantic
information in the hyperspectral image (HSI) and light detection
and ranging (LiDAR) data processing and analysis. However,
an abundance of redundant information and sometimes a lack
of discriminative features reduce the efficiency and effectiveness
of multisource classification methods. This article proposes a
fractional Gabor convolutional network (FGCN), focusing on effi-
cient feature fusion and comprehensive feature extraction. First,
the proposed FGCN uses Octave convolution layers to perform
multisource information fusion and preserve discriminative infor-
mation. Second, fractional Gabor convolutional (FGC) layers are
proposed to extract multiscale, multidirectional, and semantic
change features. The completeness and discrimination of the
multisource features using different FGC kernels are improved,
which yield robust feature extraction against semantic changes.
Finally, the fractional Gabor feature and spectral feature are
combined with two weighting factors which can be learned during
the network training. Experimental results and comparisons with
state-of-the-art multisource classification methods indicate the
effectiveness of the proposed FGCN. With the FGCN, we can
obtain an 89.90% overall accuracy on the challenging Muufl
Gulfport (MUUFL) data set, with an improvement of 3% over
state-of-the-art methods.

Index Terms— Fractional Gabor convolutional network
(FGCN), hyperspectral image (HSI), light detection and ranging
(LiDAR), multisensor data fusion.
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I. INTRODUCTION

W ITH the rapid development of Earth observation tech-
niques, there have been ever-increasing amounts of

multimodal data acquired from different platforms, such as
airplanes, satellites, autonomous vehicles, and unmanned aer-
ial vehicles (UAVs), for different remote sensing applica-
tions [1], [2]. Remote sensing using multisensor platforms
has been systematically applied for monitoring land-use and
land-cover classification, and environmental changes, such
as rampant urban sprawling and land degradation [3]–[5].
Many remote sensing approaches have been proposed for land
cover classification, but most consider only one modality, e.g.,
RGB images, hyperspectral images (HSI), light detection and
ranging (LiDAR), or infrared images. This is in part due to the
differences in structure among the modalities that complicate
their joint analysis. Specifically, HSI can provide detailed
spectral information for potential material identification [6]
while LiDAR data provide elevation information about the area
under investigation at any time of the day and under adverse
weather conditions [7]–[9].

Recently, new techniques have been developed for joint
classification of HSI and LiDAR from information modeling to
data fusion [10]–[13]. For instance, Rasti et al. [14] proposed
a technique for the fusion of hyperspectral and LiDAR data
called Sparse and Low-Rank Component Analysis (SLRCA)
fusion. Kang et al. [15] first proposed an extended random
walker-based effective probability optimization method for
classification of HSIs, which achieved promising performance.
Then, a Hierarchical Random Walk Network (HRWN) was
developed to fuse deep features extracted from HSI and
LiDAR for precise land-cover classification [16]. In [17],
a Semisupervised Graph Fusion (SSGF) was used to project
the spectral, elevation, and spatial features onto a lower sub-
space to obtain the new features of LiDAR and HSI. In [18],
an effective multiview edge-preserving filtering method was
developed for material identification, which greatly improves
classification performance. Nevertheless, how to extract joint
features containing comprehensive and complemented infor-
mation remains challenging.

One of the most significant tasks in multisource remote
sensing is to model data from different sensors and fuse spatial,
spectral, radiation, and shape information. Enormous efforts
have been made to extract features of HSI and LiDAR sensors,
develop data fusion techniques for reconstructing synthetic
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data that have the advantages of different sensors [19]–[22].
To mine spatial information of HSI, morphological pro-
files have been applied to model multilevel features [23],
[24]. In [23], Orthogonal Total Variation Component Analy-
sis (OTVCA) was proposed to fuse extinction profiles model-
ing spatial and elevation information from HSI and rasterized
LiDAR features. In [25], LiDAR data were used for scene
segmentation, and then hyperspectral data were classified
based on segmentation results, which showed a significant
improvement over single-source data classification. Most of
the aforementioned algorithms involve modalities with trade-
offs in spatial, spectral, and temporal resolutions. However,
Liao et al. [26], [27] pointed out that simple feature splicing
or stacking operations are highly susceptible to redundant
information stacking. Khodadzadeh et al. [3] further pointed
out that feature splicing increases the dimensionality of feature
extraction and exacerbating the Hughes effect. The fusion
of HSI and LiDAR information by coupling reducing the
redundant details and preserving the discriminative geomet-
rical features remains challenging.

With synthetic data that have the advantages of different
sensors, another significant issue is feature extraction of the
multisensor image to achieve robust and accurate joint clas-
sification of HSI and LiDAR data. Recent deep collaboration
frameworks for multisource data have shown efficient perfor-
mance in spatial-spectral feature extraction [16], [28], [29].
In [30], a Contextual Convolutional Neural Network (CCNN)
was developed to extract deeper and wider spatial features for
HSI classification. In [31], a Convolutional Recurrent Neural
Network (CRNN) model was proposed to effectively analyze
hyperspectral pixels as sequential data and then determine
information categories via network reasoning. However, sim-
ple concatenation or stacking of features may be limited in
individual feature extraction [3], [32].

To extract robust and high-level spatial-spectral features by
deep networks, Convolutional Neural Networks (CNNs)-based
methods were proposed to combine HSI and LiDAR data
using multibranch architectures [33]–[35]. In [36], a CNN in
combination with a Markov Random Field (CNNMRF) was
proposed to classify pixel vectors in a way fully taking spatial
and spectral information into account. In [33], a Two-Branch
CNN framework (TBCNN) is developed to extract spectral-
spatial features from HSI and LiDAR data sets. In [37],
an end-to-end fusion module is proposed for efficient joint
feature extraction and classification. To solve the problem
caused by the unbalance between different features, decision-
fusion methods for HSI and LiDAR classification have been
presented [27], [38].

Although these features and decision-fusion-based
approaches have shown excellent performance in local and
global feature extraction, they still fail to accurately describe
the orientation and semantic changes information [39]. Gabor
operators guide the CNN to acquire spatial features that are
multiscale and multidirectional [40], [41]. More significantly,
the features only extracted from the spatial domain are
relatively limited in representation ability and diversity,
particularly for the complex scenes including various spectral
variabilities. Therefore, feature extraction in the frequency

domain [42], [43] or fractional domains [44]is beneficial to
enrich the diversity of the features. In [44], the fractional
Fourier transform (FrFT) was proven to be desirable for
noise removal and can enhance the discrimination between
anomalies and background.

This article focuses on efficient feature fusion and compre-
hensive and discriminative feature extraction of multisensor
remote sensing data. It proposes a fractional Gabor convolu-
tional network (FGCN). First, the proposed FGCN uses Octave
convolutional layers to decompose multisource remote sensing
data to the low-frequency and high-frequency components,
and reduce the redundant low-frequency information. Then,
corresponding frequency components of the two sources are
fused preserving the discriminative features. Experimental
results show improvements in discrimination. Second, frac-
tional Gabor convolutional (FGC) layers are used to extract
features at multiple scales, directions, and multiple chirp rates.
The FGC layers add feature diversity and discrimination,
improve the completeness of the multisource features. Finally,
fractional Gabor feature and spectral feature are combined
with two weighted factors which can be learned during the
network training, and the classification map is obtained by
softmax classifier. Experimental results of three multisource
data sets are used to assess and compare the classification
accuracies of state-of-the-art multisource classification meth-
ods, which indicate the effectiveness of the proposed FGCN.

The main contributions are highlighted as follows.

1) The Octave convolutional layers are used to fuse infor-
mation from different data sources, which can reduce
data redundancy and improve discrimination. Because
of the frequency decompositions by Octave convolu-
tion, the volume of parameters and complexity can
be reduced compared with the common convolutional
layers.

2) The FGC layers are designed to improve the com-
pleteness and discrimination of the multisource fea-
tures, which yield robust feature extraction. The FGCN
architecture is proposed to integrate comprehensive
multiscale spatial features, directional texture features,
frequency variation features, and spectral features for
accurate multisource joint classification.

The remainder of this article is organized as follows. The
proposed framework is introduced in Section II. In Section III,
experimental results and analysis are presented. Finally,
Section IV summarizes with some concluding remarks.

II. PROPOSED CLASSIFICATION FRAMEWORK

The FGCN framework is designed for pixel-level classi-
fication by fusing multisource remote sensing images. The
framework of the proposed FGCN is illustrated in Fig. 1.
It consists of three parts: 1) the multisource frequency decom-
position and fusion by Octave convolutional layers (Part I);
2) the FGC layers extracting features at multiple scales,
directions, and multiple chirp rates (Part II); and 3) the
classifier using comprehensive features to obtain classification
map (Part III).
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Fig. 1. Proposed FGCN classification framework.

A. Multisource Frequency Components Fusion

As illustrated in Fig. 1, Part I reflects multiple Octave
convolutional layers. Octave convolution has been used for
HSI classification with more efficient convolution layers [45],
[46]. Simple feature splicing or stacking operations are highly
susceptible to redundant information stacking [26], [27]. The
fusion of HSI and LiDAR information using classical feature
extraction and fusion methods reduce part of redundancy [23],
[26], [47], but still have redundancy in low-frequency parts.
Furthermore, the discrimination of objects in the data sets is
not improved leading challenges in classification. To reduce
redundancy in low-frequency components of data and improve
discrimination of different objects, the Octave convolution
layers are used in the proposed FGCN. The motivation of
Octave layers including fusing multisource information and
improving discrimination between classes.

We first use an Octave convolutional layer to decompose
the input images into a multiresolution representation, which
makes it easier to reduce spatial redundancy [48]. In this step,
a HSI image is given as Xh ∈ R

r×c×bh with bh bands by
r × c pixels, and a LiDAR image covering the same area is
denoted as Xl ∈ R

r×c×bl with bl bands. We use OctConv to
explicitly factorize Xh and Xl along the channel dimension
into Xh = {XH

h , XL
h } and Xl = {XH

l , XL
l }, where the high-

frequency convolutional output features XH
h ∈ R

r×c×(1−α)bh

and XH
l ∈ R

r×c×(1−α)bl capture fine details. The low-frequency
convolutional output feature XL

h ∈ R
(r/2)×(c/2)×αbh and XL

l ∈
R

(r/2)×(c/2)×αbl vary slower in the spatial dimensions, which
indicates the spatial redundancy in low-frequency components.
α ∈ [0, 1] denotes the ratio of channels allocated to the low-
frequency part and the spatial resolution of the low-frequency
feature maps is reduced by an octave (a division of the spatial
dimensions by 21).

The Octave feature representation of HSI and LiDAR data
reduces the spatial redundancy and is more compact than the
normal convolution [48]. Three Octave convolutional layers
are designed to decompose the input HSI and LiDAR data into
components Xh = {XH

h , XL
h } and Xl = {XH

l , XL
l }, reducing

the redundancy in low-frequency components and fuse the

frequency features as compact and discriminative outputs.
The goal of the three-layer Octave convolution design is
to effectively process the low and high frequencies in their
corresponding frequency components and also enable efficient
fusion or interfrequency communication of multiple sources.
As Fig. 2 shown, the input and output frequency components
of Octave convolution layer are denoted by Xh = {XH

h , XL
h },

Xl = {XH
l , XL

l },Yh = {YH
h , YL

h }, and Yl = {YH
l , YL

l }.
Specifically, taking the output of a HSI Yh = {YH

h , YL
h } as

an example

YH
h = YH→H

h + YL→H
h

YL
h = YL→L

h + YH→L
h (1)

where YA→B denotes the convolutional update from feature
map group A to group B . To compute these outputs, the
convolutional kernel W is separated into two components
W = [WH , WL ], which response for XH

h and XL
h , respectively.

Specifically, WH
h and WL

h can be further divided into intrafre-
quency and interfrequency parts WL

h = [WL→L
h , WH→L

h ],
WH

h = [WH→H
h , WL→H

h ]. Then the output low-frequency
feature map at location (x, y) can be computed as

YL
x,y = YL→L

x,y + YH→L
x,y

=
∑

i, j∈Nk

WL→L
i+ k−1

2 , j+ k−1
2

T
XL

x+i,y+ j

+
∑

i, j∈Nk

WH→L
i+ k−1

2 , j+ k−1
2

T
XH

(2∗x+0.5+i,2∗y+0.5+ j) (2)

where k is the convolution kernel size, Nk =
{(i, j) : i = {−((k − 1)/2), . . . , ((k − 1)/2)}, j =
{−((k − 1)/2), . . . , ((k − 1)/2)}} defines a local convolution
neighborhood. Similarly, the high-frequency feature map can
be computed as

YH
x,y = YH→H

x,y + YL→H
x,y

=
∑

i, j∈Nk

WH→H
i+ k−1

2 , j+ k−1
2

T
XH

x+i,y+ j

+
∑

i, j∈Nk

WL→H
i+ k−1

2 , j+ k−1
2

T
XL

(� x
2 �+i,� y

2 �+ j) (3)
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where �·� denotes the floor operation. As shown in Fig. 2,
the first layer factorizes input HSI and LiDAR data with
αin = 0, αout = α, outputs four parts of HSI and LiDAR
data YH

h , YL
h , YH

l and YL
l . The middle layer cascades YH

h , YH
l

and YL
h , YL

l and outputs two fused multifrequency compo-
nents YH

f , YL
f . The last Octave convolution layer synthesizes

YH
f , YL

f and outputs the fused multisource feature Y with
αin = α, αout = 0. The fused Y combines detailed spectral sig-
natures of HSI and elevation information of LiDAR, reducing
the spatial redundancy in low-frequency components, while
utilizing the discriminative information. In the following sub-
section, the improved discrimination of different land-covers
is shown to prove the effectiveness of Octave convolutional
layers.

B. FGC Layers

The Octave convolution layers utilize both spatial-spectral
information of HSI and elevation information of LiDAR. Fur-
thermore, to extract the textural and semantic change features,
the FGC layers are employed with their learning objective as
Part II in Fig. 1.

For remote sensing scenes, not all the objects in a specific
class have same shape without any change in orientations.
In these scenes, CNN lack the ability for describing the
directional information and geometric change, and the fixed
convolution kernel structure in convolutional layers resulting
in a single feature scale. Gabor filters can guide CNN to
obtain multiscale and multidirectional spatial features, thereby
combining Gabor filters with CNNs can improve the per-
formance of CNN models. The Gabor wavelet can exhibits
different scales and directions under different wavelength
parameters [40], which can be seen as a product of a Gaussian
function and a sinusoidal plane wave

g f,θ (x, y) = 1

2π
exp(−(α2x ′2 + β2 y ′2)) exp( j2πωx ′)

x ′ =
(

x − m + 1

2

)
cos θ +

(
y − n + 1

2

)
sin θ

y ′ =
(

x − m + 1

2

)
sin θ +

(
y − n + 1

2

)
cos θ (4)

where m, n denote the size of Gabor filters, θ is the rotation of
Gaussian function, α and β means the sharpness of Gaussian
function. The Gabor wavelet decomposes the data according to
both spatial location and frequency content. However, complex
scenes contain semantic changes with different frequency
change rates. The Gabor kernel can extract semantic changes at
different directions and scales, while fractional Fourier kernel
can extend this ability to semantic changes with different
frequency change rates [49]. Features between spatial and
frequency domain (fractional domain) contain significant local
semantic change information. The FrFT analyzing p order
domain features is defined as

X p(u) =
∫ +∞

−∞
f (x)K p(u, x)dx (5)

where p is the transform order. When p = (π/2), the
fractional transform is the Fourier transform. K p(u, x) is the

kernel of transform, which is defined as

K p(x, u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
1 − j cot p

2π
exp

(
j

x2 + u2

2
cot p − j xu

sin p

)
p 	= nπ

δ(x − u), p = 2nπ

δ(x + u), p = (2n ± 1)π.

(6)

As shown in Fig. 3, the fractional Gabor transform (FGT)
is used to modulate the CNN convolutional kernel, which is
designed to extract multiscale and multidirection features with
multiple chirp rates. The FGT is

FGTpx,py(x, y, u, v)

=
∫ +∞

−∞

∫ +∞

−∞
f (x, y)K px,py(x, y, u, v)h(x ′, y ′)dxdy (7)

where f (x, y) is the image, x, y is spatial location u, v is
the location in fractional domain. K px,py(x, y, u, v) is the 2-
D fractional kernel with px, py being the horizontal and the
vertical fractional transform orders, h(x ′, y ′) is the Gaussian
function with rotation θ in (4). For 2-D image, the discrete
FGT is

FGTpx,py

(
x, y,

u

U T1
,

v

V T2

)

=
M−1∑
x=0

U−1∑
u=0

[
N−1∑
n=0

V −1∑
v=0

f (x, y)K py

(
y,

v

V T2

)
h(y ′)

]

· · · K px

(
x,

u

U T1

)
h(x ′) (8)

where U, V are numbers of samples in the fractional domain,
T1, T2 are the sampling interval, M, N are the size of the input
image.

To interpret complex scenes containing semantic changes,
the FGT matrices are used to modulate the CNN kernels. The
modulated FGC kernels have different receptive fields and
characteristics of directionality in each convolutional layer.
As shown in Fig. 3, there are three FGC layers and each
layer has four branches. The FGC kernels are defined by
modulating the classical CNN kernel with the fractional Gabor
filters as

FGCpx,py,i,o = Ci,o ∗ FGTpx,py,u,v,θo (9)

where FGCpx,py,i,o denotes the i th modulated FGC kernel
of the oth output channel, Ci,o is the original convolution
kernel, FGTpx,py,u,v,θo denotes the FGT matrix with fractional
frequency u, v and direction θo in px, py fractional domain.
For each channel of CNN kernels, 2-D FGT matrix is used to
modulate the weight matrix. Then the fractional convolution
layer is

Ypx,py,o =
I∑
i

Yi ∗ FGCpx,py,i,o (10)

where Ypx,py,o denotes the oth feature of the convolution layer,
I is the bands of input. In our method, the horizontal order
px and the vertical order py are set to pl in three fractional
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Fig. 2. Details of the designed multisource frequency components fusion (Part I in Fig. 1). Green lines denote interfrequency Octave convolution, purple
lines for intrafrequency and black lines for cross-source components concatenation.

Fig. 3. Details of FGC layers (Part II in Fig. 1). Parts of the directional filters and feature maps are shown for illustration.

layers, where l is the number of convolution layer. For each
branch in a single layer, the fractional frequencies are the same
in different directions. As shown in Fig. 3, the three output
FGC features are concatenated as the output YG and then the
rectified linear units (ReLU) function f (x) = max(0, x) is
utilized as activation function [50]. The input feature of the
first FGC layer is Y computed in Section II-A, the output YG1

is the input of the next layer. To this end, the FGC features
YG1, YG2, YG3, are concatenated to obtain the FGC features
YGabor.

C. Classifier of FGCN Framework

CNNs have shown great potential in spectral feature extrac-
tion of HSI data. In the proposed FGCN framework, the fully
convolutional layers are used to learn spectral features from
original HSI data. The 1 × 1 convolutional kernels are used
to ensure that the spectral features are extracted and the size
of the feature maps keeps consistent with the original image.
The convolutional layer is

Yi = f

⎛
⎝∑

j

(Wi X j) + Bi

⎞
⎠ (11)

where Yi is the feature obtained by i th channel, Wi is the
convolutional kernel, X j is the j th channel of the previous
layer, Bi is the corresponding bias term. Then ReLU func-
tion [50] is utilized as the activation function. To reduce the
information loss during the convolutional layer getting deeper,
the first three layers are concatenated to obtain the spectral
feature Yspec.

Up to now, we have the spectral feature Yspec of HSI images
and the FGC feature YGabor from the fused feature by Octave
convolution. These comprehensive features are combined by
a weighted addition layer as

Yjoint = λGaborYGabor + λSpecYSpec (12)

where λGabor and λSpec are the weight parameters. The final
joint feature Yjoint is fed into two convolutional layers and a
softmax classify layer to predict the probability distribution

P(y(u, v) = k) = eYk
joint(u,v)∑N

k=1 Yk
joint(u, v)

(13)

where y(u, v) is the pixel label, N is the number of class.
Then the final labeling result R can be obtained. These
algorithm steps are summarized in Algorithm 1. As the
overall framework shown in Fig. 4, the FGCN is consist
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Fig. 4. Overall parameter configuration of the designed FGCN.

Algorithm 1 FGCN
Require: HSI data Xh , LiDAR data Xl , training samples S,

training epochs epochs.
Ensure: Classification map R.
1: Initialize all weights and bias terms
2: for epoch < epochs do
3: Extract multifrequency components of multisource data

as (1) and fuse features as Y.
4: Extract multiorder fractional Gabor features YGabor

using fused feature Y and spectral feature Yspec from Xh .
5: Combined YGabor and Yspec as (12) with two weight-

ing factors and obtain the classification map by softmax
classifier as 13.

6: Train the FGCN as shown in Fig. 4 using training
samples S

7: end for
8: Obtain probability distribution by (13) and obtain classifi-

cation map R.

of three parts including 1) Octave convolutional layers for
multisource frequency components decomposition and fusion;
2) the FGC layers for multidirection, semantic change features
extraction; and 3) classifier using spectral feature and FGC
feature.

D. Motivations and Effectiveness Analysis of the Proposed
FGCN

The HSI can distinguish and detect ground targets with
powerful diagnostic ability due to the high spectral resolu-
tion, narrow bandwidth, and a large amount of information.

Fig. 5. Visualization of example HSI and LiDAR data decomposed by Octave
convolutional layer.

However, its poor spatial contrast between objects limits
its performance in spatial feature presentation. The LiDAR
data possesses clear boundaries between objects with differ-
ent elevations and homogeneous regions inside real objects
with the same elevations. Different from semantic labeling
of the single source remote sensing image, an effective
and accurate joint classification algorithm usually depends
on jointly modeling spatial, spectral, elevation, and textural
information from different sensors. With this motivation, the
proposed FGCN considers the spatially structural, textural,
and elevation information in the form of semantic patches,
and the detailed spectral signatures of land-covers. Taking
the sampled HSI and LiDAR data sets as an example, the
motivations and effectiveness of each step are analyzed as
follows.

1) Octave Convolutional Layers: In Section II-A is used
to fuse spatial, spectral and elevation information. Simple
feature splicing or stacking operations are highly susceptible
to redundant information stacking [26]. As shown in Fig. 5,
the low- and high-frequency components of sampled HSI and
LiDAR are obtained by Octave convolutional layer. Compared
with the normal convolutional layers, the Octave convolu-
tional layers separate the high- and low-frequency components
of both HSI and LiDAR images (from the spatial aspect).
While the redundancy in low-frequency components of the
Octave convolutional output is reduced, the compression of
low-frequency components can further reduce the volume
of parameters and computational complexity compared with
the normal convolutional networks. Although there is still
redundancy in both high- and low-frequency components, the
efficiency of convolution is improved.

To fuse HSI and LiDAR data effectively, classical methods
like Gram–Schmidt Pan Sharpening (GS-merge) [47], Kernel
Principal Component Analysis (KPCA) [27], and OTVCA [23]
are proposed to model features from multiple sources. How-
ever, the fusion of HSI and LiDAR information still has
lots of redundant details while the discrimination of data
sets not improved, leads to challenges in classification. The
t-distributed Stochastic Neighbor Embedding (t-SNE) is pro-
posed for the visualization of similarity data, which is capable
of retaining the local structure of the data and revealing global
structure such as clusters at multiple scales [51]. In Fig. 6,
the t-SNE feature visualization algorithm is used to visualize
the original HSI data, fused features by GS-merge [47],
Principle Component Analysis (PCA), KPCA, OTVCA, and
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Fig. 6. Visualization of example data by competitive information fusion methods and the proposed Octave convolutional fusion strategy. (a) Original data.
(b) PCA fusion. (c) Kernel PCA fusion. (d) OTVCA fusion. (e) G-S fusion. (f) Octave fusion.

the processed feature by Octave convolutional layers in the
proposed FGCN. Among these multisource feature fusion
methods, Octave operators can not only fuse information
from multiple sources but also increase the discriminatory.
As shown by the dashed circles in Fig. 6, the building and road
categories with different elevations but the similar material are
easily confused in the original HSI images. After information
fusion of HSI and LiDAR by competitive methods, the objects
are still difficult to distinguish. In contrast, the objects are
more discriminative after Octave convolution layers. In the
magnified area, categories of similar height and different
materials, such as mostly grass and mixed ground, have bet-
ter discriminatory after combining spectral information with
elevation information using Octave convolution layers. These
facts demonstrate that the Octave convolutional layers can fuse
multisource information and increase discriminatory.

2) FGC Layers: FGC layers are proposed in Section II-B
to extract multiscale, multidirectional features, and semantic
change features. For the difference of objects in remote sensing
scenes, not all the objects in a specific class have the same
shape without any change in orientations. The traditional 2-D
convolutional operation can extract spatial information from
images. But with fixed receptive fields, the extracted features
are single scale and lack directional descriptions. The Gabor
kernels at different frequencies and different directions are
combined with CNNs and enable CNNs to obtain the features
described by the multiscale and multidirection [40], [41], [52].

The combination of Gabor operators and CNNs can effec-
tively improve the classification performance, but it is still hard
to deal with the locally semantic change, such as scene com-
position, the relative position between objects, atmospheric
effects, and material mixture. As shown in Fig. 7, the fractional
Gabor kernel can extract semantic changes feature with multi-
scale information with different chirp rates. As the fractional-
order varies, the energy of the image signal is concentrated
on different scales. In our previous research, the FrFT is
proven able to changes the spectral distribution of ampli-
tude and increase the discrimination between the objects and
background, and reduce the noisy components [44]. Through
the proposed FGCN architecture, comprehensive features are
combined for more accurate multisource joint classification.

III. EXPERIMENTS AND ANALYSIS

In this section, three HSI and LiDAR data sets are
used to validate the effectiveness of the proposed FGCN.

Fig. 7. Feature visualization of example data obtained with different orders
of fractional transforms. An example spectral curve is used for illustration.

All the programs are implemented using Python 3.6. The
networks are constructed using Tensorflow, which is an open-
source software library for numerical computation using data
flow graphs.1 All experiments are conducted by a personal
computer equipped with Ubuntu18.04 and NVIDIA GeForce
RTX 2080 Ti. Three commonly used evaluation metrics,
Overall Accuracy (OA), Average Accuracy (AA), and Kappa
Coefficient (Kappa), are adopted to intuitively quantify the
experimental results.

A. Data Description

1) MUUFL Data Set: Was acquired in November 2010 over
the University of Southern Mississippi Gulfport Campus, Long
Beach, Mississippi, USA [53]. The data set is composed of
HSI and LiDAR-based digital surface model (DSM). HSI data
are acquired by the ITRES Research Ltd. (ITRES) Compact
Airborne Spectrographic Imager (CASI)-1500 sensor, which is
composed of 325 × 220 pixels with 72 spectral channels (64
available bands) ranging from 375 nm to 1050 nm at a spectral
sampling of 10 nm. The spatial resolution of HSI is 0.54 ×
1.0 m, while that of LiDAR-based DSM is 0.60 × 0.78 m.
LiDAR data are acquired by the gemini airborne laser terrain
mapper (ALTM) LiDAR sensor. In this data set, 11 categories
are investigated for the land cover classification task.

1http://tensorflow.org/
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2) Houston Data Set: Was acquired by the National Science
Foundation (NSF) Center in June 2012 over the University
of Houston campus, Houston, Texas, USA [3]. The data set
is composed of HSI and LiDAR-based DSM. HSI data are
acquired by the ITRES CASI-1500 sensor, which is composed
of 349 × 1905 pixels with 144 spectral channels ranging from
364 nm to 1046 nm at a spectral sampling of 10 nm. The
spatial resolution of both HSI and LiDAR-based DSM is
2.5 m. In this data set, 15 categories are investigated for the
land cover classification task.

3) Trento Data Set: Was acquired over a rural area in the
south of the city of Trento, Italy [23]. The data set is composed
of HSI and LiDAR-based DSM. HSI data is acquired by the
AISA Eagle sensor, which is composed of 600 × 166 pixels
with 63 spectral channels ranging from 0.40 μm to 0.98 μm.
The spatial resolution of both HSI and LiDAR-based DSM is
1 m. LiDAR data are acquired by the Optech ALTM 3100EA
sensor. In this data set, six categories are investigated for the
land cover classification task.

B. Experimental Setup

1) Algorithm Configuration and Parameter Analysis: As a
type of CNN, the proposed FGCN contains the basic parameter
settings required [54]. According to the state-of-the-art CNN-
based joint classification methods for HSI and LiDAR data,
the basic parameters included in the training process are the
size of convolution kernels r × r and learning rate lr [16],
[29]–[31], [33], [36], [37]. In these competitive algorithms,
these parameters are set by cross-validation on the available
training set for an optimal and automatic system.

Apart from these basic parameters, there are two specific
parameters in the proposed FGCN. One is the ratio of channels
allocated to the low-frequency part α in Octave convolution,
and the other is the fractional order p in fractional Gabor
convolution layers. Similarly, these parameters can be set
by cross-validation on the available training set in practical
applications. Specifically, the optimal parameters for the three
HSI and LiDAR data sets are set as r × r = 11 × 11, lr =
1e − 3, α = 0.3, p = 0.25.

Efficient feature extraction and joint classification largely
depend on parameter selection and tuning. To validate the
effectiveness and sensitivity of parameters involved in the
proposed FGCN, the experimental analyses of different para-
meters are compared using the overall classification accuracy
(OA). The quantitative results in Fig. 8 show the optimal
parameter combinations for the three HSI and LiDAR data
sets.

As shown in Fig. 8(a), the effect of different sizes of convo-
lution kernels r × r are associated with classification results.
The researched range of r × r is constrained from 1 × 1 to
17×17 with other parameters lr = 1e−3, α = 0.3, p = 0.25.
The experimental results indicate that features extracted with
different convolutional kernels yield different classification
performance. For scenes containing complex spatial texture
information, relatively large convolutional kernel sizes can
obtain better spatial features, as well as different directional
features. For example, the Muufl Gulfport (MUUFL) data set

Fig. 8. Classification performance of the proposed FGCN with different
parameters. (a) Convolution kernel size r × r . (b) Learning rate lr . (c) Low-
frequency ratio α of channels parameter in Octave convolution. (d) Fractional
transform order p in fractional Gabor convolution layers.

obtains better classification results with 11 × 11 and 13 × 13
convolutional kernels. Whereas the Trento and Houston data
sets require smaller convolutional kernels to extract features
depending more on homogeneous features.

As shown in Fig. 8(b), different learning rate lr affects
the classification results as well. The search range of lr is
constrained from 10−5 to 10−2 with other parameters r × r =
11 × 11, α = 0.3, p = 0.25. The learning rate of the network
is closely related to convergence, and the number of training
epochs of the proposed FGCN is set to 2000. The algorithm
with a small learning rate as 10−5, 5∗10−5 needs more epochs
to reach convergence and the classification performance of
complex classification scenes as MUUFL and Houston is poor.
Large learning rates like 10−2 lead to large fluctuations in the
objective function and may result in learning a suboptimal set
of weights too fast or an unstable training process, especially
for simple scenes like Trento.

For the specific ratio of channels parameter allocated to
the low-frequency part α in Octave convolutions, the search
range is constrained from 0.1 to 0.9, which indicates the clas-
sification performance varies with the ratio of low-frequency
components. Other parameters are set to r × r = 11 ×
11, lr = 1e − 3, p = 0.25. A larger ratio of low-frequency
components means a greater compression of homogeneous
spatial information. As shown in Fig. 8(c), α = 0.3 is optimal
for the three cases, but the effect of α on the Houston and
MUUFL data set is different from that of Trento. Due to
the imbalance between HSI and LiDAR data, more useful
homogeneous spatial information in LiDAR is compared with
HSI. Therefore, for those HSI-dominated data sets such as
Houston and MUUFL, a larger ratio of low-frequency com-
ponents means more effectiveness for redundancy removal.
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Fig. 9. Classification maps for the MUUFL Gulfport data obtained with different methods including: (a) Pseudo-color image for HSI, (b) LiDAR-based
DSM, (c) Ground truth map, (d) SVM (82.63%), (e) RF (78.96%), (f) OTVCA (84.15%), (g) CRNN (85.01%), (h) TB-CNN(85.47%), (i) CCNN(86.01%),
(j) CNNMRF (87.48%), and (k) FGCN (89.90%).

TABLE I

COMPARISON OF THE CLASSIFICATION ACCURACY (%) USING THE MUUFL GULFPORT DATA

For the Trento data set, both the HSI and LiDAR data con-
tain redundant homogeneous information to be compressed,
resulting in insensitivity to α.

For the specific fractional order p in fractional Gabor
convolution layers, the search range is constrained from 0.05
to 0.5 at an 0.05 interval. Other parameters are set to r × r =
11 × 11, lr = 1e − 3, α = 0.3. The fractional order means a
transform parameter between two convolutional layers, which
indicate the output features of three fractional Gabor convo-
lution (FGC) layers with order p, 2 p, 3 p transformed from
the input feature (for the additivity of fractional transform
order [49]). A larger p imply features close to the feature
map in the frequency domain, and small orders retain more
spatial information. As shown in Fig. 8(d), the effect of p on

the MUUFL, Houston, and Trento data set varies in a similar
trend and p = 0.25 is optimal for the three data sets. As shown
in Fig. 7, large orders extract more concentrated spatial infor-
mation and a larger p means a larger output scale difference
between layers. For the Houston, Trento, and MUUFL data
set, distinct fractional features with p = 0.25 are effective
for complex spatial information. The corresponding fractional
order of three FGC layers p1 = 0.25, p2 = 0.5, p3 = 0.75
extract features between the spatial and frequency domains
uniformly.

C. Experimental Results and Comparison

To validate the effectiveness of the proposed FGCN, experi-
mental results of the FGCN on the three HSI and LiDAR data
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Fig. 10. Classification maps for the Houston data obtained with different methods. (a) Pseudo-color image for HSI (b) LiDAR-based DSM. (c) Ground truth
map. (d) SVM (94.34%). (e) RF (88.63%). (f) OTVCA (97.51%). (g) CRNN (93.01%). (h) TB-CNN(91.60%). (i) CCNN(91.67%). (j) CNNMRF (95.15%).
(k) FGCN (98.50%).

TABLE II

COMPARISON OF THE CLASSIFICATION ACCURACY (%) USING THE HOUSTON DATA

sets are compared with other competitive classifiers including
classical machine learning methods, morphological method,
and recently convolutional networks:

1) Support Vector Machines (SVMs) [55] classifier imple-
mented using the LIBSVM toolbox.2 The regularization
parameters range for the fivefold cross-validation is from
2−8 to 210, while a Gaussian radial basis function with
γ = 0.5 is used for training.

2) Random Forest (RF) [56]. The number of trees is 200,
while the number of the prediction variable is set to the
square root of the number of input bands.

3) OTVCA [23]. The smoothness level λ is set to 1% of
the maximum intensity.

2http://www.csie.ntu.edu.tw/ cjlin/libsvm/

4) CRNN [31]. There are two recurrent layers with Long
Short-Term Memory (LSTM) units and 3 × 3 convolu-
tional kernels.

5) Two-branch Convolutional Neural Network
(TBCNN) [33]. The original input of the HSI branch is
updated to the fused cube by GS-merge.

6) Contextual CNN (CCNN) [30]. The spatial sizes of
extracted patches are set to 1 × 1, 3 × 3, 5 × 5.

7) Convolutional Neural Network with Markov Random
Fields (CNNMRF) [36]. The prior distribution is
smoothed by Markov Random Fields using three bands
of the merged cube with the smoothness parameter
μ = 20.

CNN-based methods including CRNN, TBCNN, CCNN,
CNNMRF are implemented with Tensorflow, and the rest of
the experiments are implemented by MATLAB R2019a [57].
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Fig. 11. Classification maps for the Trento data obtained with different methods including: (a) Pseudo-color image for HSI, (b) LiDAR-based DSM, (c) Ground
truth map, (d) SVM (82.44%), (e) RF (86.44%), (f) OTVCA (98.12%), (g) CRNN (97.98%), (h) TB-CNN(98.46%), (i) CCNN(96.37%), (j) CNNMRF (96.60%),
and (k) FGCN (99.32%).

TABLE III

COMPARISON OF THE CLASSIFICATION ACCURACY (%) USING THE TRENTO DATA

During the training process, the number of randomly selected
training samples are shown in Tables I–III from the ground
truth map shown in Figs. 9–11(c), and then all the rest samples
are the test set. Parameters of the competitive algorithms are
optimized and the same training and testing samples are used
for a fair comparison.

As the qualitative classification results of different data sets
shown in Figs. 9–11, the traditional method is susceptible to
noise due to the loss of spatial information. Specifically in
the Trento data set in Fig. 11 (d) and (e), it can be seen that
lack of spatial information makes it difficult for SVM and
RF to maintain spatial continuity, which leads to 10% lower
accuracy as listed in Table III. Conversely, some methods that
only use spatial neighborhood information such as OTVCA,
CRNN, and CCNN can get smoother results, resulting in better
classification performance in homogeneous areas. However,
these methods perform differently on specific data sets. For
example, CCNN performs well in smoother Trento, but the
performance is limited in dealing with small-size categories
such as yellow curb in the MUUFL data set and parking
lot 2 in the Houston data set. The use of spatial information
alone may lead to excessively smooth misclassification. Con-
sidering the respective advantages and disadvantages of spatial
information and spectral information, spatial-spectral methods
such as TBCNN and CNNMRF integrate their advantages in
the classification process. As shown in Figs. 9–11(h) and (j),
by performing convolution operations on both spatial and spec-
tral dimensions, or a trade-off between spatial smoothness and
boundary information, they not only reduce the impact of noise

but also obtain better object boundaries. Unifying the spatial-
spectral leads to better quantitative results as 98.46% OA of
TBCNN for the Trento data set and 87.48% OA of CNNMRF
for the MUUFL data set. Although the above methods perform
well in pixel-level classification tasks using spatial informa-
tion and spectral information, they cannot address various
spectral variabilities and semantic changes of local scenes or
objects. Due to some of their inherent limitations, such as the
extracted spatial features cannot adaptively establish effective
connections between objects of different proportions, which
limits their ability to describe semantic structural information.
Thus, in scenes with more challenging categories and more
complex semantic variations as MUUFL and Houston data
sets, the improvement in the performance of these comparison
methods is limited such as the courtyard in Houston and trees
in MUUFL.

On the contrary, the proposed FGCN method can extract the
intrinsic feature representation of data sets in different trans-
form domains to obtain more comprehensive data modeling
and feature extraction. As shown in Fig. 9(k) of the MUUFL
data set, there are fewer noise points in the classification map
of the proposed FGCN. At the bottom right corner, the edges
of the tree and the path are classified better with texture
changes in different directions, the result is closer to the
manually labeled ground truth compared to other methods.
From the figures, the features extracted by the FGCN have
better continuity in the area formed by the same substance
and a more prominent boundary between the areas formed by
different materials. Furthermore, for the object deformations
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TABLE IV

ABLATION ANALYSIS OF THE PROPOSED FGCN IN TERMS OF OA (%) AND KAPPA (×100) ON THE THREE DATA SETS

Fig. 12. Feature visualization of three multisource remote sensing data sets. (Top) MUUFL. (Middle) Houston. (Bottom) Trento. Stepwise addition of feature
extraction strategy are listed.

in the central stadium area of the image, the deformation is
of different scales throughout the figure, and the frequency
of change is also different. The proposed FGCN can acquire
good classification results in these areas, which is because
of the sensitivity to the local semantic information change.
The fractional Gabor filters in the FGCN architecture can
extract local change information at different scales and in
different directions. Unlike the above spatial-spectral uni-
fied method, our proposed FGCN can extract features from
the transform domains between the spatial and frequency
domains, which theoretically proved robust to changes in
semantic information including shift, rotation, sensor noises,
or distortions. Furthermore, for the use of multiscale filters
in the convolutional layers, these semantic changes can be
recognized even if at different scales. For example, courtyards
of different sizes in the Houston data set and tree crowns in
MUUFL, etc.

In general, the proposed FGCN can obtain a smoother
classification result map, which means gathering targets of
similar materials and elevations, and separating categories with
clear boundaries. Specifically, the nonresidential buildings that
constitute the large-scale coverage of the entire scene of
Houston and the tree categories that constitute the MUUFL
data set. For example, 82.72% mixed ground accuracy in the
MUUFL data set, various road surfaces in Houston and Trento
data sets, they also have regular spatial shapes. The FGCN uses
the fractional Gabor filter to eliminate and compress noises
while retaining meaningful semantic information and targets,
which leads to improved classification accuracy.

D. Ablation Analysis

To investigate the performance improvement and demon-
strate the motivations of our proposed FGCN, different
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TABLE V

RATIOS OF KL DIVERGENCE FOR CLASSES FOR
OCTAVE-SSFCN USING MUUFL

TABLE VI

RATIOS OF KL DIVERGENCE FOR CLASSES FOR

OCTAVE-SSFCN USING HOUSTON

features extracted by the proposed FGCN are step-wise added.
The proposed FGCN in Section II includes components
such as Octave convolution layers for frequency components
separation and synthesis, spatial feature extraction, spectral
feature extraction, and feature extraction in multiple frac-
tional transform domains. As listed in Table IV, the feature
extraction and classification performance of the FGCN are
gradually improved with the utilization of different modules.
In Table IV, SpecFCN means convolutional networks using
only spectral information, SpatFCN means using only spa-
tial information, spectral-spatial fully convolutional networks
(SSFCN) is a spectral-spatial unified network, Octave-SSFCN
is an SSFCN with Octave convolution layers. As the quanti-
tative analysis showed, the successful utilization of different
steps can effectively achieve different extents of enhancement
in the performance, effectively increasing the separability
between different classes. As the effect of different steps
on the three data shown in Fig. 12, different categories are
more discriminative, which further yields better joint classi-
fication accuracy. These feature maps show the advantages
of the proposed FGCN and demonstrate the motivations in
Section II-D.

Detail Ablation Study for Octave Convolutional Layers: To
quantitatively investigate the benefits of the proposed strategies
(i.e., the Octave convolutional layers), the Kullback–Leibler
(KL) divergence [58] is employed to measure the dissimilarity
between distributions for classes after feature extraction and
fusion strategies. For instance, the ratios of KL divergence
for any two classes using Octave convolutional layers are
listed in Tables V–VII. The values larger than one mean the
discriminant pattern between classes increases as compared
to the original HSI and LiDAR data. As listed in the tables,
the Octave convolutional layers introduced in Section II-A
are useful for information fusion and improved the feature
discrimination, which can improve the classification accuracy
and demonstrates the significance to combine the effective
information in HSI and LiDAR data. It can also explain why

TABLE VII

RATIOS OF KL DIVERGENCE FOR CLASSES FOR
OCTAVE-SSFCN USING TRENTO

directly connecting the data of different sensors as input reduce
the accuracy.

While the redundancy in low-frequency components of the
Octave convolutional output is reduced, the compression of
low-frequency components can further reduce the volume of
parameters and computational complexity compared with the
normal convolutional networks [48]. To further evaluate the
efficiency of Octave convolutional layers, giga-multiply and
accumulation (GMACs) and accuracy trade-off comparisons
are listed in Table VIII. We begin by using the normal 3-D
convolutional layers as the baseline CNN and compared with
our proposed Octave layers in FGCN to examine the GMACs-
accuracy trade-off. In particular, we vary the low-frequency
ratio α = 0.2, 0.4, 0.6, 0.8 to compare the classification
accuracy (i.e., OA) versus computational cost (i.e., GMACs)
with the baseline.

From Table VIII, following observations are made. 1) The
GMACs-Accuracy trade-off first rises up and then slowly goes
down. 2) The network gets similar or better results even when
the GMACs are reduced by about 1/3 when α = 0.6. 3) The
network reaches its better accuracy when α = 0.2 or 0.4, 2%
higher than the normal convolutions. The increase in accu-
racy is because of the effective utilization of multifrequency
processing of Octave convolutional layers and the correspond-
ing fused HSI and LiDAR information which provides more
comprehensive information to the network. The accuracy does
not suddenly drop but decreases slowly after reaching the
accuracy peak, which indicates compressing that the low-
frequency part does not lead to significant information loss.

From the ablation analysis, the following key points can be
summarized:

1) The frequency components separation and synthesis,
low-frequency components compression through Octave
convolution layers can improve the classification accu-
racy, which demonstrates the significance to combine
the effective information in HSI and LiDAR data. It can
also explain why directly connecting the data of dif-
ferent sensors as input reduce the accuracy. Further,
the Octave convolutional layers can reduce the volume
of parameters and computational complexity compared
with the normal convolutional networks. Octave convo-
lutional layers can improve accuracy while decreasing
the GMACs.

2) Using spectral fully convolutional networks (FCN) alone
yields poor results, which shows that using spectral
information alone is not enough to distinguish targets
with different characteristics. Although the effect of
spatial FCN is better than that of spectral FCN, the
performance of the classifier is limited without spectral
information.
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TABLE VIII

ABLATION ANALYSIS FOR OCTAVE CONVOLUTIONAL LAYERS

Fig. 13. Classification performance with different sizes of training samples using: (a) MUUFL, (b) Houston, and (c) Trento.

3) The difference between FGCN and Octave-SSFCN is
whether the multidirection, multiscale features in frac-
tional domains are utilized. Although the combina-
tion of spatial, spectral, and elevation information can
achieve good classification performance, it is still limited
without transform (frequency) features. The difference
shows that FGC layers add diversity, discrimination,
and robustness to all these spatial-spectral-frequency
features.

E. Robustness Analysis

A robust algorithm can adapt to various conditions, which
include the lack of labeled training samples, data containing
noise, and data with low spatial resolution. To validate the
robustness of the proposed FGCN, the three experiments are
designed as follows.

1) Robustness to Number of Training Samples: In the actual
multisource classification task, the training samples with labels
are usually difficult to obtain causing many tasks that need to
be performed with a small number of training sample [59].
To verify the robustness of the FGCN and other competitive
methods for different numbers of the training sample, the
classification performance of various methods using different
numbers of training sample are shown in Fig. 13. In the
experiment, the number of training samples in each class is
set to 20%–100% of the original number of samples. With
different training sample numbers, the FGCN shows the best
classification performance among methods. As the number of
training samples changes, the classification performance of
the FGCN on the MUUFL data set stays stable while other
methods decrease a lot. In Fig. 13(b), even for a small training
data size of 20 pixels for the Houston data set, the FGCN still
provides excellent classification performance with 93% OA
while those of other methods are all below 87%.

2) Robustness to Noise: Actual multisensor remote sensing
data sets are often affected by data noise and label noise, which
reduces the classification accuracy [60]–[63]. The presence
of different noise sources in multisource remote sensing data
makes its modeling and the classification task challenging. The
real HSI and LiDAR data may exist both signal independent
noise like thermal noise and quantization noise and also more
challenging signal-dependent noise like shot (photon) noise.
To verify the robustness of FGCN to the noise that may exist
in practice and compare it with other comparison methods,
we studied the impact of different degrees of data noise on the
classification results as shown in Fig. 14. Usually, corrupted
and noisy spectral bands are removed in benchmark data sets.
Thus, in our experiment, signal-dependent Gaussian white
noise with different degrees of zero means is added to the
density map satisfies the following model:

E ′ = E(1 + σ G) (14)

where E and E ′ are, respectively, the original and noisy data
sets, G denotes Gaussian white noise, with the power of
noise is 0 dBW. σ denoting noisy level that varies from 0.1
to 0.7. In Fig. 14, the FGCN shows the best classification
performance under the influence of different noise intensities.
Even if affected by a strong noise level of 0.7, the FGCN still
obtains an OA of more than 95% on the Houston data set. But
the proposed method is also susceptible to noise in complex
scenes such as MUUFL, and the classification performance
decreases as noise intensity increases.

3) Robustness to Data Resolution: In practice, multisource
data are usually with medium or low resolution. To verify the
stability of the algorithm for medium and low-resolution data,
we studied the performance of all comparison methods under
different resolution data conditions in Fig. 15. Gaussian down-
sampling operations are used to resample the experimental

Authorized licensed use limited to: University of Gent. Downloaded on February 25,2022 at 15:37:02 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: FGCN FOR MULTISOURCE REMOTE SENSING DATA CLASSIFICATION 5503818

Fig. 14. Classification performance under different noise level using: (a) MUUFL, (b) Houston, and (c) Trento.

Fig. 15. Classification performance with different resolutions of data sets using: (a) MUUFL, (b) Houston, and (c) Trento.

TABLE IX

COMPUTATIONAL COMPLEXITY ANALYSIS USING GMACS AND NUMBER OF PARAMETERS OF DEEP NETWORKS

data sets to lower resolution. Then simple interpolation is used
to resize the data as the original data for classification, and the
effect of different levels 0.2 − 1 of downsampling on OA is
shown in Fig. 15. Except that in MUUFL, a complex scene
containing small targets, the performance is reduced due to the
loss of small category information, the FGCN is stable with
the best classification performance among classifiers. Another
interesting phenomenon is that in simple scenarios like Trento,
some methods such as SVM and RF classification accuracy are
higher in the case with low spatial resolution.

F. Computational Cost Analysis

To evaluate the computational complexity of the proposed
FGCN, Table IX lists the computational cost including the
number of parameters and GMACs of the proposed FGCN
and other competitive networks. As listed in Table IX, the
practical GMACs vary in real scenarios. Because the Octave

convolutional layers and the FGC layers are applied on the
3-D data cube, the nontrainable parameter including initial
parameters of convolutional weights and biases take 2/3 of
all the parameters. From Table IX, the design of FGCN leads
to three aspects: 1) In each training epoch, GMACs cost grows
with the size of data sets. 2) The FGCN model is more stable
under different data and label conditions and less training time
costs for one training epoch. 3) The proposed FGCN can
deliver important practical benefits, rather than only saving
GMACs in theory. Through Octave convolutional layers, the
model costs less actual training and inference time in practice.
In Table X, we demonstrate the GMACs and parameter saving
of the whole data set is reflected in the actual training time.
In Table IX, the computation cost of FGCN is computed
using the average of different ratio α, with the corresponding
analysis shown in Section III-D.

The training and testing computational cost of the com-
petitive methods is listed in Table X. The implementation of
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TABLE X

ELAPSED TIME (s: SECOND) OF TRAINING AND TESTING TIME FOR THE

PROPOSED METHOD USING THE EXPERIMENTAL DATA SETS

computational time experiments uses the same configuration
of hardware and software. The training process is more time-
consuming than the test of the whole scene. Because of the
utilization of fully convolutional layers, the proposed FGCN
can avoid the patch extraction step and train more efficiently.
But at the same time, the utilization of fully convolutional
layers caused a nonlinear increment of the running time as
the size of the data set increases.

IV. CONCLUSION

In this article, an FGCN was proposed to extract com-
prehensive deep features for the joint classification of HSI
and LiDAR data. The proposed FGCN first used Octave
convolution layers to perform multisource information fusion
and improve discrimination. Second, the FGC layers were
proposed to extract multiscale, multidirectional features, and
local semantic changes. The completeness and discrimination
of the multisource features using different FGC kernels were
improved, yielding robust feature extraction against semantic
changes. Finally, the fractional Gabor feature and spectral
feature were combined with two weighting factors which
can be learned during the network training. Experimental
results and comparisons with state-of-the-art multisource clas-
sification methods indicated the effectiveness of the proposed
FGCN. However, the proposed method still has some specific
limitations. For example, extending the proposed FGCN for
large-scene data sets requires more research. With the use of
fully convolutional layers in comprehensive feature extraction,
a nonlinear increment of the running time was caused as the
size of the data set increases. Furthermore, the performance
declines with extremely few training samples or a completely
disjoint training set. More care needs to be taken to minimize
overlap between training and test frames, which is the focus
of further work. Our code and all the results are available
at https://github.com/xudongzhao461/FGCN for the sake of
reproducibility.
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