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The overarching paradigm for the activation of class III and V receptor tyrosine

kinases (RTKs) prescribes cytokine-mediated dimerization of the receptor

ectodomains and homotypic receptor–receptor interactions. However, structural

studies have shown that the hematopoietic receptor FLT3, a class III RTK, does

not appear to engage in such receptor–receptor contacts, despite its efficient

dimerization by dimeric FLT3 ligand (FL). As part of efforts to better

understand the intricacies of FLT3 activation, we sought to engineer a

monomeric FL. It was found that a Leu27Asp substitution at the dimer

interface of the cytokine led to a stable monomeric cytokine (FLL27D) without

abrogation of receptor binding. The crystal structure of FLL27D at 1.65 Å

resolution revealed that the introduced point mutation led to shielding of the

hydrophobic footprint of the dimerization interface in wild-type FL without

affecting the conformation of the FLT3 binding site. Thus, FLL27D can serve as a

monomeric FL variant to further interrogate the assembly mechanism of

extracellular complexes of FLT3 in physiology and disease.

1. Introduction

Approximately 30% of newly diagnosed patients with acute

myeloid leukemia (AML) harbor mutations in FMS-like

tyrosine kinase receptor 3 (FLT3), which confer a poor disease

prognosis (recently reviewed by Daver et al., 2019). While the

majority of such cases entail FLT3 with internal tandem

duplications (ITDs) in the intracellular juxtamembrane region

of the receptor (Nagel et al., 2017; Tallman et al., 2019; Daver

et al., 2019), somatic mutations in the extracellular and

transmembrane domains of FLT3 have also been identified

and at least one of them has been confirmed to be a driver

mutation (Forbes et al., 2008; Fröhling et al., 2007). FLT3 is a

transmembrane receptor that is expressed on the surface of

early hematopoietic progenitor cells and dendritic cells. The

receptor is a member of the class III tyrosine kinase receptors

(RTK-IIIs), which include CSF-1R, KIT, PDGFR� and

PDGFR�, which are all characterized by a conserved modular

architecture featuring an extracellular domain (ECD)

comprising five Ig-like domains, a single membrane-spanning

helix (TM) followed by a juxtamembrane (JM) region, and

finally an intracellular tyrosine kinase domain (TKD) (Fig. 1a;

Lemmon & Schlessinger, 2010; Verstraete & Savvides, 2012).

Due to their highly similar build and the dimeric nature of

their cognate cytokine ligands, RTK-IIIs are thought to be

activated by similar mechanisms (Verstraete & Savvides,

2012). The binding of a dimeric cytokine to an RTK-III
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induces receptor dimerization that results in transactivation of

the auto-inhibited tyrosine kinase domains and the activation

of downstream signaling pathways (Fig. 1a). While the intra-

cellular activation mechanism of RTK-III is conserved in all

RTK-IIIs, it has been shown that ligand binding to the

membrane-distal domains takes place by homotypic receptor–

receptor contacts that are mediated by the membrane-

proximal Ig-like domains D4 and/or D5. Although such

ligand-induced extracellular homotypic receptor interactions

have been shown to be present in most RTK-IIIs (Elegheert et

al., 2011; Felix et al., 2013, 2015; Yuzawa et al., 2007; Chen et

al., 2015), they are absent in FLT3, as supported by the ‘open

horseshoe’ structures of its complexes revealed via X-ray

crystallography and negative-stain electron microscopy

(Verstraete, Vandriessche et al., 2011). Furthermore, the

removal of two membrane-proximal domains of FLT3 resulted

in only a moderate change in affinity for the ligand as deter-

mined by isothermal titration calorimetry, suggesting that these

domains do not contribute significantly to the overall affinity

of FLT3 for its cytokine (Verstraete, Vandriessche et al., 2011).

As a consequence of the clear correlation between AML

and mutations in FLT3, therapeutic targeting of FLT3 has

been intensely pursued in industry and academia for over two

decades (Badar et al., 2015; Leick & Levis, 2017). With a few

notable exceptions, most efforts have focused on the devel-

opment of tyrosine kinase inhibitors addressing the intra-

cellular domains of FLT3. With the advent of driver somatic

mutations in the extracellular regions of FLT3, we hypothe-

sized that more in-depth insights into the basic principles

underlying FLT3 receptor activation could possibly reveal

novel approaches to tackle constitutively activated oncogenic

receptor variants. Indeed, despite having crystallographic

models of FL and its complex with the ectodomains of FLT3

(Verstraete, Vandriessche et al., 2011), the absence of struc-

tural insights into the possible inactive conformation of FLT3

and the conformational changes required to transition to an

activated receptor–cytokine complex render our under-

standing of the extracellular complex principles incomplete.

To expand our molecular toolkit towards broadening the

structural and mechanistic insights into FL–FLT3 assembly, we

sought to engineer a monomeric variant of FL. The rationale

behind such an endeavor was manifold. Firstly, a monomeric

variant could be of use for the dissection of cytokine-mediated

activation principles, as has been shown for CSF-1 (Elegheert

et al., 2012). Indeed, it has been suggested that Ig domain 1 of

FLT3 could be involved in an inhibitory cis interaction with

the membrane-proximal domains of the extracellular region

(Verstraete & Savvides, 2012). Secondly, a monomeric ligand

could be a starting point for the further engineering of tools to

dissect receptor-activation principles in cellular assays, as

previously illustrated for stem-cell factor variants (Ho et al.,

2017; Tilayov et al., 2020) or as an in vitro binding probe that

allows the discrimination of properly folded, binding-prone

receptor species. Finally, we hypothesized that a non-

activating, albeit receptor-binding-competent, variant of FL

could lead to the stabilization of mechanistically relevant

conformational states of FLT3.

2. Materials and methods

2.1. Macromolecule production

2.1.1. Production of recombinant FLT3 ligands in Escher-
ichia coli. Recombinant wild-type FL (FLWT) and its

Leu27Asp mutant (FLL27D) were produced according to

previously published methods (Table 1; Verstraete et al., 2009).

Briefly, both proteins were expressed in an E. coli Rosetta-

gami(DE3) bacterial strain (Novagen) as inclusion bodies. The

harvested cell pellets were resuspended in lysis buffer (50 mM

Tris pH 8.0, 100 mM NaCl, 1% Triton X-100, 1 mM EDTA)

and lysed by sonication. Inclusion bodies were isolated,

washed and solubilized in guanidine buffer (6 M guanidinium
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Figure 1
(a) FLT3 belongs to the class III receptor tyrosine kinase family, the members of which are characterized by a conserved modular build and activation
mechanism. For all RTK-IIIs, cytokine ligands simultaneously bind to the membrane-distal domains (yellow; D1, D2 and/or D3) of two cognate
receptors. Although this interaction has been shown to facilitate homotypic interactions between membrane-proximal domains (blue; D4 and/or D5) of
almost all RTK-IIIs, this has not yet been demonstrated for the FL–FLT3 complex. The generation of such a ternary complex, possibly involving
interactions of the transmembrane domains (TM), invokes a transphosphorylation of the inhibitory juxtamembrane (JM) domain, eventually resulting in
fully activated kinase activity. (b) The dimeric interface of FL is centered around Leu27. A cartoon representation of FL (PDB entry 1ete; Savvides et al.,
2000) is shown with the constituting protomers colored green and sand yellow. Coloring according to the Eisenberg hydrophobicity scale (inset, surface
representation; red is more hydrophobic) illustrates how Leu27 from each protomer (blue) is inserted into the hydrophobic interior of the other one.



hydrochloride, 100 mM NaH2PO4, 10 mM Tris, 10 mM

2-mercaptoethanol pH 8.0) by gentle stirring at 40�C, followed

by the strict application of previously published protocols

(Verstraete et al., 2009).

2.1.2. Expression of recombinant proteins in mammalian
cells and purification. The cDNA sequence coding for human

FLT3 domains 1–5 (FLT3D1–D5; residues Met1–Asp541) was

obtained from Verstraete et al. (2009) and Verstraete,

Remmerie et al. (2011). Constructs for transient mammalian

expression of secreted proteins carrying a C-terminal

thrombin-cleavable AviTag followed by a hexahistidine

sequence were cloned in the pHLsec vector (Aricescu et al.,

2006). For the generation of stable cell lines, similar constructs

were generated in the pcDNA4/TO vector (Thermo Fisher

Scientific).

A monoclonal stable HEK293S MGAT1�/� TR+ cell line

(Reeves et al., 2002) was generated and grown to 90%

confluence in the presence of 50 mg ml�1 zeocin (Verstraete,

Remmerie et al., 2011). To induce expression, the growth

medium was replaced by serum-free medium supplemented

with 2 mg ml�1 tetracycline and 3.6 mM valproic acid. After

4–5 days of transient or tetracycline-induced expression, the

conditioned medium was harvested, cleared of cellular debris

by centrifugation and filtered through a 22 mm cutoff bottle-

top filter. Recombinant hexahistine-tagged proteins were

captured from the conditioned medium by IMAC purification

using a cOmplete His-tag purification column (Roche). After

elution with 500 mM imidazole, the eluate was concentrated

and further purified by size-exclusion chromatography using

HiLoad 16/60 Superdex 75/200 columns (GE Healthcare) with

HBS buffer (20 mM HEPES pH 7.4, 150 mM NaCl) as the

running buffer. Protein purity was assessed by SDS–PAGE.

2.1.3. Size-exclusion chromatography coupled to multi-
angle laser light scattering (SEC-MALLS). Recombinant

proteins and complexes thereof were concentrated to

1 mg ml�1 and injected onto a Superdex 200 Increase column

(GE Healthcare) inline with an ultraviolet detector

(Shimadzu), a multi-angle laser light scattering miniDAWN

TREOS (Wyatt) and an Optilab T-rEX refractometer (Wyatt)

at 25�C. HBS was used as the running buffer at a flow of

0.5 ml min�1. Data were analyzed using the ASTRA6 software

(Wyatt). For the analysis of glycosylated protein species,

conjugate analysis was performed using theoretical protein

extinction coefficients and a dn/dc value of 0.16 for the glycan

modifier (Bloch et al., 2018).

2.2. Crystallization

Recombinant FLL27D was treated with 1 U mg�1 thrombin

(New England Biolabs) overnight to remove the hexahistidine

purification tag. Subsequently, thrombin and the cleaved

peptide tag were separated from FLL27D by size-exclusion

chromatography. Sitting-drop vapor-diffusion crystallization

trials were set up using a Mosquito crystallization robot (SPT

Labtech) in nanolitre-scale Swissci 96-well triple-drop plates

(Table 2). The protein plates were incubated at 293 K.

Commercially available sitting-drop crystallization screens

from Molecular Dimensions and Hampton Research were

used to screen for conditions allowing crystal nucleation and

growth. Seeding of crystallization conditions was performed

using the Seed Bead Kit (Hampton Research) following the

contemporary protocol.

2.3. Data collection and processing

X-ray diffraction experiments were performed at 100 K on

the PROXIMA-1 beamline at SOLEIL, Gif-sur-Yvette,

France. Two wedges of diffraction data (1–90� and 120–180�)

were indexed, integrated and scaled into a single data set using

the XDS suite (Kabsch, 2010).

2.4. Structure solution and refinement

The initial phases were obtained by maximum-likelihood

molecular replacement in Phaser as implemented in the CCP4

package (McCoy et al., 2007; Winn et al., 2011) using a search

model generated from the X-ray structure of FL (PDB entry

1ete; Savvides et al., 2000). Structure building and refinement

were performed iteratively using Coot (Emsley et al., 2010),

Phenix (Liebschner et al., 2019) and BUSTER (Bricogne et al.,

2011). Final refinement was performed using BUSTER 2.10.3.
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Table 2
Crystallization.

Method Microseeding in combination with vapor
diffusion

Plate type Swissci 96-well 3-drop plates
Temperature (K) 293
Protein concentration (mg ml�1) 22
Buffer composition of protein

solution
20 mM HEPES, 150 mM NaCl pH 7.4

Composition of reservoir solution 2.0 M ammonium sulfate, 0.1 M HEPES
pH 5.0

Volume and ratio of drop 1:1
Volume of reservoir (ml) 45
Cryoprotectant None

Table 1
Macromolecule-production information.

Forward primer CGGCAGCCATATGACCCAGGACTGCTCCTT

CC

Reverse primer CGGATCCTTAGGGCTGACACTGCAGCTCCA

GGC

Expression vector pET-15b
Expression host E. coli Rosetta-gami
Complete amino-acid sequence

of the produced FLL27D

protein

MGSSHHHHHHSSGLVPRGSHMTQDCSFQHS

PISSDFAVKIRELSDYLDQDYPVTVASN

LQDEELCGGLWRLVLAQRWMERLKTVAG

SKMQGLLERVNTEIHFVTKCAFQPPPSC

LRFVQTNISRLLQETSEQLVALKPWITR

QNFSRCLELQCQP

Amino-acid sequence of the
thrombin-digested FLL27D

protein

GSHMTQDCSFQHSPISSDFAVKIRELSDYL

DQDYPVTVASNLQDEELCGGLWRLVLAQ

RWMERLKTVAGSKMQGLLERVNTEIHFV

TKCAFQPPPSCLRFVQTNISRLLQETSE

QLVALKPWITRQNFSRCLELQCQP



3. Results and discussion

3.1. Engineering strategy to monomerize FL

Mature wild-type FL belongs to the structural family of

short-chain four-helical bundle cytokines and consequently

exhibits a noncovalently linked homodimeric structure, in

which the two protomers interact head to head (Savvides et al.,

2000). The availability of several crystallographic models of

FL, both unbound (PDB entry 1ete) and in complex with its

receptor (PDB entries 3qs7 and 3qs9), provided a structural

basis for the development of a strategy to disrupt the dimeric

interface of FL without introducing significant changes in the

receptor-binding epitope (Savvides et al., 2000; Verstraete,

Vandriessche et al., 2011). Following the strategy used to

monomerize CSF-1 (Elegheert et al., 2012), several constructs

were generated with a tandem duplication of the dimer

epitope (residues 18–30), some of which had one or multiple

point mutations at sites playing a key role at the dimeric

interface. However, despite extensive optimization of the

purification protocols, we did not succeed in purifying a

monomeric species that was stable in solution. Therefore, we

resorted to a more targeted approach by introducing a single

point mutation targeting Leu27 at the heart of the dimeric

interface (Fig. 1b). In each protomer, Leu27 is located at the

tip of a loop formed by residues Leu26–Gln29, protruding into

the hydrophobic interior of the four-helical bundle of the

accompanying protomer. By mutating Leu27 to an aspartate,

we hypothesized that the entropic penalty for burying a

charged residue in the hydrophobic interior of the second

protomer would be detrimental for any dimerization event to

occur. Interestingly, previous work by Graddis et al. (1998)

identified a Leu27-to-proline mutation in FL, based on

random mutagenesis, that was deficient in dimerization at low

protein concentrations.

3.2. FLL27D is monomeric and engages in a 1:1 stoichiometric
complex with FLT3

The expression of FLL27D in E. coli followed by in vitro

refolding of FLL27D (Verstraete et al., 2009) led to a stable and

monodisperse protein that eluted in a size-exclusion chroma-

tography (SEC) experiment as a protein with a substantially

reduced hydrodynamic radius (Rhyd) compared with wild-type

FL (FLWT; Fig. 2, green and gray curves). Multi-angle laser

light scattering (SEC-MALLS) analysis of these proteins

during elution from SEC led to molecular-weight determina-

tions of 35 and 17 kDa for FLWT and FLL27D, respectively

(Fig. 2b). Importantly, no concentration-dependent dimeriza-

tion could be detected even at concentrations as high as

95.83 mM (1.7 mg ml�1). We concluded that these experi-

mentally determined values are in excellent agreement with

their theoretical molecular weights and confirmed that FLL27D

is indeed a monomeric species in solution.

To assess whether the monomer-inducing point mutation at

position 27 affected the FLT3 binding site, which is localized

close to the N-terminal region of FL (residues 6–13), we

investigated its ability to form a complex with the extracellular

region of recombinant human FLT3 comprising domains 1–5

(FLT3D1–D5; Verstraete, Remmerie et al., 2011). The titration

of a 20% molar excess of FLL27D against FLT3D1–D5 and
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Figure 2
FLL27D is a stable monomer capable of binding only one FLT3 molecule. (a) SEC-MALLS characterization of FLWT, FLL27D and receptor complexes
thereof. Elution profile monitored by the forward and right-angle laser detector (left axis) plotted against the SEC retention volume and overlaid with
the measured molecular weight (right axis). FLWT (green) is able to recruit two FLT3 molecules (yellow) into complex formation (blue), whereas FLL27D

(gray) binds FLT3 in an equimolar fashion (red). (b) Summary of the predicted molecular weights, based on the amino-acid sequence, and the MALLS-
measured molecular weights. Further glycoprotein conjugate analysis of the latter allowed part of the mass to be attributed to the glycan content.



subsequent SEC-MALLS analysis resulted in a predominantly

monodisperse species with an Rhyd exceeding that of both

molecules alone (Fig. 2a, red curve). With only an excess of

FLL27D detected, this shift indicates that despite its monomeric

nature, FLL27D was still able to recruit all available receptor

molecules into complex formation. The molecular species has

a molecular mass of 70 kDa as determined by SEC-MALLS,

which is well below that of an FL-mediated receptor complex

(152 kDa; Fig. 2b) and therefore allowed us to infer that the

apparent FLL27D–FLT3 complex consists of one molecule of

FLL27D and one molecule of FLT3.

3.3. Structural differences between FLL27D and FLWT are
limited to the dimerization-interface region

To further validate that mutation of Leu27 to aspartate does

not compromise the overall fold of the molecule, we pursued

structural characterization of FLL27D by X-ray crystallography.

Initial crystallization trials resulted in the identification of

multiple crystallization conditions across a wide pH range, all

characterized by a high concentration (>1.8 M) of ammonium

sulfate. Subsequent optimization of these initial hits led to
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Table 3
Data collection and processing.

Values in parentheses are for the outer shell.

Diffraction source PROXIMA-1, SOLEIL, France
Wavelength (Å) 0.97625
Temperature (K) 100
Detector PILATUS 6M
Crystal-to-detector distance (mm) 321.8
Rotation range per image (�) 0.1
Total rotation range (�) 180
Exposure time per image (s) 0.2
Space group P1
a, b, c (Å) 28.30, 43.49, 46.36
�, �, � (�) 82.82, 85.41, 85.10
Mosaicity (�) 0.105
Resolution range (Å) 18.42–1.65 (1.709–1.650)
Total No. of reflections 70278 (4053)
No. of unique reflections 24967 (1712)
Completeness (%) 94.9 (89.2)
Multiplicity 2.81 (2.37)
hI/�(I)i 10.6 (2.33)
Overall B factor from Wilson plot (Å2) 16.95
Rmeas (%) 7.7 (56.7)
CC1/2 (%) 99.6 (72.8)

Table 4
Structure refinement.

Values in parentheses are for the outer shell.

Resolution range (Å) 18.42–1.65 (1.709–1.65)
No. of reflections, working set 24910 (2403)
No. of reflections, test set 1246 (120)
Final Rcryst 0.1643
Final Rfree 0.2026
No. of non-H atoms

Total 2436
Protein 2193
Ligand 25
Water 218

No. of protein residues 269
R.m.s.d., bond lengths (Å) 0.017
R.m.s.d., angles (�) 1.49
Ramachandran favored (%) 98.11
Ramachandran allowed (%) 1.89
Ramachandran outliers (%) 0.00
Rotamer outliers (%) 0.00
Clashscore 8.42
Average B factors (Å2)

Overall 21.57
Protein 20.48
Ligands 50.19
Solvent 29.2

No. of TLS groups 1

Figure 3
Representative crystal morphologies and corresponding X-ray diffraction from crystals of FLL27D. (a) Representative image of a crystallization drop
containing crystals of FLL27D displaying macroscopic crystal-growth pathologies. (b) Test X-ray diffraction image from the crystal that resulted in the
data set used for obtaining the structure of the monomeric FLL27D variant reported here. Resolution shells are displayed as circles. A close-up of the
diffraction image (inset) reveals severe diffraction pathologies, including multiple lattices.



crystals that diffracted synchrotron X-rays to high resolution,

although all diffraction patterns showed signs of multiple

crystal lattices (Fig. 3). Nevertheless, we were able to index at

least one crystal into a single crystal lattice in space group P1

and used the obtained data to determine the crystal structure

to 1.65 Å resolution (Tables 3 and 4, Fig. 4).

The obtained crystal structure of FLL27D superimposes very

well with a single protomer of FLWT (Fig. 4a). Indeed, not

taking the �B–�A loop (residues 25–30) into account, the

average root-mean-square deviation (r.m.s.d.) with FLWT

(PDB entry 1ete; Savvides et al., 2000) is only 0.851 Å, indi-

cating no large structural changes in the overall conformation

of FLL27D. Given the observation that FLL27D still binds FLT3,

it comes as no surprise that the absence of structural deviation

from FLWT remains valid for residues 6–13, which are all key

players in the largest interaction site of the FL–FLT3 epitope

(Verstraete, Vandriessche et al., 2011). Importantly, although

the triclinic unit cell contains two copies of FLL27D (Fig. 4b)

with apparent twofold rotational symmetry, the observed

apparent symmetry axis is dramatically distinct in direction

and context from the twofold-symmetry axis in dimeric FLWT

(Fig. 4a, inset). Likewise, no combination of symmetry rela-

tions can reconstitute the head-to-head dimer resembling

FLWT, despite the fact that the loop containing Asp27 is

located near tightly packed crystal lattice contacts.

Given that the hydrophobic cavity that sheltered Leu27 of

the accompanying FLWT protomer would remain solvent-

exposed after the L27D monomerization event, we wondered
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Figure 4
Structural differences between FLL27D and FLWT are limited to the dimerization-interface region. (a) Superimposition of FLL27D (gray) and FLWT

(green). Crystallographic models of the ligands are shown in cartoon representation with indication of the twofold-symmetry axis (inset) or as ribbon
diagrams (main panel); the side chain of Asp27 in FLL27D is shown as sticks and FLT3 is shown in surface representation. With the exception of the �B–
�A loop, the main chain of both FLL27D molecules superimposes very well (average C� r.m.s.d. of 0.85 Å) with the main chain of all four FLWT copies
(PDB entry 1ete). (b) The asymmetric unit of FLL27D crystals features a top-to-top packing of molecules. This topology is distinct from the twofold-
symmetry axis within one FLWT molecule and supports the L27D mutation preventing dimerization even in the context of crystal packing. (c) Detail of
the superimposed �B–�A loop of FLL27D (gray) and FLWT (green). Loop residues are shown as sticks. Hydrogen bonds are indicated by dashed lines. (d)
Detail of the superimposed �B–�A loops of FLL27D and FLWT, as viewed from the second FLWT protomer. FLWT is colored according the Eisenberg
hydrophobicity scale (red is more hydrophobic); key residues of FLL27D are shown as sticks. Hydrogen bonds are indicated by dashed lines.



how FLL27D would structurally compensate for this. When

analyzing the conformational changes in the �B–�A loop

(Fig. 4c), we noticed that Asp27 is able to recruit Tyr30 via an

intramolecular hydrogen bond, thus stabilizing the rotamer

conformation of the latter such that it effectively shields the

hydrophobic cavity that otherwise mediates dimeric FLWT

(Fig. 4d). Thus, we have shown that FL can display structural

plasticity in this region, which may open additional possibi-

lities to engineer this part of FL for structure–function

purposes.
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V. B., Croll, T. I., Hintze, B., Hung, L.-W., Jain, S., McCoy, A. J.,
Moriarty, N. W., Oeffner, R. D., Poon, B. K., Prisant, M. G., Read,
R. J., Richardson, J. S., Richardson, D. C., Sammito, M. D., Sobolev,
O. V., Stockwell, D. H., Terwilliger, T. C., Urzhumtsev, A. G.,
Videau, L. L., Williams, C. J. & Adams, P. D. (2019). Acta Cryst.
D75, 861–877.

McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D.,
Storoni, L. C. & Read, R. J. (2007). J. Appl. Cryst. 40, 658–
674.

Nagel, G., Weber, D., Fromm, E., Erhardt, S., Lübbert, M., Fiedler,
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