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Exploiting Temporal Context in
CNN Based Multisource DOA Estimation
Alexander Bohlender, Ann Spriet, Senior Member, IEEE, Wouter Tirry, and Nilesh Madhu

Abstract—Supervised learning methods are a powerful tool
for direction of arrival (DOA) estimation because they can cope
with adverse conditions where simplified models fail. In this
work, we consider a previously proposed convolutional neural
network (CNN) approach that estimates the DOAs for multiple
sources from the phase spectra of the microphones. For speech,
specifically, the approach was shown to work well even when
trained entirely on synthetically generated data. However, as each
frame is processed separately, temporal context cannot be taken
into account. This prevents the exploitation of interframe signal
correlations, and the fact that DOAs do not change arbitrarily
over time. We therefore consider two different extensions of the
CNN: the integration of a long short-term memory (LSTM)
layer, or of a temporal convolutional network (TCN). In order to
accommodate the incorporation of temporal context, the training
data generation framework needs to be adjusted. To obtain an
easily parameterizable model, we propose to employ Markov
chains to realize a gradual evolution of the source activity at
different times, frequencies, and directions, throughout a training
sequence. A thorough evaluation demonstrates that the proposed
configuration for generating training data is suitable for the tasks
of single-, and multi-talker localization. In particular, we note that
with temporal context, it is important to use speech, or realistic
signals in general, for the sources. Experiments with recorded
impulse responses and noise reveal that the CNN with the LSTM
extension outperforms all other considered approaches, including
the plain CNN, and the TCN extension.

Index Terms—convolutional neural networks, direction-of-
arrival, temporal context, training data generation.

I. INTRODUCTION

THE locations of sound sources, which can be described
by means of the directions of arrival (DOAs) of the

sound captured by an array of microphones, are essential
parameters for a variety of applications where spatial filtering
techniques can be exploited, e. g., hands-free communication,
teleconferencing, hearing aids as well as, more recently, voice-
controlled smart devices, and hearables. As a result, DOA
estimation has been a topic of interest for a long time, and a
wide variety of approaches have been proposed. An overview
can be found in [1].

Speech signals, the primary focus of this work, are known
to exhibit a high degree of sparsity over time and frequency
[2]. This being the case, an integration over frequency, as
employed by methods based on generalized cross-correlation
(GCC) [3], can be undesirable. In order to preserve the
information from each individual frequency bin, narrowband
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DOA estimates can be acquired first. One popular method for
which narrowband realizations, such as [4], are available is
steered response power with phase transform (SRP-PHAT)
[5]. It relies on the maximization of the output power of a
beamformer over all possible directions. Various other narrow-
band methods use the decomposition into orthogonal speech
and noise subspaces, e. g., MUSIC [6] and ESPRIT [7], the
matching of interchannel phase differences [8]–[10], or the the
sparsity of the true DOAs with respect to all possible directions
[11]–[13].

Model based methods like these are derived based on
strongly simplifying assumptions. In particular, disregarding
the presence of acoustic reflections can lead to a poor perfor-
mance when the direct path propagation does not dominate,
i. e., for strong reverberation, or large source-array distances.
Although attempts have been made to account for the presence
of reverberation, e. g., [14], [15], it remains a challenge to
find statistical models that are generic but not too complex,
especially for the localization of multiple sources with an
arbitrary array geometry. For this reason, it has become
increasingly popular in recent years to employ supervised
learning methods to address the problem of DOA estimation
under adverse conditions. One common approach adopted by,
e. g., [16], [17], is to utilize deep neural networks (DNNs)
for the estimation of time-frequency masks, which can then
enhance the robustness of classical methods like SRP-PHAT.
Approaches like [18], in contrast, use classical methods for the
feature extraction, followed by robust DOA estimation with
DNN methods based on the provided features. Finally, it is
also possible to employ learning methods both for extracting
robust input features, and for the DOA estimation, as is done
in [19], and [20].

Whereas the above approaches all make use of classical
DOA estimation methods in some way, the convolutional
neural network (CNN) approach that was originally proposed
for single-source DOA estimation in [21], and extended to
multisource DOA estimation in [22], produces a vector of
DOA probabilities directly from the unprocessed phase spec-
trum of the microphone signals. This allows the network to
design a suitable feature representation for the DOA estima-
tion task on its own. Moreover, for this CNN, the authors
demonstrate that it is possible to generate suitable training
data synthetically, requiring only that room impulse responses
(RIRs) are simulated in advance. Even for the source signals, it
is possible to resort to white noise instead of realistic signals.
In this case, the network can still learn to exploit sparsity in
the time-frequency domain when this is explicitly incorporated
into the training data generation process.
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However, when each short-time Fourier transform (STFT)
frame is processed individually, temporal characteristics of the
source signals cannot fully be exploited, even if realistic sig-
nals are used for training. Moreover, in practice, the true DOAs
do not change significantly between two consecutive frames
most of the time, whereas occasionally, e. g., in a conference
situation, a different speaker becomes active, or a previously
active speaker stops talking, which results in a sudden change
of the DOA. Therefore, as in [23]–[25], the combination
of a CNN with, e. g., long short-term memory (LSTM), or
gated recurrent unit (GRU) can be considered, thereby giving
the DOA estimator the ability to exploit temporal context.
However, this complicates the generation of training data,
as the evolution of the DOAs over time must be addressed
as well. When considering only static sources, or sources
that move in a predefined way, depending on the employed
approach, a good generalization to different scenarios may not
be ensured.

For the dataset used in the sound event localization and
detection (SELD) task of the DCASE 2020 challenge [26],
for example, the generated mixtures consist of a series of
(overlapping) finite-length sound events. For each static event,
a fixed DOA, and time of onset is selected at random.
Additionally, moving sound events are simulated by means
of a time-variant convolution, where the individual RIRs for
each instant are obtained by interpolating between the closest
grid points for which a RIR is available. The direction as well
as the rate of motion are used to introduce more variability to
the data.

In [27], the authors of [22] repurpose their CNN DOA
estimator for the task of estimating a time-frequency mask
that is then used to extract a single target speaker from the
microphone signals. The authors deviate from the network
architecture they used for DOA estimation by including an
LSTM, or a bidirectional LSTM (BLSTM) layer in the net-
work, but choose to limit the temporal context by using short
sequences of frames in the immediate vicinity of the frame
under consideration. Therefore, DOA changes in the training
data are not a requirement.

In this work, we extend the multi-speaker CNN DOA
estimation approach [22], including network architecture, and
training data generation, such that long-term temporal context
can be taken into account. The key contributions are: (i) a
procedure for generating training data for a dynamic setting,
i. e., where sources can be active at different locations at
different times, as well as, (ii) based on experimental results,
an analysis of how temporal context can best be exploited, and
what benefit this gives.

For the evolution of the locations, and the activity of the
sources throughout a sequence, we propose to use a Markov
model. Through the probability for a transition between the
model’s states, we control how rapidly the acoustic scene
changes. By not restricting the duration for which a source
is active at a specific location, and letting the source positions
change randomly throughout a sequence, we aim to guarantee
a good generalization across a broad range of situations that
may be encountered in practice.

We evaluate the benefit of incorporating temporal context

based on two possible extensions of the considered CNN
architecture, the one being based on the insertion of an LSTM
layer, the other using a temporal convolutional network (TCN)
[28], [29]. As part of the experimental analysis, we also study
how the training set should be composed in terms of the
number of active sources, and the additive noise. Furthermore,
although it is possible to use noise for the source signals during
training, as is done in [22], we show that for the LSTM and
TCN extensions, it is beneficial to use realistic source signals,
in this case speech, instead.

The remainder of the paper is structured as follows: Sec. II
formulates DOA estimation as a classification problem, which
is the viewpoint of the CNN DOA estimator that is presented in
Sec. III. Subsequently, the LSTM and TCN extensions that will
permit the incorporation of temporal context are introduced
in Sec. IV. The resulting necessity of adjusting the training
data generation procedure is addressed in Sec. V. Finally, the
experimental validation is conducted in Sec. VI, followed by
the conclusions.

II. DOA ESTIMATION AS A CLASSIFICATION PROBLEM

We consider the problem of localizing J sound sources
from the signal captured by an array of N microphones.
The unknown locations of the sources with respect to the
microphone array are described by the corresponding DOAs.
As the estimation of the DOA of either of the sources can,
if the array geometry allows it, encompass the estimation of
the azimuth angle ϕ as well as the elevation angle ϑ, the
generic notion of the DOA φ will be used in the following.
Assuming a discrete grid for the source locations, the DOAs
are represented by φ ∈ {φ1, . . . , φI}, where I denotes the
number of candidate DOAs. The problem can therefore be seen
as a classification problem, where the one “DOA class” that
corresponds to the true source location must be identified. For
the case where multiple sources are active at the same time,
more than one of the I classes should be selected. Ideally, in
the vector of probabilities of source activity for the candidate
directions returned by the classifier, a small number of entries
should then be 1, whereas all other entries are 0 (“multi-hot”).

We will consider the M -point STFT representation of the
signals, where the frequency index is denoted by µ, and the
frame index by λ. The microphone signal is composed of
three parts: the direct path contribution Sdir

j,n(µ, λ), and the
corresponding reverberation components Srev

j,n (µ, λ), for the
transmission from the j-th source to the n-th microphone,
as well as an additive noise Vn(µ, λ). Consequently, the
microphone signal is given by

Yn(µ, λ) =
∑
j

(
Sdir
j,n(µ, λ) + Srev

j,n (µ, λ)
)
+ Vn(µ, λ)

=
∑
j

Smic
j,n (µ, λ) + Vn(µ, λ). (1)

Further, Sdir
j,n(µ, λ) can be modeled in terms of the convo-

lution of a dry source signal with an impulse response that
describes the direct path propagation. Because it imposes only
a time delay, and an attenuation factor, the frequency domain
counterpart of this impulse response is a complex exponential.
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Whereas reverberation, and noise act as unwanted interference,
Sdir
j,n(µ, λ) carries the DOA information. This implies that, for

the identification of the direct path, the phases 6 Yn(µ, λ) of
the magnitude-phase representation

Yn(µ, λ) = |Yn(µ, λ)| e
6 Yn(µ,λ) (2)

of the microphone signals are of particular interest. The magni-
tude component, on the other hand, contains little information
about the DOA when free field propagation is assumed, as the
attenuation factors are very similar for all microphones when
the source is located in the far-field of a compact array.

III. SINGLE-FRAME CNN DOA ESTIMATION

This section summarizes the CNN approach for multisource
DOA estimation proposed in [22].

A. Input Representation

Instead of manually assembling a set of potentially useful
features from the microphone signals, it is left to the convolu-
tional layers of the CNN to extract features that are optimally
suited for the DOA classification. However, rather than using
the microphone signals directly as the input of the CNN, only
the phase component 6 Yn(µ, λ) of (2) is retained. This is
because the phase contains the information about the delays
induced by the propagation from the source position to the
microphone array and, thus, the DOA.

With these considerations, the phases of all N micro-
phones at the frequencies up to the Nyquist frequency, i. e.,
µ = 0, . . . ,M ′−1 with M ′ =M/2 + 1, are used as input.
This N × M ′ representation Φλ of the microphone signals
Yn(µ, λ) is termed the phase map.

B. Architecture

The CNN architecture of [22] is illustrated in Fig. 1.
Convolutions are applied across the channel dimension only. In
[21], where the single-source case is considered, convolutions
are also applied across frequency. For the localization of
multiple (speech) sources, however, it is beneficial to take
advantage of the commonly made assumption of W-disjoint
orthogonality [2], i. e., there is only one dominant source in
each time-frequency bin. Therefore, an improved robustness
can be expected when performing a separate feature extraction
for each frequency bin. The convolutions across the channel
dimension are applied in the form of small filters with length 2,
without zero-padding or pooling between the layers. To ensure
that correlations between all combinations of two channels can
be taken into account, the number of convolution layers is set
to the resulting maximum of N−1.

After the feature extraction, two fully connected (FC) layers
are used to aggregate the information from all frequency bins.
The output layer with sigmoid activation comprises one node
for each of the I DOA classes.

(2× 1) Conv (64 feature maps)

1×N ×M ′
Φλ

(2× 1) Conv (64 feature maps)

64× (N − 1)×M ′

64× (N − 2)×M ′

Flatten

64× 1×M ′

FC (512 nodes)

64 ·M ′

FC (512 nodes)

512

Output (I nodes)

512

I

P (φi|Φλ) for i = 1, . . . , I

Fig. 1. CNN for multisource DOA estimation proposed in [22]. The phase
spectrogram of the microphones signals is used as input, the output vector
represents the probability of source activity for each of the I DOA classes.

C. Training

A large labeled dataset is required for training the CNN.
By taking advantage of the signal model (1), there is no need
to record and label a large number of microphone signals
manually. Instead, dry source signals are convolved with
multichannel RIRs and, subsequently, added up and mixed
with an additive noise. The noise employed for this purpose
is spatially and temporally uncorrelated, the mixing signal-to-
noise ratio (SNR) is selected at random. The required RIRs
can be simulated beforehand, e. g., using [30]. This approach
is preferred, because it is hardly feasible in practice to record
RIRs for a vast range of different acoustic conditions for just
one array geometry. To improve the variability of the training
data for a fixed set of simulated RIRs, different combinations
of source DOAs, given a certain number of active sources, and
acoustic conditions, i. e., room dimensions and reverberation
time, can be considered.

To get the best performance for the localization of speech
sources, the obvious choice would be to make use of a speech
database for the dry source signals. However, it is pointed
out in [21], [22] that (relatively) silent segments, which are
inevitably present in any speech signal, make it difficult to set
meaningful ground truth labels. When a low speech level in the
training labels is not accounted for, the network will be trained
to always look for a source in some direction, even when the
additive noise is dominant. This can lead to unexpected results.
The described problem does not apply to white noise, which
can be used for the source signals instead of speech. Doing so
is reasonable in this case because only the phase component is
used, and the network is designed such that correlations of the
signal across time and frequency are not taken into account
in the convolutional part of the network anyway. Additionally,
this removes the need for a source signal database altogether,
given that noise can be generated easily.
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For the case where multiple sources are active at the
same time, care must be taken as to how the mixing of
the contributions of these sources to the microphone signals
is performed. For speech, a realistic mixture is obtained by
simply adding up the convolved signals. However, this is not
desirable when white noise source signals are used instead,
because this would make it impossible to take advantage
of the W-disjoint orthogonality property inherent to speech.
Therefore, [22] proposes to enforce the disjointness in the
training data by selecting exactly one dominant source at
random. This random selection must be consistent for all
channels, but may be different for each frequency.

Since, as outlined in Sec. II, we consider DOA estimation as
a classification problem, only the target output vector entries
that correspond to one of the active DOAs are set to 1, all
other entries are 0. The binary cross-entropy (BCE) loss is
used to optimize the weights.

To train the CNN, an Adam optimizer [31] is used with
learning rate 0.001 and mini-batches of 512 frames. Dropout
[32] with rate 0.5 is applied before each of the FC layers.
Additionally, we make use of batch normalization [33]. All
hidden layers use the ReLU [34] activation function.

D. DOA Extraction

Once trained, the output of the CNN may be interpreted as
the posterior probabilities P (φi|Φλ) for each of the DOA
classes. A decision regarding the DOAs for a block of L
frames can be made by taking the J highest peaks of the
averaged probabilities

Pλ (φi) =
1

L

λ∑
λ′=λ−L+1

P (φi|Φλ′) . (3)

In the following, we will instead use recursive averaging to
determine the probabilities

Pλ (φi) = αPλ−1 (φi) + (1− α)Pλ (φi|Φλ) , (4)

where the averaging parameter is set to α = e−1/L.
If not known, it is also possible to determine an estimate Ĵ

of the number of active sources J directly from the averaged
probabilities.

IV. DOA ESTIMATION ON FRAME SEQUENCES

The described CNN architecture performs the DOA estima-
tion independently for each frame by exploiting interchannel
phase correlations across the entire frequency range. Although
not modeling temporal changes simplifies the generation of
useful training data, the inability to take temporal context into
account is a considerable limitation. Whereas a long averaging
duration helps at least with the localization of static sources,
this simple post-processing prevents the quick detection of
the activity of a new source, as well as the inactivity of a
previously active source. In short, the CNN approach cannot
account for: (i) the temporal evolution of the source DOAs,
and (ii) spectro-temporal characteristics of the source signals.

We will consider two possible extensions of the CNN
architecture that can address these shortcomings. For both,

TABLE I
NUMBER OF TRAINABLE PARAMETERS FOR DIFFERENT CONFIGURATIONS

OF THE TWO LAYERS FOLLOWING THE CONVOLUTIONAL LAYERS

option A B B′ C

first layer

type FC LSTM LSTM FC
input size (M ′=257) 16 448 16 448 16 448 16 448

output size 512 512 128 512

parameters×106 8.4 34.7 8.5 8.4

second layer

type FC FC FC LSTM
input size 512 512 128 512

output size 512 512 512 512

parameters×106 0.3 0.3 0.1 2.1

Σ parameters×106 8.7 35.0 8.6 10.5

parameters relative to option A 1.00 4.03 0.98 1.21

the feature extraction realized by the convolutional layers is
preserved as it is. In Sec. IV-A, one of the FC layers is replaced
by an LSTM layer, whereas in Sec. IV-B, a TCN is used for
taking temporal context into account.

A. CNN With LSTM Extension

A straightforward approach for enabling the network to take
temporal context into account, without fundamentally chang-
ing the network structure, is to replace either the first, or the
second FC layer by an LSTM layer. To decide which of these
options is preferred, the effect on the complexity of the model
in terms of the number of parameters and the computational
effort requirements should be taken into account along with
the resulting performance. For four different configurations,
the number of parameters that need to be trained, for these
two layers only, are shown in Table I. In the original CNN
(option A in the table), the first FC layer contains by far
the highest number of parameters due to the large number
of input features (64M ′=16 448 for M ′=257) provided by
the convolutional layers. Therefore, replacing this layer by an
LSTM (option B) would result in a significant increase of the
number of parameters (303% more than the pure CNN), and
thus the overall complexity of the network. To compensate for
this, the output size of the LSTM could be reduced (option B′).
This strategy is adopted for the time-frequency mask estimator
in [27], as well as for the single-speaker DOA estimator based
on GCC features proposed in [24]. The focus of this paper
is on incorporating temporal context within the architecture
depicted in Fig. 1. Since a reduction of the number of output
features of either of the layers would equal a further deviation
from this reference, we will not consider this option here.

Alternatively, the second FC layer could be replaced by
an LSTM layer (option C). Given the significantly smaller
number of input features, this only results in a moderate
increase of the complexity (21% in terms of the number of
parameters). Empirically, we find that neither of the configu-
rations where one of the FC layers is replaced by an LSTM
(options B and C) clearly outperforms the other. Therefore,
to prevent a significant increase of the complexity without
requiring the number of hidden features to be reduced, we
select the second FC layer for being replaced by an LSTM.
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(2× 1) Conv (64 feature maps)

1×N ×M ′
Φλ

(2× 1) Conv (64 feature maps)

64× (N − 1)×M ′

64× (N − 2)×M ′

Flatten

64× 1×M ′

FC (512 nodes)

64 ·M ′

LSTM or TCN + FC (512 nodes)

512

Output (I nodes)

512

I

P (φi|Φλ,Φλ−1, . . . ) for i = 1, . . . , I

Fig. 2. An LSTM replaces the second FC layer (Sec. IV-A), or a TCN is
added between the FC layers (Sec. IV-B). The arrows from the left and to the
right indicate how information is passed on from one frame to the next.

The architecture of the resulting approach, which will be
referred to as CNN/LSTM in the following, is shown in Fig. 2.

An important consequence of the modification of the ar-
chitecture is that frame sequences, rather than individual
(independent) frames, are now required as training data. For
making it possible to exploit long-term temporal context,
the LSTM must first learn how information from the past
should be utilized. A plausible variability of the DOAs in the
training data is therefore essential. If only static scenarios were
considered during training, i. e., a fixed number of sources at
fixed locations, it would not be possible for the CNN/LSTM
approach to behave as intended when confronted with a
realistic situation. On the other hand, for allowing the LSTM
to take advantage of the consistency of the source positions in
consecutive frames, the DOAs should not change too quickly
either. In Sec. V-A, a model is proposed that introduces a
parameter for controlling this trade-off.

B. CNN With TCN Extension

In contrast to LSTM, a temporal convolutional network
(TCN) [28], [29] introduces temporal context by performing
convolutions across time independently for each input feature.
Even so, information from a relatively large (but defined)
number of past frames can be taken into account, i. e., the TCN
can be designed such that the receptive field r is sufficiently
large. To achieve this without requiring long filters, a TCN is
a concatenation of L convolutional layers with exponentially
increasing dilations 20, 21, . . . , 2L−1. This is illustrated in
Fig. 3 for L = 4, and a fixed filter length K = 3. Through
sufficient zero-padding, it is ensured that the dimensionality
does not change. The resulting receptive field of the entire

Fig. 3. Temporal convolutional network (TCN) comprising L = 4 convo-
lution layers (from bottom to top) with exponentially increasing dilations
20, 21, . . . , 2L−1, all filters have length K=3. A more detailed description
of how dilated convolutions are useful for capturing long-term temporal
dependencies can be found in [28], [29].

TCN is

r = 1 + (K − 1)

L−1∑
l=0

2l = 1 +
(
K − 1

) (
2L − 1

)
. (5)

For L = 4, and K = 3, this amounts to a receptive field
of 31 frames, i. e., each output feature is a function of the
corresponding input feature for the current frame, and the 30
directly preceding frames.

The insertion of a TCN instead of an LSTM is a promising
alternative in case it is preferred to base the DOA estimation
on a defined number of past frames. Without adding to the
complexity, sequences of arbitrary length can still be passed
through the network one frame at a time. The extension re-
sulting from the addition of a TCN between the two FC layers
will be referred to as CNN/TCN. The resulting architecture is
also shown in Fig. 2.

Besides the easily adjustable receptive field, another advan-
tage over CNN/LSTM is that the TCN allows for a higher
degree of parallelization. Whereas the LSTM requires the
previous frame to be fully processed first, the computations
needed for one element in any one layer of the TCN only rely
on the availability of K elements of the preceding TCN layer.
This is helpful especially for training, and offline applications,
but can to a limited extent also be exploited in realtime
applications, when a few time frames are processed in parallel.

Due to the finite memory of the CNN/TCN approach, it is
less critical how the evolution of the source DOAs over time
is modeled in the training data. However, given the dedicated
forgetting functionality of an LSTM, the CNN/LSTM archi-
tecture may be better suited for detecting sudden changes of
the speaker position rapidly.

V. TRAINING DATA GENERATION

Both approaches, CNN/LSTM, and CNN/TCN, make it
possible to take into account temporal context in a wide,
or even in an unrestricted sense. Therefore, a meaningful
model to describe how the considered scenario evolves over
time is strictly required. This will be addressed in Sec. V-A.
Although in [21], [22], it was deliberately chosen not to
take into account source characteristics, the exploitation of
temporal context makes it worthwhile to reevaluate this aspect.
Therefore, the possibility of using speech source signals for
training is discussed in Sec. V-B.
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Aj(λ) = 0 Aj(λ) = 1

p

p

1− p 1− p

Fig. 4. The Markov chain with parameter p is used to model the activity of
the source with index j: Aj(λ) = 1 represents activity whereas Aj(λ) = 0
represents inactivity.

A. Modeling Temporal Changes

1) Source activity and locations: If the source positions
in the training data are static, the DOA estimator will not
learn to forget previously active sources. On the other hand,
if the considered scenarios are too dynamic, i. e., if there
is a lack of consistency between the source positions in
consecutive frames, it will not be able to properly exploit
temporal information.

We aim for a good compromise by modeling the activity of a
source with index j by a simple Markov chain Aj(λ) with two
states Aj(λ)=1, and Aj(λ)=0. For Aj(λ)=1, the source is
active in the frame with index λ, for Aj(λ)=0 it is inactive.
This is enforced in the signal model (1) by multiplying its
contribution to the microphone signals with Aj(λ), i. e.,

Yn(µ, λ) =
∑
j

Aj(λ)S
mic
j,n (µ, λ) + Vn(µ, λ). (6)

The transition probability between the two states is controlled
by a single parameter p with 0<p�0.5. The posterior prob-
ability of source activity is then given by

P (Aj(λ+1)=1|Aj(λ))=(1−p)·Aj(λ)+p·(1−Aj(λ)), (7)

and the probability of source inactivity

P (Aj(λ+1)=0|Aj(λ))=p·Aj(λ)+(1−p)·(1−Aj(λ)). (8)

This is illustrated in Fig. 4. Initially, Aj(λ=0)=1 for all j,
i. e., all sources are active. For the duration of source activity,
the location of the source is not changed, i. e., the DOA and,
consequently, the RIR are time-invariant. Once a previously
inactive source becomes active again, a new location (i. e., a
new combination of DOA and distance to the array) is selected.
The current DOAs of the remaining sources are excluded from
this random selection, so that the sources remain spatially
separated at all times.

By changing the source positions randomly, we do not make
any assumptions about the nature of the change. For example,
the case of a gradually moving source is inherently covered as
well, as this corresponds to a transition between neighboring
DOA classes. Alternatively, the model could be extended to
incorporate slow source movements directly, although this will
not be considered in the following.

2) Source mixing: Whenever more than one source is
active at the same time, the sources are mixed such that
only a single source contributes to the microphone signals in
any time-frequency bin, as in [22]. When considering frame

A′
1(µ, λ) = 1

A′
2(µ, λ) = 0

A′
1(µ, λ) = 0

A′
2(µ, λ) = 1

p

p

1− p 1− p

Fig. 5. When 2 sources are active in frame λ, a second Markov model is
used to decide which of the sources contribute to the microphone signal at
frequency bin µ. This is not required when speech is used for the source
signals instead of noise.

Aj(λ)=0

Aj(λ)=1

j=1

j=2 j=2

j=1

0 50 100 150 200
frame λ

fr
eq

ue
nc

y
µ

j=1

0 50 100 150 200
frame λ

j=2

AjA
′
j(µ,λ)=1

AjA
′
j(µ,λ)=0

Fig. 6. Example illustrating how the activity of two sources changes over
time, as described by the process Aj(λ) (top), and over time-frequency,
as described by the process AjA

′
j(µ, λ) = Aj(λ)·A′j(µ, λ) (bottom). For

40≤λ≤114 and 174≤λ≤187, only one of the sources is active, so all
time-frequency bins are allocated to this source. From λ=188 on, neither of
the sources is active, so AjA

′
j(µ, λ)=0 for both sources. In all other frames,

each frequency is allocated to exactly one of the 2 active sources.

sequences, as with the source activity Aj(λ), the allocation of
the sources to each frequency should change gradually over
time. Therefore, a similar strategy will be adopted as for the
source activity model. When at most 1 source is active, there
is no need to mix contributions from different sources, and (6)
can still be applied. For the case where more than 1 source is
active, i. e.,

∑
j Aj(λ) > 1, a second random process A′j(µ, λ)

is used to decide whether the source with index j contributes
to the microphone signals at frequency µ, i. e.,

Yn(µ, λ) =
∑
j

Aj(λ)A
′
j(µ, λ)S

mic
j,n (µ, λ) + Vn(µ, λ). (9)

To enforce an ideal W-disjoint orthogonality, A′j(µ, λ) is 1
only for one source, and 0 for all others. For conciseness,
we choose to consider a maximum of 2 sources that can be
active at the same time in the training data. The index j for
which A′j(µ, λ)=1 is then determined by the current state of
a second Markov chain model for which the same transition
probability p is used here. This is illustrated in Fig. 5. The
initial state of the model is selected at random, independently
for each frequency.

One realization of the process Aj(λ) is shown at the top
of Fig. 6, the corresponding realization of Aj(λ)·A′j(µ, λ) is
shown at the bottom. When fewer than 2 sources are active,
i. e.,

∑
j Aj(λ) < 1, A′j(µ, λ) is formally set to 1 for all

sources j and frequencies µ, so that (9) reduces to (6).
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B. Training on Speech

The central argument in favor of using noise for training
according to [21], [22] is the difficulty of assigning meaningful
ground truth labels when realistic source signals are used.
However, when considering sequences of frames, the exclusion
of silent periods is no longer critical. During brief speech
pauses, it can even be desirable to have the network preserve
the position where an active speaker was last seen, given that
the speaker’s location may not have changed. When there is
an absence of speech in the current frame, the availability of
information from the past ensures that a high DOA probability
target is always based on true source activity. It is only when
a speaker has truly fallen silent, that the network should detect
this, and no longer return significant probabilities for the
corresponding direction.

Overall, this implies that it is more practicable to use speech
as source signals for training when temporal context is used.
Although this entails the requirement of a large database of
source signals for training data generation, this is not a major
limitation as speech databases that can be used for this purpose
are available, e. g., [35]–[37].

It should be noted that the feature extraction is still done
independently for each frequency bin to ensure robustness
when multiple speakers are active. Nonetheless, it is possible
to take spectro-temporal signal characteristics into account to
some degree in the subsequent layers, where the information
from different frames and frequencies is considered jointly.

When speech is used for the source signals instead of noise,
it is no longer necessary to artificially impose the property
of W-disjoint orthogonality on the training data. Therefore,
the process A′j(µ, λ) introduced in Sec. V-A2, which assigns
each time-frequency bin to exactly one source, is not needed,
and mixing equation (6) can be used instead of (9) in the
multisource case as well.

VI. EVALUATION

All signals are sampled at fs = 16 kHz for the DOA
estimation. For the transformation into the STFT domain, the
frame length and frame shift are, respectively, set to 512 and
160 samples (one frame per 10ms), and a square-root Hann
window function of length 512 samples is used.

A. Training Set and Hyperparameter Selection

For a closer examination of whether various aspects of the
proposed training data generation procedure contribute to a
more accurate DOA estimation, models are trained indepen-
dently for different training configurations. The default setting
is described in detail in this section, any deviation from this
will be indicated explicitly.

For the source signals, we use dry speech taken from the
TIMIT [35] and PTDB-TUG [36] databases, both of which
consist of recordings of sentences from the TIMIT corpus.
The division into training and validation sets is performed
such that 7 438 utterances are available for training, and 2 280
for validation. A minor overlap between the spoken sentences
exists, but the sets are nonoverlapping in terms of the speakers.
Sufficiently long source signals are obtained by concatenating
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(a) 3-mic subarray
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(b) 9-mic subarray

Fig. 7. Two different subarrays ( ) of a 16-microphone URA will be
considered. The geometry corresponds to the miniDSP UMA-16 array [39].

randomly selected combinations of utterances. Silent segments
are truncated to a maximum duration of 10ms.

As described in Sec. V-A1, the sources are not necessarily
active at all times, and it is possible for them to change
their position. Effectively, the parameter p, that describes the
probability of a state transition in the models depicted in
Fig. 4, and 5, controls how trusting the network is when it
comes to information from the past. For the choice of the
sequence duration and the parameter p, it should be taken
into consideration that: (i) the sequence duration should be
sufficiently long so that the DOA estimator can learn to
properly exploit information from the past for relatively static
sources, (ii) it should be relatively common for sources to
change their position within the selected sequence duration,
so that the DOA estimator can learn to detect this quickly.
Here, we choose a sequence duration of 2 s, and set p=1/150,
which amounts to one state transition every 1.5 s on average
when the frame shift is 10ms. For the TCN in the CNN/TCN
architecture, the number of layers is set to L = 5, and the
filter length to K = 3. This selection was made by fixing
the filter length K, and then choosing the number of layers
L such that an appropriate number of past frames is taken
into account. The resulting receptive field size is 63 frames
(630ms). Empirically, we find that these parameters deliver
good, albeit not necessarily optimal, results for the considered
test setup (as described in Sec. VI-B). As the fine-tuning is also
a question of the application considered, we do not perform a
dedicated optimization of these hyperparameters.

Multichannel RIRs are generated using [30]. Regarding the
acoustic conditions, we choose to add some more variability
compared to the parameter selection in [22]. As shown in
Table II, the number of different rooms for the training data is
R=10, there are P =7 different array positions in each room,
and D=4 different distances between the source and the array.
For validation, an additional R′=3 rooms are simulated for
P ′=4 positions, and D′=4 different distances. Two different
array geometries are used that, respectively, comprise, 3 and
9 microphones. The relative positioning of the microphones
for these arrays is depicted in Fig. 7. In order to optimally
align the DOA estimator with the task that the evaluation setup
poses, which consists of sources that are positioned at different
azimuth angles between 0◦ and 180◦, we choose to restrict the
DOA estimation to the same range. For a resolution of 5◦, this
amounts to a total of I=37 DOA classes.

In [22], the authors show that their CNN generalizes reason-
ably well to the localization of more than 2 concurrently active
sources even when exactly 2 sources are active at all times in
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TABLE II
DEFAULT CONFIGURATION FOR THE TRAINING AND VALIDATION DATA GENERATION, ANY DEVIATION WILL BE INDICATED EXPLICITLY

Source signals Speech [35], [36] (unless stated otherwise)
Room dimensions in m R1: (6× 6× 2.5), R2: (5× 4× 2.8), R3: (10× 6× 2.4), R4: (8× 3× 3.1), R5: (8× 5× 2.9), R6: (4× 9× 3.3),

R7: (7× 7× 2.3), R8: (5× 6× 3.6), R9: (9× 6× 3.2), R10: (11× 7× 3), R11: (5.5× 7.5× 2.65),
R12: (8.5× 4.5× 3.45), R13: (6.5× 6.5× 2.25)

Array positions in room Training: 7 different positions in each of the rooms R1 to R10,
Validation: 4 different positions in each of the rooms R11 to R13
Minimum distance to the nearest wall (excluding floor and ceiling) is 0.5 m

Source-array distance Training: 20%, 40%, 60% and 80% of the distance between array and wall for each DOA
Validation: 30%, 50%, 70% and 85% of the distance between array and wall for each DOA

T60 R1: 0.3 s, R2: 0.2 s, R3: 0.8 s, R4: 0.4 s, R5: 0.6 s, R6: 0.5 s, R7: 0.7 s, R8: 0.45 s, R9: 0.55 s, R10: 0.75 s, R11: 0.525 s,
R12: 0.625 s, R13: 0.475 s

Additive noise Simulated (as described in [38]) for a spherically isotropic noise field (unless stated otherwise)
SNR uniformly sampled from 0 to 30 dB

TABLE III
NUMBER OF SOURCES PRESENT IN THE SCENARIOS INCLUDED IN THE

TRAINING AND VALIDATION DATASETS

case fraction
of dataset

sources active at
λ = 0 λ > 0

2 sources 1/3 =2 ≤2

1 source 1/3 =1 ≤1

0 sources 1/3 =0 =0

the training set. This is mostly because, due to the temporal
sparsity of the signals, different sources can be localized in
different frames, so that the averaged probabilities (3) (or (4))
can still exhibit significant peaks for more than 2 DOA classes.
For the proposed extensions, information from previous frames
is already taken into account, so that further averaging is
not strictly required. Therefore, and for generally improving
the performance for a variable number of active sources, we
choose to include cases with different numbers of sources in
the training set in equal shares. Along with scenarios where 1
or 2 sources are active, we expect that it will be easier for the
estimator to separate localized signal components from diffuse
and spatially uncorrelated noise when a case with only noise
is included as well. For this “0-sources” case, the ground truth
probabilities are set to 0 for all DOA classes. A summary of
the composition of the training set regarding the number of
sources is presented in Table III.

With respect to the additive noise Vn(µ, λ), [22] simply
makes use of temporally and spatially white noise. Although
a good generalization to diffuse noise is reported, for a better
match of the training data with realistic conditions, temporally
uncorrelated noise simulated [38] for a spherically isotropic
noise field is used here instead.

The mini-batches used for training the CNN/LSTM and
CNN/TCN architectures consist of 20 sequences each (a total
of 4 000 frames). For the remaining parameters, the same
values are used as for the CNN (see Sec. III-C). Training and
validation data are generated online during training time. The
models are given plenty of time to converge, i. e., training
is performed until the training and validation loss curves
suggest that no further improvement can be expected. For
CNN/LSTM and CNN/TCN, we found that this is the case for

a total of 3.7 million training sequences (about 2 072 hours).
At this point, for the single-source scenarios alone, each of
the R·P ·D ·I=10 360 impulse responses has been used 120
times. For the plain CNN, a total of 89.5 million independently
generated training frames (about 796 hours) were found to be
more than sufficient to guarantee convergence. The models
are saved regularly while being trained, so that ultimately, the
snapshot with the lowest validation loss can be selected for
the evaluation.

B. Evaluation Setup and Performance Measures

Table IV shows an overview of the setup used to obtain mi-
crophone signals for the evaluation. Clean speech is convolved
with room impulse responses that were measured using expo-
nential sine sweeps [41] at fs=48 kHz. The recording setup
consisted of a loudspeaker that was placed at azimuth angles
ϕ = 0◦, 20◦, . . . , 180◦ for distances 1m, 2m, or 3m from
the miniDSP UMA-16 array [39] in a meeting room with a
reverberation time of about 660ms (approximate room dimen-
sions: 7.50m×5.00m×2.65m). For 3m, the size of the room
permitted only a reduced set of angles ϕ = 40◦, 60◦, . . . , 140◦.
Our aim to incorporate more RIRs with larger source-array
distances (to generate more challenging conditions for the
localization) necessitated in us having to place the array closer
to one end of the room. This meant, however, that we could
not record RIRs for the full 360◦-range.

After the convolution, noise is added at a fixed broadband
SNR, and the resulting microphone signals are downsampled
to fs=16 kHz. First, in Sec. VI-C, synthetic noise that is
generated in the same way [38] as it is done for the training
data will be used. For the benchmark in Sec. VI-D, recorded
noise will be considered instead. The setup used for this
recording consisted of one loudspeaker in each of the 4 corners
of a lecture room (T60 ≈ 1 s), and the array that was placed
in a central position on a table. To obtain a good diffuseness,
the pub noise signal from the ETSI background noise database
[40] was played back by all loudspeaker simultaneously, with
slightly different time delays.

Each source signal is obtained by concatenating 5 randomly
selected utterances from the TSP speech database [37], which
consists of 1 444 utterances in total. To simulate the dynamic
nature of the sources, the position of a source is changed with
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TABLE IV
CONFIGURATION USED TO OBTAIN MICROPHONE SIGNALS FOR THE EVALUATION

Source signals Speech [37] (concatenation of 5 randomly selected utterances)
Impulse responses Recorded (miniDSP UMA-16 array [39]) in a meeting room, approx. dimensions: 7.50 m×5.00 m×2.65 m, T60 =0.66 s

Additive noise Sec. VI-C: simulated (as described in [38]) for a spherically isotropic noise field
Sec. VI-D: recorded spatially (relatively) diffuse pub noise [40]

DOAs Probability 50% for the DOA to change between two utterances
Distances 1 m and 2 m: azimuth angles ϕ = 0◦, 20◦, . . . , 180◦

Distance 3 m: azimuth angles ϕ = 40◦, 60◦, . . . , 140◦

Scope of the evaluation 25 sets of microphone signals for each parameter setting (SNR, source-array distance, number of active sources)

probability 50% after each utterance. Whereas in the training
data DOA and distance were changed at the same time, we
now only select a different angle for the new source position,
so that the influence of the source-array distance, and the
number of sources can be independently assessed based on
the evaluation results. It is again ensured that two sources are
never at the same position, i. e., the difference in the angles
corresponding to two neighboring sources is at least 20◦ at all
times.

Following the computation of the posterior probabilities
with either of the CNN architectures (plain CNN, CNN/LSTM,
or CNN/TCN), frames with very low speech activity are
removed from the evaluation. This is done to prevent a
significant bias that could result from the inclusion of segments
where the speakers to be localized are silent. The threshold is
set to 10 dB below the global mixing SNR, assuming ideal
knowledge of the additive noise, and the contribution of the
speech signals to the microphones. Note that oracle knowledge
of the mixed signals is used for this (optional) post-processing
step only. Finally, the posterior probabilities can be averaged
recursively according to (4). The time constant is set to L=30
frames (0.3 s). The averaging is applied for the plain CNN and,
as this was observed to still improve the results, for CNN/TCN.
For CNN/LSTM, the averaging was found to be unnecessary,
and is therefore omitted.

From the resulting probabilities Pλ (φi), the DOA estimates
are extracted by taking the Ĵ highest peaks. Because we aim
to evaluate the approaches in terms of their DOA estimation
performance, irrespective of how the number of sources is
determined, we assume ground truth knowledge of J . Hence,
the number of peaks taken into consideration is set to Ĵ=J
in Sec. VI-C. Before the estimation errors can be determined,
the underlying assignment problem between the Ĵ estimated,
and the J true DOAs must first be solved. This is done by
selecting the one permutation that yields the lowest sum of
absolute errors. For each unique set of parameters (i. e., fixed
architecture, training set composition, source-array distance,
array geometry, SNR, and number of sources), a total of
25 evaluations is run. From all individual estimates (one
estimate for each frame and each source of the 25 independent
runs), the localization accuracy (acc) for this parameter setting
is determined as the fraction of estimates where a fixed
“tolerated” error threshold is not exceeded. In Sec. VI-C, this
threshold is set to 5◦. Additionally, we define the localization
inaccuracy as 1−acc.

As baselines, we consider a narrowband implementation

of SRP-PHAT [5] as well as the informed phase unwrap-
ping (IPU)-least-squares (LS) method [10]. Analogously to
the CNN based approaches, frames with insufficient speech
activity are not taken into consideration. To obtain an estimate
of the power spectral density (PSD) matrix of the microphone
signals, which is required for both approaches, recursive
averaging with time constant 50ms (5 frames) is used. Based
on the narrowband estimates, the broadband DOAs are then
determined by taking the Ĵ highest peaks of the corresponding
histogram. To ensure comparability, the histogram includes
the estimates from the past 30 frames (0.3 s), and the bins
have a width of 5◦. As the localization is restricted to the
range 0◦≤ϕ≤180◦, outliers (with a tolerance of 15◦) are
excluded. For IPU-LS, initial estimates are required to cope
with spatial aliasing at higher frequencies. For each of the
Ĵ sources, one initial estimate is first determined following
the same histogram approach. At the time-frequency bin with
index (µ′, λ′), only the final estimates for lower frequencies
(µ<µ′) of the same frame (λ=λ′) are taken into account to
obtain this histogram. From the resulting Ĵ candidates, the one
that yields the smallest LS error is used as the initial estimate.

C. Evaluation of the Proposed Approach

In Fig. 8 to 10, results for two different variants (referred
to generically as variants “X” and “Y ”) of the CNN DOA
estimator are plotted against each other. In each case, the x-
axis represents the localization accuracies obtained with X ,
whereas the y-axis represents the accuracies obtained with Y .
Consequently, a data point above the main diagonal, which
is labeled ±0%, indicates that Y performs better than X , a
data point below the main diagonal indicates that X performs
better than Y . For better illustration, we have inserted further
diagonal grid lines ( ) which indicate an improvement of
one method over the other in 10% steps, as indicated by
the labels ±10%, ±20%, ±30%, ±40%, and ±50%. Each
displayed point corresponds to one set of parameters, i. e., a
fixed SNR, source-array distance, and number of concurrently
active sources. As the legend shows, the SNR is encoded by
the shape, the distance by the size, and the number of sources
by the color of the markers.

1) Effect of the composition of the training set: First,
in Fig. 8, only the original architecture proposed in [22]
(plain CNN) is considered, and white noise source signals
are used for training instead of speech. This being the case,
individual frames are generated independently for training,
and the models introduced in Sec. V-A do not yet play a
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role. For the results on the y-axis (variant Y ), all parameters
were set exactly as in the “default configuration” described
in Sec. VI-A, as far as applicable to the plain CNN. For
variant X , in contrast, the data generation was aligned with
the procedure used in [22] in terms of a single aspect only, as
indicated by the x-axis label.

Because the evaluation is conducted using simulated diffuse
noise, the properties of the additive noise seen during training
and testing align favorably when the setting described in
Sec. VI-A is used. The results shown in the figure confirm
that the localization accuracies indeed reflect this. Although a
satisfactory generalization to diffuse babble noise is reported
in [22], we observe that the performance clearly improves
throughout all conditions when spatially diffuse noise is used
for training instead of uncorrelated noise. This applies to both
the 3-microphone (top left plot), and the 9-microphone (top
right plot) arrays. For most test parameter combinations, the
improvement of the localization accuracy lies in the range
0% to 20%. An even greater improvement is observed in the
single-source test case for the 9-microphone array, e. g., for
−5 dB SNR at a distance of 3m ( ). Because directional
interference and diffuse noise components (e. g., late rever-
beration) typically dominate over spatially uncorrelated noise
(e. g., sensor noise) in a realistic scenario, we will use spatially
diffuse noise for training in the following.

In the second row of the figure, the results for a training
set where the number of active sources is fixed to 2 (X)
are compared with the results for an equally large set where
the number of active sources can be either 0, 1, or 2 (Y ).
The composition of the training set is then as shown in
Table III (with the frame index fixed to λ=0, as independently
generated frames are used to train the plain CNN). Although
the resulting difference is only in the range 0% to 10% for
most test parameter combinations, the improvement is again
fairly consistent throughout all conditions. Interestingly, this
applies even to the 2-source test case, i. e., when a training
set consisting only of scenarios with exactly 2 active sources
should, in theory, be the optimal choice. This can likely be
explained with the fluctuations in the level of the employed
speech signals, as opposed to the noise used for the training
data. The ability to generalize to the presence of 3 sources,
on the other hand, only seems to improve marginally when
sequences with a lower number of active sources are included
in the training set.

2) Effect of training on speech: To complete the evaluation
of the modifications in terms of the training data generation, it
will now be investigated how it affects the performance when
speech source signals are used for training instead of noise.
For determining the ground truth labels in the training data,
the presence of relatively silent segments was not taken into
account, i. e., the target was set to 1 for the corresponding DOA
class regardless of how large the contribution of the source
to the microphone signals is. As the proposed LSTM and
TCN extensions are able to exploit temporal context as well,
it is instructive to perform this evaluation for each architecture
separately. When temporal information is available, it is not
crucial for the ground truth labels to reflect the level of the
source signal in the current frame. Additionally, the temporal

properties of the employed source signals become relevant.
Despite the limitations of the pure CNN, as the top row

of Fig. 9 shows, an improvement can be observed for most
test parameter combinations when training is conducted on
speech (Y ), as opposed to training on noise source signals
(X). Almost exclusively for the 3-source test case at the
3m distance ( ), there is a slight deterioration. The
results for CNN/LSTM are shown in the middle row, and for
CNN/TCN in the final row of the figure. Note that for training
the architectures used in these two approaches, as opposed
to the plain CNN, independently generated frames cannot
be used as this would prevent an exploitation of temporal
context. Further, if only static sources were considered for
training, the results obtained for a dynamic scene would not
be meaningful, as the DOA estimator would not learn to forget
previously active sources. Therefore, we will always generate
sequences as detailed in Sec. V for training the CNN/LSTM
and CNN/TCN networks.

The benefit of using realistic source signals for training
is clearly more pronounced for CNN/LSTM and CNN/TCN
than for the plain CNN. This applies especially to the single-
source test case, where the approximative nature of the model
(Fig. 5) employed when 2 sources are active simultaneously
in the training with noise source signals is not even relevant.
For CNN/LSTM, the resulting difference in the localization
accuracies even exceeds 30% for almost all of the considered
conditions.

3) Effect of the exploitation of temporal context: The results
shown in Sec. VI-C1, and VI-C2 demonstrate the effectiveness
of the proposed configuration for generating training data. In
the following, a training set with a variable number of speech
sources, and simulated diffuse additive noise will therefore
be used for the plain CNN, as well as the LSTM and TCN
extensions. Next, these extended architectures that incorporate
temporal context will be compared against the plain CNN.

In the top row of Fig. 10, CNN/TCN (X), and CNN/LSTM
(Y ) are compared against each other. Although the perfor-
mance is similar across all conditions for both subarrays,
CNN/LSTM quite consistently yields marginally better local-
ization accuracies (difference between 0% and 10%), at least
for the configuration of the TCN chosen here (L=5, K=3).
One reason for the good performance of CNN/LSTM is that,
because the averaging step (4) is omitted, it is able to detect
DOA changes more rapidly.

Due to the slightly better performance of CNN/LSTM,
this extension is also considered for the comparison with
the plain CNN architecture in the bottom row of Fig. 10.
For the 3-microphone array, improvements between 10% and
20% are observed for the 2- and 3-source localization. In
terms of the single-source localization, the performance cannot
improve significantly, as accuracies of 90% or more are al-
ready obtained with the CNN. Especially for more demanding
conditions, the benefit of exploiting temporal context with
CNN/LSTM is even greater for the 9-microphone than for
the 3-microphone array. For up to 2 sources, the accuracies
obtained with CNN/LSTM exceed 90% across all considered
conditions.

The test case with 3 concurrently active sources is of
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Fig. 8. The proposed modifications in the training data generation improve the localization accuracy attained with the plain CNN, which motivates their use
in the following. This includes training on spatially diffuse instead of uncorrelated noise (top plots) and a varying number of active sources (bottom plots).

particular interest because it gives an indication how well the
approaches generalize to a greater number of active sources
than seen during training. This may seem to put the plain
CNN at an advantage since the independent processing of each
frame favors the localization of different sources in different
frames, and thus the successful detection of all present sources
in a series of frames. Nevertheless, Fig. 10 clearly shows that
the improvement over the plain CNN attained with the LSTM
extension is still substantial, albeit less pronounced, even for
the localization of 3 sources.

D. Comparison Against Baselines

The performance of the final system will now be compared
against various baseline approaches. To demonstrate that the
previously made observations are transferable to realistic con-
ditions, the pub noise recording, as described in Sec. VI-B, is
used instead of artificially generated diffuse noise. In order to
account for incorrectly detected sources that could be related
to the spatial characteristics of the recorded additive noise,
the number of estimated DOAs is increased by 1, i. e., the
next highest peak of the histogram, or of the (averaged) DOA
probabilities is considered as well (Ĵ=J+1). To determine
the estimation errors that the accuracy metric is based on,

the permutation that minimizes the sum of absolute errors is
selected as outlined in Sec. VI-B. In this case, one of the
estimates is therefore discarded.

Fig. 11 shows the performance for the single-source local-
ization in terms of the localization inaccuracy for two selected
combinations of the source-array distance, and the SNR (as
indicated in the top right of each subplot). Note that it is
easier to estimate the DOAs in the presence of correlated
noise, as it is possible to benefit from time-frequency bins
that are less affected by the noise. Therefore, the results
(quantitatively) differ quite strongly from those in Fig. 8 to 10,
and we have now selected a logarithmic scale. Along with
SRP-PHAT ( ), and IPU-LS ( ), two variants of the
plain CNN [22] are included as baselines in Fig. 11. For the
“unmodified CNN” ( ), the training procedure is adjusted
to match that of [22], i. e., source signals are noise, the additive
noise is spatially uncorrelated, and the number of sources in
the training set is fixed to 2. In contrast, the results labeled as
“CNN” ( ) are obtained with the modifications outlined in
Sec. VI-A.

Both the CNN with the modified training and the
CNN/LSTM approach ( ) exhibit 5◦-inaccuracies of less
than 3% even for the most difficult conditions considered here,
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Fig. 9. Using realistic source signals (y-axis) instead of noise (x-axis) for the training data generation can be helpful for the plain CNN, even when the
source signals are not taken into account for setting the ground truth labels. For the proposed extensions, it is even important to do so.

i. e., 3m distance at SNR=−5 dB with only 3 microphones,
whereas significant errors are still observed for the unmodified
CNN. Given these results, a closer examination of the differ-
ences between CNN and CNN/LSTM based on test cases with
only a single active source is hardly instructive. CNN/TCN
( ), on the other hand, performs only slightly worse for
the 3-microphone array, but poorest of all compared methods
for the 9-microphone array. A closer examination reveals that
CNN/LSTM produces sharper peaks than CNN/TCN, which
explains why sources tend to be localized incorrectly more
commonly with CNN/TCN. This effect is more prominent for

realistic noise, which does not exhibit an “ideal” diffuseness
like the simulated noise used in Sec. VI-C. The localization
accuracies attained with the classical methods are fairly good
for the single-source test case as well (5◦-inaccuracies of at
most 10% for all of the considered conditions), but they are
clearly outperformed by CNN, and CNN/LSTM.

In Fig. 12, results are displayed for 2 (first, and second
row), or 3 (bottom row) active sources, again for selected
combinations of the source-array distance, and the SNR. Under
these conditions, the performance advantage of the CNN based
methods over the classical methods is more apparent. In
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Fig. 10. The performance is slightly better for CNN/LSTM than for CNN/TCN (top plots). The differences are fairly small but consistent throughout different
conditions. Compared to the plain CNN (bottom plots), the improvement is considerable especially for the 9-microphone array.

contrast to the single-source test case where the CNN with the
modified training set also performed very well, the results for
CNN/LSTM are now clearly the best at least in the 2-source
test case. It is the only method for which the 5◦-inaccuracies
are no higher than 10% for any of the conditions considered.

The results for the 3-source test case are mostly in line with
Fig. 10. CNN/LSTM remains the best performing approach,
but the improvement compared to other methods is less
pronounced, especially for the 9-microphone array. Neverthe-
less, the potential disadvantage that a method incorporating
temporal context has when it comes to coping with scenarios
with a larger number of sources could straightforwardly be
addressed by adjusting the composition of the training set
accordingly.

As for CNN/TCN, the DOA estimation performance is
decent, but a considerable improvement over the plain CNN
is not observed. Unlike the single-source test case, the per-
formance of CNN/TCN appears to fall behind especially for
the 3-microphone array. This can again be attributed to the
more distinct peaks that CNN/LSTM produces compared to
CNN/TCN. In view of the promising results of Fig. 10, which
do not translate to equally good results in comparison with the
plain CNN in Fig. 11, and 12, the potential of the CNN/TCN
approach may not be fully exploited yet.

Also, again in contrast to the results of Fig. 11, for the
plain CNN we do not see that the changes to the composition
of the training set produce a consistent improvement of the
localization accuracies in Fig. 12. This conforms with the
results of Fig. 9, which showed a better multisource DOA
estimation performance of the “modified” CNN (that uses
speech instead of noise source signals for training) only at
small source-array distances. For CNN/LSTM and CNN/TCN,
however, Fig. 9 indicates that realistic source signals remain
a requirement.

Overall, the results demonstrate that, with the proposed
framework for synthetically generating training data, partic-
ularly the CNN/LSTM architecture performs very well both
in the presence of simulated, as well as recorded noise. If a
hard limitation of the amount of past frames that are taken
into account is desired, CNN/TCN can still be an interesting
alternative. Due to its good performance without requiring
the introduction of additional hyperparameters, the LSTM
extension, however, appears to be the more suitable choice
for most applications.

VII. CONCLUSIONS

In this work, we have studied how long-term temporal
context can best be incorporated into CNN based multisource
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Fig. 11. Single-source localization inaccuracy (the lower the better). The
DOA estimation is almost perfect, when tolerating an error of 5◦, with both
the “modified” plain CNN (i. e., training set as in Sec. VI-A as far as applicable
to the plain CNN), and with CNN/LSTM for the considered conditions.
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Fig. 12. Multisource localization performance. All variants of the CNN now
perform better than the classical methods. CNN/LSTM is the best-performing
of all of the considered methods.

DOA estimation when a large recorded dataset is not available.
The implication of this is twofold: On the one hand, the

architecture of the CNN DOA estimator considered here,
which operates on data from a single frame, must be extended
so that information from previous frames can be taken in
account. On the other hand, the procedure for generating
training data must be adjusted to reflect that sequences are
required instead of individual frames.

The exploitation of temporal context enables the DOA
estimator to make use of the characteristic temporal properties
of the underlying source signals, in our case speech, and to
properly track sources over time. This includes taking into
account that there is typically a large consistency of the DOAs
in consecutive frames, whereas occasionally, they may change
abruptly.

With regard to the network architecture, we consider two
simple extensions that, respectively, consist of the integration
of an LSTM layer, or of a TCN into the CNN. For the
training data generation, we distinguish between training on
noise source signals, which eliminates the need for a source
signal database, and training on speech source signals. In
both cases, Markov chains are employed to simulate the
temporal evolution in the training data. Although we do not
explicitly incorporate, e. g., gradually moving sources, we
expect a relatively good generalization of the proposed generic
model. On the other hand, the Markov framework could also
straightforwardly be extended to include scenarios like this
explicitly.

A series of evaluations was conducted based on realistic
microphone signals. For the simultaneous localization of 1,
2, or 3 talkers, the LSTM extension, in particular, showed
a strong performance. Under challenging conditions, it was
superior to all of the considered baseline approaches, including
the plain CNN, thereby demonstrating the benefit of incorpo-
rating temporal context in the proposed manner. In order to
maximally exploit the potential of the approach, it was shown
that the use of training data that reflect realistic conditions
well is of high importance. A key aspect for achieving this,
when synthetically generating microphone signals for training,
is the use of realistic source signals, in this case speech.
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