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Abstract: Motivated by mapping adverse artifactual events caused by body movements in electroen-
cephalographic (EEG) signals, we present a functional independent component analysis based on
the spectral decomposition of the kurtosis operator of a smoothed principal component expansion.
A discrete roughness penalty is introduced in the orthonormality constraint of the covariance eigen-
functions in order to obtain the smoothed basis for the proposed independent component model.
To select the tuning parameters, a cross-validation method that incorporates shrinkage is used to
enhance the performance on functional representations with a large basis dimension. This method
provides an estimation strategy to determine the penalty parameter and the optimal number of
components. Our independent component approach is applied to real EEG data to estimate genuine
brain potentials from a contaminated signal. As a result, it is possible to control high-frequency
remnants of neural origin overlapping artifactual sources to optimize their removal from the signal.
An R package implementing our methods is available at CRAN.

Keywords: functional data; functional kurtosis; penalized splines; smoothed principal components;
auditory–motor coupling task; EEG; motion artifacts.

1. Introduction

In the field of neurophysiology, electroencephalography (EEG) represents one of the
few techniques providing a direct measure of bioelectrical brain activity, as oscillations
in excitability of populations of cortical pyramidal cells [1] contribute to variations in the
electrical potentials over the scalp. Oscillations are characterized by dominant intrinsic
rhythms conventionally grouped into frequency bands, which are by now validated as
markers of several neurocognitive phenomena [2]. However, despite the temporal reso-
lution achievable with its high sampling rate, EEG is a technique that suffers from low
signal-to-noise ratio. This is mainly due to the fact that the layers of tissue dividing the
electrodes from the cortex act as a natural filter attenuating genuine brain activity, resulting
in a combination of cortical and artifactual sources in the EEG signal. In addition, the
dominant brain-related spectral features often overlap with artifactual activity in higher
frequency bands [3], and particularly at lower frequencies most of the variance in the signal
is explained by physiological sources outside the brain. For these reasons, analyzing EEG
signals can ultimately be viewed as solving a source-separation problem with the goal of
estimating brain potentials of interest.

Blind source separation techniques such as independent component analysis (ICA)
are commonly used to address artifact detection and correction of EEG signals. The
term ICA encompasses a broad scope of algorithms and theoretical rudiments aligned
to the assumption of independence of the latent sources in the data. From the statistical
perspective, it could be regarded as a refinement of principal component analysis (PCA)
that goes beyond the variance patterns of the data, introducing high-order measures such
as kurtosis or negentropy to obtain more interpretable outcomes. This way, the data can
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be approximately represented in terms of a small set of independent variables while, in
the PCA reduction, these variables are only assumed to be uncorrelated. An overview of
statistical methodologies for ICA is provided in [4]. A comprehensive monograph of the
subject can be found in [5].

The use of sampling units in the form of functions that evolve on a continuum, rather
than through vectors of measurements, has been popularized over the last two decades to
solve a broad class of problems. Functional data analysis provides a natural generalization
for a wide variety of statistical techniques that take advantage of the complete functional
form of the data by including relevant information related to smoothness and derivability
(see [6–8] for a systematic review of the topic). The extension of ICA to functional data has,
however, not yet received the attention nor the prolific developments of other reduction
techniques in this framework, such as functional principal component analysis (FPCA).

A first attempt to develop an extension of the classic multivariate ICA model was
investigated in [9] by exploiting the functional principal component decomposition. Func-
tional ICA techniques were also implemented in [10], who defined the kurtosis operator
of a standardized sample in an approximation to a separable infinite-dimensional Hilbert
space. Under this setting, the kurtosis eigenfunctions are expected to be rougher as the
space does not contain functions that are pointwise convergent. Their approach focuses
on the classification properties of the kurtosis operator, whose decomposition is assumed
to have a similar form to the Fisher discriminant function. More recently, [11,12] devel-
oped a functional ICA model using an estimation procedure stemmed from the finite
Karhunen–Loève (K-L) expansion [13] (p. 37), which is a less rough space since its or-
thogonal expansion is optimal in the least-squared error sense. In order to control the
roughness of the K-L functions, we extend this model setup endowing the space with a
new geometrical structure given by a Sobolev inner product.

The use of functional data in brain imaging analysis has gained notoriety in the last
years, despite the complexity and computational cost arisen in its treatment. Data acquired
from an electroencephalogram might elicit a wide variety of functional data methods, going
from the estimation of smoothed sample curves to more advanced reduction and forecast
techniques. See, for example, [14–18]. Current research is mainly focused on functional
principal component approaches for modelling data free of artifactual sources. However,
the efficiency of functional ICA techniques used in stages where data are contaminated
by physiological artifacts remains, to the best of our knowledge, untested. In contrast,
this problem has been extensively addressed in the multivariate environment; Ref. [19]
compares the state-of-the-art methods for artifact removal.

In this paper, a methodology based on piecewise polynomial smoothing (B-splines)
is developed to disentangle the overlap between neural activity and artifactual sources.
Because of the transient nature and the complex morphology of EEG data, B-splines provide
a good alternative to represent the non-sinusoidal behaviour of the neural oscillatory
phenomena due to its well-behaved local smoothing. The goal is to use the proposed
smoothed functional ICA to obtain more accurate brain estimates by subtracting artifacts
free of noise. While for a strictly different kind of data, wavelet-based approaches or
hybrid settings combining wavelet with ICA have been demonstrated to perform well
at denoising common artifacts (see, e.g., [3,20–22]). By contrast, and despite the obvious
differences between both kinds of data, our independent component estimation is based
on a penalized spline (P-spline) approach [23,24] that has a lower computational cost
and is mathematically simpler. P-splines have been successfully applied for dimension
reduction [25] as well as for the estimation of different functional regression models [26–29].

Nevertheless, what characterizes our method is that the decomposition is naturally
regulated by the principal component eigendirections and optimized by penalized esti-
mators. Contrarily, in using the wavelet approaches, this is decided on the basis of the
frequency band features of the data or the components. For this reason, the proposed
functional ICA can be conceived as a bi-smoothed estimation procedure. The end-user
will finally appreciate how artifact extraction can be fine-tuned by regulating a single
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smoothing parameter, making it intuitive to improve the results through a visual inspection
of the independent component scores.

The paper is organized as follows. We introduce our model in Section 2 and develop
the smoothed FICA decomposition using basis expansion representations of functional
data in Section 3. A method for selecting the tuning parameters is discussed in Section 4.
To test the effectiveness of our model in recovering brain signals, Section 5 provides a
simulation using real EEG data on single trial designs containing stereotyped artifacts.
Section 6 shows how our smoothed FICA works in the context of event-related potentials
designs. Finally, we conclude with a brief discussion in Section 7. The presented P-spline
smoothed FICA is implemented in the R package pfica [30].

2. Smoothed Functional Independent Component Analysis
2.1. Preliminaries

Let yi = (yi1, . . . , yimi )
T be a signal of i, (i = 1, . . . , n) components digitized at the

sampling points tik, (k = 1, . . . , mi). Consider that the sample data are observed with error,
so that it can be modeled as

yik = xi(tik) + εik, (1)

where xi is the ith functional trajectory of the signal and εik mutually independent mea-
surement errors with zero means. The sample functions x1, . . . , xn are assumed to be
realizations of independent and identically distributed copies of a random functional
variable X in L2(T), the separable Hilbert space of square integrable functions from T to
R, endowed with the usual inner product 〈 f , g〉 =

∫
T f (t)g(t)dt, and the induced norm

‖ f ‖ = 〈 f , f 〉1/2. Thorough the text, X is assumed to have zero mean and finite fourth
moments, which implies that higher order operators are well defined.

For s, t ∈ T, the sample covariance operator Cx is an integral operator with kernel
c(s, t) = n−1 ∑n

i=1 xi(s)xi(t) admitting the Mercer decomposition

c(s, t) =
∞

∑
j=1

ηjγj(s)γj(t),

where {ηj, γj}j is a positive sequence of eigenvalues in descending order and their associ-
ated orthonormal eigenfunctions. The functions xi(t) can be approximately represented by
a truncated series of the K-L expansion

xq
i (t) =

q

∑
j=1

zijγj(t), (2)

where zij = 〈xi, γj〉 are zero mean random variables with var(zj) = ηj and cov(zj, zj′) = 0
for j 6= j′. These variables are referred to as the principal components scores and are
uncorrelated generalized linear combinations of the functional variable with maximum
variance. Moreover, if the q term in (2) is optimally selected, the mean squared error
is minimized, providing the best linear approximation to the original data [31] (p. 21).
A functional Varimax rotation has been recently introduced to improve the interpretation
of the most explicative principal component scores [32].

2.2. Functional ICA of a Smoothed Principal Component Expansion

The notion of independent components of a random vector cannot be immediately
extended to the case of Hilbert-valued random elements (functional data) due to the fact
that a probability density function is not generally defined in this context [33]. In the
sequel, we consider the definition of independence introduced in [34], which establishes
that a functional random variable has independent components if the coordinates obtained
after projecting on to a given orthonormal basis are independent variables. Then, the
aim of functional independent component analysis (FICA) is to find a linear operator
Γ, such that for a truncated orthonormal basis φj (j = 1, . . . , q) in L2(T), the variables
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〈ΓX, φj〉 are mutually independent. By considering X prompted by a Gaussian process, a
functional principal component analysis (FPCA) would suffice to obtain the independent
components [13] (p. 40). However, as functional data are not inherently of this kind, it is
assumed that if X has a finite-dimensional representation, then it can be transformed by
the operator Γ to achieve the goals of the model. This begs the question of the basis choice
for X, whereupon the results markedly depend.

In this paper, the sample xi is approximated by a smoothed functional PCA represen-
tation obtained by introducing an orthonormality constraint with respect to the weighted
Sobolev inner product

〈 f , g〉λ = 〈 f , g〉+ λ〈R f , Rg〉, (3)

where R is an operator with the action R f (t) = d2 f (t)/dt2, f ∈ dom(R) that measures the
roughness of the curves, and λ is a non-negative penalty parameter. Notice that, when
λ = 0, (3) is simplified to the usual inner product, it means that that xi can be uniquely rep-
resented by the K-L basis, i.e., the eigenfunctions of Cx. To estimate the smoothed principal
components, Silverman [35] proposed the following variance maximization problem

γλ,j = argmax
var(〈γ, x〉)

||γ||2 + λ〈Rγ, Rγ〉 = max
〈γ, Cxγ〉
||γ||2λ

, (4)

subject to the constraint 〈γ, γλ,k〉λ = 0 for all k < j, where γ is a function assumed in a
closed linear subspace of L2 with square-integrable second derivatives. We emphasize
that the problem of finding γλ,j depends on the sample size n and the selection of the
penalization parameter λ. The authors of [36] established the existence of the solutions of
the optimization problem (4) for any λ ≥ 0. Silverman [35] proved the consistency of the
estimators as n→ ∞ and λ→ 0. Generalized consistency and asymptotic distributions of
the estimators have been derived in [37], using expansions of the perturbed eigensystem of
a sample smoothed covariance operator.

The functions {γλ,j} form a complete orthonormal system in the subspace endowed
by 〈·, ·〉λ, making this basis non-compatible for our independent component model in
L2(T). However, [38] generalized Silverman’s method providing the following equivalents
functional PCA.

Proposition 1. Given a sample {xi} of a functional variable with trajectories in L2(T), there
exists a positive definite operator S2 such that the following PCA decompositions are equivalent:

1. The FPCA of S2(xi) with respect to 〈·, ·〉λ, S2(xi) = ∑j zijγλ,j.
2. The FPCA of S(xi) with respect to 〈·, ·〉, S(xi) = ∑j zijS−1(γλ,j).
3. The FPCA of X with respect to 〈·, ·〉S, xi = ∑j zijS−2(γλ,j),

with 〈 f , g〉S = 〈S( f ), S(g)〉 = 〈S2( f ), S2(g)〉λ.

Therefore, the eigenfunctions of the covariance operator CSx = SCxS of the smoothed
sample S(xi) are given by β j = S−1(γλ,j), where γλ,j are obtained by the penalized estima-
tion procedure set out for (4). Then, the basis β j is orthonormal with respect to the usual
inner product in L2(T), so that the smooth sample data S(xi) can be approximated by its
truncated K-L expansion

χq
i (t) =

q

∑
j=1

zijβ j, (5)

where zij = 〈β j, S(xi)〉 = 〈γλ,j, xi〉, and χq
i (t) denotes a q-dimensional orthonormal repre-

sentation of the smoothed sample data S(xi) in L2(T). The functional ICA version proposed
in this paper uses the elements of this expansion to estimate the independent components
of the original data.

Our main assumption is that the target functions can be found in the space spanned by
the first q eigenfunctions of the operator CSx, as it is endowed with a smooth second-order
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structure represented by the major modes of variation of the empirical data. Thus, in such
eigensubspace, it is expected to gain some accuracy in the forthcoming results due to the
attenuation of the higher oscillation modes corresponding to the small eigenvalues of CSx.
Henceforth, we denote by Mq = span{β1, . . . , βq} the subspace spanned by the q first
eigenfunctions of CSx. Without loss of generality,Mq will be assumed to preserve the inner
product in L2(T).

Most of the multivariate ICA methods require the standardization of the observed
data with the inverse square root of the covariance matrix in order to remove any linear
dependencies and normalize the variance along its dimensions. In infinite-dimensional
spaces, however, covariance operators are not invertible, giving rise to an ill-posed problem.
As long as our signal is represented inMq, no regularization is needed and, under moderate
conditions, the inverse of the covariance operator can be well defined. Since standardization
is a particular case of whitening (or sphering), we can generalize the procedure in the form
of a whitening operator Ψ that transforms a function inMq into a standarized function on
the same space. This implies that Ψ(χq) = χ̃q is a standardized functional sample whose
covariance operator Cχ̃q is naturally satisfied to be the identity inside the space.

As an extension of the multivariate case, the sample kurtosis operator of the standard-
ized data is usually defined as

Kχ̃q(h)(s) =
1
n

n

∑
i=1
〈χ̃q

i , χ̃q
i 〉〈χ̃

q
i , h〉χ̃q

i (s) = 〈k(s, ·), h〉, (6)

where k(s, t) = n−1 ∑n
i=1 ‖χ̃q

i ‖
2χ̃q

i (s)χ̃q
i (t) denotes the kurtosis kernel function of χ̃q, and h

the function inMq to be transformed. In the remainder of this article, it is assumed that
the kurtosis operator is positive-definite, Hermitian and equivariant (see [11]). Again, by
Mercer’s theorem its kernel admits the eigendecomposition

k(s, t) =
q

∑
l=1

ρlψl(s)ψl(t),

where {ρl , ψl}
q
l=1 is a positive sequence of eigenvalues and related eigenfuntions. With this,

we can define the independent components of χq
i as mutually independent variables with

maximum kurtosis given by
ζil,χ̃q = 〈χ̃q

i , ψl〉.

Challenging questions arise on how the Karhunen–Loève Theorem might be ap-
plied in this context. Intuitively, we note that this procedure leads to the expansion
χ̃q

i (t) = ∑
q
l=1 ζil,χ̃q ψl(t) which can be approximated in terms of r eigenfuntions ψl of inter-

est, e.g., those associated with the independent components with extreme kurtosis values.
Under mild conditions, this problem was solved in [11,12] by choosing r = q. However,
there are other possibilities, such as considering r < q or {ψ1, . . . , ψq} as a basis of projec-
tion for either x, χq or χ̃q, in view of the fact that it preserves the four-order structure of the
standardized data.

3. Basis Expansion Estimation Using a P-Spline Penalty

In order to estimate the independent components from noisy discrete observations in
Equation (1), it will be assumed that the tajectories belong to a finite-dimensional space of
L2(T) spanned by a set of B-spline basis functions {φ1(t), . . . , φp(t)}. Then, each sample
curve can be expanded as

xi(t) =
p

∑
j=1

aijφj(t), (7)

or, in matrix form, x = Aφ, where A is a coefficient matrix A = (aij) ∈ Rn×p and
φ = (φ1, . . . , φp)T, x = (x1, . . . , xn)T denote vector-valued functions. The basis coefficients
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for each sample curve can be found by least squares approximation minimizing the mean
squared error (MSE)

MSE(ai | xi) = (xi −Φiai)
T(xi −Φiai),

where Φi = {φj(tik)} ∈ Rmi×p and ai = (ai1, . . . , aip)
T. For general guidance on both

definition knots and order of B-splines, we refer the reader to [6] (Chapter 3 and 4).
Although in this paper a non-penalized least squares approximation is assumed, [39] give a
detailed account of how to estimate the basis coefficients using different roughness penalty
approaches (continuous and discrete) in terms of B-splines.

The next step consists of smoothing the sample curves in terms of the smoothed
principal components and associated weight functions β j in (5). To do so, we next derive
the P-spline FPCA approach developed in [25] that incorporates a discrete penalty based on
d-order differences of adjacent B-spline coefficients (P-spline penalty) in the orthonormality
constraint. Let us consider the B-spline basis expansion of the covariance eigenfunctions
γ(t) = φ(t)Tb, with b = (b1, . . . , bp)T being its vector of basis coefficients, and a discrete
P-spline roughness penalty function defined by PENd(γ) = bTPdb, where Pd ∈ Rp×p is the
penalty matrix Pd = ∆T

d ∆d, with ∆d being a matrix representation of the d-order difference
operator R. Throughout the paper, we assume two order differences defining the penalty
function bTP2b = (b1 − 2b2 + b3)

2 + · · ·+(bp−2− 2bp−1 + bp)2. This way, the inner product
in (3) is given in terms of B-splines expansions as

〈 f , g〉λ = fTGg+ λfTP2g,

with f = φTf, g = φTg, and G = (〈φj, φj′〉), (j, j′ = 1, . . . , p). Then, the maximization
problem in (4) is equivalent to solve the following matrix problem:

bλ,j = argmax
bTGΣAGb

bT(G + λP2)b
, (8)

subject to the constraint bT(G + λP2)bλ,k = 0 for all k < j, where ΣA = n−1 AT A and λ ≥ 0
is the penalty parameter used to control the trade-off between maximizing the sample
variance and the strength of the penalty.

Because B-spline basis are non-orthonormal with respect to the usual L2 geometry, we
can apply Cholesky factorization of the form LLT = G + λP2 in order to find a non-singular
matrix that allows us to operate in terms of the B-spline geometrical structure induced into
Rq. Then, finding the weight coefficients corresponds to solve the eigenvalue problem

L−1GΣAG(L−1)Tvj = ηjvj, (9)

where vj = LTbλ,j and the coefficients of γλ,j are bλ,j = (L−1)Tvj. Therefore, we have
obtained a set of orthonormal functions with respect to the inner product 〈·, ·〉λ. The jth
smoothed principal component is then given by

zj = AGbλ,j = AG(L−1)Tvj.

Thus, the problem is reduced to the multivariate PCA of the matrix AG(L−1)T in Rq (see [25]
for a detailed study). From the results in [38,40] we deduce in this paper the expression of
the smoothing operator S that provides the equivalence between this multivariate PCA
and the functional PCA of the smoothed data S(xi) in L2(T).

Proposition 2. Given the basis expansion (7) for a random sample {xi} of curves in L2(T), the
PCA of the matrix AG(L−1)T with the usual inner product in Rp is equivalent to all FPCA in
Proposition 1 with the operator S2 defined as S2( f ) = φ(t)T(G + λPd)

−1Gf, with f = φ(t)Tf.

Proof. Define, for all f = φ(t)Tf, g = φ(t)Tg, the new inner product 〈 f , g〉K = fTKg
where K = DTD, with D = L−1GT. Proposition 2 in [40] proved that the PCA of matrix
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ADT with the usual inner product in Rp is equivalent to FPCA of xi with respect to 〈·, ·〉K.
That is, xi = ∑j zij f j with f j = φTD−1vj, with vj being the eigenvectors of the matrix
ADT. Then, from Proposition 1 in this paper, we have that 〈S2( f ), S2(g)〉λ = 〈 f , g〉K. If
we suppose that there exists a matrix C such that S2( f ) = φTCf, then 〈S2( f ), S2(g)〉λ =
fTCT(G + λPd)Cg = fTDTDg. As a consequence, CTLLTC = DTD, so that LTC = RD
with R being an orthonormal matrix (RRT = Ip). Therefore, S2( f ) = φT{(L−1)TRD}f.
On the other hand, from Proposition 1, we have that γj = S2( f j) which implies that
(L−1)Tvj = (L−1)TRDD−1vj. As a consequence, we obtain that R = Ip and S2( f ) =

φT{(L−1)TD}f = φT{(G + λPd)
−1G}f.

As a result, the principal components (scores) of S(xi) are given by Z = AG(L−1)TV
where V is the matrix whose columns are the eigenvectors vj verifying Equation (9), and
thus the eigenfunctions β j are β j = S−1(γλ,j).

Having estimated the weight functions coefficients and principal components scores,
assume next that the smooth principal component expansion in (5) is truncated at the
q-term. Then, the column vector of smoothed sample curves is given by χq(t) = Zqβ(t),
where Zq = (zij) ∈ Rn×q is the matrix whose columns are the first q principal compo-
nents scores with respect to the basis of smooth principal component weight functions
β(t) = (β1(t), . . . , βq(t))T.

With the above results, the functional independent components are computed from
the smoothed principal component approximation of functional data. Following the
ICA pre-processing steps, we first standardize the approximated curves defining the
whitening operator as Ψ{χq(t)} = χ̃q(t) = Z̃qβ(t), with Z̃q = ZqΣ−1/2

Zq being the matrix of
standardized principal components and Σ−1/2

Zq =
√

n{(Zq)TZq}−1/2, the inverse square
root of the covariance matrix of Zq. The described whitening transformation is essentially
an orthogonalization of the probabilistic part of χq, so the matrix Z̃q ∈ Rn×q naturally
satisfies ΣZ̃q = Iq, and the associated covariance operator Cx̃q is unitary.

Then, the kurtosis operator (6) of the standardized curves χ̃q(t) is given in matrix
form by

Kχ̃q(h) =
1
n
(Z̃qT

DZ̃q Z̃qh)Tβ(t), ∀h = β(t)Th,

where DZ̃q = diag(Z̃qZ̃qT
). The eigenanalysis of this kurtosis operator leads to the diago-

nalization of the kurtosis matrix of the standardized principal components Z̃q,

Σ4,Z̃q ul = ρlul (l = 1, . . . , q), (10)

where Σ4,Z̃q ∈ Rq×q is defined as

Σ4,Z̃q =
1
n

n

∑
i=1

∥∥∥z̃q
i

∥∥∥2
z̃q

i z̃qT

i =
1
n

Z̃qT
DZ̃q Z̃q,

with z̃q
i being the column vector q× 1 with the ith row of the matrix Z̃q. The eigenproblem (10)

is not restricting to assume that Σ4,Z̃q is uniquely determined. In fact, other kurtosis matrices
can be considered (see, e.g., [41,42]). This way, the P-spline smoothed functional ICA of x in
L2(T) is obtained from the multivariate ICA of Zq in Rq. The resulting weight functions are
now ψl(t) = β(t)Tul (l = 1, . . . , q), where the coefficients vectors ul are the eigenvectors of
the predefined kurtosis matrix. Then, the independent components can be calculated as
ζl,χ̃q = Z̃qul . Finally, the operator Γ defining the FICA model is

Γ(χq
i ) = βTUTΣ−1/2

Zq zq
i ,

with zq
i being the column vector q× 1 with the ith row of Zq and U ∈ Rq×q the matrix of

eigenvectors of the kurtosis matrix Σ4,Z̃q .
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4. Parameter Tuning

The problem concerning the estimation of the smoothed independent component
curves lies in finding an optimal truncation point q, as well as a suitable penalty parameter.
As q approaches p, more of the higher oscillation modes of the standardized sample are
induced in the estimation. Otherwise, we are denoising the data from its second and
fourth-order structure simultaneously. From this perspective, it is desirable to increase
the value of q such that the latent functions of the whitened space can be captured by
the kurtosis operator. Observe that this kind of regularization is not exactly the same
as the one providing the P-spline penalization of the roughness of the weight functions.
Attenuating the higher frequency components of the FPCA model does not necessarily
affect an entire frequency bandwidth of the data. Thus, if the original curves are observed
with independent error, and the error is persistent in the functional approximation, it may
overlap the estimation of the kurtosis eigenfunctions. In this context, smoothing would be
appropriate. Once the value of q is decided, we should examine those components with
extreme kurtosis, contrary to the FPCA where only the components associated to large
eigenvalues are considered.

Penalty Parameter Selection

Leave-one-out cross-validation [43] is generally used to select the penalty parameter
in order to achieve a suitable degree of smoothness on the weight functions, but also to
induce the truncation point q. In a more explicit and condensed form, this procedure in
our model lies in finding a value of λ that minimizes

CVq(λ) =
1
n

n

∑
i=1

∥∥∥xi − χq(−i)
i

∥∥∥2
, (11)

where χq(−i)
i = ∑

q
l=1 z(−i)

il β
(−i)
l (t) is the reconstruction of the ith curve xi in terms of the q

first smoothed principal components by leaving out it in the estimation process. We found,
however, that cross-validation was not sensitive for a reasonably large basis dimension,
forcing us to reformulate the strategy.

To address this problem, the penalty parameter might be subjectively chosen, although
this can lead to bias and poor extraction of the artifactual sources. Hence, for the results
presented in this paper, we propose a novel adaptive approach which consists in replacing
(11) with

BCVq(λ) =
1
n

n

∑
i=1

∥∥∥χq;λ(−i)
i − χq;λ+`(−i)

i

∥∥∥2
, (12)

where χq;λ(−i)
i is a smoothed representation of xi for some λ and ` > 0 a value that increases

the penalty in the second term of the norm, assume ` = 0.1. Then, for a fixed q, (12) is
iterated for each λ in a given grid to find the one that minimizes BCVq(λ). Among all
the q considered in the estimation process, we select the truncation point that minimizes
this function.

If we require a basis dimension p greater than sample size n, a shrinkage covariance
estimator [44] can be considered for computing ΣA. This method guarantees positive
definiteness and consequently an estimation of the higher and important eigenvalues not
biased upwards. The same strategy is used for BCVq(λ). Recall the quadratic distances in
(12). These are given in terms of basis functions by



Mathematics 2021, 9, 1243 9 of 16

∥∥∥χq;λ(−i)
i − χq;λ+`(−i)

i

∥∥∥2
=
∫

T

[
χq;λ(−i)

i (t)− χq;λ+`(−i)
i (t)

]2
dt =

=
∫

T

 q

∑
l=1

zλ(−i)
il

p

∑
j=1

b
λ(−i)
l j φj(t)−

q

∑
l=1

zλ+`(−i)
il

p

∑
j=1

b
λ+`(−i)
l j φj(t)

2

dt =

=
∫

T

 p

∑
j=1

eijφj(t)

2

dt = eT
i Gei,

where bj = (bj1, . . . , bjp)
T is the vector of basis coefficients of the jth weight function β j in

the B-spline basis φj(t) and ei = (ei1, . . . , eip)
T is a vector of residuals. Next, the matrix E =

(eij) ∈ Rn×q is reconstructed via shrinkage. That is, first we compute covS(E) where covS
is a predefined shrinkage covariance estimator, then we apply Cholesky decomposition
of the form LLT = covS(E). Finally, the basis coefficients of the reconstructed residual
functions are êi = (L−1)Tei, and consequently now

BCV(λ)q =
1
n

n

∑
i=1

∥∥∥χq;λ(−i)
i − χq;λ+`(−i)

i

∥∥∥2
= êT

i G êi.

We call this method baseline cross-validation (see Algorithm 1), as it operates across different
reconstructions of xi for a given baseline penalty parameter and a fixed q. This approach is
more versatile and particularly useful when the original curves are extremely rough and
approximated with a larger basis dimension, thus avoiding the least squares to collapse.
Moreover, for a given q, it allows scoring of more than one λ as a result of the various
relative minima it produces. The intuition behind baseline cross-validation is that there are
several smoothing levels to endow the estimator with the ability for predictive modelling.
These are given at evaluating “short distances” for a smoothing baseline λ in a given
χq

i , which may be seen as a way of finding a trade-off for the global roughness of a q-
dimensional basis. Note that, as the value of q increases, and despite the minimization of
the mean squared error, it may be more difficult to find a smoothing balance between the
elements of the basis due to a complex fabric of variability modes.

Algorithm 1. BASELINE CROSS-VALIDATION

Input: A, φj (j = 1, . . . , p),G, P2, λk = (λ1, . . . , λm)T

Output: λ• .
for each λ in λk :
1: Calculate L−1 via Cholesky decomposition of the matrix G + λP2 = LLT and for G + (λ + `)P2 = LLT.
2: Diagonalize L−1GΣAsG(L−1)T, where ΣAs = covS(A), to obtain the coefficients of the eigenfunctions β j , bj and b`,j for the

incremental smoothing case .
3: Calculate Zq = ATGbj , Zq

` = ATGb`,j and A = bj(Zq)T, A` = b`,j(Zq
` )

T, where A,A` are the coefficient matrices of the
smoothed principal component expansion in terms of φj .

4: E = A−A` and reconstruct E via the covariance matrix covS(E).
5: BCV(λ) = n−1tr(ÊTGÊ), where Ê is the reconstructed matrix of residual coefficients and tr(·) is an operator that sums the

diagonal elements of a square matrix.
end for
λ• ← argminλ BCV.

5. Simulation Study

A simulation study based on EEG data segments containing stereotyped artifacts
was conducted to validate our methods for recovering brain sources. The data consist
of four separate 64-channel recordings of a subject performing the following classes of
self-paced repetitive movements: nodding, hand-tapping with a wide arm movement,
eye-blinking and chewing. Recordings were performed in absence of sensory stimulation
in a trial length 3 s sampled at 1 kHz, i.e., tik (i = 1, . . . , 64; k = 1, . . . , 3000). The signal was
high-pass and low-pass filtered using Butterworth filters (cut-off at 0.5 and 30 Hz, order
4 and 6, respectively). An additional notch filter was applied for suppressing the 50 Hz
power-line noise. More details on the preprocessing steps and experimental conditions are
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given in the online supplementary material. In reconstructing the functional form of the
sample paths, we sought a less smooth fitting to mimic the brain potential fluctuations.
Accordingly, a basis of cubic B-spline functions of dimension p = 230 is fitted to all signal
components minimizing the mean squared error to a negligible value.

The process of identifying artifactual functions is addressed by using topographic
maps that roughly represent patterns of eigenactivity related to the distribution of bio-
electric energy on the scalp. These maps are elaborated from the projection of the sig-
nal components x1, . . . , x64 on to the basis of independent weight functions, i.e., ζil,x =

〈xi, ψl〉 (i = 1, . . . , 64; l = 1, . . . , q), whose resulting score vectors ζl,χ = (ζ1l , . . . , ζnl)
T are

depicted in the spatial electrode domain. Therefore, the aim is to examine how the kurtosis
eigenfunctions contribute to xi to discern possible patterns of artifactual activity. The
components identified as artifacts will be considered for subtraction.

In order to simplify the burden of a manual selection, assume that all ψ1, . . . , ψq
obtained from the model correspond to a structure of latent artifactual eigenpatterns.
Moreover, let χq

i (t) = ∑
q
l=1 ζil,xψl(t) be an expansion of artifactual components and related

artifactual eigenfunctions. Then, the artifact subtraction in terms of basis expansions is

xi(t)− χq
i (t) =

p

∑
j=1

aijφj(t)−
q

∑
l=1

ζil,x

p

∑
j=1

(uT
l bj)φj(t) =

=
p

∑
j=1

dijφj(t),

(13)

where dij are the cleaned (or residual) coefficients, with ul being the vector of coefficients of
the independent weight function ψl in terms of the principal eigenfunctions. Thus, given
the model parameters q and λ, the procedure to estimate and remove smooth artifactual
components from EEG functional data can succinctly be derived as in Algorithm 2.

Algorithm 2. FUNCTIONAL ARTIFACT SUBTRACTION

Input: A, φj (j = 1, . . . , p),G, P2, λ, q
Output: dj .

1: Calculate L−1 via Cholesky decomposition of the matrix G + λP2 = LLT.
2: Perform the PCA of AG(L−1)T. Obtain Zq and the coefficients bj of β j .
→ if p > n then diagonalize L−1GΣAsG(L−1)T, where ΣAs = covS(A).

3: Whiten Zq : i.e. Z̃q = ZqΣ−1/2
Zq .

4: Fix a fourth-order matrix Σ4,Z̃q and diagonalize it. Obtain the eigenvalues ρl and associated eigenvectors ul (l = 1, . . . , q).
5: Calculate ζil,x = 〈xi , ψl〉 for ψl(t) = ∑

q
j=1 ul j β j(t).

6: Select the artifactual score vectors in ζl,x . Expand the artifactual space as χq
i (t) = ∑

q
l=1 ζil,xψl(t).

7: Subtract the artifactual coefficients in terms of φj using (13) and obtain the vector of coefficients dj to reconstruct the func-
tional brain signal.

Baseline cross-validation was performed on a given grid, selecting the value which
minimizes BCVq(λ) for q = 1, . . . , j0 where j0 is defined as the index entry corresponding to
the first relative maximum of the first order differences of FPCA’s eigenvalues ∆ηj. We find
that truncating at q = j0 is a way of exploring independence in the high variability structure
of the data. In analysing EEG signals, this entails major effectiveness at reducing the
artifactual content to a few eigenfunctions, particularly for the low-frequency physiological
activity such as blinks and movement-related artifacts. One may see this truncation rule as
a measure to improve the accuracy in the estimation of certain artifacts, while preserving
the modes of variability related to the rhythms of the latent brain processes. The log-
distances using BCV(λ) for each one of the datasets are shown in Figure 1. Further results
are presented in Table 1.
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Figure 1. The estimated log-BCV(λ) function for the first components of each EEG dataset containing
different classes of artifacts.

Table 1. Summary of parameters and cumulative variance of the FICA model.

Trial
j0 q λ log-BCV(λ) var (%) var (%)

λ λ = 0

Nodding 6 5 108 10.66 99.40 94.43
Arm mov. 4 2 4000 13.91 75.85 62.42
Blinks 4 3 400.0 13.76 97.50 93.56
Chewing 5 4 0.300 13.01 68.23 68.03

Preliminary results comparing both penalized and non-penalized estimation show
that the smoothed FICA presumably attenuates the high-frequency potentials of neural
origin, revealing the latent shape of the artifact. More importantly, however, is that
all topographic maps reflect well-known spatial activation of the artifactual content. A
selection of eigenfunctions from each trial and their associated component scores are
depicted in Figure 2. Physiological non-brain activity near the recording zone, such as
blinks and large amplitude body movements, can be easily detected in controlled conditions
using the proposed methodology. However, the coexistence of such artifacts may result
in a non-linear distortion of them, e.g., via large changes of the impedance [45]. This
could entail a more challenging situation, as algorithms based on linear mixing may not
be that effective at a certain point. Nonetheless, the aforementioned artifacts enhance
the role of smoothing due to their low-frequency trademark in the signal. In contrast,
when artifacts are characterised by localised high-amplitude curves, as is the case of the
fourth artifactual eigenfunction (chewing), smoothing is not able to denoise effectively.
We believe this happens for two reasons: first, the noise provided by the fourth-order
structure of the model is essential to configure the shape of the artifact; second, the B-spline
basis has a limited flexibility to smooth abrupt local contours. Hence, artifacts such as
jaw clenching and chewing are quite sensitive to smoothing and difficult to correct for
subtraction. Interestingly, hybrid procedures combining spline interpolation and wavelet
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filtering have shown promising results trying to solve this problem in functional near-
infrared spectroscopy research (see [46]).

It seems reasonable to conjecture that restricting q to the first FPCA terms decreases
the odds of obtaining spurious artifactual functions as, they represent dominant modes
of variability usually related to large artifacts. In such cases, the artifact subtraction with
the smoothed components preserved the brain activity rhythms in the original form, while
for λ = 0 it caused a reduction and a distortion of relevant potentials. However, BCV may
tend to oversmooth slightly in a sense of an effective artifact removal, resulting in certain
artifactual residue after subtraction. This happens due to the complexity of the mixed
sources, and can be solved by examining other relative minima in our results. The plots
for all channels and datasets comparing the effect of subtracting artifactual components
are omitted for the sake of space. Online supplementary materials provide R code for
its visualization.
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(a) Nodding data. Eigenfunction 2.
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Figure 2. Artifactual eigenfunctions selected from each trial. The unpenalized FICA (grey) and
P-spline smoothed FICA (black dashed) decompositions are compared. The scalp maps represent the
scores depicted in the spatial electrode domain obtained by projection of the smooth eigenfunctions
in the original sample.

Although our tests have provided good results by subtracting all smoothed compo-
nents, further research is needed to corroborate their physiological validity. As reported
in [47], reducing the dimensionality of the data with a PCA before applying ICA is not
always beneficial, although in some cases it may improve the signal-to-noise ratio of the
large sources and their subsequent isolation. We see that our approach paves the way for
developing measures of correlation, dipolarity, stability or sparsity in the functional data
domain to fine-tune artifact selection. An important issue that remains open is whether the
restriction imposed for the truncation point is beneficial or not to achieve better results.

6. Estimating Brain Signals from Contaminated Event-Related Potentials

To illustrate our methods, we reproduced a typical experimental scenario where a
human participant had to perform full-arm movements synchronised to a periodic auditory
stimulus. An EEG recording was performed during the task. Arguably, what we provide
here is a paradigmatic example wherein the researcher needs to clean the signal from
motion-related artifacts while preserving activity genuinely related to perceptual and motor
brain processes. The subject was instructed to tap his hand on the table, synchronizing
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with a steady auditory stimulus in one condition while listening to the same stimulus
without any movement involved in the other. Disposing of a baseline, we could directly
compare the outcome of our cleaning procedure with an uncontaminated experimental
situation. We recorded 100 trials of 3 s per condition, divided into randomized blocks
of 25 trials. The stimulus period was 750 milliseconds, i.e., 4 tappings in one of the
conditions. Movements were intentionally exaggerated to maximize eventual movement-
related artifacts. In this section, the same configuration for running the model (p = 230; i =
1, . . . , 64; k = 1, . . . , 3000) is preserved from the previous one.

The P-spline smoothed FICA is performed at each trial to obtain brain estimates by
subtracting the artifactual components. Here, the complexity of the signal increases as
it is assumed a mixture of artifacts and other brain processes due to the cognitive task.
Figure 3 shows the grand-averaged results comparing both conditions before and after
the artifact removal. A FPCA is performed on the averaged data to visualize the spatial
distribution of the scores in the direction of the leading eigenvector before and after the
removal. As expected, the activations where nearly coincident after the artifact removal
and more prominent in the central region of the scalp. The upper left panel displays the
EEG signal in some frontal channels where the movement-related artifact is prominently
visible before the subtraction. Further evidence of such artifactual content is given in the
second row where the raw curves are shown in the other condition. Clearly, the pooled
artifacts across the trials have here a different origin. The same panel shows the curves
after subtracting the artifactual curves.
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Figure 3. (a) Topographic maps representing the leading functional principal component of the
averaged trials before performing the P-spline smoothed FICA and after. (b) Grand-average across
trials of a prefrontal channel where the artifactual activity is revealed. A descriptive scheme of the
movement is provided at the bottom of the plots. (c) Box plots of the number of components, the
selected penality parameter and the cummulative variance of the model.
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Our procedure notably reduces the movement-related artifact and renders the signal
more stationary. Indeed, differences are smaller in the non-movement condition but, in
either case, our algorithm is capable of reducing artifactual content while retaining the
brain activity intact. From our previous tests, one may expect some artifact residue at a
trial level depending on the estimated λ and the diversity of source artifacts. We stress
that as the response to the repeated stimulus is assumed to be invariant and small in terms
of amplitude, averaging suppresses non-phase-locked activity and reveals the potential
elicited by the stimulus [48]. Consequently, the attenuation of the roughness of the artifac-
tual component functions will lead to a better estimation of brain potentials at averaging
rather than the subtraction of rough components.

7. Discussion

The proposed independent techniques are, to the best of our knowledge, the first to
provide a functional framework for smoothed artifact extraction and removal of dense data
approximated with a large number of knots. We found that using shrinkage estimators is a
reasonable starting point for smoothing covariance operators with this kind of functional
data (see also [49]). According to this setting, a novel cross-validation method is proposed
for selecting the model parameters. Despite being computationally expensive, our approach
is proven to outperform the lack of sensitivity of other existing methods. Overall, this
allows the application of independent component techniques from a smoothing perspective
somewhat more flexible when compared to other modelling strategies.

Although [11] established a form of Fisher consistency for the kurtosis operator
decomposition, no asymptotic results of the non-smoothed, and hence of the smoothed
independent components, have been derived. Therefore, one can assume that we rely on a
competitive performance derived from previous FPCA asymptotic results. In our empirical
setting, however, the study of such properties must be related to the functional data type
and the penalized spline method used, involving considerably more technicalities. See, for
example, [50,51]. These theoretical developments lie beyond the scope of the present work.
However, we hope to pursue such study in a separate paper.

In our simulations, the kurtosis operator has proven to work well at capturing ar-
tifactual eigenfunctions with different frequency characteristics, at least under certain
conditions. One of the strengths of our model is the double regularization, which allows
us to circumvent the leak of brain activity and obtain clean movement-related artifacts.
In essence, the degree of separation is defined through the space dimension, from more
dependent (first q terms of the FPCA decomposition) to more independent (q→ p). Thus q
acts as a regularization parameter to explore the variational component of the artifactual
sources in the EEG signal, while λ provides more accurate estimations, particularly in
using the first q terms of the K-L expansion. Further research is needed to determine how
the model parameter selection can optimize the removal of artifacts with a minimum loss
of variance patterns related to brain sources. Non-linear artifact distortion will inevitably
suffer from cortical entrainment of challenging correction, suggesting the exploration of
other subspaces prone to kurtosis data structures in addition to the smoothed principal
component eigendirections.
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