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Summary

Assembly lines are used in many different industries to produce all kinds of goods at a low

price. An assembly line’s main characteristics are the workpieces’ flows through a series of

stations and the decomposition of assembly steps into (mostly) inseparable tasks. Well-known

product examples are vehicles such as cars, buses, trains, or airplanes. In contrast, health care

equipment (e.g., ventilation machines or surgical robots) or consumer electronics (smartphones,

laptops, tablets) might be less-known examples. Due to this wide-spread use of assembly lines

in the industry, academics have targeted improving, analyzing, simulating, or optimizing various

aspects of assembly lines. In this research domain, efforts include product design, worker-related

aspects such as ergonomics or training in virtual reality environments, production planning,

logistics planning, outsourcing decisions, supplier management, inventory problems, Make-to-

stock (MTS) vs. Make-to-order (MTO) decisions, or facility planning. This thesis focuses on

optimizing intralogistics, task assignments, and combines them with facility planning decisions.

After a general introduction in Chapter 1, the thesis comprises five individual studies. These are

summarized in more detail in the following paragraphs.

In Chapter 2, we provide an introduction to the logistical activities within an assembly factory.

To this end, we distinguish various processes. Furthermore, we introduce various methods that

can be used to provide components or parts to the assembly station. They differ in the number of

parts provided, the type of container or load carrier used, and the very embodiment of logistical

handling processes. In the remainder of this thesis, these different methods are referred to as line

feeding policies. The line feeding policies are line stocking (provision of large containers filled

with a single type of parts), boxed-supply (provision of smaller containers filled with a single

type of parts), sequencing (provision of presorted interchangeable parts, e.g., differently colored

parts), stationary kitting (like sequencing but containing multiple sets of interchangeable parts

used at one station), and traveling kitting (like stationary kitting but containing parts for several

stations). In this chapter, we formally define the Assembly line feeding problem (ALFP) as a

cost minimization problem, and this problem is proven to be NP-hard. This chapter’s main

body is concerned with a classification scheme of aspects that may be included in this problem

without specifying the exact formulation but rather the content. We categorize the literature,

falling into the scope of the problem, according to this classification. Lastly, we indicate various

problems for future research.
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Chapter 3 concerns a specific optimization model of an ALFP. This model is the first in the

literature to consider five line feeding policies. In addition, it discretized the Border of line (BoL),

i.e., the area at an assembly station used for part storage. This discretization allows for a more

accurate determination of the assembly workers’ walking activities. Lastly, the model allows for

space borrowing, which refers to using the space of a particular station to store parts for an

adjacent station. By doing so, we enable the feeding of parts through more space-consuming

but cheaper line feeding policies. We show the application of some preprocessing rules to solve

this model quicker and provide a more sophisticated Branch & Cut solution procedure. The

algorithms are tested on artificial problem instances, which we derived from a real-world case

study. The impact of space borrowing, location discretization, and the size of the BoL are

investigated.

In Chapter 4, we propose an optimization model to determine a kitting cell’s design. Kitting

cells are used to prepare stationary and traveling kits. In those kitting cells, different part families,

i.e., groups of distinct parts serving a similar or equal purpose, are picked and sorted according

to the assembly line’s demand and placed in a joint kitting container. Decisions determine the

cell’s sizing, the feeding of parts to that cell, and part placement within the cell. We applied the

model to design a kitting cell for an automotive company and compare the results to heuristic

approaches.

Chapter 5 covers an Assembly line balancing problem (ALBP), i.e., the assignment of assembly

tasks to different workstations. Due to the predetermined flow of workpieces, it is important to

consider the task’s relations. That is, e.g., task A has to be executed before task B, implying that

task B cannot be assigned to a station before task A’s station as the product moves from station

to station. In this chapter, a particular variant of the ALBP is studied, namely the ALBP of

type E, where E stands for efficiency. In this variant, the number of stations and the available

time at each station, known as cycle time, are optimally determined. While the so-called Simple

assembly line balancing problems (SALBPs) only considers temporal and precedence aspects,

this study also considers spatial aspects. We extended and adjusted an existing Mixed-integer

linear programming (MILP) and provided a new solution approach that exploits strengthening

techniques and constraint programming. We evaluate the impact of spatial requirements on the

assembly line’s efficiency by comparing to solutions that only consider temporal requirements.

In Chapter 6, we combine assembly line balancing and assembly line feeding decisions to min-

imize the assembly system’s costs. To this end, we extend and integrate the model presented

in Chapter 3 into an ALBP with a predetermined cycle time. Furthermore, we determine the

assembly factory’s size based on balancing and feeding decisions. Since this problem is challeng-

ing to solve, we propose a logic-based Bender’s decomposition approach. In this approach, the

assembly line balancing problem is solved in the first step. In the second step, the solution’s

feasibility is verified. Afterward, all costs are calculated and fed back to the balancing problem.

This process is reiterated until no better solution can be found. We apply this approach to
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a synthetic case study that combines real-world data with artificial data. For our results, we

investigate the impact of considering both problems simultaneously by comparing the solutions

to scenarios where some decisions are excluded from the optimization model.





Samenvatting

Assemblagelijnen worden in veel verschillende industrieën gebruikt om allerlei goederen tegen een

lage prijs te produceren. De belangrijkste kenmerken van een assemblagelijn zijn de doorstroom

van producten doorheen een serie werkstations en de onderverdeling van de werkstappen in

(meestal) ondeelbare taken. Bekende productvoorbeelden zijn transportvoertuigen zoals auto’s,

bussen, treinen of vliegtuigen, terwijl apparatuur voor de gezondheidszorg (bv. beademingsma-

chines of operatierobots) of consumentenelektronica (smartphones, laptops, tablets,...) minder

bekende voorbeelden zijn. Vanwege dit wijdverbreide gebruik van assemblagelijnen in de indu-

strie, hebben academici zich gericht op het verbeteren, analyseren, simuleren, of optimaliseren

van verschillende aspecten van assemblagelijnen. Onderzoek in dit domein omvat productont-

werp, arbeidsgerelateerde aspecten zoals ergonomie of training in virtual reality omgevingen,

productieplanning, logistieke planning, outsourcing beslissingen, leveranciersmanagement, voor-

raadproblemen, MTS vs. MTO beslissing, of facilitaire planning. Dit proefschrift richt zich op

de optimalisatie van intralogistiek, de toewijzing van taken, en combineert deze met beslissingen

over high-level facility design. Na een algemene inleiding in hoofdstuk 1, omvat het proefschrift

vijf afzonderlijke studies. Deze worden in de volgende paragrafen meer in detail samengevat.

In hoofdstuk 2 geven we een inleiding op de logistieke activiteiten binnen een assemblagefa-

briek. Daartoe onderscheiden we verschillende processen. Verder introduceren we verschillende

methoden die kunnen worden gebruikt om onderdelen of componenten aan het assemblagestation

te leveren. Ze verschillen in de hoeveelheid onderdelen die wordt aangeleverd, het type container

of ladingdrager dat wordt gebruikt, en de precieze invulling van de logistieke afhandelingspro-

cessen. In het vervolg van dit proefschrift worden deze verschillende methoden aangeduid als

line feeding policies. De line feeding policies zijn line stocking (levering van grote containers ge-

vuld met een enkel type onderdelen), boxed-supply (levering van kleinere containers gevuld met

een enkel type onderdelen), sequencing (levering van voorgesorteerde verwisselbare onderdelen,

bv. verschillend gekleurde onderdelen), stationary kitting (zoals sequencing maar met meerdere

sets verwisselbare onderdelen die in één station worden gebruikt), en traveling kitting (zoals

stationary kitting maar met onderdelen voor meerdere stations).

In dit hoofdstuk wordt het Assembly line feeding problem (ALFP) formeel gedefinieerd als een

kostenminimalisatieprobleem en wordt bewezen dat dit probleem NP-hard is. De hoofdmoot van

dit hoofdstuk is een classificatie schema van overwegingen die in dit probleem kunnen worden

opgenomen zonder de exacte formulering te specificeren, maar wel de inhoud. Deze classificatie
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wordt vervolgens gebruikt om literatuur te classificeren die binnen het domein van het ALFP

valt. Tenslotte worden verschillende ideeën voor toekomstig onderzoek gepresenteerd. Enkele

daarvan zullen in het vervolg van dit proefschrift worden onderzocht.

Hoofdstuk 3 betreft een specifiek optimalisatiemodel van een ALFP. Dit model is het eerste in

de literatuur dat vijf verschillende methoden voor lijntoevoer in aanmerking neemt. Bovendien

werd de BoL, i.e., het gebied in een assemblagestation dat wordt gebruikt voor de opslag van

onderdelen, discreet gemodelleerd. Deze discretisatie maakt een nauwkeurigere bepaling van de

loopafstanden van de assemblagearbeiders mogelijk. Tenslotte laat het model toe dat stations

plaats uitlenen aan mekaar. Dit verwijst naar de mogelijkheid om de BoL van een bepaald

station te gebruiken om onderdelen op te slaan die nodig zijn in een aangrenzend station. Op die

manier wordt het mogelijk onderdelen aan te voeren via een line feeding policy die meer ruimte in

beslag neemt, maar goedkoper is. Om dit model op te lossen worden enkele voorbewerkingsregels

toegepast en wordt een meer verfijnde oplossingsprocedure in de vorm van Branch and cut (BAC)

en Cut and branch (CAB) voorgesteld. De algoritmen worden getest op artificiële probleem

instanties die gebaseerd zijn op een real-world gevalstudie. De invloed van het uitlenen van

plaats, de discretisatie van de locaties en de grootte van de BoL worden onderzocht.

In hoofdstuk 4 stellen we een optimalisatiemodel voor om het ontwerp van een kittingcel te

bepalen. Kittingcellen worden gebruikt voor twee lijntoevoermethodes, namelijk stationaire en

traveling kits. In deze kittingcellen worden verschillende onderdelenfamilies, i.e., groepen van

verschillende onderdelen die een gelijk(aardig) doel dienen, geselecteerd en gesorteerd volgens de

vraag van de assemblagelijn en in een gemeenschappelijke kittingcontainer geplaatst. Het model

maakt beslissingen over de grootte van de cel, de toevoer van onderdelen naar, en de plaatsing

van onderdelen binnen de cel. Het model wordt toegepast voor het ontwerp van een kitting cel

voor een automobielbedrijf en de resultaten worden vergeleken met heuristische benaderingen.

Hoofdstuk 5 behandelt een Assembly line balancing problem (ALBP), i.e., de toewijzing van

assemblagetaken aan verschillende arbeiders of werkstations. Vanwege de vooraf bepaalde door-

stroom van producten, is het belangrijk om rekening te houden met de relaties tussen de taken,

gewoonlijk beschreven als volgorderelaties. Dat wil zeggen, taak A moet worden uitgevoerd vóór

taak B, hetgeen impliceert dat taak B niet kan worden toegewezen aan een station vóór het

station van taak A, aangezien het product van station naar station beweegt. In dit hoofdstuk

wordt een bijzondere variant van het ALBP bestudeerd, namelijk het ALBP van het type E,

waarbij E staat voor efficiëntie. In deze variant worden het aantal stations en de beschikbare

tijd op elk station, de zogenaamde cyclustijd, optimaal bepaald. Terwijl het zogenaamde Simple

assembly line balancing problems (SALBPs) alleen rekening houdt met tijd en volgorde, wordt

in deze studie ook het plaatsaspect in aanmerking genomen. Dat wil zeggen, elke taak heeft een

tijds- en een plaatsvereiste terwijl elk assemblagestation beperkt is tot een bepaalde hoeveelheid

tijd en plaats. De beschikbare plaats van de stations is vooraf bepaald, terwijl de cyclustijd

wordt bepaald door het oplossen van een optimalisatieprobleem. Om dit probleem op te lossen,
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wordt een bestaand model uitgebreid en aangepast. Bovendien wordt een nieuwe oplossings-

aanpak voorgesteld. Deze benadering is gebaseerd op versterkingstechnieken waarbij sommige

beslissingsvariabelen worden gefixeerd terwijl andere worden geoptimaliseerd. De selectie van

gefixeerde beslissingsvariabelen is gebaseerd op klassieke zoekalgoritmen en niet-gefixeerde be-

slissingsvariabelen worden geoptimaliseerd met Constraint programming (CP). We evalueren

de impact van plaatsvereisten op de efficiëntie van de assemblagelijn door te vergelijken met

oplossingen die enkel rekening houden met tijdsvereisten.

In hoofdstuk 6 combineren we beslissingen met betrekking tot het balanceren van de assem-

blagelijn en het bevoorraden van de assemblagelijn om de kosten van het assemblagesysteem te

minimaliseren. Daartoe breiden we het model uit hoofdstuk 3 uit en integreren het in een ALBP

met een vooraf bepaalde cyclustijd. Bovendien bepalen we de grootte van de assemblagefabriek

op basis van balancerings- en toevoerbeslissingen. Aangezien dit probleem moeilijk op te los-

sen is, stellen we een logic-based Bender’s decompositie aanpak voor. In deze aanpak wordt

het assemblagelijn-balanceerprobleem in de eerste stap opgelost. In de tweede stap wordt de

haalbaarheid van de oplossing geverifieerd. Daarna worden alle kosten berekend, en begint het

proces opnieuw totdat is bewezen dat geen betere oplossing kan worden gevonden. We passen

deze aanpak toe op een gevalstudie waarin reële gegevens worden gecombineerd met artificiële

gegevens. Voor onze resultaten onderzoeken we het effect van het gelijktijdig beschouwen van

beide problemen door de oplossingen te vergelijken met scenario’s waarin sommige beslissingen

buiten het optimalisatiemodel worden gemaakt.
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1
Introduction

“If you can’t explain it simply, you don’t understand it well enough.”

Albert Einstein



2 Chapter 1

1.1 Motivation

The second industrial revolution, taking place between 1870-1914 A.D., was characterized by

a series of innovations, standardization, and industrialization (Mokyr, 1998). Merriam-Webster

defines standardization as a process that ‘bring[s] [something] into conformity with a standard

especially in order to assure consistency and regularity’. Henry Ford, founder of the Ford Motor

Company, contributed significantly to bringing this standardization into action when co-inventing

the assembly line. The introduction of assembly lines allowed for a better division of labor and

workers’ specialization, which led to a new era of efficient production, called mass production

(Watts, 2005). This process was especially useful for the production of complex physical goods

as standardization of products and processes enabled a far more efficient production. Historian

Mokyr (1998) even argues that the changes in production ‘from a purely economic point of view,

[may be] the most important invention [of the second industrial revolution]’.

Initially, Ford developed the assembly line for the production of Ford’s Model-T. However, other

automobile companies quickly adopted this system, and today, almost all automobiles are pro-

duced on assembly lines (excluding prototypes or limited models) (Rundfunk, 2021). With the

introduction of the assembly line, the average production time of a Model-T decreased from

around 12.5 hours to 1.5 hours (Welt, 2013). However, a reduction in lead time was not the

only change the assembly line was about to bring. It also facilitated to employ (some) untrained

workers at those assembly lines. As a result costs decreased drastically and the demand and

production of cars drastically increased in the following years.

Not surprisingly, other industries, especially industries with complex products, adopted assembly

lines to benefit from its efficiency increase. Today, various industries use assembly lines to produce

a wide variety of goods, as represented in Figure 1.1, that affect our everyday life.

The products shown in Figure 1.1 are manufactured on assembly lines due to high production

speed and low production costs.

However, there is a stark contrast in early- and modern-day assembly systems. That is, modern

assembly systems are much more complex than the former due to the following factors (amongst

others).

• Increase in product complexity.

• Increase in product diversity.

• Product customization.

Product complexity Typically, assembly systems are used to manufacture products with a

high complexity degree and they were used first when such products were demanded in large

quantities, i.e., the rise of the personal automobile. Considering the improvement and evolution

of all kinds of goods, increasing product complexity is impossible to miss. A good example is the

comparison of the first bicycles with a modern-day racing bicycle. The former consists only of

wheels, frame, steering wheel, and a seat whereas modern bikes are extended by many additional

parts such as pedals, chains, brakes, cogs, shifters, and lights. Many developed economies such
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Figure 1.1 Overview of assembled products, clustered by industry

as Belgium, Germany, Japan, Sweden, and the United States of America build their wealth

with the production and export of such complex products (Felipe et al., 2012). The increase in

product functionality requires more complex production steps and more logistical coordination

in sourcing all parts and coordinating their material flow.

Product diversity In addition to the increase in products complexity, there is also a trend of

product diversification which we refer to as model proliferation. A model describes a product’s

specific version, such as a BMW series 3 or series 5. Models typically differ in the use of

fundamental parts (e.g., chassis or engine) or properties (e.g., minivan vs. convertible) (Scholl

et al., 1999). As a consequence of this model proliferation and the saturation of markets in western

countries, some product models’ production quantities are stagnating or decreasing (similar

trends can be observed in other sectors such as smartphones). Therefore, producers are adjusting

their assembly lines to facilitate the mass production of multiple complex products on a single

assembly line. Figure 1.2 provides an example on the evolution of the number of Audi models

produced, and the number of factories in which these models are produced over time. As one can

observe, facilities started off producing just a single model, however, over time multiple models

were produced at a single facility or even assembly line. This increase in product diversity also

leads to additional complexity in the coordination of manufacturing and logistics processes. For

example, additional suppliers may be needed to guarantee the provision of sufficient raw materials

and parts. Furthermore, the assembly tasks for some products produced on a single assembly

line may differ. Therefore, assembly lines need to be adjusted to spread tasks in an efficient

manner over different workstations, These adjustments lead to more diverse product flows and
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more variability in the system.
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Figure 1.2 Overview of Audi car production from 1965-2021 (based on Wikipedia (2021))

Product customization While many products were initially standardized, customers were

demanding products matching their desires such as color, quality, and functionalities. This urge

was heavily supported by the marketing industry (Kotler, 1989). Even though some authors date

mass customization back to the late 1980s (Ferguson et al., 2014), it is difficult to determine

the exact starting time of this phenomenon. The so-called Just-in-Sequence (JIS)-principle,

introduced by Japanese automotive company Toyota in the 1980s, was undoubtedly an essential

change towards mass customization. The JIS-principle describes the delivery of parts in the

sequence of demand, i.e., each product receives some parts that are specifically dedicated to

this product as the client determined the product’s composition. The introduction of JIS also

coincides with the rise of the term mass customization 1 in the 1980s. Mass customization

describes the production according to the individual demand of each customer rather than the

production of few standardized products. Even though assembly lines were initially designed to

produce large quantities of a standardized product, they were adapted to suit mass customization,

e.g., by exploiting the JIS-principle.

As discussed above, the organization of assembly systems is becoming increasingly complex

while competition is becoming more fierce. Each of the trends described above contributed

to a steady complication of manufacturing and logistics activities. When products were more

standardized, logistical workflows were much more limited and less complicated. However, the

above-described increase in system complexity makes these systems prone to waste. Therefore,

companies target cutting costs and managing their assembly process by standardizing processes

1The term is a portmanteau of the phrases mass production and customization.
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and reducing unnecessary operations. However, as these systems are becoming huge in scale,

it is hard to manage such systems manually. Therefore, both academics and practitioners have

started turning towards quantitative solution approaches.

The vast amount of decisions, operations, and the control of these systems has also been addressed

in conceptual frameworks such as Industry 4.0 (Kagermann et al., 2013; Saucedo-Mart́ınez et al.,

2018) or the physical internet (Montreuil, 2011), which seek to (autonomously) optimize the

design and operation of complex production and logistics systems based on (real-time) data.

Important aspects of these frameworks are data exchange between different entities such as

machines or vehicles and related communication technologies. This communication aims to

enable (near) optimal real-time decision-making for logistics and production systems. Clearly,

the optimization problems tackled in those frameworks are rather short-termed. Therefore, it is

of vital importance to design the corresponding systems appropriately. This thesis discusses such

design problems, i.e., it shows how to optimize more tactical decisions that determine essential

system parameters. Based on these decisions, more fine-grained operational decisions may be

optimized autonomously. Furthermore, the data availability in such hyper-connected systems

may be an asset when used to extract additional problem insights and incorporate those into

tactical decision-making tools.

1.2 Problem statement

As demonstrated above, assembled products are omnipresent in both our personal as much as

professional lives. However, the use of assembly lines requires setting up and efficiently organizing

assembly systems. While the term assembly system frequently describes the assembly line or the

feeding system (see, e.g., Arai et al. (2000); Battini et al. (2010b); Hu et al. (2011)), the term is

used in a much broader sense in this thesis. As mentioned above, an assembly system consists of

physical and organizational aspects. In terms of physical aspects, an assembly system is, among

others, defined by geographical location, factory size, building architecture, equipment usage and

placement, production and logistics areas within the building, gates, and driveways. Some of

the assembly system’s organizational aspects are the assignment of products to assembly lines,

the distribution of tasks among different workers, production planning, scheduling activities,

material flow, and process definitions. The combination of all these and other characteristics

determines an assembly system. For planners, this raises the task of making decisions on all

these aspects, knowing that many decisions are interlinked. When planning the manufacturing

and logistical processes of a production facility, e.g., physical characteristics may result from this

planning, or they may be an input to this planning. Another option is the joint planning of

physical characteristics and processes. The design of such an assembly system includes various

decisions, classified as strategic, tactical, and operational decisions in this thesis.

• Strategic level: The strategic level is concerned with long-term decisions such as make-

or-buy, supplier selection, single vs. multi-sourcing, and facility location (Göpfert et al.,

2016). These decisions are of the highest strategic relevance and form the basis for decisions
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on the tactical and operational levels. However, lower-level decisions may be taken into

account when making these decisions, or strategic decisions may require adaptation after

lower-level decisions are determined.

• Tactical level: Once a facility’s location and the outsourcing of production and logistics

activities are determined, tactical decisions can be taken. One tactical decision is the as-

sembly line’s design, which is concerned with deciding the number of assembly stations

and assigning tasks to stations (Boysen et al., 2007). In literature, this is described as

the ALBP. Another tactical decision is the logistical system’s determination, mainly con-

cerned with feeding parts to the line. Part feeding decisions, which are made in the ALFP,

determine presorting activities of parts and the delivery quantity to the line. Furthermore,

those decisions have an impact on the facility’s requirements in terms of space and equip-

ment. The facility’s design and the acquisition of logistical and assembly equipment such

as forklifts, racks, and tools may be considered another tactical decision. All decisions on

the tactical level are linked to each other.

• Operational level: On the operational level, short-term decisions such as loading and

routing of in-house vehicles or the scheduling of logistical picking operations are to be

taken. Another operational decision is the sequencing of products on the line: When

multiple products are produced on a single line, the assembly times at any station may

vary for these products, and drift may occur, i.e., some products may require less time

(negative drift) whereas other products may require more time (positive drift) than the

time available at a station (Hu et al., 2011). Therefore, it may be necessary to sequence

products such that any positive drift is canceled out over time (Emde and Polten, 2019).

In this thesis, the focus will be on tactical decision-making, specifically the assembly line balanc-

ing and the assembly line feeding problem. In literature, these two decision-making problems are

usually treated separately (see, e.g., Battäıa and Dolgui (2013) and Schmid and Limère (2019)).

Similarly, in practice, both problems are associated with two different departments: the in-house

logistics department works on assembly line feeding decisions the production department works

on assembly line balancing decisions. This thesis considers both problems individually before

both problems are combined and integrated with facility design to evaluate the merits of such an

integration. Before discussing the outline and contribution of this thesis, an informal explanation

of both problems is given.

1.2.1 Assembly line balancing problems

Assembly line balancing problems are concerned with assigning a set of assembly tasks to work

stations. The number of tasks and their characteristics needs to be known in advance. Essential

characteristics are assembly times and the precedence relations of all tasks. The assembly time

describes how long an operator needs to assemble a part onto the product. These times are

typically estimations based on time studies such as Methods-Of-Time-Measurements (MTM),

REFA, or Very Easy Work-factor (VWF). Precedence relations describe the order in which tasks
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can be conducted and are primarily given in the form of a precedence graph, more specifically an

acyclic digraph. An example of such a graph can be found in Figure 1.3, with nodes representing

tasks and arcs (directed edges) indicate precedence relations. E.g., task 8 can only be started

after task 7 is finished.

The assignment of tasks has to be done such that the sum of task assembly times at any station

is smaller or equal to the cycle time. This cycle time is either given as a parameter (following a

demand-driven calculation) or minimized. Similarly, the number of stations may be given as a

parameter or minimized. A combination of these options results in four possible combinations,

which are considered a class of simple assembly line balancing problems (SALBPs) (Baybars,

1986) SALBP-F: a feasibility problem, verifying if there is a solution with a given number of

stations and a given cycle time. SALBP-1: Cycle time given, Minimizing the number of stations.

SALBP-2: number of stations given, minimizing cycle time. SALBP-E: Efficiency problem,

minimizing both the number of stations and cycle time.

1

2

3

4

5

6

7 8

Figure 1.3 Precedence graph of assembly tasks (adjusted from Bowman (1960))

1.2.2 Assembly line feeding problems

The assembly line feeding problem is typically solved after the assembly line balancing problem.

Thus, the number of stations, the cycle time, and the tasks assigned to each station are known.

Next, every task is linked to all the parts needed for execution. The term part family is used to

create subsets of parts. Each part family is a set of parts, also known as Stock-Keeping-Units

(SKUs) or components, that serve the same or a very similar purpose. However, they are not

identical as they might differ concerning color, quality, or haptics. All parts in a part family

complement each other, which means that only one part from any family can be used for a

specific product.

When solving the assembly line feeding problem, the goal is to assign each part to a line feeding

policy while minimizing the associated logistical efforts or costs. This cost minimization problem

can be complemented by various constraints and decisions that will be discussed at a later stage

(Chapter 2). Line feeding policies define three aspects of part feeding:

• The execution of the associated logistical processes within the assembly facility.

• The combination of parts and part families in a single load carrier.

• The selection of a load carrier holding the material at the work station.
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In this work, we distinguish five line feeding policies: (i) line stocking, i.e., the provision of a

large load carrier including only one type of parts; (ii) boxed-supply, in which a smaller quantity

of one part type is provided in a small load carrier or box; (iii) sequencing, for which all parts

of a part family are sorted into a single load carrier according to the production sequence; (iv)

stationary kits, which contain multiple sequenced part families used at a single station; and (v)

traveling kits, that contain multiple sequenced part families used at multiple stations.

1.3 Research outline

As discussed above, this thesis is concerned with the assembly line balancing and the assembly

line feeding problem. Figure 1.4 shows how the problems in this thesis are linked to each other

and represents which problem is studied in which chapter. Assembly line feeding and balancing

are considered to be tactical (mid-term) problems and the balancing problem is typically solved

before solving feeding problems. Similarly, tactical problems are solved before operational prob-

lems such as product sequencing or in-house transportation optimization. However, in Chapter

6, we will solve both tactical problems jointly to investigate their interaction. All chapters except

Chapter 4 are concerned with more tactical problems whereas Chapter 4 is concerned with the

operational problem of increasing the efficiency of a subprocess that is a result of the tactical

line feeding problem. The content of each chapter will be discussed in the following.

Tactical ALBP

Chapter 5

Chapter 6

Chapter 2 & 3

Tactical ALFP

Sequencing

Chapter 4

Operational feeding

Hierarchical planning

Interactions

Figure 1.4 Scope of the thesis’ chapters

The remaining chapters of this thesis are mostly concerned with an optimization-based perspec-

tive on the problems described above, i.e., the assembly line feeding and balancing problems.

The motivation to study those problems by means of optimization-based approaches arises from

the fact that these problems are highly constrained which makes them difficult to handle. As
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the main goal of the studies in this thesis is efficiency gains, optimization approaches seem most

promising. However, it may be worthwhile to study the same problems from a simulation per-

spective. Simulation approaches can very well be used to (i) verify assumptions on the chosen

parameters; (ii) test the robustness of the solutions when parameters change and; (iii) serve as

a digital twin of an operational assembly system. This digital twin may provide information on

bottle necks in the system and help to reduce practical inefficiencies (see Coelho et al. (2021)).

In this chapter’s remainder, the other chapters’ content will be presented, and research questions

for each chapter will be formulated. Finally, the contribution of this thesis to the field of assembly

systems will be discussed.

Chapter 2: A classification of tactical assembly line feeding problems

Chapter 2 is concerned with the assembly line feeding problem and serves as a more detailed

introduction into the organization of assembly systems. Assembly line feeding is a rather young

field that has first received academic attention in the early 1990s (Bozer and McGinnis, 1992).

Therefore, efforts in this field are diverse in their scope and assumptions. Both the research

methodology and managerial aspects of assembly line feeding problems have been tackled differ-

ently in the literature. From a methodological point of view, the problem has been approached

by descriptive cost models (Bozer and McGinnis, 1992; Caputo and Pelagagge, 2011; Sali et al.,

2015), simulation (Klampfl et al., 2006) and optimization-based models (Limère, 2011; Limère

et al., 2015; Sali and Sahin, 2016). From a managerial perspective, some authors focused on

cost-elements (Caputo and Pelagagge, 2011; Caputo et al., 2015c) whereas others focused on

the system’s feasibility in a given environment (Limère, 2011; Sali and Sahin, 2016). More-

over, line feeding decisions have not been well-defined. Therefore, a first research question (RQ)

emerged that aims to unify efforts and provide fundamental definitions for academics and indus-

trial decision-makers for the optimization-based assembly line feeding problem.

RQ 1.1: What constitutes the tactical assembly line feeding problem and which decisions

are part of the problem’s scope?

To answer this research question, a formal definition of the problem is given, and the ALFP is

proven to be an NP-hard problem. Besides, this problem’s tactical decisions are delineated from

operational and strategic decisions, and the problem’s scope is defined.

Due to the diverse research approaches in assembly line feeding, the assumptions and decisions

incorporated in preceding studies are not always obvious. Therefore, Sections 2.3 provides a

three-field classification scheme similar to Graham et al. (1979) or Brucker et al. (1999). This

three-field-notation is then applied to literature to derive insights into future research directions

by answering the next research question.

RQ 1.2: Which decisions, assumptions, and constraints are fundamental for the assem-

bly line feeding problem, and which aspects of this problem class are vital for the field’s

development?
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Chapter 3: Mixed model assembly line feeding with discrete location assignments

and variable station space

The findings of Chapter 2 revealed that five different line feeding policies are used in practice, but

no study has considered more than three feeding policies at a time. Limère (2011); Limère et al.

(2015); Sternatz (2015), e.g., compare line stocking and stationary kitting. Sali and Sahin (2016)

include line stocking, sequencing, and stationary kits. Bozer and McGinnis (1992) describes

line stocking, stationary kits, and traveling kits. Therefore, Chapter 3 is concerned with the

assignment of assembly parts to all policies identified in Chapter 2.

RQ 2.1: Is it useful to consider all five line feeding policies simultaneously and how can

such a decision model be modeled?

In optimization-based models, most authors (see, e.g., Limère (2011); Sali and Sahin (2016)

consider that the space available at the BoL is limited and that the assignment of parts to line

feeding policies is influenced by the amount of space that is available. However, the positioning

of parts at the BoL has not received much attention. Only Klampfl et al. (2006) investigated

where to place parts at the BoL. However, the placement of parts may also affect the selection

of line feeding policies:

RQ 2.2: Does the placement of parts at specific locations affect the decision-making

process, and are there any patterns in the placement of items?

Each work station’s BoL was discretized into distinct locations to answer this question. Each

location can only be used to store parts assigned to a single line feeding policy, and each policy

has specific restrictions such as weight, volume, or the types of parts that can be combined.

These discrete locations are also used to accurately calculate the assembly operators’ walking

distances, affecting the system’s overall costs.

Lastly, Hua and Johnson (2010) noted that the amount of space available at any station might not

be used uniquely by that station. While the assembly line’s overall size remains fixed, adjacent

stations may share some of their space. In this study, we aimed to determine the gains of using

space more flexibly and tested the effect of ‘space borrowing’. Space borrowing means that a

station can use some space from an adjacent station if the adjacent station does not need that

space.

RQ 2.3: How does the possibility of space borrowing affect decision making for assembly

line feeding?

Chapter 4: Optimizing kitting cells in mixed-model assembly lines

Two of the line feeding policies identified in Chapter 2 are kitting-based policies. As described

above, a kit contains parts from multiple part families. Each kit contains only parts required for

a single product. The reader may think of it as a LEGO set that contains a collection of parts

needed to build a specific item. While a particular LEGO set always contains the same parts,
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this is not the case for kits used in the assembly process of mass customized products. Kits

include only a subset of part families since complex products typically contain too many parts

that cannot fit in a kit due to their physical characteristics. When preparing kits, however, only

one type of part per family will be included. This is obvious when considering that a part family

could describe a laptop’s hard drive: There may be multiple hard drives with varying capacities.

However, a laptop can only hold one of these hard drives. Kit preparation takes place in so-called

kitting cells. These cells have been described in various line feeding studies (Battini et al., 2017;

Limère, 2011; Schmid et al., 2020; Sternatz, 2015) but their design was mostly simplified. Other

studies were concerned with efficiency gains achieved by the cell’s location, batch sizing, or zoning

(Brynzér and Johansson, 1995). More recently, many studies have been investigating the impact

of technology such as pick-by-light on the performance of a kitting system (Fager et al., 2019).

However, only one study (Bortolini et al., 2020) was concerned with the positioning of parts

in kitting areas. However, this study assumed that kitting operations occur in the warehouse,

which is not feasible for many companies. Therefore, Chapter 4 investigates how such kitting

cells can be designed as there are no clear guidelines available yet.

RQ 3: How does the placement and determination of delivery quantities affect the cost of

operating a kitting cell?

To answer this question, we model and optimize such a kitting cell’s layout to minimize oper-

ating costs. This includes the determination of delivery quantities, the placement of parts and

equipment within the cell, and the sizing of the cell.

Chapter 5: The impact of spatial considerations on assembly line efficiency

Motivated by the results obtained in Chapter 3, namely that space borrowing is affecting de-

cision making in line feeding, this research investigates the impact of space on assembly line

balancing. In most studies on assembly line balancing, the requirement to store parts associated

with assembly tasks is neglected. Bautista and Pereira (2007), however, started to expand the

scope of assembly line balancing problems by the dimension of space. In this approach, each

task is associated with an individual space requirement while there is only a limited amount of

space available at each work station. In this chapter, an assembly line balancing problem of type

E, i.e., a problem that minimizes cycle time and the number of stations, is complemented with

spatial considerations as preceding studies for assembly line balancing problems of type-E do not

consider this (Corominas et al., 2016; Esmaeilbeigi et al., 2015; Wei and Chao, 2011).

RQ 4.1: How can existing solution approaches for the SALBP-E problem be improved and

extended to include additional constraints such as the consideration of spatial requirements?

To this end, existing mathematical programming approaches are benchmarked against each other

and improved. More importantly, a new approach combining classic search algorithms with

constraint programming is proposed. As mentioned above, the consideration of space may impact

decision making in line balancing. However, the impact of this has not yet been quantified as
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the focus in literature was mostly on computational aspects of the problem (see, e.g., Bautista

and Pereira (2007, 2011); Chica et al. (2016)).

RQ 4.2: To what extent does the consideration of spatial requirements alter an assembly

line’s performance?

This question will be answered by balancing the same tasks when considering spatial requirements

and comparing the results to a balance that does not consider spatial requirements.

Chapter 6: Integrating assembly line feeding and balancing optimization for im-

proved decision making

Building upon the previous chapters’ results, Chapter 6 is concerned with a simultaneous consid-

eration of assembly line balancing and assembly line feeding. It combines Chapter 3 and Chapter

5 in the form of a cost-minimization model that assigns tasks to stations and parts to feeding

policies. Sternatz (2015) was the first to integrate line feeding and balancing. However, similar

to many studies in line feeding, this study only considers two line feeding policies. Furthermore,

the proposed solution approach is based on a heuristic procedure. Therefore, it remains difficult

to evaluate the solution quality. With regards to balancing and feeding decisions, a similar study

has been conducted by Battini et al. (2017) while they additional integrated ergonomic aspects

and solved the problem using a standard MILP model. Furthermore, our study described in

Chapter 3 could confirm that the placement of parts along the BoL impacts feeding decision

making. When considering balancing and feeding simultaneously, this may be even more im-

portant as the placement affects walking and searching times which are typically assumed to be

known and included in the balancing times. This study aims to fill the research gap of accurately

modeling all line feeding policies and providing an exact solution approach.

RQ 5.1: How can this integrated problem be modeled accurately and solved efficiently?

A ‘natural’ way of modeling this problem is to separate the problems and iteratively solve them

individually utilizing a logic-based Bender’s decomposition. From a managerial perspective, this

integration raises the following question:

RQ 5.2: Does the integrated consideration of assembly line balancing and feeding impact

a line’s balance? What cost saving can be achieved?
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2
A classification of tactical assembly line feeding

problems

“In considering any new subject, there is frequently a tendency, first,

to overrate what we find to be already interesting or remarkable; and,

secondly, by a sort of natural reaction, to undervalue the true state

of the case, when we do discover that our notions have surpassed

those that were really tenable.”

Ada Lovelace
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2.1 Introduction

The manufacturing industry is progressively facing more competition, resulting in a wide variety

of highly functional products. Consequently, single manufacturing firms produce many very

complex product models with many functionalities in an enormous number of mass-customized

variants, as discussed above. This product complexity may be underlined by looking at a case

study done at a truck manufacturing company. The company needed to handle the astonishing

amount of 8,000 to 9,000 parts each day to produce just around 15 trucks (Limère et al., 2012).

These numbers even exclude small parts like nuts and bolts, and therefore, clearly illustrate that

assembly lines need to be fed with an enormous amount of parts already and that this number

will likely increase in the future.

Assembly line feeding, describing the provision of parts for assembly, can be performed in different

ways by storing all parts near the assembly line or pre-processing parts and delivering them when

needed (Sali and Sahin, 2016). The assembly line feeding problem (ALFP), formally defined in

this study, studies how parts should be provided for assembly by identifying the optimal provision

method for every part. Obviously, deciding on the way how to provide parts not only has an

impact on the used load carrier or quantities fed, but also on the design of the feeding system

with respect to transportation and preparation processes (Limère et al., 2012). Therefore, the

design of feeding systems is part of the assembly line feeding problem if it is not predetermined.

Hence, the problem under investigation is a complex task affected by many different aspects and

decisions. We will show that some of these aspects are already researched. However, at the

same time, there are still numerous questions unanswered, and literature integrating additional

aspects, such as the selection of vehicles or the number of storage facilities, is relatively scarce.

As we observed within this review, the number of scientific scholarly papers on issues assembly

line feeding problem is increasing. One can assume that this increase is due to both, a rising in-

terest of researchers but also the necessity of decision support systems in practice. This practical

need for decision support systems has specifically been observed by the authors of this article

during company visits. Feeding decisions were either loosely based on rules of thumb, without

evaluation of these rules, or even taken without any logical structure.

As the amount of literature increases, effort for scientists to review literature and delimit their

work also increases. In addition, not understanding focus and scope of previous research well

might result in less distinct and value adding research. Theoretical insights may also be used

less often in practice if industrial problems are not encountered in literature, either because they

are not yet explored or due to unclear or inconsistent notations and low visibility.

Thus, this study aims at providing knowledge on line feeding processes and at categorizing

different assembly line feeding problems, by means of a classification framework. We aim to

promote purposeful research, as well as to help practitioners detecting research fitting their

practical needs.

The rising interest in the field of line feeding has already motivated Kilic and Durmusoglu

(2015) to review the literature. However, their focus is on the characteristics of line feeding

policies depicting their advantages and disadvantages and they do not clearly delimit tactical
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and operational issues. The present review, instead, is more process-oriented and includes mostly

tactical decisions such as layout or transportation mode decisions. Moreover, a classification for

existing and future work is provided and a list of research opportunities is given. Another review

is done by Boysen et al. (2015) focusing on multiple operational decisions like routing, loading or

scheduling aspects within the automotive industry and organizes these along the material flow.

However, the present review does not focus on single operational aspects but considers assembly

line feeding as a holistic decision process which, in practice, is followed or supplemented by

operational decision making. Furthermore, in contrast to Boysen et al. (2015), the field of

application is not limited to the automotive industry.

The remainder of this chapter is organized as follows. In the following section, the scope of the

review is defined to underline the importance of the feeding problem and delimit it from general

logistical in-house problems or even inter-organizational logistics. Next, in the third section, the

classification scheme for the problem is proposed and described. Within the subsequent section,

existing literature on the actual ALFP is classified. Section 2.5 points out open research fields

and new research opportunities. In the final section, the chapter is shortly summarized.

2.2 Problem definition and scope

In this section, we formally define the assembly line feeding problem (ALFP). This requires

however, that different line feeding policies are introduced and defined first, as the selection

of those is the defining characteristic of the ALFP. After this, a formal definition of the basic

problem is given in the form of a mathematical programming model. The definition is followed by

a depiction of sub-processes and a delineation from other logistical material handling processes.

Finally, the hierarchical decision level of the ALFP is specified, and interactions as well as

differences with higher and lower decision levels are discussed.

2.2.1 Assembly line feeding policies

Line feeding policies describe how parts are provided to assembly stations. An assembly line

feeding policy thus concerns a sequence of logistical operations that need to be performed on the

shop floor and the presentation at the location of assembly.

By reviewing literature on assembly line feeding, one could assume a quite high number of distinct

line feeding policies. This can partly be explained by the use of different names for the same

feeding policies. To avoid confusion in further research, we now present five different terms for

line feeding policies and show them in Table 2.1 together with nomenclature previous literature.

Moreover, line feeding policies are sometimes mixed up with production control systems like by

Satoglu and Ucan (2015), where Kanban and Polca production control systems are confounded

with parts supply to assembly lines. This might also be due to the fact that boxed-supply is

often described by JIT supply or Kanban-based-feeding (see Table 2.1).

In their literature review, Kilic and Durmusoglu (2015) distinguish four policies: line stocking,

boxed-supply, kitting, and hybrid policies. In their framework, sequencing is not considered as a
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line stocking boxed-supply sequencing kitting

lot-wise-presentation;
load-unit-presentation
(Battini et al., 2015)

Kanban-based feeding
(Kilic and Durmu-
soglu, 2015)

sequential supply (Jo-
hansson and Johans-
son, 2006)

stationary:

line side stocking (Kilic
and Durmusoglu, 2012)

downsizing (Limère,
2011)

trolley to work station
(Battini et al., 2009)

bulk feeding (Limère,
2011)

continuous supply
(Hanson and Brolin,
2013)

indirect supply (Ster-
natz, 2015)

line storage (Caputo
et al., 2015c)

batch supply (Sali
et al., 2015)

traveling:

pallet to work station
(Battini et al., 2009)

JIT supply (Caputo
et al., 2015a)

kit to assembly line
(Battini et al., 2009)

direct supply (Ster-
natz, 2015)

indirect supply (Bat-
tini et al., 2017)

Table 2.1 Line feeding policies in literature

separate policy. On the other hand, a hybrid line feeding policy is described, combining different

policies within one assembly system. Within this review however, we do not consider the hybrid

policy to be a distinct policy, since we assume line feeding policies to be selected at the individual

part level, which usually results in a combination of multiple line feeding policies.

Thus, we define five policies in the context of assembly line feeding, namely line stocking, boxed-

supply, sequencing and kitting, whereas kits can be stationary or traveling. These line feeding

policies cover all described practices, found in literature and practice. In the following subsections

we introduce and explain those line feeding policies. A first overview of the effect of line feeding

policies on the provision of parts at the border of line (BoL), i.e. an area next to assembly

stations which is dedicated to store assembly parts, can be seen in Figure 2.1.

Figure 2.1 shows that parts can be provided in homogeneously filled (line stocking and boxed-

supply) or mixed containers (sequencing and kitting). Furthermore, they can be presented at the

BoL or on the line itself. The latter happens in the case of traveling kits, where every product

(grey boxes) on the assembly line is joined by a kit container (white box). For clarity, in Figure

2.1 only one line feeding policy is applied per station. However, in practice the simultaneous use

of multiple line feeding policies at a single station is assumed to be beneficial (see Sali and Sahin

(2016)).

Line stocking

Line stocking can be considered the simplest form of line feeding where a complete load car-

rier like a pallet or box is directly delivered from storage to the border of line (BoL) (Battini

et al., 2015; Limère et al., 2012; Sternatz, 2015). To consider line feeding as line stocking, no

further preparatory handling effort, except the transport of the load carrier to the line, should

be necessary. The load carrier remains at the BoL until depletion.
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Sequencing

Stationary kitting Travelling kitting

Boxed-supplyLine Stocking

Figure 2.1 Line feeding policies

Boxed-supply

In comparison to line stocking, line feeding with a boxed-supply policy requires more logistical

handling effort. The main characteristic of the boxed-supply policy is the reduction of container

sizes. Feeding parts in boxed-supply starts with the retrieval of a pallet or container from

storage, possibly transporting it to a preparation area, and repacking parts from this load carrier

into smaller bins. An important characteristic of boxed-supply is that all bins are still filled

homogeneously after repacking. Next, bins are transported to the BoL and stored there until

depletion. Since in both policies, line stocking and boxed-supply, parts are stored in a larger

quantity in homogeneously filled load carriers at the BoL, some authors do not consider these

policies to be distinct. However, within the framework of the ALFP it is necessary to distinguish

between both as the underlying logistical processes are distinct.

Sequencing

The increasing number of part variants is a big challenge for companies, since it rules out the

possibility of line stocking for all required parts at the BoL, due to space restrictions. This is

aimed to overcome by applying sequencing. Sequencing is initiated by the retrieval of pallets

or boxes containing different variants of parts which are possibly transported to a preparation

area. Next, variants of a part are sorted into a container according to the sequence of demand.

Subsequently, those sequenced parts are transported to the BoL in a container and stored there

until depletion (Sali et al., 2015). In particular, in case of many part variants this policy is

beneficial, as stocking an enormous amount of different part variants at the BoL can be avoided.
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The location of the sequencing activity can vary. Especially in the automotive industry suppliers

quite often already manufacture the parts needed by the original equipment manufacturer (OEM)

in the appropriate sequence. According to Swaminathan and Nitsch (2007), the sequencing point

can be located at the supplier, in an intermediate sequencing centre, in a sequencing area within

the assembly plant or at the BoL. Within this framework, the last option is considered as line

stocking. Boysen et al. (2015) also describe the location of a sequencing point at supplier(s),

logistics provider(s) or in-house.

Stationary kitting

Kits are an extension of sequenced containers since not only one part and its variants but a

combination of multiple parts and its respective variants are combined in a kit. A specific

characteristic of kits is the depletion of one kit for one product. A kit container can, however,

contain one (Sternatz (2015)) or multiple kits (cf. Limère et al. (2015, 2012)).

The logistical process starts with retrieval of different parts from storage, if applicable, trans-

porting and storing them in a preparation area, followed by repacking them into a common kit.

Stationary kit containers are afterwards transported to the BoL of a specific station, where all

parts of that kit are used and the kit is depleted (Bozer and McGinnis, 1992). The composition

of kits may vary and a distinction between uniform mix and variable mix kits can be made. In

the latter case, kits are not necessarily always composed in the same way. For instance, some

parts may be optional and therefore, not be used in every kit (Limère et al., 2012). Another

possibility for variable mix kits is that different product models require different kits and the

demand for those is varying often (Bozer and McGinnis, 1992). Both issues may result in a

different demand of kits and the corresponding parts. In contrast, uniform kits always contain

the same amount of parts and they differ only due to different variants of the same part.

Note that, though kitting seems to entail a larger effort for preparation than other line feeding

policies, in some scenarios it reduces effort for assembly workers (Hanson and Medbo, 2012).

Traveling kitting

Traveling kits have a similar characteristic to stationary kits since they also contain different

variants of multiple parts. One important difference is, that traveling kits contain parts that

are used at multiple stations whereas parts of a specific stationary kit are only used at a single

station. The process of preparing traveling kits is the same as preparing stationary kits though

it might cause even more outlay than for stationary kits due to a higher complexity. However,

traveling kits are usually brought to the beginning of an assembly line, and reduce effort for

assembly workers in comparison to stationary kits, since they do not need to walk to pick parts

from the BoL (Bozer and McGinnis, 1992). In fact, a traveling kit can also enter the line at an

arbitrary point but either way, it travels along the line with its dedicated product, until it is

depleted. Once a traveling kit is depleted it might be removed from the line and eventually be

replaced by another one or it simply travels until the end of the line. Thus, traveling kits contain

parts for more than one station.
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Sets:

I Set of parts
S Set of stations
P Set of line feeding policies

Variables:

χisp =

{
1, part i is assigned to policy p at station s

0, otherwise

ψsp =

{
1, policy p is used at station s

0, otherwise

Ωp =

{
1, policy p is used

0, otherwise

Parameters:

cvisp Costs to feed part i with policy p to station s
cfsp Costs to use policy p at station s
cfp Costs to use policy p
λis Demand of part i at station s

Table 2.2 Notation for a simple assembly line feeding problem

Similarly to stationary kits, traveling kits may also be distinguished into uniform and variable

kit mix (see previous paragraph).

2.2.2 The assembly line feeding problem

To define the assembly line feeding problem formally, parts and part families need to be defined.

Parts are physical items which are describable by a single part number or stock-keeping-unit

(SKU), and are denoted by the set I, containing all distinct physical parts i used for assembly

which may be used at every station in the set of stations S. Part families on the other hand

describe a set of parts, including different part variants with the same functionality, each iden-

tifiable by a single part number. The set of part families is denoted by F , and a part family

f contains a subset of parts If ⊆ I. All part families f and g are distinct from each other

If ∩ Ig:g 6=f = ∅, and the union of all part families equals I. Every model that is produced on

an assembly line may require parts from various part families, whereas a single part and the

corresponding family may be used for one or multiple models. Demand of parts is denoted by

λis ∈ N0 ∀i ∈ I ∀s ∈ S. This notation is summarized in the Table 2.2.

The assembly line feeding problem describes an unambiguous assignment of every part to a single

line feeding policy. If a part is used at multiple stations it may be assigned to different line feeding

policies (one assignment per station). This decision making process is usually performed once

whenever a new product is planned to be assembled on an assembly line and is done before the
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start of production (Sternatz, 2015). As the decisions taken in the ALFP affect the performance

of an assembly line’s feeding system for the entire product life cycle, we define this problem as

tactical (see Section 2.2.4). Furthermore, decision making in line feeding is heavily depending on

an assembly system’s layout and the available resources in a system. These may not be known up-

front as they also depend on the decisions taken in the assembly line feeding problem. Therefore,

other tactical decisions like the layout of storage areas or the amount of workers hired may also

be incorporated in the assembly line feeding problem. For example, it might be infeasible to feed

all parts in boxed-supply due to the insufficient space in the area where those parts needed to

be prepared. In this case the layout is a limiting factor. Contrary, it is also possible to imagine

an assembly system, where no such area has yet been used. Then it might be worthwhile to

investigate where to place such an area and how to dimension it. Both, limiting factors, but also

design decisions may be incorporated in the assembly line feeding problem without altering the

main purpose, namely the assignment of parts to line feeding policies.

In the following, we give a basic model describing the assignment of parts to line feeding policies.

χisp = 1 denotes the assignment of part i at station s to a feeding policy p ∈ P , P being the

set of policies, while χisp = 0 denotes no assignment to that policy. The ALFP is solved when∑
p∈P χisp = 1 for all parts and stations where λis > 0. The auxiliary variables ψsp and Ωp

indicate if a policy is used at a station s, or in the overall assembly system, respectively. Using

an integer linearisable programming formulation, the basic problem formulation is the following:

Minimize

C =
∑
i∈I

∑
s∈S

∑
p∈P

χisp · cvisp +
∑
s∈S

∑
p∈P

ψsp · cfsp +
∑
p∈P

Ωp · cfp (2.1)

subject to: ∑
p∈P

χisp = min{1, λis} ∀i ∈ I ∀s ∈ S (2.2)

max
i∈I
{χisp} ≤ ψsp ∀s ∈ S ∀p ∈ P (2.3)

max
i∈I,s∈S

{χisp} ≤ Ωp ∀p ∈ P (2.4)

χisp ∈ {0, 1} ∀i ∈ I ∀s ∈ S ∀p ∈ P (2.5)

ψsp ∈ {0, 1} ∀s ∈ S ∀p ∈ P (2.6)

Ωp ∈ {0, 1} ∀p ∈ P (2.7)

In the objective function (Equation (2.1)), the sum of all line feeding costs is minimized. Note,

costs may describe actual costs, but also effort or time. We distinguish variable costs cvisp that

are different for every possible combination of parts, stations and line feeding policies and fixed

costs such as cfsp and cfp . These fixed costs depend on the assignment decisions taken as one can

see in equations (2.3) and (2.4). Obviously, both constraints are non-linear, as the maximal value
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over a set has to be chosen. However, this can be linearized easily, either by big-M constraints

or by adding a constraint for every element from the domain of the maximum value function.

The latter may be done as follows:

χisp ≤ ψsp ∀i ∈ I ∀s ∈ S ∀p ∈ P (2.8)

χisp ≤ Ωp ∀i ∈ I ∀s ∈ S ∀p ∈ P (2.9)

An example for such a fixed cost is the consideration of investment costs for hoists if a certain

policy for a certain part is chosen at a station. Similarly, it might be necessary to invest in a

supermarket when any part is assigned to boxed-supply, sequencing or kitting. Another example

are the fixed costs incurred for preparing and transporting a stationary kit which may trigger a

’free-riding-effect’ (parts that are only kitted due to empty space in a kit) as reported by Limère

et al. (2012).

Constraint (2.2) assures that every part is assigned to exactly one line feeding policy at station

s if the demand for that part i at station s is greater than 0. Constraints (2.5)-(2.7) describe the

binary characteristic of the decision variables.

Modeling the ALFP as such only holds true for the very simple case where neither limitations

on available resources are given nor additional tactical decisions are considered. For that reason,

to well represent practical problems, a decision model should be more complex, incorporating

constraints like a space constraint at the BoL, a capacity constraint for vehicles, limitations on

the preparation area, or others. These can, e.g., be included by knapsack constraints of which

two specific examples are given in equations (2.10) and (2.11).∑
i∈I

∑
p∈P

χisp · aip ≤ As, ∀s ∈ S (2.10)

∑
f∈F

max
i∈If
{χisKs · vi} ≤ VKs, ∀s ∈ S (2.11)

Equation (2.10) reflects a space limitation. Here, aip is the required area for storing a load

carrier containing part i fed with line feeding policy p, whereas As describes the available space

at station s. Equation (2.11) gives an example for constraints regarding the volume of containers

used for stationary kits (p = Ks) where kitting containers have a certain volume VKs which is

not allowed to be exceeded by the sum over the largest part volumes vi within a part family.

In that sum only parts that are decided to be fed in this stationary kit should be considered.

Again, this constraint is non-linear but can easily be linearised.

Although these constraints might seem intuitive, they cannot be found in every research article.

We will explain two possible valid reasons to neglect those constraints. Firstly, neglecting space

constraints is reasonable if the problem at hand is not limited by space constraints (cf. Caputo

and Pelagagge (2011)). This is the case when facilities are planned from scratch and the available

space at assembly stations can still be altered in order to meet space requirements (see above).

In such cases, the implementation of additional costs for space usage might be a useful approach.

Secondly, the type of constraint regarding the volume of containers might not explicitly be
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covered, when kit containers are customized for every station after deciding on the line feeding

policy as we observed during company visits. In summary, we decided not to include these

constraints in the basic ALFP since we believe they are not appropriate and necessary in every

situation. That way, we describe the fundamental problem which can be extended by including

additional aspects as those discussed in Section 2.3. Next, we will shortly discuss the complexity

of the ALFP.

Theorem 2.2.1. The ALFP, described by formulas (2.1)-(2.7) is an NP-hard problem.

Proof. To verify this theorem, we will show that the problem can be restricted to the uncapac-

itated facility location problem (UFLP) which is proven to be NP-hard by Cornuéjols et al.

(1990). We follow the problem definition given by Korte and Vygen (2012)

UFLP Input: A set of facilities J , a set of clients K, costs cij ∈ R+ for serving client i from

facility j, and a cost cj ∈ R+ for opening facility j.

The task is to find a subset of facilities X to be opened and an assignment σ : K → X of clients

to open facilities minimizing costs
∑
j∈X cj +

∑
i∈K cσ(i)i

Given this, we restrict the ALFP to instances with the set of parts I equal to the set of clients

K, the set of policies P equal to the set of facilities J , cvisp = cij ∀s ∈ S, and cfsp = cj ∀s ∈ S.

Furthermore, we restrict the instances by setting cfp = 0 and only considering a single station

|S| = 1 which allows us to neglect the index s for the sake of clarity. This transformation can be

done in polynomial time and we obtain instances equal to the ones described for the UFLP.

Clearly, any solution for the UFLP directly corresponds with a solution for the restricted ALFP,

and vice versa, since opening a facility in the UFLP is equivalent to activating a policy in the

ALFP. In the UFLP clients can only be served from opened facilities. This is equivalent to the

ALFP where parts can only be assigned to a policy if the policy is activated. In addition, the

cost of a solution for one problem is equivalent to the cost of the transformed solution since the

variable costs for serving a client from a facility are identical to the variable costs for assigning

a policy to a part, and the fixed costs for opening a facility are identical to the fixed cost for

activating a policy.

2.2.3 Line feeding processes

The selection of line feeding policies may not only affect the presentation of parts at the BoL, as

shown in Figure 2.1, but also further processes, i.e. replenishment, preparation, transportation,

and usage as well as the intermediate storing of parts. To delineate the scope of the assembly

line feeding problem, hereafter the individual processes are described. The cost factors in the

objective function can relate to each of these processes, and each of these processes may incur

additional constraints. First, parts are stored in a warehouse or intermediate storing unit after

being received within the inbound process. This is no part of the ALFP though, as it does not

affect the selected line feeding policy. The first actual process, falling into the scope of ALFP, is

retrieval of parts from storage and replenishment of supermarkets. The term supermarket stems

from the Toyota Production System, and describes an area to intermediately store and process

(e.g., sorted) parts. Those are used for parts that are provided by boxed-supply, sequencing or
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kitting, and, therefore, have to be handled in some way. Decisions on the number, location,

and design as well as the location of parts within supermarkets may be included. This process

sequence is schematically depicted in Figure 2.2 by means of a Value Stream Map (VSM). This

preparation process consists of handling and repacking parts into load carriers used for the

corresponding line feeding policy. The preparation process might be influenced by decisions,

such as manual vs. automated picking or the efficiency of the operations. After parts have been

prepared, they might be intermediately stored in a buffer zone. These first two processes only

come into play, for parts that are not line stocked. In any case, parts are brought to the BoL

during the transportation process, either starting from the initial warehouse (line stocking) or

from a supermarket (boxed-supply, sequencing, kitting). At the BoL, parts are, e.g., stored in

racks, from which the assembly worker picks parts for final assembly during the usage process.

This usage process involves both, value-adding assembly and non-value-adding activities like

walking, searching and picking. This latter non-value-adding activities are affected by line feeding

decisions and vary with the chosen line feeding policy. Therefore, they have to be included in

the line feeding process, whereas the former can be neglected as they are independent of the

feeding method. After products have been assembled, they can be prepared for shipping in the

outbound process. This last process is not within the scope of the ALFP. As explained before,

replenishment and preparation may be skipped in some cases, which is indicated by the dotted

lines. The dashed lines on the other hand, delineate the scope of the ALFP.

Usage
Inbound Replenishment Preparation Transportation Usage Outbound

Focal company

Scope of assembly line feeding

Optional processes if parts are preprocessed

Figure 2.2 Value stream map for assembly line feeding 1

2.2.4 Line feeding decision levels

As the actual assembly line feeding problem has been introduced, we will further delimit the

scope by discussing different levels of decision making.

1Standardized VSM symbols are used; as only material flow is taken into account, push arrows are used.
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Table 2.3 Line feeding decisions on different decision levels

Strategic Tactical Operational

Placement of feeding preparation Feeding policy assignment Product sequencing
Facility sizing Supermarket organization Replenishment scheduling

Outsourcing degree Vehicle selection Transportation scheduling
Standardization degree Automation degree Preparation scheduling

In general planning, strategic, tactical and operational levels are distinguished. Bhatnagar

et al. (1993) describe that decisions of different levels affect each other and should be con-

sidered in an integrated way regarding the intra-organizational decision levels as well as the

inter-organizational hierarchy. Although the regular planning process is a top-down, hierarchical

process, it is widely believed that there is an interaction of strategic, tactical and operational

management decisions (Armbrüster and Kempf, 2012). Transferred to this framework, it can be

stated that the assignment of parts to line feeding policies, being a tactical decision, is influenced

by decisions made at other planning levels and also affects other planning levels itself.

The tactical decision of assembly line feeding influences the efficiency of the system on an op-

erational level, but an improvement of operational efficiency, e.g., by locating parts in a more

efficient way, could also have an influence on the tactical decision of line feeding. The same holds

true for the relation of tactical and strategic decisions. Hence, tactical decisions can influence

operational or strategic decisions and vice versa, though the actual planning process is often

done in a hierarchical way. Even within one decision level there might be hierarchical decisions.

E.g., the ALFP determines part feeding policies and possibly the layout of a feeding system if

the system has not yet been designed. If the design is determined up front on the other hand, it

affects the ALFP.

In order to state the limits of the ALFP on the tactical level and distinguish it from strategic

and operational levels, the scope of every level is shortly explained in the following and some

examples of decisions on each level are given in Table 2.3.

Strategic line feeding

From a hierarchical point of view, one very long-termed or strategic issue in line feeding is

the cooperation with suppliers or logistics providers. This can be described by the outsourcing

decision, which deals with the determination of the right amount and consequences of outsourcing

logistical handling. It might also include the selection of suitable logistics providers or suppliers.

Another strategic decision is the location of external warehouses, which influences operations

and applicability of line feeding policies. This decision level could also be described as a supply

chain level. Klingenberg and Boksma (2010) provide a framework to investigate outsourcing of

logistics handling activities. They also incorporate the tactical and operational level by applying

strategic frameworks, like transaction cost theory, to outsourcing of line feeding aspects. For that,

mainly two dimensions are distinguished: the location of the outsourced activities and the type

of outsourced activities. Moreover, Mathisson-Ojmertz and Johansson (2000) evaluated five case
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studies with a different degree of outsourcing logistical handling. In those cases, material handling

operations were stationed at different locations within the supply chain. It was found that

systems, where a logistical service provider was integrated, required much more logistical handling

overall. On the other hand, no significant difference was found between performing handling at

the supplier and in-house. In Figure 2.3, it is schematically depicted how the flow of material

could look like, assuming different outsourcing options. This type of strategic considerations are

not elaborated in the following, as they are outside of this review’s scope.

Supplier

line

stocking
boxed-supply sequencing kitting

Logistics Provider

boxed-supply sequencing kitting

Manufacturer

Inbound Inbound

boxed-supply sequencing kitting

Assembly line

Figure 2.3 Effects of external handling on line feeding policies

Tactical line feeding

The tactical level is subordinate to the strategic or supply chain level, and could also be described

as assembly system planning. The fundamental and constituting aspect of the tactical ALFP

is the assignment of parts to line feeding policies. Additionally, one may include other tactical

decisions that impact or are impacted by the decision making of line feeding policies. Those

decisions, amongst others, could be the number of storages, the kind of preparation areas or the
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types of vehicles used for transportation. All these decisions influence a system’s performance in

the medium term and can hence be classified as tactical and incorporated in decision models on

assembly line feeding. Those decisions do not have to be incorporated necessarily though. This

is due to the fact that in preexisting assembly systems those decisions might have been taken in

the past and are not desired to be changed.

The scope of decisions to design tactical aspects in an assembly feeding system is quite large,

and furthermore, impacts the operational as well as the strategic level. The chosen line feeding

policies, e.g., have an influence on the operations that need to be performed and hence on the

costs, which in turn may influence the desired degree of outsourcing.

Operational line feeding

Opposite to strategic and tactical, operational issues are more short-dated and can be changed

easily. On the operational level, decisions on facility design, products and the number and

characteristics of storage are already taken. Typical tasks are e.g. the constellation of load

carriers such as kits, transportation of pallets to stations and replacement of empty ones. All

these tasks depend on the current demand for parts and have to be planned in real-time whenever

the production schedule is altered. The aim of planning within this stage is, consequently, to

increase the efficiency of an assembly system while satisfying demand, which is of very high

importance since waiting for parts results in very expensive idle times of the entire assembly

line. Similar to strategic issues, operational ones are rather out of the scope of this review. They

might be classified by a framework similar to Brucker et al. (1999) or Graham et al. (1979) for

individual sub-processes.

2.3 Problem classification

Within this section, a classification for the actual assembly line feeding problem is proposed.

Issues, considered in the classification, stem from literature on the ALFP as well as related

literature. The aim is to categorize line feeding problems in order to reveal research gaps. The

classification is loosely based on other classifications, like Graham et al. (1979), Brucker et al.

(1999) and Boysen et al. (2007), each using three different fields, α, β, and γ, to describe a

specific problem. Graham et al. (1979) classify machine scheduling problems describing the

machine environment within the α-field, job characteristics in the β-field and optimality criteria

in the γ-field. This first classification has been adapted by Brucker et al. (1999) to classify

project scheduling problems and by Boysen et al. (2007) to classify the generalized assembly

line balancing problem. In project scheduling, the α-field is used for resource environment, the

β-field for activity characteristics and the γ-field for objective functions. Boysen et al. (2007)

exchanged the first two fields, describing job characteristics in the α-field and station and line

characteristics in the β-field, whereas the γ-field stays the same. In the present classification,

we adapt the classification scheme of Boysen et al. (2007), describing line feeding policies and

product characteristics in the α-field, characteristics of the feeding system in the β-field and
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objective functions in the γ-field. This is done due to the strong relation of assembly line feeding

and assembly line balancing as already shown by Sternatz (2015) and Battini et al. (2017).

Search terms

Body of Literature

WoS

relevant?

EvaluateEvaluate

Reject paper Final reference listno yes

Add references and
’cited by’ papers

WoS/GS

Figure 2.4 Structured approach to find related literature

The selection of literature for this study was conducted in the following manner: First, we used

the Web of Science to search the terms listed in Table 2.4. The search results were filtered for

scholarly peer reviewed journals and recent conference papers. We exclusively considered articles

written in English. All articles found this way (described by body of literature were evaluated

for relevance based on title and abstract. The actual selection was based on the scope of the

paper: papers, dealing with the selection of line feeding policies out of at least two options were

considered as meeting the scope of the ALFP. We also took into account papers that focus on

sub-process(es) of the ALFP but do not explicitly assign parts to line feeding policies. However,

the latter papers were only considered when creating the classification framework. This is done

to enrich the classification by additional aspects which have not been addressed yet in papers

addressing the actual ALFP. Those latter papers were thus not classified in Table 2.5. Articles

we considered to be irrelevant were excluded from further consideration, whereas relevant articles

were added to a final references list. Every article in the final reference list was examined in two

ways: Firstly, we added the articles in the reference lists to the Body of literature. Secondly,

we investigated on Web of Science and Google Scholar, which other papers cited this work and

added those to the Body of literature as well. This step was done repeatedly, until the Body of

literature has been evaluated entirely. This process is depicted in Figure 2.4.

2.3.1 Assembly line and product characteristics

The line feeding policies, as well as the assembly line and product characteristics, are described

within the so-called α-field. It contains decisions on possible line feeding policies and considera-

tions on the usage process (Figure 2.2), being characteristics and demand of products and parts.

Throughout the classification, the symbol ◦ denotes an empty field.
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Table 2.4 Search terms used in Web of Science and research fields used to exclude not related papers

Search terms Exclusion of fields
”assembly line*” AND ”feeding” Optics, plant sciences, chemistry,...
”assembly” AND ”material* supply”
”assembly” AND ”part* supply”
”assembly line*” AND ”material* provision”
”assembly” AND ”part* provision”
”assembly” AND ”kitting”
”assembly” AND ”line stocking”
”assembly” AND ”feeding” cell biology, ecology, microbiology,...

Line feeding policies

As shown in Subsection 2.2.1, five policies are distinguished in this framework.

α1 ∈ {L,B, S,Ks,Kt}.

• α1 = L: Full load carriers are stored at the border of line (line stocking).

• α1 = B: Parts are repacked into smaller load carriers (boxed-supply).

• α1 = S: Sequenced parts are delivered to assembly lines.

• α1 = Ks. Parts are sorted in stationary kits, which are supplied to specific stations

requiring these.

• α1 = Kt. Parts for multiple stations are gathered in a common kit, which is delivered to

an entry point of the assembly line and travels along (part of) the line with the product.

As we experienced in company visits, the production control of feeding material for assembly

can differ for different line feeding policies. E.g., more standardized parts might be triggered by

a pull signal, whereas highly specific kits might be controlled in a push manner. The way of

controlling part replenishment might have an impact on the stock at the BoL and therefore, it

might affect holding costs when considered (see Section 2.5.1).

Remark 1. By defining the ALFP as the assignment of parts to line feeding policies, it is implied

that more than one policy is examined. This can, e.g., be denoted by α1 = {LKs} to describe

that line stocking and stationary kits are compared.

Assembled products

The products assembled in an assembly system can deviate from each other with respect to the

part variants used, processing times, or precedence graphs.

α2 ∈ {◦,mλ,Mλ}

• α2 = ◦: Only a single type of product is produced on the assembly line. In literature, this

is described by the term single model assembly (Boysen et al., 2007). This notation is also

used when no clear definition of the number and kind of produced models is given in a

paper which raises the assumption that a single model is assembled.
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• α2 = mλ: Different products are assembled on a single assembly line without the need for

setups: the sequence of products is arbitrary. This is referred to as mixed model assembly

line (Becker and Scholl, 2006). λ ∈ {◦, is} has to be defined.

• α2 = Mλ: Multiple products are assembled batch-wise on a single assembly line. This is

called multi model (Becker and Scholl, 2006). In this case, setup times may exist or it may

be useful to remove parts, which are temporarily not required, from the BoL when the

produced model is changed. λ ∈ {◦, is} has to be defined.

– λ = ◦: The precedence graphs are considered to be distinct. Hence, the products differ

by the required part families and/or task precedence relations. This may affect the kit

constellation. When products truly differ with respect to their precedence relations,

one should plan kits for every model individually as (some) parts may be used by one

model only and thus block space for other parts used in a different product.

– λ = is: The precedence graphs of different products are considered to be isomorphic.

Hence, the products differ only by the required part variants of the same part families.

In these cases, one only needs to plan a single kit type.

In real-world applications, assembly systems often consist of more than one assembly line. One

possible consequence of multiple assembly systems is a change in transportation distances and

the organization of transportation. However, usually these problems can be decomposed into

individual problems, optimizing line feeding for every assembly line individually. Therefore, this

trait is not considered further.

Part partitioning

As mentioned earlier, one might make a distinction between parts and part families containing

multiple parts of the same kind.

α3 ∈ {◦, f}

• α3 = ◦: All parts are assumed to be distinct and there is no interrelation between parts.

• α3 = f : The set of parts is partitioned in families, each containing up to multiple parts

with similar characteristics and a similar functional purpose.

As stated in Section 2.2.2 usually all different parts which can also be referred to as stock-

keeping-units are distinguished. Additionally, one might take into account that some of these

parts are linked to another (Limère et al., 2015, 2012). This can be described by families which

contain multiple parts but all of these parts may substitute each other. Therefore, for a single

final product, not more than one part out of a family is used. As the parts within a family are

substituting each other, this impacts, e.g., the required volume or weight in a kitting container.

Obviously, demand patterns of individual parts within a family are also not independent but

are linked to each other and the demand of the final products. Even if parts are classified in

families, the assignment to line feeding policies can still be done on a part level. However, if
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the assignment should be similar for all parts within a family, additional constraints need to be

included in the mathematical model.

Part demand

Product demand, and subsequently the demand for parts, can either be assumed to be stochastic

or deterministic.

α4 ∈ {◦, λ̃}

• α4 = ◦: Demand for products as well as parts is assumed to be deterministic over time. This

assumption often results from the use of a master production schedule (MPS), indicating

a planned production quantity.

• α4 = λ̃: Product and part demand are assumed to be stochastic over time.

In operational problems, part demand can be known in advance on a short term basis if tracking

systems are used (Choi and Lee, 2002) or a frozen schedule is applied (Boysen and Emde, 2014).

But even then, demand can change due to machine breakdowns, line stoppages, rescheduling or

defective parts (Alnahhal and Noche, 2015a). However, in tactical problems, part demand is

unknown. This can easily be seen, as the ALFP is often solved before the start of production.

In that case, demand is usually not known. Though, it can be estimated by the use of a MPS or

by analyzing the demand of similar products (Faccio, 2014). Therefore, stochastic assumptions

seem to be more realistic than deterministic on this level. However, the latter are used in the

majority of papers.

2.3.2 Feeding system characteristics

The β-field describes typical assumptions and decisions of all assembly line feeding processes.

The sequence of the next subfields aims to follow the process flow starting after the inbound

and ending with the assembly of parts (see Figure 2.2). Following this logic, the first two

paragraphs are on the preparation of parts, followed by the process of replenishing supermarkets

and transporting parts to the BoL. Next, the usage process and space availability at the BoL

are discussed. Lastly, we included a more general section on ergonomics as this might affect all

previously mentioned processes of the assembly line feeding problem. Considerations affecting the

usage of parts are already incorporated in the α-field, as they are mostly determined by product

and line characteristics. For every process, mostly tactical and a few operational considerations

and assumptions are included. Furthermore, the interactions between tactical and operational

issues are explained as well.

Supermarkets

As parts have to be stored in some way before they are used or pre-processed, various options

for organizing the storage might be taken into account.

β1 ∈ {flλ, olλ}.
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• β1 = flλ: The number and location(s) of all preparation areas (also: supermarkets) are

assumed to be determined when parts are assigned to line feeding policies. Therefore, it is

referred to as a fixed layout. λ ∈ {◦, s} has to be defined.

• β1 = olλ: The number and/or location(s) of all storage and preparation areas are de-

termined during the ALFP which is described as an open layout. λ ∈ {◦, s} has to be

defined.

– λ = ◦: The actual material flow is determined for every part up front. Therefore, it is

predetermined in which storage parts are stored and in which preparation area they

are pre-processed (Sali and Sahin, 2016; Sali et al., 2015).

– λ = s: The material flows are not determined up front and have to be structured by

making additional decisions on the location of part preparation and storage.

In case of an existing assembly plant (brown field) the number and locations of warehouses and

preparation areas might not be changeable. However, in the case of planning a new assembly

system (green field), finding the optimal number and location(s) for storage and preparation

units is not trivial (Alnahhal and Noche, 2015b). Integrating this decision into the ALFP might

actually affect decision making quite drastically. It could also be decided that all storage areas are

used as preparation areas at the same time (Sali and Sahin, 2016; Sali et al., 2015). However, in

practice mostly supermarkets are used (Hanson and Finnsgard, 2014; Limère et al., 2015). These

contain only a subset of parts that are decided to be preprocessed in some way. Additionally,

some parts might be stored at multiple locations, such as different supermarkets, serving the

entire line, or also in various so-called line-integrated supermarkets, serving only a subset of

stations (Boysen and Emde, 2014). The location of storages and supermarkets can influence the

number of parts that can be pre-processed or the costs that come along with transportation.

Lastly, the number of storage locations and the degree of decentralization might also affect the

amount of parts in the system and, therefore, the holding costs.

Preparation process

Preparation can be organized in multiple ways, e.g., by performing order picking in an automated

or manual manner.

β2 ∈ {mλ, aλ, oλ}.

• β2 = mλ: Preparation of parts is carried out in a manual manner. This means that opera-

tors walk to the storing position and pick the required amount for every part individually.

This can also be described with the picker-to-part order picking method. Here, the number

of operators might be a limiting factor but could depend on the decisions taken. λ ∈ {◦, la}
have to be defined.

• β2 = aλ: Preparation of parts is performed in a (partially) automated manner. This can

also be described by the part-to-picker order picking method, where parts are brought to a

picking table by automated storage and retrieval systems (ASRS). The actual retrieval from
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the storage container and repacking into another container can either be done manually

or automated. If preparation is done in an automated manner, there will most likely be

strict limitations on the system’s capacity and capacity can only be increased when high

investment costs are considered. λ ∈ {◦, la} have to be defined.

• β2 = oλ: At the time of planning feeding options it is not yet determined, whether an

automated or manual preparation system is to be used. Cost calculations can be used

to decide between different options (Caputo et al., 2018). Another option arises when

assembly parts are produced by additive manufacturing, as they can either be produced in

bulk or in kits (Khajavia et al., 2018). λ ∈ {◦, la} have to be defined.

– λ = ◦: Parts have predetermined or randomized storing locations which are not

altered.

– λ = la: The actual storage location for every single part is determined while solving

the ALFP. This can be done in order to reduce operating/picking times (Brynzer

and Johansson, 1994). Moreover, in automated systems dynamic storage location

assignment, like in puzzle based storage systems (Gue and Kim, 2007) or kiva robot

operated systems, may be used.

Transportation and replenishment process

Within line feeding a lot of transportation operations have to be performed from a warehouse

either to preparation areas or to the assembly line. Prepared parts also need to be transported

from the preparation area to the assembly line. Lastly, empty load carriers have to be returned.

β3 ∈ {ftλ,ω,θ, otλ,ω,θ}.

• β3 = ftλ,ω,θ: For every part and line feeding policy, it is decided a priori on a fixed

transportation vehicle that is used. We refer to this situation as having a fixed mean of

transportation. λ ∈ {◦, r}, ω ∈ {◦, s}, θ ∈ {◦, l} have to be defined.

• β3 = otλ,ω,θ: The mean of transportation is not determined (open) when a decision on the

ALFP is taken. For every line feeding policy, a set of options for transportation vehicles

might be taken into account. λ ∈ {◦, r}, ω ∈ {◦, s}, θ ∈ {◦, l} have to be defined.

– λ = ◦: Transportation vehicles operate on fixed and predetermined routes.

– λ = r: Routes for vehicles are not given and are formed throughout the decision

making process of the ALFP.

– ω = ◦: Transportation is performed whenever demand occurs, not considering fleet or

other capacity restrictions.

– ω = s: Transportation is scheduled in a logical manner considering capacity con-

straints and aims for a steady supply. This decision process is incorporated in the

decision making model for assembly line feeding.
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– θ = ◦: Loading of transportation vehicles in terms of capacity restrictions, such as

weight or volume is not taken into account.

– θ = l: Loading of vehicles is part of the decision making model. Capacities of the

respective vehicles are taken into account.

In practice, line stocked parts are often assumed to be fed by forklifts, whereas kits are usually

assumed to be transported by tow trains (Alnahhal and Noche, 2013; Boysen and Bock, 2011).

Similarly, sequenced and boxed-supply parts are mostly transported by tow trains as well. How-

ever, the determination of transportation vehicles for assembly line feeding might not be taken

as granted, but can be altered as proposed by Battini et al. (2015). Battini et al. (2015) present

selection rules for the use of tow trains, conveyors and automated guided vehicles.

Some reviewed literature aims at optimizing the load of vehicles (Beamon and Deshpande, 1998;

da Cunha and de Souza, 2008; de Souza et al., 2008; Emde et al., 2012; Emde and Gendreau, 2017;

Emde and Schneider, 2018; Fathi et al., 2016), sometimes also in combination with optimizing

scheduling or routing. Though loading and scheduling are more operational issues, they might

have an influence on the tactical decisions, as highlighted in Section 2.2.4 since they can affect

the feasibility or efficiency of a certain plan. Therefore, integrating these more operational issues

might be a worthwhile approach. Research on the loading problem shows that not optimally

or fully loaded vehicles are rather the norm than an exception. This, as well as the fact that

vehicles are not permanently moved due to certain schedules, can be tackled by incorporating

average fill rates or utilization rates of vehicles. By doing so, the actual fleet size or number of

transportation-tours can be approximated more realistically.

As mentioned earlier, transportation does not only include the final transportation of parts to the

assembly station but also replenishment of preparation areas as this will also require additional

transportation effort as, e.g., assumed by Caputo et al. (2015b); Limère et al. (2015, 2012).

Replenishment of supermarkets can be examined from a more operational point of view as well

by optimizing loading and scheduling (Emde, 2017) or routing.

Return process

The return process includes the removal of depleted load carriers from the BoL and transportation

to an area, where they are stored or reused (Alizon et al., 2009; Boysen et al., 2015). Most research

assumes return is performed in the course of feeding new load carriers. However, Boysen and

Bock (2011) describe a separate return process of load carriers, where parts are fed by forklifts,

but tow trains perform the return of empty load carriers. In this case, costs or effort for this

process have to be considered.

β4 ∈ {◦, re}.

• β4 = ◦: The return process of empty load carriers is included in the feeding process of

parts, or not considered explicitly. Mostly, handling times are adjusted to compensate for

the exchange of empty load carriers.
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• β4 = re: Return of empty load carriers is considered separately from the feeding process

by planning additional vehicles or space requirements for storing empty containers.

When returning depleted load carriers is assumed to be included in the feeding process, this

should be considered within the cost and time allotted to the process. After all, the old load

carrier has to be removed, replaced by a new one and then transported to a storage area.

Furthermore, a practical problem could arise: when a new load carrier is fed before the previous

one is depleted, immediate return becomes either impossible, or very strenuous because either

leftover parts need to be repacked to the new load carrier, or the feeding vehicle has to wait until

depletion. This problem can be eliminated by not using load carriers. The concept of minomi

describes an elimination of containers by providing parts for assembly without any load carrier

but only being hooked on hangers or stacked. This separation of parts and containers can either

be done at the station or in a preparation area and has an influence on return and replenishment

operations (Hanson, 2011).

Remark 2. If the return is considered separately and is additionally planned in terms of routing,

loading or scheduling, this should be indicated in the transportation process (β3).

Usage process

The task of an assembly worker consists of multiple single activities. The most important and

long lasting activity is assembly, however, it requires the worker to perform additional tasks

such as walking to and from parts’ locations, searching for correct parts, as well as grasping

and handling parts. These tasks are similar to the ones done by logistical staff and include

walking to a storage location, picking parts and removing them from their location. Besides, it

was shown by Hanson et al. (2015) and Brynzér and Johansson (1995) that there are further

tasks, like reading picking lists or waiting. Here, all tasks performed by an assembly operator

are summarized as operations. The time required for these operations may be assumed to be

constant, i.e. fetching a part provided with a certain line feeding policy takes an average amount

of time, or those times may be assumed to be dynamic, i.e. depending on another location like

placement on along the BoL. Furthermore, one might think of a limit on the available time. In

assembly lines, tasks have to be performed within a cycle time such that the product can be

passed on to the next station when the time is over.

β5 ∈ {◦, cλ, dλ}

• β5 = ◦: Operation times are not considered explicitly.

• β5 = cλ: Operation times are considered to be deterministic and constant. This includes

all operations times. λ ∈ {◦, r} has to be defined.

• β5 = dλ: Operation times are assumed to be dynamic. This may be reasoned in the chosen

size of a station (Limère et al., 2015) or by the placement of parts along the line. λ ∈ {◦, r}
has to be defined.

– λ = ◦: Operation times are considered without giving a restriction on it.
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– λ = r: Operation times are restricted by the available time which is defined by

the share of the cycle time that is not needed to perform the actual assembly. This

approach has been described by Sali and Sahin (2016) where restrictions on the prepa-

ration times are given.

The operation times for walking at the BoL may be influenced by the space allocation of parts.

In warehousing-literature this is called the storage location assignment problem (SLAP) (van den

Berg, 1999). If it is included in an ALFP model, operation times may be considered dynamic

as they depend on the decision for a part’s storage location at the BoL. This effect has been

described by Klampfl et al. (2006), Finnsgard et al. (2011) and Finnsgard and Wänström (2013).

Thus, including this decision in the assembly line feeding problem also leads to dynamic operation

times.

Restrictions on times available for operations have only been applied by Sali and Sahin (2016) so

far. However, in reality this seems to be an important issue, as in paced assembly lines (assembly

lines with a strict cycle time) only a certain amount of time is available to do assembly operations

before the product is passed on to the next station.

Space at the BoL

The trends in assembly, described in Section 2.1, lead to a rising number of parts for assembly.

Especially in large product assembly, this may result in a crowded border of line, which might

be the reason for managers to start considering various line feeding policies in the first place.

Hence, the available space at the BoL is an important factor for the ALFP.

β6 ∈ {◦, scλ,ω}.

• β6 = ◦: No space constraint is considered at the BoL.

• β6 = scλ,ω: The space at the BoL is constrained. With λ ∈ {◦, sh} and ω ∈ {◦, eq}.

– λ = ◦: The space at all stations is constrained and given, e.g., by splitting up the

available space equally or by determining a certain amount of space for each station

a priori (Bukchin and Meller, 2005).

– λ = sh: Even if space at the border of line is constrained, it might be possible to use

variable space constraints on a stationary basis, with an overall upper bound equal

to the size of the plant (Hua and Johnson, 2010; Schmid et al., 2018). Furthermore,

one might consider that space can be shared by two adjacent stations to store parts

or equipment that is used by both stations (Hua and Johnson, 2010).

– ω = ◦: The available space at all stations is solely used for the storage of products.

– ω = eq: The available space at all stations is not solely used for storage of parts,

but also for assembly or handling equipment, which might also be shared by two or

more stations. This aspect becomes especially important when line balancing and line

feeding are integrated (Sternatz, 2015), or costs for handling equipment, necessary at

the BoL and within the preparation area, are considered.
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The limitation of space at the BoL influences decisions on line feeding policies, as shown by

Limère et al. (2012). Though space constraints are often assumed (Fathi et al., 2014), space

at the BoL does not have to be constrained necessarily. It is also possible to think of problem

formulations minimizing the required space, if the assembly system is not yet designed (Caputo

et al., 2015a).

Ergonomic stress

Though there might be a trend towards automating assembly (Günther et al., 1996; Spath and

Baumeister, 2001) as well as kit preparation (Balakirsky et al., 2013; Sellers and Nof, 1986,

1989), certain preparation and assembly operations are still executed manually. Furthermore,

transportation and exchange of depleted and full load carriers is often performed by a logistical

worker. In all these processes, ergonomic loads occur and they might differ for different line

feeding policies. This can be considered in a twofold manner: firstly, a single operation should not

exceed a certain ergonomic stress level, and secondly, the ergonomic stress during a shift should be

lower than a certain daily limit which could be implemented with constraints ensuring the daily

load to be less than a certain limit (Battini et al., 2016a; Christmansson et al., 2002; Kothiyal

and Kayis, 1995; Medbo, 2003; Neumann and Medbo, 2010). A mathematical mapping in an

optimization model could be done as described by Battini et al. (2016a) by calculating energy

expenditure and rest allowances and implementing them in knapsack constraints. However,

there are multiple ways to measure ergonomic loads (e.g. NIOSH, OCRA and EAWS) as their

implementation in optimization models is not limited.

β7 ∈ {◦, erg}

• β7 = ◦: Ergonomics is not considered. This might be due to automation of tasks, but can

also be due to neglect.

• β7 = erg: Ergonomic stress is considered. This includes the ergonomic load of assembly

workers and/or logistical staff by constraining the amount of ergonomic stress for every

(individual) worker.

Another possibility to include ergonomics is the consideration of powered exoskeletons or hoists

for burdensome tasks. In this case, investment costs for stations with high ergonomic loads must

be taken into account in the objective function.

2.3.3 Objectives

Objectives of research papers are summarized within the γ-field. Objectives do not necessarily

have to be incorporated in an objective function, but can also be observed in terms of performance

indicators.

γ ∈ {λ, ω, η, θ, χ, ζ, ψ, ◦}.

• λ = ◦: Investment costs are not considered.
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• λ = i: Investment costs are considered.

• θ = ◦: Shop floor costs/required amount of space are not considered.

• θ = s: Shop floor costs/required amount of space are considered. These may account for

renting space or for depreciation on the building.

• η = ◦: Transportation costs/times are not considered.

• η = t: Transportation costs/times are considered.

• ω = ◦: Logistical handling costs/times are not considered.

• ω = l: Logistical handling costs/times are considered.

• χ = ◦: Holding costs/amount of inventory for material is not considered.

• χ = h: Holding costs/amount of inventory for material are considered.

• ζ = ◦: Costs for logistical handling of the assembly workers are not considered.

• ζ = a: Costs for logistical handling of the assembly workers are considered.

• ψ = ◦: No further cost elements/objective criteria are considered.

• ψ = fu: Further cost elements/objective criteria like stockout or error costs are considered.

• γ = ◦: No explicit optimization criterion is defined.

The authors of this article propose to use cost functions in future research, as all reviewed

optimization criteria such as the number of held parts or number of workers are describable with

cost considerations obtaining at least the same level of detail.

Remark 3. The previous proposed classification can be extended as soon as further considerations

emerge. Whenever the classification is extended, it should be ensured that generic terms are used,

which are not yet included in another (sub-)field of the present classification.

2.4 Literature classification

Within this section we give a classification of reviewed literature, explicitly dealing with the

ALFP, in Table 2.5. The paper’s classifications are split up into two groups: papers that aim

to optimise decision making in the ALFP and papers investigating the selection of line feeding

options by other methodological means. In case a paper comprises multiple options for a single

subfield, e.g., if multiple problems are compared or a more detailed planning step is included

only for some of the processes or line feeding policies, only the most complex notation is denoted.

In the rightmost column, the research methodology is stated according to the table’s legend.
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Additionally, classified papers are briefly reviewed, sorted by time of publication to emphasize

the evolution of the field.

Bozer and McGinnis (1992) describe differences between line stocking and kitting in a conceptual

way. For this, relevant concepts like kits are formally introduced. Furthermore, a first descriptive

cost model is formulated. This paper can be seen as the seminal paper in line feeding.

Wänström and Medbo (2009) research different types of racks and packaging types at the BoL.

From analysing two case studies, it was found that line side presentation has an impact on assem-

bly performance regarding different characteristics like work task efficiency and manufacturing

flexibility.

Battini et al. (2010a) examine (de)centralization of stocks and utilization of different feeding

policies in order to keep assembly systems flexible and efficient. The paper is an integration of

Battini et al. (2009) on feeding policy selection and Battini et al. (2010b) on decentralization

of storages by establishing multiple supermarkets. To combine these approaches, a hierarchical

decision framework is introduced and demonstrated for some industrial examples.

Hua and Johnson (2010) describe a number of issues that may influence the assembly line feeding

problem, focussing on line stocking and kitting, by reviewing the literature and analyzing a case

company. The main influences are expected to be in the fields of product characteristics, storage,

production control and system design.

Caputo and Pelagagge (2011) provide a descriptive cost model for line stocking, boxed-supply

and traveling kits in order to provide production managers with information on improving the

structure of part feeding. For an easy assignment of parts to line feeding policies, an ABC-

methodology is described to group parts. Case data is used to show benefits of the proposed

methodology.

Limère et al. (2012) utilize a mixed integer programming model to optimise the assignment of

parts to kitting and line stocking at mixed model assembly lines, minimizing overall system

costs. Storage, preparation, transport, line side presentation and usage of parts are taken into

account. Computational results are basing on case study data and demonstrate that hybrid

policies perform better than a single policy.

Faccio (2014) quantitatively analyzes boxed-supply and kitting for feeding mixed model assem-

bly lines. This research is generally building on Faccio et al. (2013). But in contrast to the

previous paper, which is focusing on fleet size and inventory level optimization, this paper is

on the assignment of parts to line feeding policies by taking into account stochastic demand.

For evaluation a simulation of a large amount of scenarios is carried out. Rules of thumb are

summarized in a decision map.

Hanson and Brolin (2013) analyze the introduction of kitting instead of boxed-supply and se-

quencing by analyzing two case studies of two production environments. The effects on man-hour

consumption, quality and flexibility are discussed.

Hanson and Finnsgard (2014) examine the effect of different sizes of load carriers on man-hour

consumption by means of a case study. It was found that the size has an influence on differ-

ent tactical decisions, like the materials handling equipment used, and on operational assembly

performance. However, the results show that the overall man-hour consumption does not signif-
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icantly decrease with an increase of load carrier size, but activities are locally shifted.

Caputo et al. (2015c) aim at supporting the managerial decision between line stocking and boxed-

supply for single model assembly lines. Costs are analyzed using a descriptive model for both

feeding policies. It is assumed that only one line feeding policy is applied at once. It was found,

that there is no general superiority of one of these line feeding policies. In another study, Caputo

et al. (2015a) propose an optimization model to examine the assignment of single parts to line

feeding policies. Line stocking, boxed-supply and kitting are taken into account to provide a

model, aiming at managerial decision support.

Sternatz (2015) is the first to integrate assembly line feeding and assembly line balancing. A

given layout was assumed and all processes of line stocking and stationary kitting were taken

into account. A given cycle time was assumed, so that single-model line balancing could be

performed. Optimizing the integrated problem, lower costs could be achieved in comparison to

the suboptimal solution obtained by sequentially solving both problems.

Limère et al. (2015) extend previous work by Limère et al. (2012) by incorporating dynamic walk-

ing distances in preparation and usage, leading to dynamic operation times. Other assumptions

remain the same as in the previous study. New data instances, created with a data generator,

are used to conduct computational studies showing the influence of product characteristics on

the ALFP decision.

Sali et al. (2015) formulate a descriptive cost model for line stocking, sequencing and kitting

for a real-world production system. The least costly line feeding policies for that setting are

determined. Later, Sali and Sahin (2016) provide an optimization model for the decision between

line stocking, sequencing and kitting. Computational results show that available space at the

BoL and kitting container capacity have a major influence on this decision.

A descriptive model is used to evaluate the influence of part characteristics on the choice of line

feeding policies by Caputo et al. (2016, 2017b). A map is created to show rules of thumb for line

feeding policy decision.

Battini et al. (2016a, 2017) provide a decision support model, jointly optimizing assembly line

balancing and assembly line feeding by considering ergonomic aspects. For this, a mixed integer

programming model is proposed and solved for a small case study.

In Caputo et al. (2017a) a model for calculating error costs in picking operations for line stocking,

boxed-supply and traveling kits is presented.

A decision making approach by clustering parts into groups is proposed by Usta et al. (2017).

The results obtained for the data of a case study are compared to the current situation.

Faccio et al. (2018) examine the selection of line feeding policies (boxed-supply and stationary

kitting) by proposing a descriptive cost model together with a rule of thumb for decision making.

This model is applied to the feeding systems of five case study companies and results are tested

by simulating varying parameters.

Schmid et al. (2018) propose a model to optimise decision making, considering all possible line

feeding policies simultaneously. Multiple products on a single assembly line are considered and

the effect of shared space is investigated. The effect of these traits of assembly lines have been

compared on multiple artificial, though case study based, datasets.
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2.5 Further research

By reviewing and classifying literature on the ALFP, we discovered large research gaps. Hereafter,

we give an overview of the, to our perception, most substantial open research areas. Firstly,

we describe research opportunities within the framework of the proposed ALFP classification,

in Subsection 2.5.1. Secondly, we propose related research streams or possible integrations in

Subsection 2.5.2.

2.5.1 Extending the ALFP

Line feeding policies

In practice, the implementation of each line feeding policy is possible for every assembly system.

Thus, it is extremely important to evaluate the benefits and drawbacks of all line feeding policies

by comparing them with each other.

In most cases, except from Schmid et al. (2018), only two or three line feeding policies are

taken into account as can be seen in Table 2.5. This holds true for qualitative and quantitative

comparisons. Distinguishing stationary and traveling kits, future research should compare five

line feeding policies (α1) in order to make them easily comparable and creating managerial

insights. For creating managerial insights, it might be interesting to investigate the effect of all

possible different costs on decision making. Doing this, it can be found which costs are actually

relevant and should be incorporated in future decision making. Costs with high differences for

different line feeding policies are especially promising to have strong effects on decision making.

Quality costs, e.g., could differ largely for different line feeding policies and might therefore

influence decision making.

Product model characteristics

As mentioned in the introduction of this chapter, trends like mass customization can be observed

in product assembly, leading to an increased use of mixed and multi model assembly lines. This

can also be seen in the case studies reviewed for the classification. Though these trends are

prevalent in industry, only one research paper was found providing a mathematical model explic-

itly dealing with the feeding problem for multi model assembly lines or mixed model assembly

lines with models having distinct precedence graphs (α2) (Schmid et al., 2018). However, dis-

tinct precedence graphs will lead to a higher number of kits, since there will be different kits

established for different models. Additionally, in multi model assembly lines some particularities,

like feeding of assembly lines in intervals can be considered. These intervals can, e.g., depend on

the size of production lots. Battini et al. (2010a) mention a few rules of thumb on feeding multi

model lines. However, no mathematical model for distinct mixed and multi model assembly lines,

neither optimization, nor description, has been formulated. Therefore, it still is an open field for

research.
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Stochastic demand

In reality, product and part demand (α4) are deterministic only in a short perspective. But as

the ALFP is a more long-termed, tactical decision demand cannot be known exactly. Several

further possible reasons are demand volatility, part quality, rescheduling, and product change.

Variability of demand may lead to manifold difficulties in a feeding system, such as an unbalanced

usage of transportation or storage capacities. Furthermore, variability also has an impact on the

amount of stock that is needed in an assembly system. At this point, only Faccio (2014) and

Bukchin and Meller (2005) analyzed the influence of variable demand by showing the impact on

line feeding policy selection and space allocation, respectively. To summarize, the influence of

variable demand on the ALFP under varying circumstances is still not fully explored and should

be enriched by further research.

Configuration versus reorganization

As described in Section 2.2.4, decisions are usually taken in a hierarchical order. This applies to

decisions from different hierarchical levels but also to decisions from within a single hierarchical

decision levels. Arrangement of storage (β1) and planning of transportation and used equipment

(β3) as well as design of the preparation areas (β2) are vivid examples of decisions at the same

level as the ALFP. In most papers (see Table 2.5), these decisions are assumed to be taken before

the assignment of line feeding policies. Within this approach, existing systems are typically

reorganized and improved, than designed. As described by Sternatz (2015), decisions on line

feeding should be taken in advance of the start of production. Therefore, further research should

aim towards a simultaneous optimization of feeding and other design decisions. A first step

towards this is done by Battini et al. (2010a) integrating the determination of the number of

supermarkets and assignment of line feeding policies. However, this approach is still stepwise

and more logic based rather than optimised.

Return process

A promising research field is the exploration of the return process (β4) in the context of assembly

line feeding. As aforementioned in Section 2.3.2, most authors simply assume that returning

depleted load carriers is integrated in the feeding process. Determining situations, in which

it is useful to separate feeding and return, is a challenge for future research. Additionally,

configuration and control of such separated return processes need to be explored.

Ergonomics

As musculo-skeletal disorders are an increasing societal problem in many countries, companies

aim to reduce or redistribute the ergonomic load on their workers. As assembly line feeding

traditionally includes a lot of manual activities, it is worthwhile to investigate ergonomics further.

Especially the combination of ergonomics and multiple line feeding policies seems relevant, as the

way of providing material to the assembly worker heavily impacts the ergonomic load (Hanson
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and Medbo, 2016a). However, integrating ergonomics into assembly line feeding should not be

limited only to the assembly worker but also be extended to logistical workers.

Operation times

The investigation of operation times for the assembly worker (β5) is another auspicious field.

Limère et al. (2015), e.g., utilize dynamic walking distances for operators in the system at

the BoL as well as in the preparation area. A similar approach can be seen at Schmid et al.

(2018). As reported by Sali and Sahin (2016) and Schmid et al. (2018) it is hard to give good

approximations for operation times, and especially walking as the level of detail is not sufficient.

Therefore, assigning parts to specific locations might resolve this issue.

Another relevant issue is the investigation of cycle time restrictions as proposed by Sali and

Sahin (2016). As reasoned by Sternatz (2015), an integration of assembly line balancing and

line feeding is relevant, as in practice the decisions for line feeding are only taken when assembly

lines are balanced. Thus, optimization models, that do not integrate both aspects should take

into account that the available time for assembly operations is limited, which should be tackled

by a constraint ensuring feasibility.

Stocks in the feeding system

Mostly, objective functions aim at reducing costs. These costs can be a sum of various cost

elements as described in the γ-field of the classification. Limère et al. (2012), e.g., claim that

holding costs of parts at the BoL should not be considered, because it can be assumed that

the overall inventory of parts in an assembly system is constant, irrespective of the line feeding

policy. Therefore, only the location of storage will differ with respect to the line feeding policy.

Sali et al. (2015) on the other hand, assume that holding costs for parts at the BoL should be

considered in the form of opportunity costs, whereas holding costs for parts in storage areas are

neglected. These different assumptions call for an exploration of realistic assumptions on parts’

inventory and the respective holding costs within an assembly system. Utilizing multi echelon

concepts, stocks seem to differ according to the number of storage areas, which in turn depend

on the line feeding policy. Moreover, Hanson and Finnsgard (2014) describe a case company,

storing an additional pallet close to the BoL in order to compensate demand variability, if line

stocking is applied. Stock amounts in a system might also depend on production control and the

respective parameterization. E.g., if some line feeding policies are controlled by a pull production

control system using Kanban cards the number of cards and the size of containers might have

an influence on stocks in a systems. In summary, the effect of line feeding design on stocks in

the system is unclear and demands for investigation.
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2.5.2 Integrating additional aspects with the ALFP

Assembly line feeding scheduling

Operationally scheduling the feeding problem of assembly lines is closely related to the assignment

of line feeding policies. As raised in this review, the literature on scheduling part transportation

is broad. Yet it is just one out of three processes of the ALFP that may be scheduled in

an integrated manner. In fact, assembly line feeding scheduling includes the whole process of

replenishment of preparation areas (Emde, 2017), preparation itself and transportation of parts.

A possible objective function is, e.g., meeting due dates for part replenishment to avoid stockouts

at the assembly line. Those processes could be scheduled in a reverse manner, starting from

the demand date and scheduling the preceding processes in a similar way to the line traveling

repairman problem (TRP), which is described by Bock (2015). The TRP describes scheduling

repair operations with request deadlines and general processing times. This resembles the demand

due date of assembly line feeding that should not be missed under consideration of varying

processing times for operations like preparation, transportation loading and unloading.

The actual operations might be affected by new technologies, such as fluid logistics, robotic vision

used for automated picking or drones used for urgent deliveries. The control of these systems

could be taken into account when line feeding for real-time demand is scheduled.

Decision levels

As already mentioned above, decisions of different levels are taken in a hierarchical manner.

Examining the strategic outsourcing decision simultaneously with the tactical ALFP seems to

be a promising new research area, by which the outsourcing decision can be supported in a

quantitative manner.

In addition, more operational aspects like scheduling can also be combined with assembly line

feeding by solving the line feeding problem and the line feeding scheduling simultaneously. Andrés

et al. (2008), e.g., connected the balancing and sequencing of assembly lines. This approach

can be transferred to assembly line feeding and feeding scheduling as partly mentioned in the

classification for the scheduling of preparation and/or transportation processes.

Line Balancing

In an assembly system, the assembly line balancing problem (ALBP) and assembly line feeding

problem are the most influential problems, affecting the system’s performance. Usually, an as-

sembly line is configured by solving the ALBP first, as described by Boysen et al. (2007), and

afterwards the assembly line feeding problem is solved (Sternatz, 2015). Both problems com-

prise the configuration of the assembly system and hence, belong to the same decision level. As

already proposed by Sternatz (2015) and Battini et al. (2016a), the integration of the highly

interdependent problems of line balancing and feeding should be tackled. In the former pa-

per, balancing and feeding are considered for a mixed model assembly system with isomorphic

precedence graphs, whereas in the latter paper, line balancing, line feeding and ergonomics are
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modelled for a single product assembly system.

Balancing and feeding both also have operational aspects, described within this paper as assembly

line scheduling and line feeding scheduling. In the field of assembly line scheduling, there is

already a broad literature (Boysen et al., 2009), whereas no literature on line feeding scheduling

could be found. It is easy to see that the interaction of ALBP and ALFP, as already shown

by Sternatz (2015), also has an impact on the operational scheduling level, since the tactical

decisions affect their respective operational problems and vice versa. Therefore, operational

decisions of scheduling problems may be treated in an integrated ALBP and ALFP formulation.

General manufacturing feeding

The main focus of this study is feeding material to assembly lines. Assembly lines are charac-

terized by the way how workpieces are transported through the manufacturing area and by the

tasks performed which can usually be described by joining operations like welding or screwing

(e.g. DIN 8580). However, generally speaking, products can be manufactured in multiple ways,

including molding, forming or machining. These manufacturing processes are usually organized

differently, in job shops or work cells. Aside from a different process, there might be a differ-

ence in the kinds of goods used in other manufacturing systems like, e.g., liquids or bulk goods.

Provision of material in these manufacturing types might also be an issue to address in future

research. Therefore, firstly the differences of these systems should be investigated and, secondly,

approaches for assembly lines have to be adapted to those other manufacturing types.

2.6 Conclusion

Throughout this study, we defined the assembly line feeding problem as the assignment of parts

to line feeding policies, viz., line stocking, boxed-supply, sequencing as well as stationary and

traveling kitting. Furthermore, we showed that even the basic problem is an NP-hard prob-

lem. To characterize all the complexities the ALFP involves, the scope of the problem is further

outlined by means of two dimensions. Firstly, different sub-processes under study are clearly

defined as storage, preparation, transportation, line side presentation and usage. Secondly, the

decision level of the ALFP is described by distinguishing different strategic, tactical and opera-

tional decisions. With the aid of this structure, we hope to make the problem more intelligible

and simplify future research.

Based on the provided problem definition, we introduced a classification scheme, including the

most important decisions and assumptions in research. This classification scheme serves to

classify the existing literature and reveals the most important research fields and streams for

future research.

In conclusion, the readers are warmly invited to use the proposed classification and enhance it

by new, generic, and relevant fields when needed. We hope that it will hereby become a standard

in the field of assembly line feeding, assisting in bundling efforts for thoroughly understanding

the field.





3
Mixed-model assembly line feeding with discrete

location assignments and variable station space

“I skate to where the puck is going to be, not where it has been.”

Wayne Gretzy
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3.1 Introduction

As discussed in this thesis’s introduction, the complexity increase of assembly systems requires

more flexible and agile solution approaches (see also Battäıa et al. (2018)). As the number of

parts required for product assembly rises rapidly, congestion at the assembly stations is becoming

the norm. As mentioned earlier, one can avoid this by selecting adequate line feeding policies

more flexibly by choosing them individually for each part (Limère et al., 2012). One significant

trade-off in selecting the optimal policy balances space requirements and the associated costs

of all parts needed at any station. Policies that require less space are usually more expensive

because of additional efforts for reducing the size by, e.g., splitting up pallets and presorting parts

into boxes. In some cases, some stations may need more parts than others due to the outcome

of balancing decisions (Chica et al., 2016). E.g., at station A, only very few parts are assembled,

and at the adjacent station B, many parts are assembled. In such cases, station B may borrow

some space from station A to store parts required for assembly. Space borrowing lowers overall

costs as it facilitates space-consuming but cheaper line feeding policies.

With this study, we aim to extend previously developed optimization models in the area of

assembly line feeding. The extension is done in manifold ways: (i) Five line feeding policies

are incorporated, whereas, in the literature, a maximum of three could be found (e.g., Caputo

et al. (2015a); Sali and Sahin (2016)). This is intended to give a more general model and

support decision-making in practice as all line feeding policies can easily be implemented. (ii)

Furthermore, we incorporate decision making for discrete locations, i.e., every single part is

assigned to a discrete location at the BoL. The BoL describes the area next to a station designated

to store parts for assembly. An example for those dedicated positions can be seen in Figure 3.1.

Here, the BoL at every station of the assembly line (AL) consists of multiple locations that

are available for storing parts. By incorporating discrete locations, walking durations can be

estimated more realistically. Furthermore, it will also provide additional information on the

design of the border of the line. In previous works, no information on the exact usage of the BoL

was given. Only Klampfl et al. (2006) evaluated the effect of different designs through simulation.

(iii) The proposed model does not only assign parts to discrete locations but also allows to assign

these discrete locations to stations. By allowing this space borrowing, the available space per

station becomes more flexible and allows for cheaper line feeding policies. This is also depicted

in Figure 3.1 with station 2 borrowing location 8 from station 1. (iv) Lastly, the model describes

mixed-model assembly lines, meaning that various types of product models are produced on a

single assembly line in an arbitrary order. An example of these models would be the BMW 5

Series and 7 Series, which we consider distinct models. Therefore, every model allows for the use

of different kits. To summarize, it may be stated that in comparison to the existing literature,

we include more decisions in the model to make assembly line feeding optimization models more

applicable for complex, real-world assembly systems. In addition to these extensions, oriented

towards applicability, we also propose a more efficient procedure for solving the problem. More

elaborate solving procedures are necessary to include discrete locations, multiple line feeding

policies, different product models, and space borrowing, making this model harder to solve than
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models previously described in the literature.
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Figure 3.1 Example of space borrowing

The remainder of this chapter is organized as follows: In the next section, literature related

to decision making in assembly line feeding is reviewed. This is followed by a more formal

problem definition and an explanation of the setting in which the proposed optimization model

is applied. Afterwards, in Section 3.4, a newly developed mathematical optimization model is

proposed, describing a general ALFP with space constraints at the BoL, taking into account all

five line feeding policies. In Section 3.5, we firstly prove that the proposed model is NP-hard.

Secondly, we propose improvements to the solving procedure of the model by preprocessing,

Valid Inequalitys (VIs), and applying cuts. The latter are added in a Branch & Cut manner and

in the form of VIs (also referred to as Cut & Branch). Next, in Section 3.6, data generation and

experimental design are described and results are analyzed. Implications and limitations of this

research are discussed in Section 3.7. Finally, the chapter is concluded by summarizing results

and indicating ideas for future research.

3.2 Literature study

The basic idea for the assembly line feeding problem has been introduced in the 1990s by Bozer

and McGinnis (1992) by means of a descriptive cost model. However, only line stocking and

kitting are considered and the choice made was applied to all parts. Nowadays, however, we

consider the ALFP as an optimization problem choosing a line feeding policy for every part

individually. Making an optimization-based decision for every part individually is firstly done

by Limère et al. (2012). This work has been extended to incorporate variable walking distances

depending on the usage of space at the assembly station (Limère et al., 2015). As additional

line feeding options emerged in practice, other authors introduced boxed-supply and sequencing
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into line feeding. Caputo et al. (2015a), e.g., compared line stocking, boxed-supply and traveling

kitting for a single model assembly line. Sali et al. (2015) implemented sequencing in the context

of assembly line feeding in a cost model which was extended later towards an optimization based

model (Sali and Sahin, 2016). A first attempt towards analyzing the effect of demand variability

on feeding decision has been made by Faccio (2014). Recent works aim towards an integration of

assembly line feeding and balancing (the assignment of tasks to stations) (Sternatz, 2015). Battini

et al. (2017) even integrated ergonomic considerations in addition to line feeding and balancing

with the objective of reducing overall costs. However, it is very unlikely to find optimal solutions

for large assembly lines when integrating all these aspects. In the approaches combining line

feeding and balancing, both problems are solved simultaneously. However, only line stocking

and stationary kitting are considered as feeding policies. Recently, we proposed a preliminary

line feeding model of the one used in this work (Schmid et al., 2018). However, this preliminary

work does not investigate the effect of discrete locations. This extension was put forward for

multiple reasons: (i) Deciding on exact locations helps decision makers better than just providing

the policy that should be used, as the decision on the exact location is not always trivial. (ii)

If the exact locations are not taken into account, costs cannot be calculated accurately which

leads to differing policy decisions in some cases as we will show in our results. (iii) The impact

of walking costs along the line is not negligible as those operators might also be paid better

than other workers. (iv) This discrete location model easily allows for an extension to integrate

assembly line balancing considerations. Furthermore, in this study, an NP-completeness proof

is provided and a new solution methodology is proposed whereas the preliminary version was

exclusively relying on black box solvers. Lastly, we give more insight into decision making by

conducting more elaborate analyses.

Besides those works, which are clearly in the scope of the described assembly line feeding problem,

there are also more qualitative and otherwise linked approaches on assembly line feeding of

which we will only give a few examples as these are outside of this work’s scope. Bukchin and

Meller (2005) examine the allocation of space to components along the assembly line in order to

reduce the probability of line stoppages caused by the absence of required material. There is no

consideration of the actual line feeding policies used. Battini et al. (2009) evaluate the decision

problem between central and decentralized warehousing for in-house part feeding to assembly

lines. The main trade-off is described as inventory in decentralized and long lead times in central

storage systems. The aim is to provide a decision supporting framework for (de)centralization

of warehouses and the selection of line feeding policies considering line stocking, traveling, and

stationary kits. By the use of a case study company and reviewing literature, Hua and Johnson

(2010) defined some issues that could be tackled in future research on assembly line feeding.

One of these aspects is the availability and distribution of space along the BoL which is one

of the key aspects of this study. A last example for a more case study oriented approach is

Hanson and Finnsgard (2014). They examine the effect of different sizes of load carriers on

man-hour consumption by means of a case study. It was found that the size has an influence

on different tactical decisions, like the materials handling equipment used, and on operational

assembly performance. However, the results show that the overall man-hour consumption does
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not significantly decrease with an increase of load carrier size, but activities are locally shifted.

3.3 Problem definition and planning environment

3.3.1 Characteristics of the assembly line feeding problem

As described in the preceding chapter, the ALFP describes an optimization problem which assigns

each part i from the set of parts I to one and only one line feeding policy p from the set P while

minimizing costs. Building upon the preceding chapter, we distinguish five line feeding policies.

The line feeding policies and the corresponding indices are: Line stocking (p = L), boxed-

supply (p = B), sequencing (p = S), stationary (p = K), and traveling kitting (p = T ). The

underlying processes and the key characteristics of the different line feeding policies have already

been discussed in Section 2.2. In addition, we will discuss some advantages and disadvantages,

presented in Table 3.1, of the individual line feeding policies in the following.

Table 3.1 Comparison of different line feeding policies (Adjusted and extended from (Limère, 2011))

Process Usage Transport Preparation Replenishment

Line stocking (–) large space req. (+) direct route (+) unnecessary (+) unnecessary
(–) search for part (–) no steady flow
(–) bad ergonomics (+) high density
(+) safety stock

Boxed-supply (–) medium space req. (+) combinability (+) batchable (–) necessary
(+) safety stock (–) lower density (–) double handling (–) no steady flow
(–) search for part (–) long tours

Sequencing (+) small space req. (–) long tours (–) double handling (–) necessary
(+) no searching (–) lower density (–) hardly batchable (–) no steady flow
(–) no safety stock (–) no steady flow

St. kitting (+) small space req. (–) long tours (+) batchable (–) necessary
(–) no safety stock (–) lower density (–) double handling (–) no steady flow
(+) better ergonomics (+) steady flow
(+) no searching

Tr. kitting (+) No space req. (+) batchable (–) necessary
(+) No inventory (–) lower density (–) double handling (–) no steady flow
(–) no safety stock (+) steady flow
(+) better ergonomics
(+) no searching

Clearly, line stocking has the single advantage over all feeding policies, that it does not require

any replenishment or preparation. Furthermore, parts can be transported on the most direct,

and therefore, shortest route. The packing on pallets is typically rather high as packing can be

optimized easily for a single type of parts. Both line stocking and boxed-supply also have the

advantage that some safety stock is available at the assembly station. This is especially useful if

a part is defect as the operator can just take another part. This is typically impossible for the

other line feeding policies. On the other hand, line stocked parts require a lot of space at the

line and it might be ergonomically difficult to retrieve all parts Hanson et al. (2016). If the part

family consists of multiple parts, the operator also needs to search for the right part.
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As mentioned above, all other feeding policies require replenishment and preparation. This

preparation leads inevitable to double handling as parts are handled for presorting into a different

load carrier by the supermarket operators before they are again handled by the assembly operator.

However, boxed-supplied and kitted parts can typically be batched, meaning that multiple load

carriers can be filled while doing only a single round-trip in the supermarket. This is more

difficult for sequenced containers but may depend on the actual part characteristics. As the

amount of stock is decreasing, the amount of space requirement goes down as well. However,

this clearly comes at the cost of an increased transportation demand for kitted parts. This

transportation may combine all feeding policies except line stocking. Therefore, the frequency

of transporting boxed-, sequenced, or kitted parts is rather high, leading to a rather steady flow

and vehicle utilization. At the same time the transportation vehicles need to do longer tours as

the demand for parts is spread over different stations.

Lastly, it may be mentioned that sequenced and kitted parts do not require a lot of searching

efforts from the assembly operator, while box-supplied and line stocked parts do require more

searching. Typically, parts in such load carriers can also be arranged more ergonomically such

that the ergonomic difference between picking any two parts is lower.

3.3.2 Cost calculation

The ALFP should consider all costs resulting from the depicted processes replenishing the prepa-

ration area, preparing parts for boxed-supply/sequencing/kitting, transporting parts to the BoL,

and lastly, using parts for the actual assembly. As the costs incurred by these processes depend

on the configuration of the assembly system, which can also be described as the planning envi-

ronment, we want to show in the following how these costs are calculated based on the assumed

planning environment.

Before explaining the cost elements, a quick overview of the decisions taken in the model is

given: every part i needs to be assigned to a policy p ∈ Pi and a location l ∈ Li. For this only

a subset of locations Li and a subset of policies Pi, suited for part i, may be used. The set Pi
contains only policies using load carriers that can hold part i w.r.t. weight and volume of that

part. The locations Li available for part i are defined by the station of that part and the amount

of space borrowing that is allowed. In case of traveling kits, no location needs to be selected.

We consider four different cost elements: cilp for parts delivered in line stocking, boxed-supply,

sequencing, or stationary kitting; ci for parts delivered in a traveling kit; cmK as a fixed cost for

using a stationary kit for model m; cmT as a fixed cost for using a traveling kit for model m.

The costs consist of the sum over all partial process costs which are indicated by the superscripts

R(eplenishing), P(reparation), T(ransportation), U(sage) (see Equations (3.1)-(3.3)).

cilp = cRilp + cPilp + cTilp + cUilp ∀i ∈ I ∀l ∈ Li ∀p ∈ P ′i (3.1)

ci = cRi + cPi ∀i ∈ IT (3.2)

cmp = cTmp ∀m ∈M ∀p ∈ {K,T} (3.3)
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In the following paragraphs, the calculation of these cost elements will be explained along the

flow of parts within a typical assembly system which constitutes our planning environment. An

additional explanation of the notation used can be found in Table 3.2.

Table 3.2 Parameter notation and values

Parameter Meaning Value

ALp Length of an aisle in the preparation area(s) of

line feeding policy p

{n.a., 50, 50, n.a.;n.a.}

AL
′
p Incremental length of an aisle if one more part

is fed with line feeding policy p (storing parts

in a double sided aisle)

{n.a.;n.a.;n.a.; 0.4; 0.4}

bsp Batch sizes used in preparation {n.a., 6, 1, 3, 2}
CA Wage of assembly operators 30¤

h

CL Wage of logistical operators 30¤
h

cl Central point of location l along the BoL 0.8l − 0.4 [m]

de Distance between assembly line and BoL 1.5m

dil Distance from warehouse to location l 200.4 + 0.8l [m]

dpi Demand point of part i Moving line: (si − 1)
L

|S|
+ sni/max

i∈Is
sni[m]

Non-moving line: (si − 1)
L

|S|
+

L

2|S|
[m]

ds Distance between warehouse and preparation

area

115m

htip Required time to handle part i when line feed-

ing policy p is applied

[1.6− 2.7][s]

L Length of the assembly line and facings along

the BoL

[200-320][m]

mrp Length of a milk-run tour in transportation {n.a.; 400 + L; 400 + L; 400 + L; 400}[m]

nip Number of units of part i that fit in one load

carrier used for feeding policy p

{[1− 96, 800]; VB
vi

;min{niL, 20}; VK
vi

; VT
vi
}[pcs]

ncp Number of boxes or containers that can be

transported by one tow train

{n.a., 30, 5, 5, 5}

o Percentage of families that are used for multi-

ple models (Overlap)

{0, 40, 80}[%]

OV Walking velocity of an operator 1m/s

r Number of boxes that fit in a rack used for

boxed-supply

4

|S| Number of stations in datasets 50

snf Number of family f in the sequence of used

families at a station

[1; max
s∈S
|Fs|]

sni Number of part i in the sequence of used parts [1; max
s∈S
|Is|]

stPp Time to search for the correct part during

preparation

{n.a.;
1.08

niB
; 1.08; 1.08; 1.08}[s]

stUp Time to search for the correct part at the as-

sembly line

{1.08; 1.08;n.a.;n.a.;n.a.}[s]

Vp Volume of a container used for line feeding pol-

icy p

{n.a., 0.1, n.a., 0.2, 0.3}[m3]

V Vp Velocity of a vehicle used for line feeding policy

p

{3.5, 2, 2, 2, 2}[m
s

]
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vi Volume of part i [0.0001− 1.6][m3]

vf Volume of family f max
i∈If

vi[m
3]

wi Weight of part i [0.005− 50][kg]

wf Weight of family f max
i∈If

wi[kg]

Wp Weight limitation of a container used for line

feeding policy p

{n.a., n.a., n.a., 50, 75}[kg]

wfp Walking distance in preparation area between

different variants of a family for policy p

{n.a., n.a., 5, n.a., n.a.}[m]

εp Utilization rate of vehicles used for line feeding

policies p

{0.23, 0.335, 0.335, 0.335, 0.335}

λi Demand for part i [1− 3500]

λm Demand for products of model type m
3500

|M|

Replenishment costs

After receiving parts from a supplier or a preceding production stage and ensuring quality re-

quirements, parts are stored in a central storage area. In our cost calculations it is assumed

that this central storage area is solely used for storage and retrieval of full pallets. Retrievals

can be done in order to feed the line in a line stocking manner or to replenish the preparation

area. In case parts are not fed in a line stocking manner, and therefore have to be prepared,

replenishment costs need to be taken into account. This constitutes a first trade-off, i.e., the

decision for a cheaper line feeding policy, namely line stocking, which takes up a lot of space at

the BoL versus the decision for more space efficient policies entailing replenishment costs.

cRilp = CL
λi
niL

2ds

εLV VL
∀p ∈ {B,S,K} ∀i ∈ Ip l ∈ Li (3.4)

cRi = CL
λi
niL

2ds

εLV VL
∀i ∈ IT (3.5)

Equation (3.4) and (3.5) define costs for replenishing preparation areas, by dividing a part’s de-

mand λi by the number of parts on a pallet niL, to obtain the number of necessary replenishment

transports. Next, the time to conduct one transport is determined by dividing the distance 2ds

from the central storage to the preparation area and back by the velocity V VL and utilization

rate εL of forklifts (see below for further explanation on utilization rates). Both elements are

multiplied with each other and the wage of logistical workers CL. Costs for replenishment in

case of boxed-supply, sequencing and stationary kitting (Equation (3.4)) are calculated equally

to the costs for replenishment in traveling kitting (Equation (3.5)).

Preparation costs

Preparation describes the process of changing the constellation of load carriers, used to provide

parts to assembly workers, and occurs for all line feeding policies except line stocking. Operations
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and costs of this process vary with the chosen line feeding policy.

cPilp = CL
λi
nip

[ALp + wfp
bspOV

+ (stPp + htip)nip

]
∀p ∈ {B,S} ∀i ∈ Ip l ∈ Li (3.6)

cPilK = CL(λi(st
P
K + htiK) +

∑
m∈Mi

λmAL
′

K

bsKOV
) ∀i ∈ IK (3.7)

cPi = CL(λi(st
P
T + htiT ) +

∑
m∈Mi

λm

bsT

AL
′

T

OV
) ∀i ∈ IT (3.8)

For line stocking, no preparation is necessary. Whereas boxed-supplied, sequenced, and kitted

parts are prepared in batches of size bsp (Brynzér and Johansson, 1995). To calculate the number

of preparation cycles necessary, demands are divided by the number of parts in a box (boxed-

supply) or container (sequencing) nip. To estimate the walking effort, that number is multiplied

with the length of an aisle ALp in the corresponding preparation area (walking on average half

the length of an aisle back and forth). An additional distance wfS for sequencing is added

to estimate walking distances between all parts of a family. By dividing through the operator

velocity OV , the time for walking is calculated. Additionally, the number of preparation cycles is

multiplied with a searching time to find the correct storage position of a part in the preparation

area. Also a handling time htip is added for every part. All these times are multiplied with

the logistical workers wage. Whereas for boxed-supply and sequencing, costs are independent

of other decisions, kits usually contain parts from multiple families. Costs for walking along all

storage locations in a kitting cell are considered by using marginal costs. By adding one more

part, the operator has to walk by that part every time a kit is needed which results in walking the

distance AL
′

p additionally (see Equations (3.7) and (3.8)). The number of kits that have to be

prepared can be calculated by dividing a model’s demand λm by the batch size in which kits can

be prepared bsp. Costs for walking are calculated as before. However, there are additional costs

for handling and searching as well. These are calculated similar to boxed-supply and sequencing

(see Equation (3.6)). Here, another trade-off between the different line feeding policies can be

seen: While all policies entailing preparation save space at the border of line in comparison to line

stocking, kits are potentially even more attractive than boxed-supply or sequencing as they may

contain many more different parts and take up little (stationary kit) or no space (traveling kit).

Nevertheless, preparation costs are higher, as the operator usually has to walk a full circle in the

kitting cell and batches for picking are smaller due to bigger kitting containers. In boxed-supply,

batches are larger and the operator does not have to walk the entire aisle every time. The latter

argument also holds for sequencing.

Transportation costs

Irrespective of the chosen line feeding policy, parts need to be transported from a warehouse

or preparation area to the BoL. The way of transporting parts to the assembly line is heavily

depending on the chosen load carrier and transportation vehicle. It is assumed that only one kind

of load carrier is considered for every feeding policy. Therefore, first the number of transports
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can be calculated by dividing demand λi by the number of parts per load carrier and policy nip

and the number of boxes and containers ncp fitting on one vehicle. We assume that the batch

size bsp, stemming from preparation, is equal to the number of kits or sequenced containers that

can be transported in one container. Next this is multiplied with the duration of a milk run

length in case of boxed-supply or sequencing (see Equation (3.10)) or the distance to a certain

location (back and forth) for line stocking (see Equation(3.9)).

For kits, we calculate transportation costs as a fixed cost, that is similarly calculated as for

boxed-supply and sequencing (see Equation (3.11)), however, it is based on models’ demands.

cTilL = CL
λi
niL

2dil
εLV VL

∀i ∈ IL l ∈ Li (3.9)

cTilp = CL
λi

nipncp

mrp
εpV Vp

∀p ∈ {B,S} i ∈ Ip l ∈ Li (3.10)

cTmp = CL
λm

bspncp

mrp
εpV Vp

∀m ∈M p ∈ {K,T} (3.11)

Every vehicle might not be used all the time or to a full extent. To guarantee a certain service

level for the supply of all station with parts, it might be necessary to perform a transportation

although the vehicle is not fully loaded. Therefore an average utilization rate εp, lower than

100%, should be assumed for all line feeding policies. Time required for loading and unloading

also results in a decrease of utilization, in turn increasing the time requirements for the entire

transportation process. As different containers and/or transportation vehicles may be used for

different feeding policies they all entail different costs. This constitutes another trade-off for

policy decision making.

Usage costs

The process of part usage describes the operations performed by assembly workers. These oper-

ations consist of multiple tasks. While the actual assembly of parts is key, it is not considered

in this model because its duration is not affected by the line feeding decisions. However, there

are additional tasks that need to be performed, like walking to and from the BoL, searching and

grasping parts, handling parts, and further small tasks like reading the picking or assembly list

(Finnsgard et al., 2011; Limère et al., 2015; Sali and Sahin, 2016). Handling times are considered

neither, since they are not affected by the line feeding policy and can neither be reduced nor

avoided. In this work, usage costs describe operator costs for non-value adding tasks whose time

is affected by feeding decisions (see Equation (3.12)).

cUilp = CAλi(
2wdil
OV

+ stUp ) ∀i ∈ I l ∈ Li ∀p ∈ P ′i (3.12)

wdil =
√

(|dpi − cl|)2 + de2 ∀i ∈ I l ∈ Li (3.13)

Within this research, we take into account walking distances wdil between the point where a
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part is needed dpi and the center of a location cl where the part is stored. This is divided by

the operators velocity. Additional costs emerge when searching for parts with a duration of stUp .

This searching time may be affected by the chosen line feeding policy. Usage costs are induced

whenever a part is needed. Finally, the wage for assembly operators CA has to be taken into

account. In case of traveling kits, there are neither walking costs nor searching costs, as parts

travel the line along with the product and are already presorted according to the demand.

For calculating the walking distances wdil we assume, that the operator starts from the point of

demand dpi for part i and walks to the center cl of its storing location l (see Equation (3.13)).

After fetching the part, she returns to exactly that location. In case of a moving assembly line

that might not be perfectly accurate as the product is slowly moving as well. However, the

practical deviation is negligible and, therefore, not further considered here.

Costs, resulting from walking distances, do not largely discriminate or favor one particular policy.

Nevertheless, there are some trade-offs. For example when line stocking all parts of a family, all

parts should be at the same position which minimizes walking distance. Since this is not feasible,

parts with lower demand will be placed farther away. This, however, might make another feeding

policy like boxed-supply attractive for those parts if there is a rack close by. In addition, using

a stationary kit at that station might be beneficial. This could pose another conflict since,

depending on the parts being in that kit, the same location (which was optimal for line stocking

the above mentioned family) might be the best for that kit. Thus, there are a lot of smaller

trade-offs along the BoL.

3.4 Modeling an ALFP with variable space

Within this section we propose a linear integer programming (IP) model for decision making

in assembly line feeding systems taking into account space constraints at the assembly stations.

As described in the previous section, the assembly line feeding problem assigns every part to a

line feeding policy. We extend this approach by additionally assigning it to a discrete location l.

By this, we generate a better accuracy when determining assembly operator times which affect

the objective function in terms of costs. Furthermore, it also determines the exact design of the

BoL. In the proposed model, every part (index: i) is needed at a certain station (index: s) and

therefore assigned to a corresponding location that can be used for that station l ∈ Ls. In this

model, five line feeding policies (index: p), i.e., line stocking (p = L), boxed-supply (p = B),

sequencing (p = S), stationary (p = K), and traveling kitting (p = T ), are included.

For a better understanding, some important assumptions of the model are summarized in the

following:

Assumptions

1. Demand is assumed to be deterministic.

2. The size of the BoL of a station may vary as locations can be used for multiple stations.

3. Overall shop floor space is limited by the sum over all locations available at the stations.
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4. For every line feeding policy, a generic load carrier is used, meaning that, e.g., all kitted

parts are transported in cart containers with a specific volume and weight constraint.

5. Part families (index: f) contain multiple parts, that are substituting each other.

6. At most one traveling kit can be used for one final product.

7. Parts are assumed to be used for one task only.

While assumption 1, 5, and 6 should be self-explanatory, we want to give some explanation for

the remaining assumptions. Assumption 3 states that the length of the assembly line is fixed and

cannot be changed. This assumption is taken since the size of a station usually depends on the

size of a product and thus the overall length of the line depends on the number of stations and

cannot be changed. Assumption 2 states, however, that stations can borrow some space from

adjacent stations if this is beneficial. Lastly, assumption 4 states that for every line feeding policy

a standard container is used. For example, all pallets are assumed to have the same footprint

being, e.g., 0.8m x 1.2m. Similarly, kits are transported in containers of a fixed size, e.g., 0.8 x

1.2 x 1.4m. Every container in turn contains multiple kits, e.g., 3 such that the available volume

is equally split up between all kits in that container. Lastly, we assume that each part is only

used for one task at a particular station, which may be different in practice. Not adjusting the

model accordingly may result in suboptimal solutions. That is because the kitting cells would

be larger in the model than needed as using the same part for two different tasks which are both

served by a traveling kit would not require to store the part twice which would be the case in

model presented.

The notation used throughout the model can be found in Table 3.3.

Table 3.3 Notation for the IP model

Sets

F Set of part families Fl Set of families that may be assigned to location

l

Fm Set of families that are used for model m Fp Set of families for which line feeding policies p

can be used

Fs Set of families that are needed at station s I Set of parts

If Set of parts that are in family f Il Set of parts that might be placed at location l

Im Set of parts that are used in model m Ip Set of parts for which line feeding policies p

can be used

Is Set of parts that are used at station s L Set of locations to store parts

Li Set of locations that can be used to store part

i

Lf Set of locations that can be used to store parts

of family f

Ls Set of locations that can be used for station s M Set of models to be assembled

Mf Set of models that use family f Mi Set of models that use part i

P Set of line feeding policies P ′ Set of line feeding policies excluding traveling

kitting

Pi Set of line feeding policies usable for part i P ′i Set of line feeding policies excluding traveling

kitting usable for part i
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S Set of assembly stations Sl Set of stations that can use location l

Binary variables

um Using a traveling kit for model m xilp Assigning part i to location l and line feeding

policy p ∈ P ′

yi Assigning part i to a traveling kit µlm Using a stationary kit at location l for model

m

τf Assigning family f to a traveling kit χlsp Using location l for station s and line feeding

policy p ∈ P ′

ψflp Assigning part family f to location l and line

feeding policy p ∈ {S,K}

Parameters

cilp Costs for providing part i to location l ∈ Li
with line feeding policy p ∈ P ′i

ci Costs to provide part i ∈ IT with a traveling

kit

cmK Fixed costs for a stationary kit for model m cmT Fixed costs for a traveling kit for model m

fi Family of part i M Large number

r Rack capacity, i.e., number of boxes that fit in

a rack used for boxed-supply

si Station at which part i is used

vf Volume of part family f vi Volume of part i

Vp Volume of a container/box used for policy p wf Weight of part family f

wi Weight of part i Wp Weight limit of container used for policy p

In the following, we give a generic linear integer model that solves the assembly line feeding

problem by unambiguously assigning every part to a line feeding policy and a location.

Minimize: ∑
i∈I

∑
l∈Li

∑
p∈P′i

xilpcilp +
∑
i∈IT

yici +
∑
l∈L

∑
m∈M

µlmcmK +
∑
m∈M

umcmT (3.14)

subject to: ∑
l∈Li

∑
p∈P′i

xilp + yi = 1 ∀i ∈ I (3.15)

∑
i∈Is∩Il∩Ip

xilp ≤Mχlsp ∀s ∈ S ∀l ∈ Ls ∀p ∈ P ′ (3.16)

∑
s∈Sl

∑
p∈P′

χlsp ≤ 1 ∀l ∈ L (3.17)

∑
i∈If

xilp ≤Mψflp ∀p ∈ {S,K} ∀f ∈ Fp ∀l ∈ Lf

(3.18)∑
i∈Il∩IL

xilL +
∑

f∈Fl∩FS

ψflS ≤ 1 ∀l ∈ L (3.19)

∑
i∈Il∩IB

xilB ≤ r ∀l ∈ L (3.20)
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r
∑
l∈Ls

(χlsB − 1) ≤
∑

i∈Is∩IB

∑
l∈Li

xilB ∀s ∈ S (3.21)

∑
f∈Fl∩Fm∩FK

vfψflK ≤ VKµlm ∀l ∈ L ∀m ∈M (3.22)

∑
f∈Fl∩Fm∩FK

wfψflK ≤WKµlm ∀l ∈ L ∀m ∈M (3.23)

∑
i∈If

yi ≤Mτf ∀f ∈ FT (3.24)

∑
f∈Fm∩FT

vfτf ≤ VTum ∀m ∈M (3.25)

∑
f∈Fm∩FT

wfτf ≤WTum ∀m ∈M (3.26)

∑
i∈Ik:sj<si

∑
l∈Li:l≤k

∑
p∈P′i

xilp +
∑
p∈P′j

xjkp ≤ 1 +M(1−
∑
p∈P′j

xjkp) ∀k ∈ L ∀j ∈ Ik (3.27)

xilp ∈ {0, 1} ∀i ∈ I ∀l ∈ Li ∀p ∈ P ′i (3.28)

yi ∈ {0, 1} ∀i ∈ IT (3.29)

τf ∈ {0, 1} ∀f ∈ FT (3.30)

um ∈ {0, 1} ∀m ∈M (3.31)

µlm ∈ {0, 1} ∀l ∈ L ∀m ∈M (3.32)

ψflp ∈ {0, 1} ∀p ∈ {S,K} ∀l ∈ Lf ∀f ∈ Fp
(3.33)

χlsp ∈ {0, 1} ∀l ∈ L ∀s ∈ Sl ∀p ∈ P ′ (3.34)

In case it is required or desired to feed all parts of a family using the same line feeding policy,

the following two constraints have to be added. Please note that w.l.o.g. it is assumed that parts

and their families are assumed to be sorted in increasing order w.r.t. their indices.

|Ifi |yi =
∑

j∈IT :fi=fj

yj ∀i ∈ IT : fi > fi−1 (3.35)

∑
l∈Li

|Ifi |xilp =
∑

j∈Ip:fi=fj

∑
l∈Lj

xjlp ∀p ∈ P ′ ∀i ∈ Ip : fi > fi−1 (3.36)

The objective function (3.14) aims to minimize four types of costs: costs for feeding part i at

location l with line feeding policy p, denoted by cilp; costs for feeding part i with a traveling kit,

ci; fixed costs for using stationary, cmK , or traveling kits, cmT , for model m. The calculation of

these costs has been discussed before in Subsection 3.3.2.

Within the first constraint (3.15), it is assured that every part is unambiguously assigned to a

location and a line feeding policy (xilp), unless it is fed in a traveling kit (yi) which does not

require a location assignment. Next, in Equation (3.16), we link χlsp variables to xilp variables
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using a big-M constraint. The χlsp variables indicate whether a location is used for a certain

line feeding policy and station. Obviously, every location can only by used for one station, and

one line feeding policy (see Equation (3.17)). Equation (3.18) links another auxiliary variable

ψflp to the xilp variables. It indicates if any part of family f is assigned to location l using line

feeding policy p.

From Equation (3.19) on, we define specific rules for individual line feeding policies, starting with

a limit on line stocked parts and sequenced families per location (Equation (3.19)): A location

can contain at most a single line stocked part or one sequenced family. Analogously, there is also

a limit r on the number of parts that fit into a rack used for boxed-supply (Equation (3.20)).

As the Border of Line should not be plastered with racks, that are not needed, Equation (3.21)

ensures, that no rack can be removed without making the solution infeasible. This equation might

be neglected if investment costs for equipment such as racks are considered as an optimization

will balance investment costs and savings in walking costs. Equations (3.22) and (3.23) ensure

that volume vf and weight wf of part families in a stationary kit do not exceed the respective

container limits VK and WK . Simultaneously µlm is introduced, indicating whether a stationary

kit for model m is placed at location l. The binary decision variable τf , introduced in Equation

(3.24), indicates if any part of family f is assigned to a traveling kit. This variable is used to

enforce volume VT and weight WT constraints of traveling kits in the following two constraints

(3.25) and (3.26). Those constraints also link the variable um to the variable τf indicating if a

traveling kit is used for model m. Lastly, constraint (3.27) ensures that if a location l is used for

station s, no preceding location k : k < l can be used for a subsequent station q : s < q. This

constraint is only active if space borrowing is allowed. A visualization of this constraint is also

shown in Figure 3.1. In this simple example the line consists of 2 stations (left: station 1, right:

station 2). Each station may use some locations Ls which is indicated in the top-most line by

the set of stations Sl that may use location l. Here, locations 1-5 and 7 are used by station 1

and locations 8-16 are used by station 2. This means, station 2 borrows location 8 from station

1 as location 8 is within the boundaries of station 1. As one can see, location 6 is not used,

and constraint (3.27) avoids that station 2 uses it as long as station 1 uses location 7, even if

it reduced costs. This prevents crossing of workers. Furthermore, it avoids confusion about the

parts used at a station. In practice one might use, for instance, fluorescent tape to indicate that

locations 8-16 contain parts for station 2.

Equations (3.28) - (3.34) define the domains of all decision variables used in this model. As

mentioned before, Equations (3.35) and (3.36) may be added when the solution should contain

equal assignments for all parts of one family. For parts in a traveling kit this is ensured by the

first constraint and for parts in other line feeding policies by the second constraint. This might

be done to avoid confusion of assembly workers about the exact part to use for a product. We

refer to the model without constraints (3.35) and (3.36) as the part level model, and to the family

level model if the constraints are included. This is due to the fact that parts can be assigned to

every line feeding policy in the former formulation. In contrast, parts of the same family have

to be assigned to the same policy in the latter formulation.
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3.5 Solving procedure

First, we are going to prove in theorem 3.5.1, that both models described in the preceding chapter

are NP-hard, in a similar manner as Schmid and Limère (2019).

Theorem 3.5.1. The ALFP, described by formulas (3.14)-(3.34) is an NP-hard problem. Thus,

the ALFP including (3.35) and (3.36) is NP-hard as well.

Proof. To verify this theorem, we will show that the problem can be restricted to the uncapac-

itated facility location problem (UFLP) which is proven to be NP-hard by Cornuéjols et al.

(1990). To do so, we follow the problem definition given by Korte and Vygen (2012)

UFLP Input: A set of facilities J , a set of clients K, costs cij ∈ R+ for serving client i from

facility j, and a cost cj ∈ R+ for opening facility j.

The task is to find a subset of facilities X to be opened and an assignment σ : K → X of clients

to open facilities minimizing costs
∑
j∈X cj +

∑
i∈K cσ(i)i

Given this, we restrict the ALFP to instances with the set of parts I equal to the set of clients

K, the set of locations L equal to the set of facilities J , cilp = cij ∀p ∈ P ′, and cmK =

cj ∀m ∈ M. Furthermore, we restrict the instances by setting the set of policies to P = {K}.
Thus, the variables yi, τf , um and constraints containing those variables are removed from the

problem. Additionally, we restrict instances to a single model to be assembled |M| = 1, and

to a single station |S| = 1 such that all locations belong to that station. As there is only one

policy and a single station, the variables χlsp and all constraints having these variables can be

removed from the model. Next, the volume VK and weight capacity WK of a stationary kit

are set equal to a large number (sufficiently large to contain all parts, e.g., sum over all part

volumes/weights). Lastly, we restrict the ALFP to instances with families such that |If | = 1 ∀f ∈
F , which makes the constraints (3.35), (3.36), the variables ψflp, and associated constraints

superfluous. Thus, we obtain a heavily simplified version of the model being equivalent to the

UFLP. This transformation can be done in polynomial time and we obtain instances equal to

the ones described for the UFLP.

Clearly, any solution for the UFLP directly corresponds with a solution for the restricted ALFP,

and vice versa, since opening a facility in the UFLP is equivalent to using a location for a

stationary kit in the ALFP. In the UFLP clients can only be served from opened facilities. This

is equivalent to the ALFP where parts can only be assigned to a kit at location l if that location

is used for a kit. In addition, the cost of a solution for one problem is equivalent to the cost of

the transformed solution since the variable costs for serving a client from a facility are identical

to the variable costs for assigning a part to a location, and the fixed costs for opening a facility

are identical to the fixed cost for using a location for a stationary kit.

As both proposed models are intractable, we propose an extended solving approach to obtain

better solutions to that problem. This approach is schematically depicted in Figure 3.2

First, the number of variables is reduced. Next, some general VIs are imposed. Lastly, it is

decided if the decision is to be made on a part or a family level (see Section 3.4). Depending on

this decision, either BAC or CAB (which is synonymous to adding VIs) is used. We use both
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IP Model

Reduce variables

VIs

Part decision?

no yes

Cut & Branch Branch & Cut

Figure 3.2 Solution approach

terms, namely valid inequalities and Cut & Branch here, even though they are conceptually the

same. This distinction is made to juxtapose the cuts added via C&B to the valid inequalities

added in C&B while not referring to the more general valid inequalities that are added in both

approaches.

Obviously, the way of formulating a mathematical programming model affects the solution pro-

cess and speed as well. Even though the use of big-M constraints for Equations (3.16), (3.18),

(3.22), (3.23), (3.24), (3.25), and (3.26) give weak linear programming relaxations, we decided

to use this formulation rather than other formulations using more constraints and thus resulting

in a tighter convex hull. This is done as in our test runs the formulation using big-M constraints

performed much better than the ones with a tighter convex hull. A theoretical explanation of

this behaviour can be found in Trick (2005); the use of big-M constraints leads to a sparser

formulation with a smaller matrix for which the linear programming relaxation can be solved

much faster. Furthermore, cuts with a tighter convex hull are added automatically but only for

those variables that take a value different from 0.

Another aspect of our proposed formulation are the variables (and associated constraints) used

in the program. Obviously, it is possible to build a model, meeting the same objective as the

proposed model without using the variables χlsp, τf or ψflp. If the model was implemented with

fewer of these variables one had to state, e.g., that parts cannot be assigned to a location if there

is any other part assigned to that location in a different policy. Doing this, linking constraints
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(e.g., (3.16), (3.18)) could be removed from the model and some other constraints, such as (3.17)

had to be formulated differently. However, this approach creates a very large MIP due to the

large number of possible combinations of parts at locations or parts in a kit. Obiously, the

number of variables can be reduced but the number of constraints is drastically increasing. This

is not desirable as more constraints make the (relaxed) model often more difficult to solve. It

also increases the number of non-zero elements in the coefficient matrix which may also slow

down computations. We were able to confirm this behaviour in pretests. The beneficial use of

those indicator variables has also been described by Rahmaniani et al. (2017).

3.5.1 Preprocessing

Due to the number of possible locations for storing a single part, the number of variables is

relatively high. Preprocessing may be used to reduce the number of variables, avoiding branching

on binary variables that can never take a value of 1 in an optimal solution. For this we propose

the following preprocessing rules.

1. If the boxed-supply feeding costs for every possible location are cheaper than the costs for

line stocking at any location, remove the variable for line stocking at this location. Remove

xilL ∀i ∈ IL ∀l ∈ Li : cilL > max
k∈Li

cikB

2. If all parts fit into the station without using stationary kits and the most expensive way

of feeding them is cheaper than the fixed cost of a stationary kit, variables for assigning

the parts to a stationary kit can be removed. Remove xilK ∀s ∈ S ∀i ∈ Is ∩ IK ∀l ∈ Li :∑
i∈Is max

l∈Lip∈P′i\{K}
cilp −

∑
i∈Is min

l∈Lip∈P
′
i

cilp < cmK

3. If the line feeding policy has to be the same for all parts of a family, the variables for line

stocking can be removed if the number of possible locations is smaller than the number of

parts in that family: Remove xilL ∀l ∈ L ∀i ∈ IL ∩ Il : |Fi| > |Li|. This can also be done

for boxed-supply if the number of parts in a family is larger than the number of locations

times the number of parts fitting in a rack: Remove xilB ∀l ∈ L ∀i ∈ IB ∩Il : |Fi| > |Li|r.

3.5.2 Valid inequalities

The current problem formulation rather considers every location individually. However, it may

benefit from adding a linking constraint that considers all the parts at a station at the same

time. This can be done by the following constraint which is complemented with two additional

variables.∑
i∈Is∩IL

∑
l∈Li

xilL + bs +
∑

f∈Fs∩FS

∑
l∈Ls

ψflS +
∑
l∈Ls

ksl ≤
∑
l∈Ls

∑
p∈P′

χlsp ∀s ∈ S (3.37)

∑
i∈Is∩IB

∑
l∈Li

xilB ≤ bs ∀s ∈ S (3.38)

∑
i∈Is∩IK

xilK ≤Mksl ∀s ∈ S ∀l ∈ Ls (3.39)
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bs ∈ Z+ ∀s ∈ S (3.40)

ksl ∈ {0, 1} ∀l ∈ L (3.41)

bs indicates the number of racks at a station that is needed to store all parts in racks that

are boxed-supplied. ksl indicates if location l is used to store any kit for station s. Thus,

adding constraints (3.37)-(3.39) and the required variables to the model introduces a station

wise consideration of policies. This simplifies decision making while maintaining feasibility and

optimality.

3.5.3 Branch and cut

As BAC¸ is a well known concept, we refer the reader to Wolsey and Nemhauser (1988) and

Cornuéjols (2008) for further reading and focus on explanations for this specific problem only.

By solving the linear relaxation, we found that parts from different families are often partially

sequenced at a single location. However, this cannot happen in an integer solution due to

constraint (3.19) which allows only a single family to be sequenced at a single location. However,

the use of the auxiliary variables ψflp, introduced in constraint (3.18), may give rise to weak

relaxations. In these cases the xilS variables take (fractional) values summing up to more than

1. Therefore, parts from multiple families can be sequenced fractionally at a single location in

the relaxed solution. This is tackled by the use of additional cuts introduced in the following

(the advantage of the chosen formulation is discussed in the beginning of Section 3.5).

Separation

To illustrate the underlying problem, consider a case with two families (f = 1, 2) each having

a part (i = 1, 6) being sequenced at location 2. Further, assume that both families consist of

five parts. Since x12S = x62S = 1 and
∑
i∈If xi2S ≤ 5ψf2S , it follows that ψ12S = ψ22S = 0.2.

Thus constraint (3.19) would be satisfied in the relaxed problem but not in the integer problem.

However, it is possible to add cuts avoiding these integer infeasible solutions. With the present

solution, for each family of product, we let if be the index such that xif lS is maximum for family

f . Then, we check if the following inequality is violated and add it to the model to strengthen

the relaxation if violated. ∑
f∈Fl∩FS

xif lS ≤ 1 ∀l ∈ L (3.42)

In addition to multiple families being sequenced at a single location, another problem of the

weak linear relaxation of the problem can emerge when parts are kitted. The same reasoning

regarding the relaxation values explained above can be applied here, as there is no direct link

between the variables xilp and µlm and neither between yi and um. Therefore, we define the

index if similar to above to define the part for which, e.g., the product vifxif lK is maximum in

the current solution. Similarly for vif yif . If any of the following inequalities is violated, they

can be added to the model.
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∑
f∈Fl∩Fm∩FK

vifxif lK ≤ VK ∀l ∈ L ∀m ∈M (3.43)

∑
f∈Fl∩Fm∩FK

wifxif lK ≤WK ∀l ∈ L ∀m ∈M (3.44)

∑
f∈Fm∩FT

vif yif ≤ VT ∀m ∈M (3.45)

∑
f∈Fm∩FT

wif yif ≤WT ∀m ∈M (3.46)

Cuts (3.43) and (3.44) strengthen the formulation in comparison to the original constraints

(3.22) and (3.23) which use the variable ψflK for stationary kitting. Similarly, the cuts (3.45)

and (3.46) apply the same strengthening to traveling kits and the corresponding constraints

(3.26) and (3.27).

Lifting

Obviously, a location can only be used for a single line feeding policy as stated in constraint

(3.17). Therefore, the cut proposed in Equation (3.42) can be strengthened further, by adding

some terms to the left-hand side. This leads to the cut proposed in Equation (3.47). Thus,

a stronger cut avoiding not only fractional sequencing of multiple families, but also fractional

assignment of parts in other feeding policies such as line stocking is avoided. For this we define

the index ĩ such that xĩlp is the maximum over all parts.

∑
i∈Il∩IL

xilL +
∑

p∈{B,K}

xĩlp +
∑

f∈Fl∩FS

xif lS ≤ 1 ∀l ∈ L (3.47)

By this, it is ensured that neither line stocking for any part happens together with sequencing of

parts from different families, nor any part is supplied in boxed-supply or a stationary kit at that

location at the same time. To show the validity of this lifting procedure, consider the example

given in the paragraph above. It can be assumed that a third part (i = 2) is assigned to the

same location in line stocking with x22L = 0.6. This would still be feasible in the relaxed solution

since ψ12S +ψ22S + x22L = 1. However, this would never be feasible in the integer solution since

only one of these three binary variables can be different from 0. Therefore, x22L can be added

to the cut. In this example, we obtain the following cut:

x22L + x12S + x62S ≤ 1 (3.48)

Since the left hand side of this cut is greater than 1, i.e., 2.6 the cut is violated and can be added

to the model. This can be done for every part that is partially assigned to line stocking and this

location. A similar approach can be done for boxed-supplied and stationary kitted parts due to
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constraints (3.16) and (3.17). These constraints ensure that only a single policy is used at one

location which will always be true in the integer but not in the relaxed solution. However, for

boxed-supply and stationary kitting only a single part can be considered since multiple parts are

allowed to be combined in a single location but the right-hand side of the VI is 1.

Although this could be achieved by adding VIs a priori (Cut & Branch), the number of addi-

tional constraints would be enormous due to the huge number of combinations for parts from

different families. The number of constraints, when applying a Cut & Branch approach to Con-

straint (3.42) would be
∏
f∈Fl

|If |. If instead, all constraints described in the lifting procedure

(Constraint (3.47)) were added, the number of constraints would be (
∏
f∈Fl

|If |)3.

3.5.4 Cut and Branch

As just stated, adding the cuts a priori would lead to an enormous number of constraints. How-

ever, if the problem statement includes constraints (3.35) and (3.36), i.e., ensuring a solution

where all parts of one family are fed in the same way, the number of required VIs is heavily

reduced. This can be explained by the fact that all parts of a family are linked by these con-

straints. Therefore, adding the following VIs leads to the same result as applying a Branch and

Cut approach. Please note that w.l.o.g. it is assumed that parts and their families are assumed

to be sorted in increasing order w.r.t. their indices.

∑
i∈Il∩IL

xilL +
∑

i∈Il∩IS :fi>fi−1

xilS ≤ 1 ∀l ∈ L (3.49)

∑
i∈Il∩Im∩IK :fi>fi−1

vixilK ≤ VK ∀l ∈ L ∀m ∈M (3.50)

∑
i∈Il∩Im∩IK :fi>fi−1

wixilK ≤WK ∀l ∈ L ∀m ∈M (3.51)

∑
i∈Im∩IT :fi>fi−1

viyi ≤ VT ∀m ∈M (3.52)

∑
i∈Im∩IT :fi>fi−1

wiyi ≤WT ∀m ∈M (3.53)

Obviously, lifting for boxed-supply and kitting cannot be applied for Equation (3.49) without

increasing the number of constraints drastically by a factor of |If ||P
′|.

3.6 Computational experiments

3.6.1 Data

Creation of datasets

For experimentation, we used the dataset described by Limère et al. (2012) and reimplemented

and extended the data creation algorithm described in Limère et al. (2015). The extension
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allows the following additional features compared to the previously created datasets: (i) Multiple

product models are used within one dataset. (ii) Part families are used in multiple product

models. This is described by the term overlap. An overlap of 20% for instance indicates that

20% of the families in the dataset are used for at least two models. (iii) Lastly, we adjusted

the calculation of demand to obtain more random and realistic demand patterns. The algorithm

used to create datasets is described in Algorithm 1.

Algorithm 1 Algorithm to create datasets

1: procedure Dataset creation
2: Choose number of models |M| and overlap of part families o
3: Choose number of stations |S|
4: Set correction factor correct = 1
5: Families:
6: for s = 1 to |S| do
7: for m = 1 to |M| do
8: Randomly assign number of families per product and station |Fms| ← F (|Fs|)
9: Calculate adjusted number of families per station |Fs| =

∑
m∈M |Fms|(1− ocorrect)

10: for m = 1 to |M| do
11: Assign StartingFamilym
12: for f = StartingFamilym to StartingFamilym + |Fms| do
13: Fm = Fm ∪ {f}
14: |F| ←

∑
s∈S |Fs|

15: Calculate actual overlap õ = 1/|F|
∑

f∈F:|Mf |>1 1

16: if õ /∈ [o± 0.01] then
17: Adjust correct
18: goto Families

19: Sequence of part usage per station:
20: for s ∈ S do
21: CurrentNumber ← 1
22: for k = |M| to 1 do
23: for f ∈ Fs do
24: if |Mf | = k then
25: snf ← CurrentNumber
26: CurrentNumber + +

27: Part characteristics:
28: for f ∈ F do
29: Randomly assign a number of parts |If |
30: Randomly assign a demand for that family λf
31: for i ∈ If do
32: Randomly assign a demand for every part λi
33: Randomly assign a weight for every part wi

34: Randomly assign a way of receiving a part pallet or box) reci ← Fwi (rec)
35: Randomly assign a number of parts usei that is needed for one product model usei ← Fwi (use)
36: Randomly assign a number of parts per pallet ni ← Fwi,rec(ni)
37: Normalize the number of received parts: ni = ni/(useiV olumerec)
38: Calculate the volume for every part vi = 1[m3]/ni

39: λ̃f ←
∑

i∈If λi

40: Norm← λ̃f/λf
41: for i ∈ If do
42: λi ← λiNorm

By using Algorithm 1, we created multiple problem instances. In those, the number of models

is ranging from 1 to 3. In case of multiple models, the percentage of overlap is between 0% and

80% and is increased in steps of 40 percentage points. Thus, we obtain seven combinations. For
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each of those seven combinations, exactly six instances were created in order to represent some

variety. Those instances contain 50 stations and in between 403 and 2979 parts which reflects

realistic sizes of assembly lines. The parameters, describing the overall system, are the same in

every dataset, whereas the number of families, parts, and the corresponding characteristics like

weight, volume, delivery quantity, demand, etc., vary between the instances. A summary of the

most important characteristics is given in Table 3.4. It shows the ranges for the number of parts

and families in a dataset, and the range of parts in a family and families at a station. Finally it

also shows the average of part demand and its standard deviation. All parameters regarding the

overall system were already shown and described in Table 3.2. Note that for varying parameters

a range is given.

Table 3.4 Instance characteristics

#Models Overlap #Inst. #Parts #Families Parts/
Family

Families/
Station

Demand

1 n.a. 6 [909-1045] [369-404] [1-47] [1-36] 462± 684
2 0 6 [1670-2057] [700-799] [1-47] [1-39] 241± 353
2 40 6 [1031-1357] [432-526] [1-38] [1-35] 336± 530
2 80 6 [403-710] [169-268] [1-47] [1-14] 409± 656
3 0 6 [2536-2979] [1034-1177] [1-47] [1-39] 171± 237
3 40 6 [1544-1932] [653-771] [2-47] [1-35] 235± 397
3 80 6 [684-978] [281-356] [1-38] [1-18] 350± 558

Factorial design of experiments

The datasets are solved in a full factorial experiment with the parameters of Table 3.5. By

doing so, we aim to gain information on the impact of decisions that are relevant in industrial

decision making. Firstly, we assume space at every assembly station either to be given and fixed

or to be variable. When being variable, a station may use up to 25% of the space of both the

preceding and the succeeding station. Clearly, allowing more space borrowing may reduce costs

even further. However, obtaining (near) optimal solutions is becoming more difficult for such

settings but limiting the space borrowing may also be desired from a practical point of view. That

is, if workers walk far into an adjacent station, they may block each other. Next, we investigate

the available space per station being either 4m or 6.4m. This is done as in some situations, one

could decide to enlarge the assembly line to favor cheaper line feeding policies requiring more

space which could be an alternative to variable space of assembly stations. However, in practice

this might not be possible, e.g., when the assembly line is already built. A third component

of the factorial experiment is the movement of a line. In non-moving lines the demand points

dpi are equal for all parts at one station, whereas they vary for moving lines. Lastly, as already

indicated in Section 3.4, one can impose constraints to ensure that every part of a family is fed in

the same way. This might be more convenient for the assembly worker, although, economically it

might be better to assign every part individually to a feeding policy. Overall, we obtain 24 = 16

different designs due to the full factorial design, varying each of the discussed parameters by

choosing one of two options.
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Table 3.5 Varied parameters for full factorial design

Parameter Option 1 Option 2

Length BoL 4m 6.4m
Space borrowing 7 3
Moving line 3 7
Decision level Family Part

3.6.2 Computational insights

The model proposed in Section 3.4 is solved with the solving approach described in Section 3.5

using Gurobi 8 on a computer with 32 GB Ram and an Intel Core i7-3770 processor with 3.4

GHz. The computer was used to run two instances simultaneously, each using 4 CPU cores. A

maximum time limit of 3600 seconds was set.

When the problem was solved on a part level (every part from the same family can be assigned

a different policy), we used theBACapproach. Whereas, when solving on a family level (all parts

in a family need to be assigned the same policy), we added cuts a priori (Cut & Branch).

Table 3.6 Solving times and gaps when applying solving procedure

Instance Gurobi 8 BAC CAB
#opt time gap #opt time gap #opt time gap

|M| = 1 o = 0%
fam. 10 1849.25 0.06% - - - 21 581.59 0.02%
part 11 1699.3 0.06% 22 369.38 0.00% - - -

|M| = 2 o = 0%
fam. 0 n.a. 2.21% - - - 12 1839.00 0.02%
part 0 n.a. 2.06% 13 1245.56 0.02% - - -

|M| = 3 o = 0%
fam. 0 n.a. 12.62% - - - 0 n.a. 0.44%
part 0 n.a. 11.65% 1 3363.77 0.50% - - -

To show the performance of our approach, we compare it to a regular solver, i.e., Gurobi. Due

to computational expenses, this was only done for a subset of the datasets. Firstly, we decided

to select the computationally most difficult datasets for 1, 2, and 3 models respectively, i.e., the

ones with no overlap, and investigate as such the worst case performance. Secondly, within each

class we solve only three instead of six datasets, where a class of problem is described by the

combination of product models in the dataset and the overlap of part families.

Every dataset was run 16 times due to the factorial experiment. Of these 16 runs eight are done

withBACand eight with CAB. Thus, 24 runs per class and solution method were investigated

(3 datasets in 8 settings). Table 3.6 shows the results obtained. Every row shows how many out

of these runs are solved to optimality (#opt), the average computation time of runs solved to

optimality (time) and the average gap of runs not solved to optimality (gap) with a time limit

of 3600s.

From Table 3.6 one can see that the proposed solving procedure in Section 3.5 reduces compu-

tation times and gaps quite drastically. For the easier problems, i.e., instances with one product

model, optimality could be proven for almost all runs. For the more difficult datasets with more
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than one product model, the proposed approach could lower the average gaps drastically to

almost 0 for two products and less than half a percent for three products. For two products,

optimality could also be proven in about half the cases which is not possible at all when just using

Gurobi. Please note, that these are the hardest instances for one, two, and three product models

respectively, as the number of families and parts reduces with increasing overlap. Considering

all datasets tested in all runs, 421 out of 672 could be solved to optimality in 605.50s on average.

The average gap for the remaining runs is 0.24%.

3.6.3 Decision making insights

Aside from the performance improvement shown in the previous subsection, we also analyzed

the results from a managerial perspective. For this, all problem instances created, i.e., 42 have

been solved in 16 combinations each and analyzed as described in the following paragraphs.

Costs of line feeding

To investigate the costs of feeding parts to an assembly line, we aimed to create a comparable

cost measure by calculating the average costs of feeding a single item to the line. For this, we

divide the overall costs by demand over all parts
∑
i∈I λi.

Investigating differences in costs, we used a mixed-model two-way ANOVA test evaluating the

significance of the impact of BoL length, space borrowing, moving vs. non-moving lines, family

vs. part decisions, and all their combinations. A mixed-model ANOVA is used as the dataset

consists of repeated measurements of multiple problem instances. Therefore, effects can be tested

between different subjects, but also within the same subject. The assumptions for this statistical

analysis, namely normal distribution and homogeneity of the variance-covariance matrices were

tested and satisfied. A test of sphericity was not conducted as all observations have only two

different levels (e.g., two different lengths of the BOL).

The effect of the factors described above is investigated on the results obtained from the best

found solution but also on the lower bounds of costs, namely the LP-relaxed costs. The results of

this analysis can be found in Table 3.7 and read as follows: If the length of the BoL or the amount

of space that can be borrowed is increased, ↑ describes an increase in cost and ↓ a decrease in

costs. For the other two categories it means switching from the first to the second option leads

to an increase (↑) or decrease (↓) in costs. The effect size shows the interval of increase/decrease

for all problem instances when switching from the first to the second option.

As one can observe, costs are relatively robust against changes in the factors tested: However,

some things may be observed: (i) a longer border of line slightly decreases costs on average. But

it should be noted, that an increase in the length of BoL can also increase costs. The actual

effect depends on the dataset, i.e, the part, family, and station characteristics (ii) The allowance

of space borrowing lowers costs in most cases. However, this effect is statistically not significant.

An explanation might be, that the amount of space borrowing allowed is not sufficient to lower

the cost to a significant point. This also matches previous results of Schmid et al. (2018), where

1We used a 0.005 signifance threshold due to the standards proposed by Benjamin et al. (2018)
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Table 3.7 Measuring the effect of high level decisions on costs

Setting Observed costs Effect size [%] LP costs Effect size LP [%]

Length BoL ↓∗ [−8.44; +8.11] ↓∗ [−8.44; +6.46]
Space borrowing ↓ [−6.82;−0.06] ↓ [−6.05;−0.06]
Moving vs. non-moving line - [−1.81; +2.3] - [−1.81; +0.41]
Family vs. part decision - [−1.42; 0] - [−1.42;−0.002]

∗ ∗ ∗ refers to a significance level of p = 0.005, ∗∗ to a significance
level of p = 0.01 and ∗ to a significance level of p = 0.05 1

significant cost reductions were only achieved by allowing space borrowing of up to 50%. (iii)

Both other settings tested do not drastically influence the feeding cost. The two-way ANOVA

also did not reveal any significant interaction terms. Therefore, we do not report on them in

Table 3.7. Those results are especially relevant for future research as it allows to neglect the

decision about a moving or non-moving line (when not considering assembly line balancing).

Moreover, problems can be solved on a family level without risking much higher costs. Lastly,

the knowledge that interaction between these decisions are not significant allows for simpler

experimental settings.

Figure 3.3 Cost shares of feeding processes

Furthermore, the cost percentage of every process can be analyzed. The results can be seen

in Figure. 3.3. As one can see, transportation clearly has the greatest share. This can be

explained by the long distances in a factory as well as by lower density of transportation when

kitting and sequencing are applied. Usage costs are relatively low with an average of 10% and

a maximum of 22%. As the wage of assembly operators is assumed to be equal to the wage of

logistical operators, it is obvious that in scenarios where assembly operators earn higher wages

(for example in the automotive industry) this share would increase. But even with equal costs

for assembly and logistics operators taking the usage costs into account is relevant as we are

going to show in the next section.
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Comparing to a stepwise approach

One may argue that usage costs do not play a significant role in this decision making process,

as somewhat indicated in Figure 3.3. Therefore, we also tested decision making in a stepwise

approach. For this, we assumed that usage costs are equal over all possible locations along the

BoL. Solving this problem (using a simplified model) randomly assigns parts to any location. In

a second step, we fixed the assignments of parts to policies resulting from the first stage and just

optimized the location to be used for each and every part.

Figure 3.4 Comparing a stepwise to the integrated approach

Figure 3.4 shows the relation between costs obtained from the stepwise approach in comparison

to the approach proposed within this chapter. The left graph shows results when the minimum
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costs over all locations are assumed for every part with respect to usage and replenishment costs,

whereas in the right graph the average cost over all locations was assumed. As one can easily

see, the integrated approach reduces costs in almost all cases (657/672 cases when using average

costs in the first step; 650/672 cases when using minimum costs in the first step). In cases where

no costs could be saved, the optimal solution could not be found within the time limit of 3600s

and thus costs were marginally higher. Nevertheless, this shows that neglecting usage costs may

increase costs by up to 7%. Another interesting observation is that comparing the results from

both approaches (minimum versus average costs) were mostly close but never ended up in the

exact same solution. Thus, it is also not clear a priori which approach should be chosen when

solving the problem in two steps.

Making line feeding decisions

Our results indicate that all line feeding policies are used in most of the examined datasets.

Hence, one can conclude that consider all line feeding policies is key to minimize costs. Figure

3.5 shows the relative usage of line feeding policies over all datasets examined indicating median

(dark line), first to third quartile (box) and the minimal and maximal values (whiskers) as well

as outliers (circles) by means of a box plot.

Figure 3.5 Line feeding policy mix

One can observe a low usage of line stocking as a feeding policy. As line stocking is often

considered to be the basic line feeding policy, this is quite surprising. Taking into account,

however, that in this study often multiple models are produced on a single line, many parts

are needed and therefore, space is becoming extremely scarce, this is an explainable result.

Furthermore, there are a few datasets where approximately 40% of the parts are line stocked.

This occurs in datasets with only one to two models being produced on a line or the number

of parts being low due to a high overlap. The average percentage of parts in stationary kits is
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around 10-15%, with a peak of around 25% of the parts. This may also be considered to be a

surprising result as a lot of research in literature considers stationary kits to be an important

line feeding policy (e.g., Limère et al. (2012)). Thus, it may be stated that stationary kitting

is a relevant concept, especially when multiple models are produced on a single line but it does

not replace other feeding options such as sequencing and boxed-supply. Sequencing is also a

relatively scarcely used concept as it mostly makes sense for extremely large part families. The

most prevalent line feeding policies are boxed-supply and traveling kitting. However, one should

note the large deviations in traveling kitting.

As described in Section 3.6.1, we used a factorial experiment design. This allows us to investigate

the effect of the available space, space borrowing, moving lines and family vs. part decisions on

the decisions for line feeding policies similarly to the cost analysis in the previous section. We

used a mixed-model two-way ANOVA test and found that space borrowing and space along the

line have the most significant effect on decision making. The use of a mixed-model ANOVA is

motivated by the same reasons as discussed above and assumptions were tested and satisfied

before the application. As interaction terms did not show to be significant, we do not discuss

them here. Results can be seen in Table 3.8 and read as follows: If the length of the BoL or the

amount of space that can be borrowed is increased, ↑ describes an increase in the use of a policy

and ↓ a decrease. For the other two categories it means going from the first to the second option

leads to an increase (↑) or decrease (↓) in the use of a policy. The differences in decision making

can be seen in Figure 3.6 indicating the fraction of parts assigned to a line feeding policy in a

violin plot.

Table 3.8 Measuring the effect of high level decisions on line feeding policies

Line Boxed-supply Sequencing Stationary Traveling
stocking Sequencing kitting kitting

Length BoL ↑∗∗∗ ↑∗∗∗ ↓∗∗∗ ↓∗∗∗ ↓∗∗∗
Space borrowing ↑∗ ↑∗∗∗ ↓∗∗ - ↓∗∗∗
Moving vs. non-moving line - - - - ↑∗∗∗
Family vs. part decision - - ↑∗ - ↓∗∗∗

∗ ∗ ∗ refers to a significance level of p ≤ 0.005, ∗∗ to a significance
level of p ≤ 0.01 and ∗ to a significance level of p ≤ 0.05
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Results shown in this section so far are rather on a macro level, depending on factory-wide

decisions. However, one might also be interested in the way part characteristics lead to different

policy assignments. Thus, we show some descriptive statistics of part characteristics on the

feeding policy assignment in Table 3.9 by stating mean and standard deviation. These part

characteristics may be physical properties such as part volume and weight. However, we also

consider some organizational aspects such as the expected demand, and the number of parts that

constitute a family. Lastly, we look at station characteristics such as the number of parts and

part families that is required at a station.

Table 3.9 Part characteristics of parts assigned to a line feeding policy

Line Boxed-supply Sequencing Stationary Traveling
stocking Sequencing kitting kitting

Part volume [m3 0.032± 0.14 0.005± 0.007 0.13± 0.28 0.008± 0.015 0.002± 0.006
Part weight [kg] 3.06± 5.6 4.03± 6.47 3.27± 6.13 3.30± 4.81 0.7± 1.26
Demand [pcs.] 544.28± 592.3 161.87± 246.29 94.36± 261.25 122.63± 213.41 391.55± 574
Parts in family [pcs.] 2.28± 1.85 4.59± 4.10 9.75± 5.15 6.01± 4.77 4.86± 4.34
Parts at station [pcs.] 18.52± 14.36 39.95± 22.29 51.28± 24.6 99.07± 29.37 54.59± 27.47
Families at station [pcs.] 7.79± 4.93 13.24± 6.42 14.85± 6.33 24.88± 7.11 16.63± 6.76

From Table 3.9, one can see that line stocking and sequencing is mostly applied for relatively

large and heavy parts. The other line feeding policies contain generally rather small parts.

Furthermore, traveling kits also contain rather light parts whereas boxed-supplied and stationary

kitted parts can also be heavy. Demand seems to vary also drastically for the different line feeding

policies. For example, line stocked parts have a low demand and sequenced parts have even lower

demand. This makes also sense when looking at the number of parts within a family as demand

is linked to this characteristic: the more parts there are in a family, the lower the demand of

an individual part on average. The last characteristics are somewhat linked as a large number

of families at a station usually results in a large number of families at that station. One can

see that both kitting policies and sequencing are applied more often as the number of parts is

strongly increasing. This can simply be explained by a lack of space.

Generally note, that the standard deviations are quite high which means that the mean of

a characteristic might give an indication on the line feeding policy but can certainly not be

consulted as a single criterion for decision making. Furthermore, some general decisions, such

as space borrowing, might additional affect this decision (see Table 3.8) and thus, have to be

considered.

Multiple models in line feeding

One of the main contributions of this chapter is the incorporation of multiple model assembly

on a single assembly line. Obviously, this has an effect on the decision making of line feeding

policies. We also investigated this by means of an ANOVA. Here, a regular ANOVA is sufficient

as no within-subject effects need to be measured. As one can see in Table 3.10, decision making

for all line feeding policies strongly depends on the number of product models and overlap of
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families.

Table 3.10 Measuring the effect of high level decisions on line feeding policies

Line Boxed-supply Sequencing Stationary Traveling
stocking kitting kitting

Number products ↓∗∗∗ ↓∗∗∗ - ↑∗ ↑∗∗∗
Overlap ↑∗∗∗ ↑∗∗∗ ↓∗∗∗ ↓∗∗∗ ↓∗∗∗
Products ↔ Overlap − ↓↓∗∗∗ − - ↑↓∗∗∗

∗ ∗ ∗ refers to a significance level of p ≤ 0.005, ∗∗ to a significance
level of p ≤ 0.01 and ∗ to a significance level of p ≤ 0.05

The results indicated in Table 3.10 can also be observed in Figure 3.7, representing the average

usage of line feeding policies in dependency of number of product models and overlap. ↑ describes

that increasing overlap or the number of products is proportional to the usage of a line feeding

policy and ↓ denotes that changes behave anti-proportional. For the interaction effect of overlap

and product number, we use the notation of two arrows. The first one shows, starting from the

base case (no overlap, one product) if an increase in both leads to an increase (↑) or a decrease

(↓) in the use of a line feeding policy. The second arrow shows if the value is higher (↑) or

lower (↓) than the expected effect. The violin plots show the distribution of averages weighted

with the number of occurrences as well as their median. E.g., an increasing overlap leads to

more space consuming line feeding policies such as line stocking and sequencing. This can be

explained by the lower number of parts that are required per station. The requirement for space

saving policies is decreasing drastically with increasing overlap. This can be observed especially

for boxed-supply and stationary kitting, but to a minor extent also for traveling kitting.

On the contrary, an increase in models leads to an increase in the assignment to kits, both

stationary and traveling, but also to boxed-supply. A remarkable result is the slight increase in

line stocking when two product models are produced on a single line. This might be explained

by datasets with high overlap or a small number of parts at some stations.

Space borrowing

Another novelty of this model is the possibility that stations may borrow space from adjacent

stations. As indicated in Table 3.7 the allowance of space borrowing does reduce the observed

costs on average. The extent, however is not always very large. This might be explained by

the relatively small allowance for space borrowing, i.e., 25% of the preceding and succeeding

stations, chosen due to computational tractability. Therefore, increasing the possibilities for

space borrowing might lead to a stronger decrease in costs. In Schmid et al. (2018) we could

observe that doubling the allowance for space borrowing does increase cost savings to a larger

extent.

In Figure 3.8 it is indicated how much space, measured in number of locations, is used by stations

on average. One can observe, that all locations are used all the time if no space borrowing is

allowed. This is easily explainable as a reduction in space consumption usually requires more
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Figure 3.7 Line feeding policy mix depending on dataset characteristics

expensive line feeding policies. Thus, the available space is almost always used in entirety.

The allowance of space borrowing on the other hand, indicates that stations have a higher variety

in using space when space borrowing is allowed. Every station is still using some of its locations

and at no station all parts are fed with a traveling kit. The distribution of locations used looks

like it is normally distributed with its mean being equal to the maximum number of locations

per station. The amount of space borrowing seems quite high. Lastly, it can be observed that

all locations are used as well when allowing space borrowing.

Moving lines vs. non-moving lines

In assembly systems, assembly lines may be designed to move during the assembly process or to

be standing still. As shown at the beginning of this section, this decision does neither influence

the cost to a significant amount nor the decision for line feeding policies (see above). However, it

does influence the use of locations for line feeding policies. As shown in Figure 3.9, this decision

does drastically influence where stationary kits are positioned along the BoL. The figure shows

for every relative location of a station, i.e., the position of a location in relation to other locations

of the same station, how it is used. For every line feeding policy the values of the bars show how
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Figure 3.8 Space usage in relation to regular station size

many parts are assigned to a specific feeding policy at that relative location. There are a few

things to observe here. Starting with the use of locations that do not belong to a station but

can be borrowed by that station. Those locations (0,6,7 for short lines; -1,0,9,10 for long lines)

are mostly used for line stocking and boxed-supply. Stationary kits are almost never assigned to

these locations. Line stocked parts seem to be rather assigned to earlier locations along a station.

This might be explained when considering that line stocked parts are often high demand parts,

which makes it reasonable to position them as close as possible to the required point to reduce

walking. The left skew is likely a result of the left skewed demand points for parts at moving

lines as parts are needed as soon as the product enters the station but no parts are needed at

the very end of a station. Stationary kits are mostly placed in the center of the station which

facilitates a relative short walking distance on average if the demand points for parts in the kit

are spread over the entire station or agglomerate in the center. Surprisingly, this is not true for

long non-moving lines. In those cases, the central locations are mostly used for boxed-supply and

line stocking. This may be explained by a different constellation of kits as demands for parts in

the kits are higher (120 vs. 100). At the same time fewer parts are in the kit as part volumes are

almost twice the volume in comparison to a short line (0.0082 vs. 0.0049m3). Sequenced parts
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seem to be spread quite equally in a flat U shape over all locations for moving lines, whereas

at non-moving lines sequenced parts are rather distributed in a V shape as central locations are

used for boxed-supply and line stocking.
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Another interesting observation w.r.t. the positioning of sequenced parts can be made: In non-

moving lines, sequenced parts are positioned mostly in the center and fade slightly out towards

the sides. In moving lines in contrast, the center of the station seems to be the least favorable

position. This could be explained by the usage of those positions for boxed-supply which should

be positioned centrally. Moreover, they may contain parts for multiple operations throughout

the station.

Family versus part decisions

Based on Table 3.7 one can conclude that costs are not changing heavily when parts are assigned

to line feeding policies on a part level instead of a family level. This might be explained as only

relatively few families are supplied using multiple feeding policies and that splitting a family into

multiple policies requires additional space unless some parts in the family are box-supplied and

the others are line stocked. Out of 377,520 families (accumulated over all datasets and runs)

17,623 families are assigned to two and 409 to three different line feeding policies. No family

is assigned to more than three feeding policies. The following Figure reports which line feeding

policies are combined within one family if parts from a single family are assigned to multiple line

feeding policies. Overall, we conclude that feeding on a part level is not very beneficial and thus

not worthwhile to investigate further. However, future research should not neglect that families

consist of multiple parts, as this obviously has an impact on the feeding decisions taken.

Figure 3.10 Combinations of line feeding policies within a single family
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3.7 Discussion

3.7.1 Implication

With this research, we proposed a new state-of-the-art model for the assembly line feeding

problem. The model combines all line feeding policies in a single model which has not been done

yet so far. Furthermore, we allow multiple models to be produced on a single assembly line.

Therefore, this model increases the applicability of line feeding models in practice. Additionally,

we investigated the effect of different parameters that may be chosen in practice. Namely, the

allowance of space borrowing, the decision if parts of the same family can be fed differently, the

amount of available space and the decision if a line is moving at a constant pace or standing still.

The knowledge on these decisions provided in the preceding section should help to make better

decisions in practice but also to work on models incorporating even more decisions.

As shown in the Section 3.6.3, it is not very beneficial to make decisions on a part level. Therefore,

one might limit oneself to family-wise optimization in further research. This will drastically

improve the computation times of the model as adding VIs is sufficient to avoid a weak relaxation

of the model. Therefore, a restriction to a family level solution in future research allows the

incorporation of additional decisions as others may be neglected due to their minor effects.

By extending the scope of assembly line feeding to incorporate the decision on locating parts

along the line, we also increased the range of insights one obtains from solving the assembly line

feeding model. The model does not only take decisions for line feeding policy selection but also

determines the exact design of the border of line.

As all previous assembly line feeding models had more restricting assumptions or limitations

they all showed to be much easier to solve. With this work, however, we proposed a model

that is computationally more difficult to solve but also described an approach to improve the

solution process by adding cuts and performing preprocessing. Cuts that forbid sequencing of

multiple families at one location (see Equation (3.47)) can only be applied in models assigning

parts to discrete locations. The proposed cuts for stationary and traveling kitting (see Equations

(3.43)-(3.46)), however, are universally applicable whenever the concept of part families is used.

3.7.2 Limitations

The proposed model aims at integrating many aspects that are relevant for real world decision

making. Though this could be achieved in part, we still had to make limiting assumptions.

Even though we could realistically model most line feeding policies, we assumed traveling kits

to enter the assembly line at the beginning of a line and travel until the end. Although this is a

possible way of handling traveling kits, it is also possible to let traveling kits enter and leave at

random stations. Therefore, having multiple traveling kits for a single product is an option in

practice. This would have an impact on the costs for transporting traveling kits, since they had

to be provided in a (more expensive) milk run manner rather than just being transported to the

first station of the assembly line. Possibly, allowing multiple traveling kits per product would

lead to a higher percentage of parts being fed in traveling kits. It should be noted that allowing
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traveling kits to enter and leave stations at any random point, will have a strong negative effect

on the problem’s solution quality in terms of LP-gaps.

As mentioned in Section 3.4, demand is assumed to be deterministic. Therefore, optimal solutions

obtained from this model do not give the optimal solution when demand differs strongly from

expectations. In order to give better solutions for assembly systems with heavily varying or

unpredictable demands, stochastic or robust optimization approaches could be applied to extend

this research.

One important aspect of the proposed model is the characteristic of variable space. As described

in Section 3.6, we assumed a size of 4m and 6.4m for the border of line of a station. Such

large stations are obviously not appropriate for the assembly of relatively small products such as

smartphones or TV’s. In those cases assembly stations are rather of the size of a table and small

racks may contain the assembly parts. Usually, walking does not play an important role in such

cases. Therefore, this model may be less suited for such assembly systems. However, using, e.g.,

Methods-Time Measurement (MTM) to measure times for grasping parts out of a rack versus

parts from a kit could be used to obtain data appropriate for this model. Though, we do not

preclude the possibility that further adjustments have to be done.

Finally, in this model some decisions like the position and number of storage areas and prepa-

ration areas are already taken in advance. The same is true for selection of vehicles and their

routing. One might refer to a fixed layout to describe this characteristic. When planning an

assembly system from scratch, these decisions may not have been taken in advance. In those

cases, a hierarchical or integrated decision making approach seems to be necessary.

3.8 Conclusion

3.8.1 Summary

Concluding this chapter, we proposed a linear IP model to understand and improve decision

making in assembly line feeding. The model includes four major novelties: (i) we included

five line feeding policies, i.e., line stocking, boxed-supply, sequencing, stationary and traveling

kitting. This has not been done so far (asides from the preliminary version of this chapter, see

Schmid et al. (2018)), although these policies are used in industrial production systems. (ii) we

introduced not only the decision on the assignment of parts to line feeding policies but also to

a discrete location along the line. By this we give a better understanding of the organization of

part storage along the line. Furthermore, we show that neglecting this decision may negatively

affect costs. (iii) decision making on the dimensioning of the assembly station, i.e., the available

space, in terms of locations, has been included as another decision to be made. This increases

flexibility and may be applied to reduce costs for assembly line feeding. (iv) Multiple models

being produced on a single assembly line have been integrated by deciding on the constellation

of kits for every individual model.

As commercial IP solvers were not able to solve this model in an efficient manner, a solving

framework exploiting cuts, either a priori (Cut & Branch) or on the fly (Branch & Cut) has been
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proposed to obtain optimal, or near optimal solutions. Furthermore, we created datasets based on

case study data to validate the proposed model and offer other researchers to use these datasets

for benchmarks2. Lastly, we investigated decision making by means of statistical analyses and

showed how part characteristics and facility decisions affect costs and policy selection.

3.8.2 Further research

As mentioned in Section 3.7.2, using this model requires to have all parameters and sets available

when the model is solved to determine optimal assembly line feeding. However, in reality some

aspects are not known up front with demand being the most unpredictable. Therefore, future

research should incorporate stochastic demand by using stochastic programming or robust opti-

mization approaches. Furthermore, we assumed operations in preparation and transport to be

done in a smart way. Therefore, we incorporated utilization rates for transportation as opera-

tions will not be done in a 100% optimal manner. To overcome such estimations, future research

may incorporate transportation or preparation planning in a more detailed manner by linking

the tactical nature of the problem with more operational aspects.

2The datasets can be downloaded from: www.opm.ugent.be/datasets.htm

www.opm.ugent.be/datasets.htm


4
Optimizing kitting cells in mixed-model assembly

lines

“Details create the big picture.”

Sanford I. Weill
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4.1 Introduction

The production of highly customized products offered in various models, such as luxury cars,

requires an efficient parts provision system to feed assembly stations with the necessary parts at

the right time and place and in the right quantities. The production sequence on these lines is

arbitrary, and lot sizes are as small as one. Therefore, assembly workers require many different

parts. As we showed in the previous chapter, kitting line feeding policies are used in modern

production systems to enable this mass customization. As discussed above, kits are prepared in

kitting cells, which are replenished from the block storage and the flow rack area (see Figure 4.1

and Section 4.2).

While most research in this domain, such as the preceding chapter, has been conducted to study

which parts should be included in these kits. Contrarily, the operation of kitting cells has received

far less attention. Most research studies on kitting cells focus on human factors or technology-

related aspects such as pick-by-light support in kit preparation (Fager et al., 2019). However,

to the best of our knowledge, there has been no comprehensive study on optimizing the cells’

layout. Only Bortolini et al. (2020) investigated the design of a picking area integrated into a

warehouse. Although the preparation of kits resembles classical order picking, kit preparation

is more repetitive than order picking. In this study, we consider the kitting cell layout design

problem. Therefore, the objective is to minimize the cost of operating such cells while determining

their size, location of parts in the cell, and the load carriers used for replenishment. To this end,

a mixed-integer linear programming model will be developed and tested on a real-world dataset.

Our findings show that the application of such an approach may save manufacturers around 10%

of their costs.

The remainder of this chapter is organized as follows: First, we provide a better understanding

of the industrial setting in which kitting cells operate. Next, in Section 4.3, we review related

literature. Afterward, in Section 4.4, we propose a mixed-integer programming model to design

kitting cells and show cost calculations. The model is validated by applying it to a real-world

kitting cell and analyzing the results in Section 4.5. Finally, we discuss potential extensions of

our approach in Section 4.6.

4.2 Industrial setting

Kits serve different functional parts (e.g., bumpers, wing mirrors, and antennas) in several vari-

ants, defined by color, quality, etc., to one or multiple assembly stations. Stationary kits provide

parts to specific assembly stations. In contrast, traveling kits are serving multiple stations while

being attached to their dedicated product unit (e.g., car), and return to the kitting cell for re-

plenishment (see Figure 4.1). Kits serving the same (set of) assembly station(s) are prepared in

the same kitting cell. This cell is an area in which all parts required for kit preparation are stored

in limited quantities to be picked and loaded into a kit. Kitting cells do not entirely replace other

storage areas in the warehouse. They rather function as intermediate storage and picking area

that is replenished either directly from the warehouse (block storage area) or a flow rack area
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Figure 4.1 Material flow

(see Figure 4.1). The former provides pallets, whereas the latter provides small boxes. Typically

a kitting cell is arranged in a U-shape layout to reduce space consumption and facilitate effective

picking (see Figure 4.2).

A kit can be a compartmentalized container or a mobile rack with compartments or hooks and

mountings to hold parts. Kits can either be transported manually or by automated guided

vehicles (AGVs) within the kitting cell. The kit moves along its path in the cell (or is pushed by

a worker) while being loaded with the assigned parts from the boxes temporarily stored in flow

racks or pallets. Loading is mostly performed manually, but efforts to automate these tasks by

robots are increasing. Once all parts are picked, the kit leaves the cell and is either placed in a

buffer zone or directly transported to the assembly line.

4.3 Related literature

The concept of kitting has been introduced in the 1990s (Bozer and McGinnis, 1992) and created

a stream of papers in the literature that aim to decide on the feeding of parts, i.e., whether parts

should be kitted, provided in full pallets, sequenced, or supplied Just-in-Time using smaller boxes

(see, e.g., Sali and Sahin (2016); Schmid et al. (2020)). Those studies usually have a broad scope

incorporating many aspects of assembly systems to assign each part of the assembly process to a

feeding policy. To this end, replenishing, preparation, transportation, investment, and usage costs

may be considered, with preparation costs covering the kitting activities. However, the exact

design of a kitting (or sequencing) cell is not discussed explicitly or simplified in these studies.

Limère et al. (2015), e.g., consider that walking times in a kitting cell may vary according to the

number of part variants in the cell. Similarly, Schmid et al. (2020) calculate walking distances

in a kitting cell as a function of the number of parts in a cell. However, the layout, feeding of

parts to the kitting cell, and walking efforts are not modeled. Therefore, providing additional
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insights into kitting cells’ design will provide a better understanding of these cells.

While the research on assembly line feeding simplifies the operation of kitting cells, other studies

investigate the operation of kitting cells in more detail (Hanson and Medbo, 2016b). Those

research efforts may be classified into three categories: (i) manual kitting; (ii) robotic kitting

and (iii) hybrid kitting. An example for hybrid kitting can be found in Boudella et al. (2018).

However, for the remainder of this study, we will focus on manual picking. For example, Brynzér

and Johansson (1995) measured the effects of geographical location, batch picking, and zoning

in picking areas on metrics such as walking distance and picking accuracy in manual picking

systems. Faccio et al. (2015) investigated the potential cost savings of batch picking. However,

batch picking is not always a feasible approach because in many environments, like our case

study, kits are too large to pick parts for multiple kits at a time. In another study, Hanson

and Medbo (2016b) investigated factors determining the efficiency of kitting cells by conducting

a cross-case analysis. They identified eight important design factors such as batch size, cell

size and layout, and part packaging types and sizes. More recently, there have been studies on

the effect of information systems. For example, Fager et al. (2019) developed an experimental

study to find how different support systems, such as pick-by-light or pick-by-paper, affect kit

preparation efficiency. Although all these studies focus on efficiency-influencing factors, the

problem of designing a kitting cell by minimizing material handling, equipment, and space costs

has rarely been addressed in the literature. Only a few recent studies have considered such cost-

based objectives. Examples are Caputo et al. (2020) who developed a descriptive cost model

to compare manual and hybrid kitting systems and Bortolini et al. (2020) who investigated the

warehouse design to support kitting activities. In their study, order picking is not separated but

conducted within the warehouse. A two-step procedure that first defines the layout and then

determines part placement is proposed and applied to a case study. The approach presented in

this study is differs from Bortolini et al. (2020) because kitting in the warehouse is not always a

feasible option due to long distances between the warehouse and the assembly line. Furthermore,

it is impossible to pick from block-stacking storage where pallets are stacked on top of one another

without racks.

4.4 Modeling approach

When designing a kitting cell, the definition of the flow within the cell determines its configu-

ration. Figure 4.2 shows an example of a U-shaped configuration, where the operator and the

traveling kit follow a reversed U. The dashed lines represent a selection of possible walking paths

for the picking operator and the kit, whereas the solid lines give specific examples of a kit’s path:

Returning depleted from the line at 1, traveling kits queue for a refill at 2. Once an operator

starts picking parts for a kit, it travels with the operator through the cell. When no more parts

further down the aisle are needed, the operator may take shortcuts (see an example at 3). Lastly,

the kit is dropped off at 4, from where it travels back to the assembly line, whereas the operator

goes back to 2 to pick up another empty kit. Figure 4.2 shows the effect of different layouts:

The cell may contain more large containers, shown in red, and thus be more spacious, as shown
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in outcome 2. Contrary, increased use of small boxes (blue) results in smaller cells, as shown in

outcome 1.
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Possible outcome 1 Possible outcome 2

Large containers

Small containers

Possible walking paths
Example of kit movement

Figure 4.2 Flow in design

In the following, we propose a mixed-integer programming model to design kitting cells with a

U-Shaped configuration. This model minimizes investments, space, and operational costs. The

operational cost includes the exact calculation of the operator’s walking distance within the cell.

To allow the optimization model to characterize the layout, we discretized the cell layouts into

locations (see Figure 4.3). The locations will be used in the model to decide on the storage

location of each part. We used historical data to simulate a large number (10,000) of demand

patterns for each kit. Each demand pattern includes the parts assigned to the kit and the total

daily demand of the kit. Of these demadn patterns, we selected a subset whose summed demand

equals the historic demand data and that have high probabilities to occur. These patterns are

used along with the parts’ locations to determine the total walking distance inside a cell per

demand pattern. The distance to fetch the part of the demand pattern being the farthest from

the entrance determines the walking distance. Similar to research on assembly line feeding,

a feeding method needs to be selected for each part. This feeding method defines whether a

part is delivered in large (e.g., containers or pallets) or small quantities (e.g., boxes and totes).

The notation used throughout this model is summarized in Table 1. This table only contains

the variables, sets, and parameters required for the optimization model. In Section 4.4.2, cost

calculations will be presented along with additional parameters.
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Table 4.1 Model notation

Sets

D Set of demand patterns I Set of parts

Id Set of parts in demand pattern d Ipl Set of parts for which policy p and lo-

cation l are feasible

F Set of possible extra locations needed

to store parts

L Set of locations

Lip Set of locations eligible to store part i

in policy p

Lr Set of locations in row r

Lr Set of locations that are inaccessible

when using row r

P Set of feeding policies, p = L for large

container such as a pallet, p = S for

small container such as a box

Pi Set of policies available for part i R Set of horizontal rows

Variables

Wd Walking distance for demand pattern d

Ul =

1, loc. l is used by adjacent loc.

0, otherwise

Ypl =

1, loc. l is used for policy p

0, otherwise

Xipl =

1, part i is fed to loc. l with pol. p

0, otherwise

Zr =

1, locations of row r may be used

0, otherwise

Parameters

cW Walking cost per meter cipl Cost of providing part i to location l by

policy p

cp Investment cost for equipment, e.g., a

flow rack, when using a location for pol-

icy p

cAr Space cost for the complete cell if row

r is used

dl Distance of location l from the starting

point (walking back and forth)

fi Number of additional locations re-

quired, when part i is stored in a large

container. fi ∈ Z+
0

M A sufficiently large number sip Space required for feeding part i using

policy p: Equals 1 for large and (box-

width · box-height) for small containers

sp Location space for policy p: Equals 1

for large and (rack-width · rack height)

for small containers

λd Demand for traveling kit with demand

pattern d



Optimizing kitting cells in mixed-model assembly lines 97

4.4.1 Optimization model

Minimize: ∑
i∈I

∑
p∈Pi

∑
l∈Lip

ciplXipl +
∑
d∈D

cWλdWd +
∑
p∈P

∑
l∈L

cpYpl +
∑
r∈R

cAr Zr (4.1)

subject to: ∑
p∈Pi

∑
l∈Lip

Xipl = 1 ∀i ∈ I (4.2)

∑
p∈Pi

∑
l∈Lip

dlXipl ≤Wd ∀d ∈ D ∀i ∈ Id (4.3)

∑
i∈Ipl

Xipl ≤MYpl ∀p ∈ P ∀l ∈ L (4.4)

∑
i∈I

∑
p∈Pi

∑
l∈Lr∩Lip

Xipl ≤MZr ∀r ∈ R (4.5)

∑
r∈R

Zr = 1 (4.6)∑
i∈I

∑
p∈Pi

∑
l∈Lr∩Lip

Xipl ≤M(1− Zr) ∀r ∈ R (4.7)

∑
i∈Ipl

sipXipl ≤ sp ∀p ∈ P ∀l ∈ L (4.8)

∑
i∈ILl:fi≤f

XiLl ≤ Ul′ ∀l ∈ L ∀f ∈ F ∀l′

∈L : l − f ≤ l′ < l (4.9)∑
p∈P

Ypl + Ul ≤ 1 ∀l ∈ L (4.10)

Wd ≥ 0 ∀d ∈ D (4.11)

Ypl ∈ {0, 1} ∀p ∈ P ∀l ∈ L (4.12)

Xipl ∈ {0, 1} ∀i ∈ I ∀p ∈ Pi
∀l ∈ Lip (4.13)

Ul ∈ {0, 1} ∀l ∈ L (4.14)

The objective function (4.1) minimizes total cost, which includes replenishment costs (cipl),

walking costs (cw), investment costs (cp), and space costs (cAp ). Constraint (4.2) is a classical

assignment constraint, ensuring that every part is assigned to a feeding policy and a location. As

mentioned above, walking distances for all demand patterns d are calculated as the maximum

distance for that demand pattern in Constraint (4.3). Next, the assignment of parts to a location

is linked to Ypl in Constraint (4.4) with the big-M being set to |Ipl|. Variable Ypl indicates if

location l is used for policy p. A kitting cell’s size is determined by its length since its width is
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predetermined. Therefore, the use of the last horizontal set of locations is described as using a

horizontal row. Three out of eleven possible rows are depicted in Figure 4.3. Constraint (4.5)

links the assignment of parts to locations belonging to row r with the indicator variable Zr with

the big-M value being set to |I|. This variable determines the cell’s length as only one row

can be selected as the last row (see Constraint (4.6)). Only one row can be used as, e.g., the

use of row 3 makes the use of locations in other rows such as 26 impossible (see Figure 4.3).

Furthermore, using row 3 makes other locations such as 3, 4, 13, and 14 inaccessible. This is

ensured in Constraint (4.7).
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Figure 4.3 Using rows to define a cell’s length

Lastly, it is ensured that each location’s capacity is not exceeded (Constraints (4.8), (4.9), and

(4.10)). In case boxes are assigned to a location, a rack is used to store them. Such a rack

consists of several shelves, available for storing boxes, and one shelve to return empty boxes.

The available space of a rack is determined by the size of its facing sS , calculated by the product

of the storage shelves’ width and height (see Figure 4.4). It may further be adjusted by a

utilization degree. When storing a pallet, both the available space and the space requirement

are set equal to one since one location has exactly the capacity to fit one pallet. However, if a

pallet of a part is exceptionally large, adjacent locations may be used to fit this pallet as well.

This is indicated by the binary variable Ul, which is introduced in Constraint (4.9). To clarify

this constraint, consider the following example: Assume a large container of part A occupies

three locations. Thus, assigning it to location 24 (see Figure (4.3)) requires locations 22 and

23 to be used for this part as well. The parameter fi for this part is set to 2, showing it needs

two additional locations. Hence, Constraint (4.9) ensures that U22 = U23 = 1. Simultaneously,

assigning such a part to location 11 is avoided by the definition of the set Lip. Lastly, Constraint

(4.10) prevents assigning a location to more than one feeding policy. Constraints (4.11)-(4.14)

define the variable domains.
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Figure 4.4 Front view of a rack used for smaller containers

4.4.2 Cost calculation

Cost elements can be split into three major aspects: Investment, space, and operational costs.

Table 4.2 presents the notation used for deriving the cost functions.

Table 4.2 Parameters used for cost calculations

Parameter

b Width of a location

cIF Investment costs for a forklift [$/h]

cIT Investment costs for a tow train [$/h]

cOF Labour cost for a forklift operator [$/h]

cOT Labour cost for a tow train operator [$/h]

cA Space cost [$/m2]

cO Labour cost for a picking operator [$/h]

d Fixed traveling distance for a tow train in the warehouse

d̃ Average distance between two drop-offs

dil Transportation distance to deliver part i to location l

dP Distance from warehouse to flow rack area

dT Length of a tow train tour

dr Depth of kitting cell when using row r

nip Quantity of part i when delivered using line feeding policy p

sip Space of a container used for delivering part i in policy p

sT Available space in the tow train

sA Additional space needed for traveling in the preparation area

s̃ Average space required to store a box

tHF Pick up & drop off time for forklift transportation

tHT Pick up & drop off time for tow train transportation

tB Time to load and couple tow train wagons

vF Velocity of a forklift

vO Walking velocity of an operator

vT Velocity of a tow train

w Width of a kitting cell

λi Demand of part i

ηF Fill rate of a forklift

ηT Fill rate of a tow

εF Utilization rate of a Forklift

εT Utilization rate of a tow

As shown in the previous section, costs incorporated in the model are combined in the parameters

cipl, c
W , cAr , and cp. Clearly, cp contains equipment investments costs only. Similarly, cAr and

cW exclusively contain space and picking costs, respectively. The former can be calculated based

on the depth and the width of a kitting cell with row r plus some additional space sA allowance

to permit logistics to and from the cell.

cAr = (dr + sA)(w + sA)cA ∀r ∈ R (4.15)
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The operator’s velocity and wage determine the latter.

cW = cO/vO (4.16)

In contrast, cipl, contains both vehicle investment and operator costs and constitutes replenish-

ment costs.

Replenishment costs consist of operator costs for driving vehicles or carrying parts and vehicle

cost. For replenishment of large containers, forklifts are used, and costs are calculated based on

a part’s demand λi and the number of parts in a large container niL. The outcome is combined

with the transportation distance dil, the vehicle velocity vF , and its fill rate ηF . Furthermore,

handling times tHF are considered. Before multiplying this with the investment cost cIF and the

operator costs cOF , one might consider the average forklift utilization rate εF . Combining this

data leads to Equation (4.17).

ciLl =
λi
niL

(
2dil
vF ηF

+ tHF )εF (cIF + cOF ) ∀i ∈ I ∀l ∈ LiL (4.17)

ciSl =
λi
niL

(
2dP

vF ηF
+ tHF )εF (cIF + cOF )+

λisiS
niSsT

(
dT

vT ηT
+ tHT + tB)εT (cIT + cOT ) ∀i ∈ I ∀l ∈ LiS (4.18)

dT =
sT

s̃
d̃+ d (4.19)

The cost for feeding parts in small containers is calculated similarly. However, parts need to be

transported with a tow train and, additionally, need to be replenished to the flow rack area by

forklift (see Figure 4.1). Therefore, part of the transportation is done by forklift and another

part by tow trains. Furthermore, the time to couple the wagons of a tow train tB needs to be

considered. The length of a trip is estimated based on the distance between different drop-offs

and the average amount of boxes that can be transported by a train (see Equation (4.19)). Thus,

replenishment costs for small containers are a combination of operational and investment costs

for forklifts and tow trains (see Equation (4.18)).

4.5 Computational study

To validate the model, we use real-world data from an automobile Original Equipment Manu-

facturer (OEM) and evaluate the proposed optimization model by comparing various heuristic

approaches based on the well-known ABC classification (see below).

The cell to be designed is used to prepare traveling kits feeding parts to multiple assembly line

stations and consists of 77 parts, clustered into 59 part families. Costs are calculated for a

representative day, i.e., for the preparation of 735 kits. Investment and space costs are adjusted

to the same time horizon. We assumed 200 different demand patterns.

The model is implemented in Python and solved by Gurobi 9.0 on a laptop computer with an
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AMD EPYC processor (2.5 GHz, 2 processors) and 230 GB of RAM. All results are optimal

and have been obtained within a maximum of eleven hours of computation time (the exact

computation times are reported in Table 4.3).

4.5.1 Setting

The baseline approach in this analysis is the solution obtained by the optimization model. This

solution is compared with solutions obtained from heuristic approaches, where parts are grouped

into different classes based on the well-known and widely-used ABC-classification (see, e.g.,

Caputo and Pelagagge (2008, 2011)). We clustered all parts in the kitting cell into three groups

based on their demand as follows:

• A: Parts with high demand accounting for 70% of overall demand (22.1% of parts).

• B: Parts with medium demand accounting for 20% of overall demand (27.3% of parts).

• C: Parts with low demand accounting for the remaining 10% of overall demand (50.6% of

parts).

We distinguish two levels of heuristic approaches: pure heuristic approaches (P1-P4) and hybrid

heuristic approaches (H1-H4). No optimization model is used for pure heuristics (P1-P4), but all

decisions, namely the feeding policy (pallet or box) and part location (therefore also investment

and cell size) are determined heuristically. In contrast, the hybrid heuristic approaches use the

optimization model to determine the parts placement but pre-assigns them to a feeding policy

based on their demand. With this, we aim to validate the results obtained by the optimization

model by comparing it to a simple to implement approach as it may occur in practice.

When pre-assigning the feeding policy, we use the classes derived from the ABC classification.

This approach is motivated by the intuition that delivering pallets is cheaper than delivering

boxes and that parts that are used often should therefore be delivered in pallets. However, it is

unknown to which feeding policy each group should be assigned, we tested multiple combinations

as described in the following enumeration while parts that are too large to fit into a box are

exempted from the policies described and stored in pallets instead.

• P-1: All parts in boxes, HDCE.

• P-2: A-parts in pallets, others in boxes, HDCE.

• P-3: A- and B-parts in pallets, C-parts in boxes, HDCE.

• P-4: All parts in pallets, HDCE.

When applying pure heuristic approaches, we also determine the parts’ locations in the cell

heuristically. For this, we propose a “higher demand, closer to the entrance” principle (HDCE).

As many kits will use a lot of parts with high demand it is most intuitive to place those parts at

the beginning of the kitting cell and parts with lower demand towards the end since an operator
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does not need to walk all the way to the end of the cell once she picked all parts required.

Therefore, this approach aims at reducing the traveling distance of the picker inside the cell.

In contrast, hybrid heuristics only determine the feeding policy heuristically, whereas the model

optimizes the parts’ locations. Again, four scenarios are compared:

• H-1: Optimizing location, all parts in boxes.

• H-2: Optimizing location, A-parts in pallets, others in boxes.

• H-3: Optimizing location, A- and B-parts in pallets and C-parts in boxes.

• H-4: Optimizing location, all parts in pallets.

4.5.2 Results

Table 4.3 presents the results of designing the cell for each scenario. Pallet pct. shows the

proportion of parts delivered in pallets (remaining parts are delivered in boxes). It also presents

replenishment (operational and investments), area, picking, and total costs. The racks’ invest-

ment costs were not included as they are close to zero. The table also shows the additional cost

imposed by each heuristic compared to the optimization model (Opt).

Table 4.3 Results of the partial level heuristics

time Pallet RC. AC PC TC Incr.
(s) pct.(%) ($) ($) ($) ($) (%)

Opt. 38734 61.4 577 130 147 854 -
P-1 3 46.8 745 119 81 945 10.66
P-2 3 55.4 717 130 94 941 10.19
P-3 3 70.1 655 148 117 920 7.72
P-4 3 100.0 609 180 136 925 8.31
H-1 147 46.8 686 119 128 933 9.25
H-2 643 55.4 656 130 132 908 6.32
H-3 892 70.1 579 148 147 874 2.34
H-4 573 100.0 499 180 198 873 2.22

As Table 4.3 shows, the optimization model outperforms all heuristics approaches. On average,

the solution obtained by the optimization model is 9.22% cheaper than those obtained by heuristic

approaches. Even though the use of hybrid heuristics, which use part of our optimization model

for part location assignment inside a cell, narrows this gap, the optimization model is on average

still 5.03% cheaper.

Providing more parts in pallets results in a larger cell, which results in higher space and picking

costs but lower replenishment costs. However, there seems to be no easy decision rule for the

feeding policy assignment. Furthermore, our results indicate that part location within the cell

has a large effect on the overall costs. The importance of part placement can be inferred from

comparing purely heuristic approaches with hybrid heuristics. While pure heuristics locate parts

heuristically, hybrid heuristics place them optimally, leading to an average cost reduction of

3.98% while retaining all other decisions. Therefore, part placement may be relatively more

important than feeding policy assignment (e.g., comparing P-4 and H-4).
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4.6 Future research

With this study, we provided a novel way to improve the efficiency of kitting cell operations. A

new optimization model was proposed and applied to a real-world industrial setting. To evaluate

the performance of the proposed model, we compared it with a variety of heuristic approaches.

Our experimental analyses showed that the optimization model reduces the total cost by 7-10%

for pure heuristics and 2-9% compared to hybrid heuristics, which use part of our optimization

model for part location assignment inside a cell. Clearly, a comparison with other heuristics may

be value as well. For example, one may investigate the use of the XYZ-classification (classifying

goods based on their physical properties) to determine line feeding policies. Although the results

reported above are auspicious, it is essential to test this approach for various kitting cells as

our study is limited to the automotive industry. While parts in our case study are relatively

large, it will be interesting to investigate smaller parts, such as parts in an electronics assembly

line. Developing a solution approach that improves the optimization model’s computational

performance is another promising direction for future research that enables solving problems

with a larger number of demand patterns, part families, and part variants. Lastly, it might

be worthwhile to investigate how this study can be adapted to match hybrid or robotic kitting

operations.





5
The impact of spatial considerations on assembly

line efficiency

“You can’t look at the competition and say you’re going to do it

better. You have to look at the competition and say you’re going to

do it differently.”

Steve Jobs
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5.1 Introduction

The assembly line balancing problem (ALBP) has long been of interest in scholarship after being

defined in the 1950s (Salveson, 1955). The problem concerns the assignment of a set of tasks

I to assembly stations K. In ALBPs, directed acyclic graphs connect different tasks, indicating

precedence relations. Precedence relations describe that some tasks may require that other tasks,

so-called predecessors, are performed beforehand. Figure 5.1 illustrates such a precedence graph.

The nodes represent tasks, and the (directed) arcs represent precedence relations. The numbers

atop the nodes represent time and space requirements, and the colored boxes symbolize four

stations as a possible solution.
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Figure 5.1 Precedence graph of assembly tasks described in Bowman (1960)

Baybars (1986) classifies ALBPs into simple assembly line balancing problems (SALBPs) and

generalized assembly line balancing problems (GALBPs). The former consider just time and

precedence restrictions. In contrast, the latter consider additional aspects of practical relevance,

such as task complexity (Zeltzer et al., 2017) or assembly lines with operators on both sides

(Kucukkoc and Zhang, 2015). Typical objectives in SALBP include the minimization of the

number of stations or the cycle time (i.e., the maximum time across all stations required to

process all tasks assigned to any station). When minimizing the number of stations m, one

usually predetermines the cycle time c as a parameter. This problem is referred to as SALBP-1.

Complementarily, when minimizing the cycle time, the number of stations is often given as an

input parameter, which is referred to as SALBP-2. In SALBP-Es, both the cycle time and the

number of stations are unknown. In SALBP-E, the product of cycle time and the number of

stations, also known as line capacity, is minimized. Minimizing line capacity is analogous to

maximizing the efficiency (thus E) and minimizing idle times across all stations. Attempts to

solve this more complex problem have hitherto been scarce (see, e.g., Corominas et al. (2016);

Esmaeilbeigi et al. (2015); Wei and Chao (2011)).

This chapter’s contribution is manifold: We are the first to tackle the SALBP-E problem with

space considerations that much better resemble real-world problems. This extension has its

roots in industrial requirements (Bautista and Pereira, 2007) but is also particularly relevant

to SALBP-E since, according to Zacharia and Nearchou (2013), it allows the introduction of

meaningful bounds on the number of stations. Next, we propose a new constraint programming

algorithm to solve both the classical SALBP-E and the time- and space-constrained ALBP that



Optimization procedures for TSALBP-1/2 107

maximizes efficiency (called TSALBP-1/2). Finally, we use these algorithms to assess the impact

of spatial considerations on assembly line balancing efficiency. For rigorous testing, we created

new datasets and compared the results for the space-constrained to the unconstrained problem.

Following a brief literature review, we first show important bound calculations in Section 5.3.

In Section 5.4, we show how the problem can be approached from an algorithmic perspective

before conducting computational experiments. Finally, a brief summary and recommendations

for future research are given.

5.2 Literature review

A little over a decade ago, Bautista and Pereira (2007) introduced a new class of GALBP:

TSALBPs in which each task has both a temporal and a spatial requirement. To classify the

variants of this GALBP, Bautista and Pereira (2007) proposed an extended scheme to classify

the variants of this GALBP (see Table 5.1). Subsequently, Scholl et al. (2010) proposed a

new class, called assignment-restricted assembly line balancing problems (ARALBPs), under

which TSALBPs may also be subsumed. Since their introduction, TSALBPs have been studied

intensively (see, e.g., Bautista and Pereira (2011); Chica et al. (2016); Sternatz (2014)) with

varying objectives. Most papers have focused on the minimization of cycle time, the number of

stations, or multiple objectives, such as number of stations and space minimization. However, no

research has yet been carried out with respect to the optimization of TSALBP-1/2, which would

optimize line efficiency similar to the SALBP-E problem, where 1/2 stands for the simultaneous

optimization of objectives and 1 and 2 are the number of stations and cycle time, respectively.

This is surprising since, e.g., Zacharia and Nearchou (2013) point out that, especially in SALBP-

E, a lower bound on the number of stations may arise from space restrictions, justifying the

extension to TSALBP-1/2. As the problem is part of the TSALBP class it considers the parts’

spatial requirements and the stations’ spatial availability. The amount of available space per

station is assumed to be equal for all stations, since equally sized stations allow greater flexibility

than unequally sized stations when reorganizing the assembly line. As an example, we may

assume an assembly line consisting of several stations that differ with respect to size. This may

have implications for equipment, such as conveyers or tools. Thus, when introducing a new

product that might also require the same number of stations but in different sizes, the process of

restructuring will be more complicated, since tools and conveyors will likely have to be replaced.

Therefore, specifically tailored assembly lines are less desirable. If one allows for stations of

different sizes, it is sufficient to solve the simple ALBP and adjust the stations’ sizes accordingly,

since one would just obtain an optimal line balance with respect to (w.r.t.) task times and the

stations could be sized to meet spatial requirements.

According to our literature review, the first approach to solving line balancing problems, by

determining cycle time and number of stations, was developed by Rosenblatt and Carlson (1985).

However, the objective was not to minimize the idle time/line capacity but to maximize profits by

first determining the number of stations and then minimizing cycle time. The first approach to

minimizing line capacity, however, was proposed by Plans and Corominas (1999) by providing a
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Table 5.1 Types of TSALBP (Bautista and Pereira, 2007)

Problem name Stations Cycle time Space Type

TSALBP-F Given Given Given Feasibility
TSALBP-1 Minimize Given Given Single-objective
TSALBP-2 Given Minimize Given Single-objective
TSALBP-3 Given Given Minimize Single-objective
TSALBP-1/2 Minimize Minimize Given Multi-objective
TSALBP-1/3 Minimize Given Minimize Multi-objective
TSALBP-2/3 Given Minimize Minimize Multi-objective
TSALBP-1/2/3 Minimize Minimize Minimize Multi-objective

mixed-integer linear programming (MILP) formulation. In addition, a fix-and-relax heuristic was

also proposed. This work was followed by Wei and Chao (2011), who proposed a two-step solution

methodology, solving SALBP-2 multiple times for every possible number of stations. Some errors

in Wei and Chao’s paper were corrected by Garćıa-Villoria and Pastor (2013). Gurevsky et al.

(2012) analyzed SALBP-E solutions while considering task time variations. Various proofs on the

stability of solutions were given and tested based on the outcome of heuristic procedures. Zacharia

and Nearchou (2013) also approached the SALBP-E with uncertain (i.e., fuzzy) assembly times

and proposed a genetic algorithm.

Esmaeilbeigi et al. (2015) approached the SALBP-E by linearizing the objective in a way that

allowed a direct solution approach with a linear MIP formulation. Furthermore, they extended

some of Wei and Chao’s (2011) ideas by not only eliminating variables that could not be used but

also by adding valid inequalities that dynamically restricted the assignment of tasks to stations.

Precedence constraints were also modeled differently using auxiliary variables. We derive our

model from this approach. Corominas et al. (2016) proposed various methodologies for solving

SALBP-E, either based on a different linearized MILP formulation or by extending the two-step

procedure proposed by Wei and Chao (2011), which heuristically solves SALBP-2 repeatedly.

For this, cycle time and number of stations are linked to the corresponding best possible line

efficiency and an upper bound on cycle time. Most recently, Cerqueus and Delorme (2019)

proposed a branch-and-bound algorithm to solve SALBP-E by creating the Pareto front.

5.3 Bounds and solution space

As the special cases of ALBPs such as SALBP-F are known to be NP-hard (Álvarez-Miranda

and Pereira, 2019; Garey and Johnson, 1979), SALBP-E and TSALBP-1/2 are also NP-hard.

This is also evident when considering the k-partitioning problem, which does not have precedence

constraints and therefore is a special case of SALBP-E (Korf, 2009). To improve the solvability of

this hard problem, however, some bounding techniques are proposed. This will help to improve

solution times as it allows the search space to be significantly diminished. It will also help

to clarify the approaches described later in the chapter. The notation used in this section is

explained when used but also summarized at the start of the next section. First, in Subsection

5.3.1, we propose bounds based on traditional bounding techniques proposed for SALBP-1 or



Optimization procedures for TSALBP-1/2 109

SALBP-2, and adjust them to fit both the SALBP-E and TSALBP-1/2. We also derive new

bounds for the TSALBP-1/2. Next, in Subsection 5.3.2, we present some greedy heuristics that

can be used to easily find solutions for both the SALBP-E and TSALBP-1/2. In Subsection

5.3.3, we show how the results of greedy heuristics can be used to improve previous bounds.

Finally, we show how those bounds can be used to define the earliest and latest stations for every

task. This reduces the number of decision variables in the mathematical programming model

and their domains in the constraint programming model.

5.3.1 Baseline bounds

For the TSALBP-1/2 as well as the SALBP-E, three types of bounds can be distinguished: (i)

upper and lower bounds on the number of stations, (ii) upper and lower bounds on cycle time,

and finally (iii) upper and lower bounds on idle time (i.e., the objective value). The former two

are discussed below. Bounds on the idle time follow indirectly from the combination of those

bounds.

Bounds on the number of stations

When solving instances of SALBP-E, bounds on the number of stations are usually given exter-

nally (denoted as me or me), as in Scholl’s (1993) dataset. However, extended to TSALBP-1/2,

one can state, more generally

m = min{|I|,me} (5.1)

m = max{
⌈ tsum
ce

⌉
,
⌈asum

A

⌉
,me} (5.2)

The lower bound calculation for the SALBP-E can only be performed if a certain cycle time is

assumed. Thus, for SALBP-E, either an upper bound on the cycle time ce or a lower bound

on the number of stations must be given externally. For TSALBP-1/2, however, the additional

information on space requirements ai and availability of space per station A allows the calculation

of a lower bound without imposing any external knowledge. Thus, more realistic lower bounds

on the number of stations can be obtained by the extension of the problem.

Cycle time bounds

Cycle time bounds may either be given externally (denoted by ce or ce), as discussed above, or

may be calculated based on the number of stations and the sum of all task times tsum. Since

the final number of stations is known neither for TSALBP-1/2 nor for SALBP-E, the upper

bound on the number of stations must be used (see Equation (5.4)) (Corominas et al., 2016).

Nevertheless, it is also possible to calculate an upper bound on the cycle time for each station

individually (see Equation (5.5)). This assumes that the station index is equal to the number of

stations in the solution.

c1 = min{tsum, ce} (5.3)
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c1 = max{
⌈ tsum
m

⌉
, tmax, ce} (5.4)

ck1 = max{
⌈ tsum

k

⌉
, tmax, ce} (5.5)

To improve the weak upper bound in (5.3), the bound proposed by Coffman et al. (1978) may

be used. This bound for parallel machine scheduling problems with makespan minimization was

adapted by Hackman et al. (1989) for the SALBP-2 problem and reformulated by Klein and

Scholl (1995) as follows: max{tmax, 2btsum/mc}. We adjusted this for SALBP-E using the lower

bound on the number of stations to obtain

c2 = max{tmax, 2btsum/mc} (5.6)

However, this upper bound is only valid for SALBP-E. For any other resource-constrained ALBP

(see Scholl et al. (2010) for examples of those problems), this may not hold. A proof by con-

tradiction is given in Appendix A of this thesis. Therefore, we propose three new methods to

calculate this bound for TSALBP-1/2. These are also applicable to other ALBPs with similar

resource constraints:

Theorem 5.3.1. Without loss of generality (w.l.o.g.), assume that the set of tasks is ordered

such that ti ≥ ti+1... Let I denote the set of tasks and K be the set of stations. The upper

bound on cycle time for the space constrained problem can be written as cI2 =
∑i=|I|−m+1
i=1 ti for

TSALBP-2 (here: m = |K|) and TSALBP-1/2.

Proof. W.l.o.g., we assume that ai ≤ A ∀i ∈ I, as no solution could be found otherwise. For the

base case, assume |K| = |I|. Here, the upper bound of cycle time is equal to the maximum task

time as each task can be trivially assigned to a station. For induction, consider that, |K| = |I|−1.

Thus, two tasks must be assigned to a single station, which may increase the cycle time. However,

the worst case would be the combination of the two tasks with the highest task times. Inductive

reasoning indicates that this holds for every subsequent case where |K| is reduced by one.

Theorem 5.3.2. Let k be the number of stations for which an upper bound is desired in the

TSALBP-1/2 problem. The upper bound on cycle time for the space constrained problem can be

written as ck2 = btmax|I|/kc. Note that this is only true if m ≥ |I. For k = m, we obtain the

overall upper bound cII2 on the cycle time.

Proof. W.l.o.g., we assume that ai ≤ A ∀i ∈ I, as no solution could be found otherwise. A

trivial solution to the problem is to assign every task to a single station. Thus, the idle time of

this solution is tmax|I|− tsum. Therefore, no optimal solution can have a higher idle time. Thus,

we can generally state ck2k − tsum ≤ tmax|I| − tsum, which is equal to: cII2 k ≤ tmax|I|, and

ck2 ≤ tmax|I|/k. W.l.o.g., we can assume that all task times are integers; thus, the right-hand

side can be rounded down if not integral.

Corollary 5.3.3. W.l.o.g., assume that the set of tasks is ordered such that ti ≥ ti+1.... Let

k be the lower bound on the number of stations. If an external limitation on the number of



Optimization procedures for TSALBP-1/2 111

stations exists, the upper bound on cycle time for the space-constrained problem can be written

as cI2 = b
∑i=|I|−k+1
i=1 ti|I|/kc} .

Proof. Follows from theorems 1 and 2.

Theorem 5.3.4. W.l.o.g., assume that the set of tasks is ordered such that t1/a1 ≥ t2/a2 ≥
... ≥ t|I|/a|I|. Furthermore, let l ∈ I :

∑l−1
i=1 ai < A ∧

∑l
i=1 ai ≥ A and r = al/(A −

∑l−1
i=1 ai).

Then, the upper bound on cycle time cIII2 for TSALBP-2, and TSALBP-1/2 can be calculated

as rtl +
∑i=l−1
i=1 ti.

Proof. Assume that a bound of cIII2 is calculated. Assume for contradiction that the optimal

solution has cycle time c : c > cIII2 . Let I ′ denote the set of tasks with index being at most

l. In this case, it must hold that
∑
i∈I′ ti > rtl +

∑i=l−1
i=1 ti and

∑
i∈I′ ai ≤ A. Therefore,∑

i∈I′ ti/ai >
∑i=l
i=1 ti/ai. Clearly, this contradicts the definition of l and the ordered set of

tasks.

Remark: Clearly, the calculations for the upper and lower bounds of the cycle time can be

performed for every possible number of stations, similar to the lower bound in Equation (5.5),

as already discussed by Corominas et al. (2016). For example, one could obtain ck = 10 and

ck+1 = 8. The station index refers to a solution that has k or k + 1 stations.

5.3.2 Finding greedy solutions

As the upper bounds on cycle time may still be relatively high, we propose to use greedy heuristics

to improve them. First, a feasible solution must be found by the heuristic. From this solution,

we can deduct a better upper bound on the cycle time (explained in greater detail in the next

subsection). The greedy heuristic is executed for every possible number of stations, i.e., m ≤
k ≤ m. In every execution, the cycle time is assumed to be equal to the corresponding lower

bound ck. The procedure begins with all tasks that have no predecessors. From these tasks, one

is selected based on a decision criterion and assigned to the first station. In case of a tie, the task

with the lowest index is assigned. While space and time remain, tasks are continually assigned

to that station. Whenever a task is assigned, all successors j are tested for eligibility and are

added to the set of eligible tasks if all predecessors of that task j have already been assigned. If

no more tasks can be assigned, a new station is opened and the procedure is repeated. When

all tasks have been assigned, it is necessary to verify whether the number of stations is equal

to the number of stations for which one wishes to obtain a solution. If this is not the case, the

solution is infeasible. In such cases, cycle time is increased and the execution is restarted. This

is reiterated until a feasible solution has been found or the tested cycle time exceeds the upper

bound on the cycle time.

We implemented and compared various selection criteria: 1. the task with the lowest index

(FIFO); 2. the task with the highest index (LIFO); 3. the task with the longest processing

time (LPT); 4. the task with the shortest processing time (SPT); 5. the task with the most

successors; 6. the task with the fewest successors; 7. the task with the highest value of the



112 Chapter 5

number of successors multiplied by the processing time, |Si|ti; 8. the task with the lowest value

of the number of successors multiplied by the processing time, |Si|ti; 9. the task with the longest

tail (i.e., the sum of all successors’ task times), and 10. the task with the shortest tail. These ten

selection rules can be applied to SALBP-E as well as TSALBP-1/2. Furthermore, we propose

several selection criteria that are only applicable to TSALBP-1/2: 11. the task with the largest

spatial requirement is added first; 12. the task with the smallest spatial requirement is added

first; 13. the task with the highest value for tiai is added first, and 14. the task with the lowest

value for tiai is added first.

Every incumbent feasible solution provides an upper bound on the objective function (i.e., the

idle time I). The lowest value across all solutions is saved. A pseudo-algorithm for the greedy

heuristic is given in Algorithm 2.

Algorithm 2 Greedy algorithm to create feasible solutions

1: procedure Task assignment
2: for m ≤ k ≤ m do
3: c = ck
4: SolutionFound=false
5: while SolutionFound==false ∧ c ≤ ck do
6: EligibleTasks = ∅
7: AssignedTasks = ∅
8: for i ∈ I : |Pi| = 0 do
9: EligibleTasks = EligibleTasks ∪ {i}

10: for k′ ∈ K : k′ ≤ k do
11: Current station time st = 0
12: Current station space ss = 0
13: StationOpen=true
14: while StationOpen == true do
15: select task i s.t. ti + st ≤ c ∧ ai + ss ≤ A
16: if task selected then
17: st = st+ ti
18: ss = ss+ ai
19: AssignedTasks = AssignedTasks ∪ {i}
20: EligibleTasks = EligibleTasks \ {i}
21: for j ∈ I : j ∈ Si do
22: if PredecessorTasks(j) ⊆ AssignedTasks then
23: EligibleTasks = EligibleTasks ∪ {j}
24: else
25: StationOpen = false

26: if |EligibleTasks| == 0 then
27: SolutionFound=true
28: break
29: if k′ == k then
30: c = c+ 1

5.3.3 Bound improvement

Both the rigorous application of the bounding rules described above and the greedy heuristic

allow the improvement of bounds for cycle time and the number of stations.
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Improving cycle time bounds

As Corominas et al. (2016) demonstrated, it is possible to use the idle time of a previous solution

to a SALBP-2 problem to obtain an upper bound on the cycle time for a different number of

stations when solving SALBP-2 iteratively to obtain a solution for SALBP-E. However, this can

also be done a priori. As shown in Equation (5.7), a cycle time bound can be calculated for each

station, assuming that the station index is equal to the number of stations used. Then, for every

possible number of stations m, the upper bound on idle time can be calculated by I = ckk−tsum.

The minimum of these values gives an upper bound on the objective function. Therefore, the

upper bounds ck can be further decreased such that ckk − tsum is I at most.

A similar approach is used when a greedy heuristic finds a solution with value I.

ck = argmin
c∈Z+:(c+1)k−tsum>I

ck − tsum ∀k ∈ K : k ≥ m (5.7)

This upper bound is equal to the cycle time for which the realizable idle time is at most the

solution obtained from any greedy heuristic. By selecting the maximum of these upper bounds

across all stations, the overall upper bound on cycle time may also be improved:

c3 = max
k∈K:m≤k≤m

ck (5.8)

Therefore, cycle time can be restricted to the lowest bound identified, as described by Equations

(5.9) and (5.10) for SALBP-E and TSALBP-1/2, respectively.

c = min{c1, c2, c3} (5.9)

c = min{c1, cI2, cII2 , cIII2 , c3} (5.10)

Improving station bounds

After the cycle time bounds have been calculated for all stations, as described in (5.7), one

knows that every number of stations will provide a feasible solution, provided that the cycle

time is sufficiently high. Now, one can calculate the maximum idle time Ik for every station as

Ik = ckk − tsum for each station. The minimum of these numbers I = min
k∈K

Ik can in turn be

used to improve the upper bounds on the number of stations:

m = min
k∈K:kck−tsum>I

k (5.11)

5.3.4 Calculating earliest and latest station

Given the precedence information, it is clear that every task can only be assigned to a station later

than or equal to the stations of its predecessors (as shown in the example of Figure 5.1). This

information can be combined with the bounds described above to define the earliest and latest

possible stations to which this task can be assigned. This has proven a fruitful preprocessing
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step in reducing computation times in mathematical programming, constraint programming, and

dedicated algorithms (see, e.g., (Alakaş et al., 2020; Bukchin and Raviv, 2018; Klein and Scholl,

1995; Schaus et al., 2008; Scholl et al., 2010; Scholl and Klein, 1997)). Taking the calculations

from Corominas et al. (2016) and adjusting them for TSALBP-1/2 leads to the following:

Ei := max
{

min
m≤k≤m

{⌈ ti + tPi
ck

⌉}
,
⌈ai + aPi

A

⌉}
(5.12)

Li := min
{

max
m≤k≤m

{
k + 1−

⌈ ti + tSi
ck

⌉}
,m+ 1−

⌈ai + aSi
A

⌉}
(5.13)

5.4 Solution approaches

In this section, we propose two algorithms for the solution of both TSALBP-1/2 and SALBP-E.

First, an improved version of the linear integer programming formulation proposed by Esmaeil-

beigi et al. (2015) is given. For the second approach, search algorithms are combined with a

constraint programming model. The constraint programming model is further strengthened by

the addition of redundant constraints. Table 5.2 presents the notation used throughout the study.

Table 5.2 Notation

Sets

K Set of stations with index k

Ki Subset of stations where task i can be assigned

I Set of tasks with index i

Ik Subset of tasks that can be assigned to station k

Pi Set of direct predecessors of task i

P̂i Set of indirect predecessors of task i

Si Set of direct successors of task i

Ŝi Set of indirect successors of task i

Parameters

A Available space at any station

ai Space required to store parts for task i

aij Sum of space needed for parts of tasks in Ŝi ∩ P̂j + ai + aj

aPi Space required to store parts for all predecessors of task i

aSi Space required to store parts for all successors of task i

asum Sum of all task space requirements

c Upper bound on the cycle time

c Lower bound on the cycle time

ck Upper bound on the cycle time when station k is the last station

ck Lower bound on the cycle time when station k is the last station

dij Minimum distance between tasks i and j, calculated as

max(b aij

A+1
c, b tij

c+1
c)

Ei Earliest station for task i

Li Latest station for task i

I Upper bound on idle time

Ik Upper bound on idle time for station k
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Imc Idle time of a solution with m stations and a cycle time of c

m Number of stations in the solution

m Upper bound on number of stations

m Lower bound on number of stations

n Number of tasks

ti Assembly time required for task i

tPi Sum of assembly times for all predecessors of task i

tSi Sum of assembly times for all successors of task i

tij Sum of assembly times needed for tasks in Ŝi ∩ P̂j + ti + tj

Tmax
k The maximum number of tasks that can be assigned to station k

tmax The longest task time over all tasks

tsum Sum of all task times

Variables

c Cycle time

Iak Idle space of station k

Itk Idle time of station k

La
k Space load of station k

Lt
k Time load of station k

xik Binary decision variable indicating if task i is assigned to station k

yk Binary decision variable indicating if the solution has k stations

αi Integer decision variable taking the value of the station to which task i is assigned

βk Auxiliary variable with the sum of idle times of all stations up to an index of k

5.4.1 A linear integer programming model

Since the classical version of SALBP-E is non-linear, Esmaeilbeigi et al. (2015) proposed a

linearized model by introducing (w.l.o.g.) integer variables Ik indicating the idle time of each

station. Both the cycle time c and idle times Ik can be considered integers as long as the

task times ti are integer. Since tasks can only be assigned in their entirety, the optimal cycle

time, and thus all resulting idle times, will always be integer values. Integer task times can be

obtained by scaling fractional task times before inputting them to the model. This is a common

practice/assumption in assembly line balancing (see, e.g., Esmaeilbeigi et al. (2015); Klein and

Scholl (1995)).

The most important change to Esmaeilbeigi et al.’s (2015) model is a change in the interpretation

of yk variables. Formerly, they indicated whether or not station k was opened. This new

formulation, however, indicates whether the solution has k stations. This also impacts some

of the constraints. Additionally, we extended the SALBP-E to the more general TSALBP-1/2

by incorporating the additional constraints (5.21) and (5.22), limiting the available space per

station. These changes, however, do not alter the basic assumptions inherent in the optimization

of a deterministic single model assembly line.

minimize
∑
k∈K

Itk (5.14)
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subject to:
∑
k∈Ki

xik = 1 ∀i ∈ I (5.15)

αj + dij ≤ αi ∀i ∈ I ∀j ∈ Pi (5.16)∑
k∈Ki

kxik = αi ∀i ∈ I (5.17)

∑
i∈Ik

tixik + Itk = c ∀k ∈ K : k ≤ m (5.18)

∑
i∈Ik

tixik + Itk ≤ c ∀k ∈ K : k > m (5.19)

∑
i∈Ik

tixik + Itk ≥ c+ c(
∑

k′∈K:k′≥k

yk′ − 1) ∀k ∈ K : k > m (5.20)

∑
i∈Ik

aixik ≤ A ∀k ∈ K : k ≤ m (5.21)

∑
i∈Ik

aixik ≤ A
∑

k′∈K:k′≥k

yk′ ∀k ∈ K : k > m (5.22)

∑
k∈K:k>m

yk ≤ 1 (5.23)

xik ∈ {0, 1} ∀i ∈ I ∀k ∈ Ki (5.24)

αi ∈ Z+ ∀i ∈ I (5.25)

yk ∈ {0, 1} ∀k ∈ K : k > m (5.26)

Itk ∈ Z+ ∀k ∈ K (5.27)

c ≤ c ≤ c (5.28)

Objective function (5.14) minimizes the sum of idle times over all stations while Constraint (5.15)

ensures that every task is assigned to a station. Constraints (5.16) and (5.17) ensure precedence

relations. Furthermore, the former constraint has been strengthened to take into account that it

might be necessary to assign these two tasks dij stations apart from each other. The subsequent

three constraints ensure that the sum of task and idle time at every station are equal to the

cycle time if that station is used. The extension to the TSALBP-1/2 problem is achieved by

including Constraints (5.21) and (5.22), giving an upper bound A on the available space per

station. The following constraint ensures that only one station can be the last one. Lastly, all

variable domains are defined.

Adaptations for SALBP-E

The proposed formulation solves the TSALBP-1/2 assembly line balancing problem. Neverthe-

less, it can be attuned to solve SALBP-E, too. To do so, the space related constraints — i.e.,

Constraints (5.21) and (5.22) — need to be removed from the model. In return, another con-

straint must be added to the model to ensure that tasks are only assigned to stations that are
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part of the solution.∑
i∈Ik

xik ≤ Tmaxk

∑
k′∈K:k′>k

yk′ ∀k ∈ K : k > m (5.29)

Tmaxk is defined as follows: tasks are sorted in increasing order based on their time requirements.

Next, these tasks’ time requirements until they are greater than or equal to the upper bound of

the cycle time for this station (see Equation 5.7 for its calculation). Tmaxk is equal to the number

of elements in that addition if the time sum is equal to the upper bound and one less if the sum

is greater than the upper bound. Clearly, another option with a tighter convex hull would be to

add a constraint for each station and task. However, our pretests confirmed that the proposed

approach works better. An explanation of this behavior can be found in Trick (2005).

Valid inequalities

Furthermore, Esmaeilbeigi et al. (2015) proposed the inclusion of three valid inequalities to

dynamically update the earliest and latest stations for every task while incorporating idle time.

These are retained as they were proven to be beneficial but are adjusted according to the changed

definition of the yk variables in Constraint (5.32).

(ti + tPi )xik + βk ≤ kc ∀i ∈ I ∀k ∈ Ki

(5.30)

(ti + tSi )xik + (k − 1)c ≤ βk + tsum ∀i ∈ I ∀k ∈ Ki : k ≤ m
(5.31)

(ti + tSi )xik + (k − 1)c− tsum ≤ βk + ((k − 1)c− tsum)(1−
∑

k′∈K:k′≥k

yk) ∀i ∈ I ∀k ∈ Ki : k ≤ m

(5.32)

βk =
∑

k′∈K:k′<k

Ik′ ∀k ∈ K (5.33)

βk ≥ 0 ∀k ∈ K (5.34)

5.4.2 A constraint programming approach

Since its introduction, constraint programming (CP) has proven to be a potent tool in identifying

(in-)feasibility of combinatorial problems (Rossi et al., 2006). The literature also contains some

studies using constraint programming for ALBPs (Alakaş et al., 2020; Bukchin and Raviv, 2018).

Considering CP’s strength in verifying (in-)feasible solutions, ALBPs may also be tackled from

a different angle. The mathematical programming model proposed above starts from an ample

solution space (cycle time and the number of stations are unknown, as are the assignments of

tasks to stations) and narrows it down during the search. In contrast, one may approach SALBP-

E and TSALBP-1/2 as a series of feasibility problems that only require the tasks’ assignment to

be verified for feasibility. For this approach, CP seems very promising.
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To illustrate this, consider the precedence graph given in Figure 5.1. Assume that one station

has eight space units and that no more than five stations should be used. Thus, the bounds

on the number of stations are m = 3 and m = 5. Running a greedy heuristic for this problem

may yield a solution as indicated in the figure. It has four stations and a cycle time of 22,

leading to an idle time of 13. This allows the calculation of upper bounds on the cycle time

for each possible number of stations. Furthermore, one can calculate the lower bound on the

cycle time for each station, as described in Equation (5.5). One may obtain 25, 19, and 15 as

lower bounds for stations 3, 4, and 5, respectively, and 29, 22, and 17 for the upper bounds,

respectively. Therefore, the following combinations may result in an optimal feasible solution:

(3, 25) · · · (3, 29), (4, 19) · · · (4, 22), (5, 15) · · · (5, 17). This notation follows the notation (m, c)

where m is the number of stations and c is the cycle time.

Table 5.3 Example of a tableau containing the realizable idle time of station and cycle time combina-
tions

m
c

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

3 - - - - - - - - - - - 0 3 6 9 12 ��15 ��18
4 - - - - - 1 5 9 13 ��17 ��21 ��25 ��29 ��33 ��37 ��41 ��45 ��49
5 - 0 5 10 ��15 ��20 ��25 ��30 ��35 ��40 ��45 ��50 ��55 ��60 ��65 ��70 ��75 ��80

Table 5.3 shows a graphical representation of an instance with the number of stations on the

left-hand side and the cycle time values along the first row. Some combinations are simply not

feasible (represented by -) while others may be feasible but are guaranteed to be suboptimal

(represented by, e.g.,��60) because of the cycle time bounds.

Considering Table 5.3, one could clearly try to find a feasible task assignment for every possible

combination of m and c. Once all combinations have been tested, the only task remaining is to

select the feasible solution with the lowest idle time.

Since it would likely be time-intensive to test all combinations, we propose to use classical search

algorithms. In particular, two options are considered here: linear and binary search. For linear

search, one would sort all options based on their objective value and solve them in sequence, either

starting from the lowest or the highest value. When starting from the lowest value, one might not

actually find a solution for a long time but only increase the lower bound. Conversely, starting

from the highest value, only bad solutions might be found for some time with no improvement

on the lower bound.

Binary search was introduced by Lehmer (1960). The intuition here is straightforward: Imagine

that you are reading a book. After a hiatus from reading, you want to pick up where you left off.

Thus, you open the book in the center to check the page number. If the page number is higher

than which you are seeking, you continue searching in the first half of the book. By contrast, if

the page number is lower than that which you were seeking for you would continue to search in the

second half of the book. This step is performed repeatedly for the part of the book that remains.

To conduct a search like this, the list or array that is searched must be sorted. For more formal

definitions and properties, we refer the interested reader to Flores and Madpis (1971); Lehmer

(1960) and Knuth (1999). When applying binary search for TSALPB-1/2, one must first compile
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all combinations of cycle time and stations into a list. Next, the list must be sorted in increasing

or decreasing order according to the resulting idle time. Then, the combination of cycle time

and number of stations resulting in the median idle time is chosen and checked for feasibility

with the CP model described below. If the solution is feasible, all combinations with an idle time

greater than or equal to the one just found can be removed from the list (similar to no longer

considering the second half of a book). On the other hand, infeasible solutions also allow the

removal of some combinations from the list. However, in this case, not all combinations can be

removed but only those that are proven to be infeasible (i.e., those with a cycle time smaller than

or equal to that of the current combination and a number of stations smaller than or equal to the

number of stations in the current combination). From a theoretical point of view, the search and

sorting parts do not add much complexity to the overall algorithm. Sorting may be performed by

any efficient sorting algorithm, such as Quicksort or merge sort. The search algorithms are also

efficient. Binary search has a time complexity of O(log n) (Flores and Madpis, 1971), whereas

linear search has a time complexity of O(n) (Knuth, 1999). Therefore, binary search may be

expected to outperform linear search. Nevertheless, linear search may be better if the searched

list is small or the list consists of multiple branches (number of stations), as in this case. Thus,

we implement and compare both options. The general idea of this procedure is described in

Algorithm 3.

Algorithm 3 Search-based algorithm

1: Queue + = (m, c)
2: while Queue 6= ∅ do
3: Solve CP
4: if Solution found then
5: Prune (m′, c′) : Im′c′ ≥ Imc

6: Queue = ∅
7: Queue + = (m, c) based on search structure
8: else
9: Prune (m′, c′) : m′ ≤ m ∧ c′ ≤ c

10: Queue = ∅
11: Queue + = (m, c) based on search structure

The selection of a new combination for testing may be achieved according to various rules. As

discussed above, (i) the combinations can be sorted based on idle time (linear search); (ii) select

the combination with the number of stations that is greater than the current one and the cycle

time that is the median for that station; (iii) solve the same amount of stations with the new

median idle time; and (iv) solve the combination with the median idle time. These variants are

tested and discussed in Section 5.5.

Constraint programming model

To solve each of these feasibility problems, we propose the following constraint programming

model.

minimize - (5.35)
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s.t.
∑
i∈Ik

(αi = k)ti = Ltk ∀k ∈ K (5.36)

∑
i∈Ik

(αi = k)ai = Lak ∀k ∈ K (5.37)

Ltk + Itk = c ∀k ∈ K (5.38)

Lak + Iak = A ∀k ∈ K (5.39)

αj + dij ≤ αi ∀i ∈ I ∀j ∈ Pi (5.40)

Ei ≤ αi ≤ Li ∀i ∈ I (5.41)

This model is solved repeatedly for a fixed cycle time and number of stations. Thus, the objective

(i.e., idle time) is actually determined when solving the model. Therefore, no objective function

exists and the model is only used to verify whether or not a feasible solution exists. The first

constraint (5.36) is a so-called reification constraint: Whenever αi is equal to the station index k,

the task duration ti is added to the load of that station Ltk. The same procedure is performed for

space requirements in Constraint (5.37). Constraint (5.38) ensures that the sum of idle time and

load is equal to the cycle time c for each station in the model. Again, this is repeated for spatial

consideration in Constraint (5.39). The assignment of predecessors to the same or a previous

station as their successors is ensured in Constraint (5.40). Finally, the station domain to which

a task can be assigned is reduced by incorporating its earliest and latest stations.

Redundant constraints

In constraint programming, the addition of redundant constraints often improves the model

strength. Therefore, we provide multiple redundant constraints and show the impact of each in

the following section.

First, the use of idle time variables allows us to introduce Constraint 5.42, where c̃ is the cycle

time and m̃ is the number of stations of the current solution step.

∑
k∈K

Itk = m̃c̃− tsum (5.42)

In addition to Constraints (5.36) and (5.37), one can add the same constraint as a packing

constraint (IloPack), as discussed by Shaw (2004). The obtained result is exactly the same;

however, special structures can be detected when such a constraint is used (e.g., IloPack, as

provided in the CP Optimizer of IBM ILOG). Here, Lt and La represent the vectors of load

variables, α the vector of station assignment variables, and t and a the vectors of time and space

requirements, respectively.

IloPack(Lt, α, t) (5.43)

IloPack(La, α, a) (5.44)
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While already imposed in the model in Constraint (5.40), it is possible to add specific minimum

distance constraints (e.g., IloAllMinDist in the CP Optimizer of IBM ILOG). These ensure, in

addition to the precedence constraint, that a successor i not only comes after its predecessor j

but also that there may be some stations (i.e., dij) between them.

IloAllMinDist(αi,αj , dij) ∀i ∈ I ∀j ∈ Pi (5.45)

Constraint (5.41) already restricts the domain of stations to which a task can be assigned.

However, this can be further strengthened by considering the idle time of stations.

max(IloDiv
ti + tPi +

∑k≤Ei

k=1 Itk
c+ 1

, IloDiv
ai + aPi +

∑k≤Ei

k=1 Iak
A+ 1

) ≤ αi ∀i ∈ I (5.46)

m−max(IloDiv
ti + tSi +

∑k≤m
k=Li

Itk
c+ 1

, IloDiv
ai + aSi +

∑k≤m
k=Li

Iak
A+ 1

) ≥ αi ∀i ∈ I (5.47)

5.5 Computational experiments

Within the computational experiments, we first aim to find the best performing formulation

for SALBP-E. For this, we investigate the proposed changes in the mathematical programming

algorithm and the different formulations of the constraint programming algorithm as well as

different searching strategies in the next subsection. Subsequently, the solution methodology

that yields the most promising results is used to solve new TSALBP-1/2 instances in Subsection

5.5.2.

All tests are performed on the benchmark dataset described by Scholl (1993). This benchmark

dataset consists of 24 datasets, each with a different number of instances, where an instance is

characterized by the lower and upper bounds on the number of stations. Some general metrics

for these datasets can be found in Table 5.4. In this table, the order strength (OS) indicates how

strongly the tasks in the precedence graph are interlinked. The time variability ratio (TV) gives

the ratio between the minimum (tmin) and maximum (tmax) task times. Divergence (div) and

convergence (conv) indicate how strongly/weakly the precedence graphs converge and diverge.

For further information and additional metrics, the interested reader is referred to Scholl (1993)

and Otto et al. (2013). Finally, the number of instances (#inst) is given in the table.

Table 5.4 Dataset characteristics

Name n tmin tmax tsum OS TV div conv #inst

Arcus1 83 233 3691 75707 59.09 15.84 0.73 0.73 14

Arcus2 111 10 5689 150399 40.38 568.90 0.63 0.63 20

Barthold 148 3 383 5634 25.80 127.67 0.74 0.72 9

Barthol2 148 1 83 4234 25.80 83.00 0.74 0.72 30

Bowman 8 3 17 75 75.00 5.67 0.88 0.80 2

Buxey 29 1 25 324 50.74 25.00 0.74 0.78 7

Gunther 35 1 40 483 59.50 40.00 0.78 0.76 8

Hahn 53 40 1775 14026 83.82 44.38 0.63 0.63 4
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Heskiaoff 28 1 108 1024 22.49 108.00 0.68 0.69 6

Jackson 11 1 7 46 58.18 7.00 0.77 0.77 3

Jaeschke 9 1 6 37 83.33 6.00 0.73 0.73 4

Kilbridge 45 3 55 552 44.55 18.33 0.67 0.69 6

Lutz1 32 100 1400 14140 83.47 14.00 0.76 0.82 6

Lutz2 89 1 10 485 77.55 10.00 0.75 0.75 22

Lutz3 89 1 74 1644 77.55 74.00 0.75 0.75 14

Mansoor 11 2 45 185 60.00 22.50 0.79 0.91 2

Mertens 7 1 6 29 52.38 6.00 1.00 0.78 2

Mitchell 21 1 13 105 70.95 13.00 0.74 0.70 4

Roszieg 25 1 13 125 71.67 13.00 0.74 0.69 4

Sawyer 30 1 25 324 44.83 25.00 0.83 0.83 8

Scholl 297 5 1386 69655 58.16 277.20 0.70 0.69 32

Tonge 70 1 156 3510 59.42 156.00 0.78 0.73 12

Warnecke 58 7 53 1548 59.10 7.57 0.72 0.81 15

Wee-Mag 75 2 27 1499 22.67 13.50 0.85 0.62 22

5.5.1 Solving SALBP-E

All tests were performed on a high-performance computer. Each optimization procedure was

allotted 16GB Ram and used four cores of an Intel Xeon E5-2680v3 processor with 2.5 GHz.

The mathematical programming models were implemented in C++ using Gurobi 9. Heuristics

were turned off to investigate the models’ strength as they produce random results based on the

solution path and make it difficult to evaluate the actual strength of a formulation. All other

settings were set to their default value. The constraint programming models were implemented

in C++ using ILOG CP solver version 12.10, with the number of workers equal to the number

of cores and all other settings at their default values. A time limit of 3600s was implemented for

all testing purposes.

Before comparing our results to results from literature, we first investigated the performance

of the described greedy heuristics using various selection rules and the performance of selected

formulations.

Evaluation of greedy heuristics

Within the proposed solution methodology, we used a greedy heuristic to obtain better bounds

on the cycle time. As described in Algorithm 2, one must select the task that is going to be

assigned next. We tested various selection rules as proposed in Section 5.3.2. The performance

of these selection criteria was evaluated across all datasets and instances tested. The results are

presented in Table 5.5, where we show how often a decision criterion gives the best value found

using a heuristic (best heuristic) and the average gap in comparison to the best result found

across all greedy heuristics.

As one can see from the results, the proposed heuristics perform very differently, and some are

clearly outperformed by others. Thus, it seems that criteria 4, 6, 8, 9, and 10 are not well suited

to this purpose. For example, the combination of criteria 3 and 7 results in the best found

objective in 215 out of 256 instances with an average gap of 46.33% for the remaining instances.
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Table 5.5 Comparison of constructive greedy heuristics

Selection criterion 1 2 3 4 5 6 7 8 9 10

Best heuristic 52 23 133 6 29 11 143 6 23 14
Avg. gap(%) 65.25 68.51 47.78 79.20 62.49 67.44 49.05 74.77 68.51 71.70

Combining heuristics 1, 3, and 7 resulted in the best found objective in 246 out of 256 instances

with an average gap of 52.92% for the remaining instances.

Detailed evaluation of solution approaches

In this section, we first evaluate the mathematical programming approach and then the constraint

programming approach. For the mathematical programming model, the model proposed by

Esmaeilbeigi et al. (2015) is used as a baseline (E1) and tested for improvements (E2-E4). For

this, the auxiliary variables αi and βk are set to be integer variables both individually (E2, E3)

and in combination (E4). Next, we solved the model as proposed in Section 5.4.1, including the

adjusted valid inequalities (MP1). For this, branching priorities for yk were used such that later

stations were branched on first. Finally, the impact of having given a starting solution via the

greedy heuristics is analyzed (MP2).

Table 5.6 Improved mathematical programming approach

Name Start αi βk Branching #opt inf. Gap (%) time (s)

E1 7 Cont. Cont. - 155 1 31.28 1506.51
E2 7 Cont. Int. - 153 2 32.04 1507.99
E3 7 Int. Cont. - 157 1 30.65 1476.74
E4 7 Int. Int. - 154 2 31.77 1498.55

MP1 7 Int. Cont. k 164 1 28.81 1394.55
MP2 3 Int. Cont. k 166 0 28.06 1378.35

The results are shown in Table 5.6, including whether a starting solution has been used. Fur-

thermore, the branching priority for yk variables and the types of variables used for αi and βk

are given. Finally, the number of instances solved to optimality (#opt), the number of instances

without a solution (inf.), the average gap, and the average time are given. While the proposed

changes do improve the performance of the mathematical programming approach developed by

Esmaeilbeigi et al. (2015), the effects are not outstanding. Nevertheless, the number of instances

solved to optimality with MP1 and MP2 were increased by 5.8% and 7.1%, respectively, when

compared to the original formulation E1. Gaps were reduced by 7.9% and 10.3%, respectively.

The use of constructive heuristics eliminated instances without any solution.

Three major aspects determine the performance of the approach using constraint programming:

1. The use of greedy heuristics to reduce the search space; 2. the formulation of the constraint

programming model; and 3. the search strategy. Therefore, we test how these aspects change the

results. First, a search without a starting solution (CP1) is compared to a search with a starting

solution (CP2). For this the binary search strategy described in Section 5.4.2 is applied. Next,

we investigate how the addition of redundant constraints changes the performance of the model
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(CP3-CP6). Finally, the most efficient settings is used to compare different search strategies

for their performance (CP6-CP9). CP6 uses a binary search approach in which the combination

(m, c) with median idle time is solved in every iteration. CP7 also uses a binary search, beginning

with the lowest number of possible stations and taking the corresponding median cycle time

before increasing the number of stations by one and solving for the corresponding median cycle

time. Once the last station has been reached, the process begins again at the first station. CP8

is a simple linear search whereby problems with increasing idle time are solved until the optimal

solution is found. Finally, in CP9, a certain number of stations is chosen and the median cycle

time is selected. This is repeated until all possible cycle times of that station are tested or

pruned. The number of stations is then increased and the process repeated.

Table 5.7 Constraint programming approach and redundant constraints

Name Start Search Strategy Red. cstr. #opt Gap time Iterations

CP1 7 Binary/Median - 128 43.53 1835.44 8.89
CP2 3 Binary/Median - 137 39.85 1704.47 3.01

CP3 3 Binary/Median (5.42) 182 23.26 1120.94 4.25
CP4 3 Binary/Median (5.43) 215 14.20 672.59 4.77
CP5 3 Binary/Median (5.45) 215 14.21 669.68 4.77
CP6 3 Binary/Median (5.46),(5.47) 219 13.00 632.83 4.85

CP6 3 Binary/Median - 219 13.00 632.83 4.85
CP7 3 Binary/Station - 221 12.19 544.41 4.66
CP8 3 Linear/Increasing - 222 12.22 522.39 16.83
CP9 3 Binary/Cycle Time - 216 14.09 526.08 5.23

In Table 5.7, we compare the different formulations by reporting on the search strategy used and

the use of a starting solution. Similar to Table 5.6, the number of instances solved to optimality

(#opt), the average gap and time, and the number of combinations solved are reported. There

were no instances without any solution.

Comparing the results from the mathematical programming approach (see Table 5.6) with the

results from the constaint programming approach (see Table 5.7), it is clear that the latter far

outperforms the former. The number of optimally solved instances increased by 32%, and gaps

as well as computation times are both reduced by around 50%. It should be noted, however, that

the basic model does not perform well without the addition of redundant constraints. Finally, all

search strategies perform quite well. The last search strategy shows the worst performance. An

explanation for this could be the lack of diversity, since many problems with the same amount of

stations are solved before changing the number of stations. This may be compared to an intensive

but not diversified search. The other search strategies have greater diversity and perform almost

equally well. Surprisingly, binary search does not clearly outperform linear search. Although

the average number of CP models solved in linear search is 16.83, compared to 4.66 for CP7, it

does not slow down the search significantly. This can be explained by strong capabilities in the

detection of infeasible models. Since those models can be solved quickly, the higher number of

problems that must be solved can be compensated. If the formulation could be improved such

that feasible models may be more swiftly solved, binary search should outperform linear search
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due to the number of models that are solved.

Comparison with literature

To put our results into perspective, we compare them with results from literature in Table

5.8 by showing the number of instances solved to optimality in the literature compared to the

instances solved to optimality by the formulations proposed in this study. Please note that only

solution procedures specifically developed for SALBP-E problems are compared, which excludes

branch-and-bound methods solving SALBP-1 which could be attuned to solve SALBP-E (Scholl

et al., 1999). All procedures are tested for all 256 instances of the dataset used. #opt describes

how many of these could be solved to optimality and #unsolved describes for how many of

these instances no solution could be found. It should be noted that we reimplemented the best

performing optimal formulations described in Esmaeilbeigi et al. (2015) and Corominas et al.

(2016) and tested them using the same hardware and settings. Corominas et al. (2016) also

proposed heuristic procedures that were excluded from this comparison since the focus is on

optimal procedures.

Table 5.8 Number of instances solved in the literature and by our approach

Paper Esmaeilbeigi et al.
(2015)

Corominas et al.
(2016)

Our approach

Procedure E1 Enh-MILP MP2 CP7 CP8

Avg. time(s) 1506.51 1454.51 1378.35 544.41 522.39
Avg. GAP(%) 31.28 34.38 28.06 12.19 12.22
#opt 155 147 166 221 222
# unsolved 1 2 0 0 0

A closer look at the test results reveals that some of the instances tested are easy to solve.

Therefore, we analyzed the hardness of the instances using the benchmarking technique pro-

posed by Achterberg and Wunderling (2013) and discussed by Lodi and Tramontani (2013). For

this, the solution procedures compared in Table 5.8 were used to evaluate the hardness of the

instances. The table is organized as follows: The first column is used to define the instances

under investigation using so-called brackets. While the row “All” contains all instances each of

the following rows contains only a subset of the row above. For example, the row “(1,3600]”

contains instances for which the maximum time used by any procedure is between 1 and 3600

seconds. Thus, all instances in this row must be solved to optimality by at least one procedure.

Columns 3–7 contain the number of time-outs produced by a procedure in the set of instances.

Owing to the table’s design, the values of the last five rows are equal

We used this analysis to define different categories for the hardness of instances. To this end,

we used the hardness categories of Otto et al. (2013) and complemented them with a “simple”

category 1. With this, we obtained the categories described in Table 5.10. For future research,

we propose to use only those instances that are classified as tricky or very/extremely tricky. The

exact definitions of those instances can be found in Appendix B.

1Please note that the category names are the same but the definition of hardness varies
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Table 5.9 Comparison of instance hardness

Instances E1 Enh-MILP MP2 CP7 CP8

All 256 101 97 90 35 34
(0,3600] 224 69 65 58 3 2
(1,3600] 187 69 65 58 3 2
(60,3600] 110 69 65 58 3 2
(300,3600] 97 69 65 58 3 2
(1800,3600] 82 69 65 58 3 2

Table 5.10 Comparison of instance hardness

Category Definition # Instances

Extremely tricky Not solved by any algorithm 32
Very tricky Not “tricky” and solved by at least one algorithm in < 3600s 82
Tricky Not “less tricky” and solved in ≤ 1800s for all algorithms 15
Less tricky Not “simple” and solved in ≤ 300s for all algorithms 13
Simple Not “trivial” and solved in ≤ 60s for all algorithms 77
Trivial Solved in ≤ 1s for all algorithms 37

5.5.2 Solving TSALBP-1/2

To test the impact of space requirements, the datasets used must be supplemented with a space

requirement for each individual task. Clearly, each task must be assigned a positive space

requirement that does not exceed the available space per station 0 < ai ≤ A. We assume w.l.o.g.

that space requirements ai as well as space limitations A are positive integer numbers. To do

so, we decide on the available space per station A and use a discrete probability distribution

to obtain space requirements ai for each task. To test the effect for different types of assembly

lines with items of different sizes, we use a binomial probability distribution with probability

values between p = 0.1 and p = 0.5 in steps of size 0.1. For every probability value and dataset

(24), three instances have been created resulting in a total of 360 instances. By deciding on

A = 20 [space units] and setting A equal to the number of independent experiments, we obtain

probability distributions, as depicted in Figure 5.2, from which random space requirements are

drawn.2

The probability values are selected such that the distributions seem to reflect reality. Larger

values seem unrealistic, as (in practice) parts for one task would rarely use more than half of

the available space. Moreover, larger values would render the problem trivial as it would often

result in stations that only have a single task due to the spatial requirements.

Evaluation of bounding methods

In Section 5.3.1, we proposed various ways to calculate upper bounds for TSALBP-1/2. Table

5.11 shows how they compare to one another for different instances clustered by the binomial

probability value p that was used to create the spatial requirements. For this, we report on the

2The obtained values for the datasets of Scholl (1993) can be downloaded from the website ww.opm.ugent.be/

datasets.htm

ww.opm.ugent.be/datasets.htm
ww.opm.ugent.be/datasets.htm
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Figure 5.2 Binomial probability distribution for the assignment of space requirements

Table 5.11 Comparison of the cycle time upper bounds

# best gap (%) avg. WCR max WCR

Instances cI2 cII2 cIII2 cI2 cII2 cIII2 cI2 cII2 cIII2 cI2 cII2 cIII2

p=0.1 8 38 27 49.78 9.2 13.26 18.39 6.23 6.82 53.33 8 14.56
p=0.2 2 56 15 61.44 2.83 22.66 17.54 3.94 5.41 49.19 4.5 11.59
p=0.3 0 62 11 69.12 1.41 26.92 16.48 2.88 4.47 44.89 3.5 12.33
p=0.4 0 63 10 73.76 0.92 33.18 15.09 2.2 4.09 41.39 2.36 13.16
p=0.5 0 67 8 75.31 0.92 36.35 13.61 1.82 3.74 37.58 2 12.49

All 10 286 71 65.88 3.06 26.47 16.22 3.41 4.9 53.33 8 14.56

number instances for which an approach (cI2, c
II
2 , c

III
2 ) gave the best bound in comparison to

the others. Evidently, the bound proposed in Theorem 1 cI2 is the weakest. The other bounds,

however, appear to be relatively strong. This becomes also evident when looking at the relative

gaps (gap(%)) that are calculated based on the best found bound for each instance. Lastly, we

calculated the average and the maximum worst case ratio (WCR), i.e., the ratio of the best pos-

sible cycle time, bounded by the lower bound defined in Equation (5.4), to the bound obtained

by the different approaches cI2, c
II
2 and cIII2 . For the latter two bounds, the approximation rates

measured by the WCR seem to be around eight and fifteen, respectively. Clearly, using the

optimal solution might result in a better WCR than the calculation based on the lower bound

calculated in Equation (5.4). To summarize, one can see that cII2 seems to be the best bound

among those discussed. However, it may be best to calculate all bounds as one cannot be sure

to obtain the best bound by applying only a single approach.
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Evaluation of greedy heuristics

The introduction of space creates additional options to generate feasible solutions via heuristic

approaches.

Table 5.12 Comparison of constructive greedy heuristics including space requirements

Selection criterion 1 2 3 4 5 6 7

Best heuristic 54 31 103 25 80 44 131
avg. gap(%) 25.79 42.28 14.58 40.31 21.78 29.82 10.34

Selection criterion 8 9 10 11 12 13 14

Best heuristic 33 160 36 109 43 132 40
avg. gap(%) 37.31 13.69 35.42 24.87 32.36 13.43 37.78

The performance of the proposed heuristics, shown in Table 5.12, is similar to the results ob-

tained for the instances of type SALBP-E. We report how often any heuristic selection criterion

(described in Section 5.3.2) results in the best solution found by any of heuristic selection criteria

(best heuristic). For some instances, multiple heuristics (selection criteria) result in the same

(best) solution. Furthermore, we report on the average gap, when compared to the best heuristic

for the same problem instance (avg. gap (%)). Heuristics 3, 7, 9, 11, and 13 perform best. As

can be seen from these results, taking into account spatial requirements (Heuristics 11–14) does

produce good solutions (i.e., one would obtain the best results in 206 out of 360 instances). Con-

sidering the above, the best performing heuristics (3, 7, 9, 11, and 13) lead to the best heuristic

solution 344 times.

Effects of space requirements

In this section, we compare the solution for the space-constrained problem (TSALBP-1/2) to the

solution for the same problem without spatial requirements (SALBP-E). For the latter, the same

bounds on the number of stations was used as for the former. In Table 5.13, the results are shown

separately for different groups of problem instances clustered by spatial requirements. The table

reports the number of instances (#inst) solved optimally (3) for both SALBP-E and TSALBP-

1/2 as well as the number of instances for which at least one of both problems could not be

solved optimally (7). For both problems, SALBP-E and TSALBP-1/2, the average computation

times and gaps are reported. Furthermore, the increase in idle time when comparing the solution

of SALBP-E to the solution of TSALBP-1/2 is reported. In some instances, the increase in idle

time may be misleading, since a large increase may be negligible if the initial idle time was very

low. Therefore, we also compare the increase in line capacity, which is calculated by summing

all idle and task times of the solution. Alternatively, this may also be calculated as the number

of stations multiplied with the cycle times. We further distinguish the actually observed (act.)

increase which is based on the best solutions found and the maximum increase (max.) which is

based on the bounds of the solution. That is, we compare the best-found solution of TSALBP-1/2

to the lower bound of the SALBP-E solution.
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Table 5.13 Comparison of SALBP-E and TSALBP-1/2

Size Opt. #inst. SALBP-E TSALBP-1/2 Idle time increase Line cap. increase
time gap time gap Act.[%] Max.[%] Act.[%] Max.[%]

0.1
7 10 2163.62 59.61 3600.15 88.04 326.85 661.42 2.41 2.8
3 62 0.94 0 60.4 0 120.91 120.91 9.69 9.69

0.2
7 16 718 18.75 3600.11 61.59 34.68 34.91 4.79 4.82
3 56 0.91 0 110.45 0 41.36 41.36 6.84 6.84

0.3
7 18 822.47 16.51 3600.27 59.67 16.34 16.45 7.71 7.76
3 54 6.08 0 64.29 0 10.58 10.58 3.44 3.44

0.4
7 28 401.7 9.18 3600.16 39.27 15.19 15.2 7.78 7.78
3 44 0.05 0 32.57 0 16.19 16.19 7.36 7.36

0.5
7 20 911.02 17.08 3600.28 26.13 30.26 30.31 18.76 18.79
3 52 0.17 0 96.48 0 22.42 22.42 12.65 12.65

All 360 216.24 4.98 975.19 12.67 21.69 21.82 8.6 8.64

As expected, the introduction of spatial requirements leads to a decrease in the efficiency of

assembly lines. The observed average increase in idle time is 21.69%. Considering that not all

instances were solved to optimality, this increase might be slightly higher in actuality, namely

21.82%. A remarkable result is that the increase in idle time is actually higher when spatial

requirements are smaller. An explanation for this result is that the lower bound for the number

of stations is high when spatial requirements are large. Therefore, the idle time is high and

many trivial solutions are found when the SALBP-E version is solved using those high lower

bounds. When spatial requirements are introduced, those trivial solutions become infeasible.

Nevertheless, good solutions may be found without a large increase in idle time. This can also

be observed in Figure 5.3 which contrasts the idle time with the idle space for all stations. As

idle time is mostly low when the number of stations is low, this effect is quite the contrary for

smaller space requirements, e.g. p = 0.1, p = 0.2. To illustrate this, a specific instance can be

considered. While the idle time is rather low in SALBP-E with m = 13 and a value of 467,

it is 27,641 when the lower bound on the number of stations is changed to 28. It can also be

seen that the second case is much easier to solve because the minimum idle time resulting from

such a high number of stations gives considerable freedom to the problem. This is also reflected

in the trend whereby SALBP-E problems tend to be solved more quickly when higher lower

bounds on the number of stations are imposed. Somewhat the reverse seems to be the case for

TSALBP-1/2. These problems become more constrained, and therefore it is more difficult to

find the optimal solution, as can be seen in the reported gaps. In conclusion, the addition of

spatial requirements perturbs the assignment algorithm much more when spatial requirements

are small rather than large. Generally, this may be attributable to the fact that in cases with

tight space but weak time constraints, the impact on idle time is smaller, while instances with

tight time and space constraints are significantly more affected. These cases are simpler to solve,

however, when spatial requirements are neglected.

Table 5.13 also shows how the overall line capacity is affected by the introduction of spatial

requirements. As expected, in most cases, the consideration of spatial requirements requires an

increase in line capacity, either in terms of more workstations and workers or in terms of a higher
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Figure 5.3 Comparison of idle time and idle space

cycle time. The addition of line capacity seems to follow the increase in spatial requirements

more or less linearly. At first glance, this seems to contradict the change in idle time in the

solution. However, the absolute values of idle times are small when spatial requirements are

small. Thus, even a small increase in idle time leads to a high relative change in idle time but a

small increase in line capacity. For larger spatial requirements, the reverse is true, as discussed

above.

5.6 Conclusion

5.6.1 Summary

In this chapter, we proposed a generalized version of the SALBP-E problem, additionally incor-

porating spatial requirements and constraints, called TSALBP-1/2. Furthermore, we improved

existing approaches from literature and proposed a new algorithm that solves both the classical

SALBP-E and the generalized TSALBP-1/2. This new solution procedure is based on constraint

programming to repeatedly solve feasibility problems that have been selected based on classical

search algorithms, such as linear and binary search. Their effect on solving performance was

investigated and analyzed. Our results indicate that our solving procedure outperforms those of

Esmaeilbeigi et al. (2015) and Corominas et al. (2016) for SALBP-E. We also provide first results

and procedures for TSALBP-1/2. For this, we also propose a simple way to complement existing

datasets with space considerations. On a managerial level, we show that spatial requirements are

not negligible, as they can certainly affect the line efficiency negatively, and capacity adjustments

must be made in real life.
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5.6.2 Further research

With this study, we improved the solvability of both SALBP-E and TSALBP-1/2 by proposing a

more efficient enumeration procedure that searches the solution space and solves a set of feasibility

problems. This approach might be applicable to other problems. Clearly, other ALBPs are likely

to benefit from this approach, but it may also be worthwhile to investigate this approach for

completely different sets of problems.

Next, Scholl’s (1993) dataset is now partially inadequate, given the development of hardware

and algorithms, as analyzed in Section 5.5.1. Thus, a larger dataset with more challenging -

though not extremely difficult - instances for the SALBP-E and TSALBP-1/2 is required. While

Otto et al. (2013) provided datasets for the SALBP-1 and SALBP-2 problems, no meaningful

datasets have been proposed for SALBP-E. It should be noted that determining datasets with

the desired difficulty is not a trivial task and requires extensive computation. However, our

analysis in Section 5.5.1 has demonstrated how to determine datasets with the desired level of

difficulty.

Finally, the integration of spatial considerations is clearly valuable, as it can not only negatively

affect line efficiency but also requires increased production capacities. However, two extensions

are necessary: (i) The space required to store parts for any task cannot necessarily be easily

determined as it depends on how a part is provided. For example, one may deliver all part

variants on full pallets, requiring a lot of space, or in a sequenced container, requiring less space

(Limère et al., 2012; Schmid and Limère, 2019; Schmid et al., 2018). Therefore, this decision

must also be addressed in assembly line balancing; (ii) part provision and storage along the line

affects the operating times for the assembly worker, as walking, searching, and fetching times

may depend on it (Limère et al., 2015; Schmid et al., 2020). It has already been shown that

line balances influence decision making regarding part feeding (Wijnant et al., 2018), but our

discussion should clarify that the reverse is also true. Thus, an integrated approach solving both

assembly line balancing and feeding, as proposed by Sternatz (2015) and Battini et al. (2017),

is desirable for all variants of the time- and space-constrained ALBP.
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6.1 Introduction

As demonstrated in the preceding chapter, the consideration of spatial requirements in assembly

line balancing may affect the line’s balance. However, the spatial requirements considered above

do not perfectly resemble real-world space and time requirements as those depend on the feeding

policy used and the exact positioning of parts at the BoL. However, these are of particular

interest for assembly systems that produce multiple customized models on a single assembly

line.

With this research, we propose an optimization approach that solves ALBPs and ALFPs simul-

taneously to overcome the lack of accuracy occurring in a step-wise solution. While few studies

already approached the integration of assembly line feeding and assembly line balancing (Bat-

tini et al., 2017; Sternatz, 2015), this study includes various novelties. (i) The number of line

feeding policies under investigation has been increased to five; (ii) the exact positioning of parts

at workstations is considered, such that walking times can be calculated more accurately; (iii)

facility sizing is incorporated to determine space and transportation costs; and (iv) an exact

solution methodology, i.e., a logic-based Benders’ Decomposition framework, is proposed.

The remainder of the chapter is structured as follows: After motivating the investigation of as-

sembly line balancing and assembly line feeding in a combined fashion, we discuss the literature

on both individual research domains in the following section. Besides, we discuss studies on the

integration of both topics. Afterward, in Section 6.3, we first explain the planning environment,

i.e., the type of assembly system under investigation, and the scope of our investigation before

proposing a logic-based Bender’s decomposition framework for this problem. To this end, we

present cost calculations for this type of problem. Section 6.5 provides computational and man-

agerial insights. Lastly, we provide a summary and showcase ideas for further research in the

last section.

6.2 Literature review

Within this section, we provide a limited overview of assembly line balancing and feeding prob-

lems. Furthermore, studies on the integration of both problems are discussed. We refer the

interested reader to Becker and Scholl (2006); Boysen et al. (2007), and Battäıa and Dolgui

(2013) for comprehensive reviews of the assembly line balancing literature and to Schmid and

Limère (2019) for a review on assembly line feeding literature.

6.2.1 Assembly line balancing

The origin of modern assembly lines goes back to the assembly line’s invention and Ford’s Model

T at the beginning 20th century. Academics started studying this topic only half a century later

(Salveson, 1955). However, interest in this topic is vast. The fundamental problem variants,

assigning tasks to stations and minimizing either the number of workstations or cycle time, have

been classified as simple assembly line balancing problems (SLABPs) (Baybars, 1986). Other
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problem types, including various extensions, have been labeled generalized assembly line bal-

ancing problems (Baybars, 1986). Due to the enormous number of publications, we present

only a subset of studies. Many studies are concerned with the proposal and improvement of

exact solution methods for the simple assembly line balancing problem with a fixed cycle time

and minimizing the number of stations. Bowman (1960) was the first author to propose a lin-

ear programming-based solution approach for assembly line balancing problems. Many studies

followed this mathematical programming approach using techniques such as Lagrangian relax-

ation (Aghezzaf and Artiba, 1995) or formulation improvements Patterson and Albracht (1975).

(Scholl and Klein, 1997) proposed a Branch-and-Bound procedure for SALBP-1, which still out-

performs many other approaches. The most efficient solution procedure for this problem has

been proposed by Morrison et al. (2014); Sewell and Jacobson (2012). They also propose a

Branch-and-Bound method. However, the algorithm identifies and remembers the solution to

subproblems such that recurring subproblems do not require being repeatedly solved. Pape

(2015) compared and improved multiple lower bounds for the same problem. Due to the dif-

ficulty of this NP-hard problem, many researchers studied heuristic approaches. Fleszar and

Hindi (2003) provide enumerative heuristic approaches, i.e., an iterative rule-based assignment

that alters some search-determining parameters in each iteration. This heuristics is an extension

of the well-known Hoffmann heuristic (Hoffmann, 1963). Recently, Sternatz (2014) extended the

heuristic of Fleszar and Hindi (2003) to incorporate more practical considerations such as mul-

tiple workers per station or assignment restrictions. Asides from computational aspects, many

studies are concerned with the investigation of GALBPs that consider many more balancing

aspects. One of these extensions is concerned with the necessity to provide sufficient storage

space at the workstations (Bautista et al., 2013; Bautista and Pereira, 2007; Chica et al., 2016).

In these studies, each task requires some storage space. However, as discussed above, the exact

amount of space depends on other decisions, namely line feeding decisions. Bartholdi (1993)

consider two-sided assembly lines, i.e., workers assemble parts on both sides of the product. In

reality, the assembly of different products may vary for specific products. Bartholdi III et al.

(2001) investigate assembly lines with these properties and propose the use of bucket brigades

to balance assembly lines more efficiently. More recently, an increasing number of studies focus

on human factors such as ergonomics (Battini et al., 2016b) or task complexity (Zeltzer et al.,

2017).

6.2.2 Assembly line feeding

Even though early assembly lines such as the above-mentioned Ford Model T assembly line

required various parts, it is not clear when logistics engineers started to consider various options

of supplying material. However, the advent of lean manufacturing systems in the 1970s certainly

spurred the use of Just-in-Time and Just-in-Sequence part feeding. Nowadays, five line feeding

policies are distinguished (Schmid and Limère, 2019): (i) line stocking, i.e., the provision of a

container or pallet as received from the supplier or preceding production stage; (ii) boxed-supply

(also known as kanban), i.e., a repacking of parts into smaller bins which are then provided to the



136 Chapter 6

assembly operator in a flow rack; (iii) sequencing, i.e., the provision of presorted multiple part

variants of functionally equivalent but distinct parts (known as part families); (iv) stationary

kitting, i.e., the provision of multiple specific parts, required at a specific workstation for the

production of a specific product. These parts belong to various part families and (v) traveling

kitting. Traveling kitting is almost equivalent to stationary kitting. However, a traveling kit

contains parts for multiple stations as the kit is typically attached to the product and travels

along the assembly line for multiple stations.

Nevertheless, only in the 1990s, the assembly line feeding problem received academic attention

(Bozer and McGinnis, 1992). This first research paper investigated the effect of using one or

another feeding policy through cost-based comparisons. One major limitation of this work was

applying an all-or-nothing approach that assumed a single feeding policy is used to supply all

parts. This research has been extended to include additional aspects in terms of costs (Caputo

and Pelagagge, 2011) such as error or space costs. Over time additional feeding policies have

been discussed (Battini et al., 2009; Sali et al., 2015). In the meantime, the focus shifted towards

optimization-based decision-supporting models. These models determine a feeding policy for each

part individually (Limère et al., 2012). The cost-savings of those optimal hybrid policies were

significant, even when only considering two line feeding policies. This study has been extended

to consider the sizing of stations and preparation areas (Limère et al., 2015). Sali et al. (2015)

propose a descriptive cost model that distinguishes three line feeding policies. Sali and Sahin

(2016) transformed this model into an optimization model. The model is unique in ensuring

that all assembly and logistics activities can be executed without violating the cycle time. More

recently, Schmid et al. (2018, 2020) proposed models that compare all five line feeding policies

and minimize the cost of operation. Besides, this study found that flexible use of storage space

at the stations can reduce costs by up to 7%. Baller et al. (2020) also distinguish various line

feeding policies and even consider different load carrier quantities and sizes for those line feeding

policies.

6.2.3 Integration of both problems

The integration of line feeding and balancing has been considered a promising research project

(Limère, 2011; Schmid and Limère, 2019). In a first study, Sternatz (2015) investigated the

integration of both problems. The results indicate that costs may be reduced by up to 20%. This

study uses a heuristic procedure to solve various cases. However, this study only distinguishes

line stocking and stationary kitting and does not incorporate walking-related operation times.

Since the use of additional line feeding policies is expected to reduce feeding costs even further,

this study is not conclusive in its findings. Battini et al. (2016a) proposed a MILP model to solve

a problem with similar assumptions and limitations. However, also, ergonomic considerations

are taken into account. This work has been extended, and the integrated approach has been

compared to a hierarchical planning approach (Battini et al., 2017). Lastly, Wijnant et al.

(2018) investigated the impact of different assembly line balancing decisions on line feeding. To

this end, the authors balanced multiple assembly lines with various objectives. Afterward, the
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feeding of those lines has been optimized, and results were compared for the same assembly

lines balanced with different objectives. The experiments show that the choice of the objective

heavily affects the costs of the feeding system. Summarizing these findings, it is evident that

simultaneously optimizing both problems will result in better solutions.

6.3 Problem definition

As this problem is a combination of both the ALBP and ALFP, each task f is assigned to

a station s and all parts, required for that task i ∈ If , are assigned to a feeding policy p. A

collection of parts, required for a specific task, is described as part family or family. Furthermore,

each part is also assigned to a location l at the BoL, i.e., the part storage area at each assembly

station, to determine walking distance and duration. The objective is to minimize the overall

costs of the resulting assembly system. Furthermore, the problem includes the determination

of the facility’s size, including the logistics facility, comprising a warehouse and supermarket,

and the shop floor. Supermarkets (also described as preparation areas) serve as logistics area in

which parts are repacked or sequenced.

The line feeding policies under consideration re line stocking (provision of large containers filled

with a single type of parts), boxed-supply (provision of smaller boxes filled with a single type of

parts), sequencing (provision of presorted interchangeable parts, e.g., differently colored parts),

stationary kitting (like sequencing but containing multiple sets of interchangeable parts used

at one station), and traveling kitting (like stationary kitting but containing parts for several

stations).

6.3.1 Planning environment

This problem affects multiple areas of an assembly system, represented in Figure 6.1. It shows

all processes (replenishment, preparation, transportation, and usage). In addition, a dispatch

process that covers some transportation within the logistics facility is considered in this work.

The exact execution of all theses processes varies for the different line feeding policies and will

be described in more detail when describing cost calculations (see Section 6.3.3).

Furthermore, the system includes three distinct types of storage areas: the warehouse (between

inbound and replenishment processes), the supermarket or preparation area (between replenish-

ment and preparation processes), and the storage at the border of line (BoL). In this study, the

inbound and outbound processes are excluded as they are mostly unaffected by balancing and

feeding decisions.

In contrast, the execution of the processes and the required areas for the warehouse, supermarket,

and shop floor depend on balancing and feeding decisions. For example, considering all parts to

be line stocked would require the largest warehouse since no parts are stored in the supermarket.

In this scenario, the supermarket is not needed. This scenario also does not include replenishment

or preparation processes. However, the assembly stations will be relatively large as load carriers

used in line stocking require much space. This would also increase the assembly operators’ time
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Focal company

Scope of assembly line feeding and balancing

Optional processes if parts are preprocessed

Figure 6.1 VSM1of the processes in the assembly system (Adjusted from Schmid and Limère (2019))

for walking and searching for the right part. In the other extreme case, all parts may be fed

in traveling kits. In this case, the warehouse area would be smaller as some of the pallets will

be stored in the preparation area. At the same time, it would require an extensive preparation

area. On the other hand, stations can be rather small since no space at the BoL is required.

In this scenario all processes depicted in Figure 6.1 are carried out. These two scenarios are

schematically contrasted in Figure 6.2.
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Figure 6.2 Shop floor plan of possible scenarios w.r.t preparation space (aerial view)

1Standardized VSM symbols are used; as only material flow is taken into account, push arrows are used.
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Facility layout

The assembly line balancing problem assigns tasks to assembly stations. Therefore, it also

assigns parts to workstations. Balancing problems may incorporate the determination of the

stations’ size (see, e.g., Chica et al. (2016). Nevertheless, we exclude the determination of space

at the BoL, meaning the length and height of stations are defined a priori based on product

characteristics. Sternatz (2015) showed that the assignment of tasks (and parts) to stations

determines the optimal line feeding. Since the assembly line feeding problem determines the

number of parts undergoing preparation, it directly affects the space demand for preparation

activities. Therefore, this research includes the facility sizing for two reasons: (i) line feeding

decisions affect warehouse requirements both in terms of space but also in terms of the number

of warehouse racks required; (ii) balancing and line feeding decisions affect the warehouse’s and

supermarket’s sizing. Therefore, it affects space costs and transportation distances.

To optimize the logistics facility’s size, we discretized several options. The warehouse’s and

supermarket’s height is equal to the assembly line’s height. Their width and the share of su-

permarket and warehouse area varies for different options. There is a direct link between the

warehouse’s and the supermarket’s size as parts stored in the supermarket do not require storage

space in the warehouse.

Line balancing

As discussed above, assembly line balancing is a central aspect of planning the assembly system.

In practice, customer demand frequently determines the cycle time for assembly line balancing.

As demand-driven balancing is the most prevalent type of balancing, we also focus on this

type of line balancing, also known as Simple assembly line balancing problem type 1 (SALBP-1),

minimizing the number of workstations. However, in this study, the objective is slightly modified

to minimize costs incurred by using those workstations. This alteration does not change the

model’s output as costs do not vary for different stations. Besides, this research considers not

only balancing costs but also costs incurred through feeding. Therefore, a trade-off between

balancing-incurred and feeding-incurred costs may arise.

Line feeding

The BoL describes an area parallel to the assembly line, used to store parts and potentially

equipment or tools. However, in this work, it is assumed that the BoL is exclusively used to

store parts. Each assembly station, therefore, each station’s BoL is sized equally such that

one product fits a station. For an accurate determination of walking distances, we discretize

the available space by dividing it into equally sized locations. Furthermore, we distinguish two

categories of locations: (i) close locations, and (ii) distant locations. Using close locations is

far more attractive than using distant locations as operators have to walk shorter distances.

Furthermore, close and distant locations are mutually exclusive, as shown in Figure 6.3b).

Nevertheless, distant locations may be used under particular circumstances, namely when a kit

travels through a station (see Figure 6.3a)). Traveling kits travel close to the assembly line such
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a)

Station i− 1 Station i Station i+ 1

b)

Station i− 1 Station i Station i+ 1

Figure 6.3 Use of locations

that the operator does not have to walk to fetch parts. Therefore, traveling kits avoid the use of

close locations. In those cases, however, distant locations may be used for part storage. Figure

6.3 shows a series of stations with a traveling kit (the kits path is represented with an arc), using

some distant locations, and a series of stations without a traveling kit, using only close stations.

The optimization model proposed in this research allows for multiple traveling kits, i.e., one

traveling kit may serve stations 1-3, and another one may serve station 4-6. However, it should

be noted that traveling kits should never serve less than two stations, as conceptually they

would become stationary kits. We discretized all possible traveling kits to optimize their use.

For example, for an assembly line with three stations, the following traveling kits may be used:

Tr. kit 1, serving station 1 and 2; Tr. kit 2, serving stations 1, 2, and 3. Tr. kit 3, serving

stations 2 and 3.

Assumptions

The problem studied in the following, relies on several assumptions, listed below:

1. Demand is assumed to be deterministic.

2. Operation times are assumed to be deterministic.

3. Parts are assumed to be used for one task only.

4. Costs are optimized over a defined planning horizon.

5. Transportation and replenishment distances depend on the facility’s sizing and are esti-

mated as averages.

6. The logistics facility consists of a single logistics area, including a warehouse and a super-

market.

7. Each line feeding policy uses one type of load carrier with predetermined capacity.
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8. Demand points, therefore, walking times of assembly operators depend on the tasks as-

signed to a station.

9. All set elements (except line feeding policies) are assumed to be a sequence of natural

numbers.

As both, demand and operation times are assumed to be deterministic, cost calculations and con-

straint satisfaction do only depend on the parameter values. Relaxing these assumptions would

lead to stochastic problems that would need to be tackled by stochastic, robust, or distribution-

ally robust programming approaches. It is assumed that each part is uniquely used for a specific

task. This is done to simplify the problem. Otherwise, one would need to calculate the amount

of space required in the preparation area in more detail. That is, some parts supplied to different

stations by a single traveling kits may be the same, which would only require to store one pallet

of this part in the kitting cell instead of multiple ones. The costs are calculated for a fixed time

horizon to make the results comparable. It is important to note that in this work, compared to

other studies, the replenishment and transportation distances depend on the logistics facility’s

size. Therefore, the respective costs change whenever a different facility size is chosen. As we

do not determine the exact positioning of preparation operations within the preparation area,

distances are estimated as average transportation distances. To relax this assumption, more

detailed modeling would be required. All load carriers used for the different line feeding policies

are assumed to be equally sized to simplify the model. However, this may be relaxed by adding

additional load carrier options to each feeding policy. When calculating walking distances, it

needs to be determined at which point at the line a part is used. To calculate this, we consider

the number of tasks per station and their duration. One may also (optimally) sequence the

tasks at each station considering their precedence relations. However, this would likely result in

either a nonlinear or cumbersome model formulation. The final assumption is taken to facilitate

a simpler notation and a more efficient problem formulation.

6.3.2 Solution approach

The problem discussed in this study is solved by solving different mathematical programming

models. The notation for all models is presented in Table 6.1. The table contains multiple cost

parameters, which we discuss in more detail in Section 6.3.3. For this, we will also introduce

additional parameters. The following indices are used when referring to a particular feeding

policy: L - line stocking; B boxed-supply; S - sequencing; K - stationary kitting; T - traveling

kitting.

Table 6.1 Notation for optimization models

Sets

A Set of logistics facilities B Set of subproblems

Bk Set of subproblems in callback k DP
f Set of direct predecessors of part family f

F Set of part families Fkb Set of part families in subproblem b of callback

k
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Fm Set of part families used for model m Fp Set of part families assignable to policy p

Fs Set of part families assignable to station s H Set of master iterations

I Set of parts If Set of parts in family f

Ikb Set of parts in subproblem b of callback k Ip Set of parts assignable to policy p

Is Set of parts assignable to station s K Set of master callbacks

L Set of locations and set of tr. kits LBs Set of locations at the border of line of station

s

Lfp Set of locations/tr. kits that may be used for

family f in policy p

Lkb Set of locations that can be used in callback k

and subproblem b

Lp Set of locations or tr. kits usable by policy p Lsp Locations usable by station s and p

M Set of product models P Set of line feeding policies

Pi Set of line feeding policies for part i

Pkb Set of feeding policies available in callback k

and and subproblem b

R Set of resources under consideration (Weight

and Volume)

S Set of assembly stations

Si Set of assembly stations to which part i may

be assigned

Sf Set of assembly stations to which family f may

be assigned

Skb Set of assembly stations in subproblem b of

callback k

SSl Set of stations that may be served by traveling

kit l

Variables

αf Auxiliary variable for the assignment of family

f

ab Space variable for subproblem b

χl Variable indicating whether traveling kit l is

used

χpl Variable indicating whether location l is used

for policy p

ψfpl Variable indicating whether family f is as-

signed to location l and feeding policy p

tf Assembly time of family f

va Variable indicating whether logistics facility a

is used

xipl Variable indicating whether part i is assigned

to location l and line feeding policy p

xfs Assigning family f to station s ys Variable indicating the use of station s

zb Optimality variable for subproblem b

Parameters

ah Logistics facility selected in callback k a∗kb Size required in preparation area for subprob-

lem b of callback k

a∗k Size required in preparation area for callback

k

aa Space in preparation area a

aip Space required to prepare part i for policy p ca Costs to use preparation area a

cispla Costs for providing part i to location l with

line feeding policy p and logistics facility a

cfpla Costs to provide part family f to location l

using policy p when using preparation a

cl Costs to use traveling kit l cpla Costs to provide use a location l for policy p

when using preparation a

cs Costs to open a station ct Cycle time

lkb Index of traveling kit used in in subproblem b

of callback k

l′pl Location l used to store a part that is fed with

policy p to location/kit k

M A sufficiently large number rir Resource requirement of resource r for a box

of part i

rfr Resource requirement of resource r for family

f

Rpr Resource availability of resource r for policy p

sik Station of part i in callback k sfk Station of family f in callback k
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tAf Assembly time of part family f tiplh Walking and searching time of the assembly

operator if part i is assigned to policy p and

location l in iteration h

tiplk Walking and searching time of the assembly

operator if part i is assigned to policy p and

location l in callback k

tl Minimum walking time to location l

sLl Station at which traveling kit l is leaving the

line

z∗kb Optimal costs for subproblem b of callback k

zrkb Relaxed master costs for subproblem b of call-

back k

The problem discussed in this study is far more complicated than the individual problems of

balancing and feeding as it integrates the individual problems and extends their scope, i.e., we

added decisions on multiple traveling kits and the facility size in this problem. As discussed

in Section 6.2, both problems are mostly solved sequentially in practice and theory. Therefore,

the use of a decomposition technique seems appropriate. Since we are the first to propose a

model and a solution approach for this particular problem, we intend to provide an optimal

solution approach. Optimal decomposition approaches can be distinguished into row generation

and column generation techniques. Both techniques decompose the problem into two problems.

One well-studied row generation decomposition approach is Bender’s decomposition. Here, the

master problem contains some of the difficult decisions, whereas the subproblem solves ”lower-

level” decisions suiting the solution of the master Bender (1962). This approach was often

applied to facility location problems, where the opening of facilities are the difficult decisions in

the master and the assignment of customers to the opened facilities are the easier decisions taken

in the subproblem (see, e.g., Fischetti et al. (2017); Wentges (1996)). In contrast, the problems

are transformed through the Dantzig-Wolfe transformation for column generation approaches

Barnhart et al. (1998). This transformation often changes the problem such that the master

problem needs to select some variables from a large set of variables. Since the creation of all

possible variables is intractable in many practical cases, the variables are created whenever the

master found a solution.

For this study, we decided to apply a logic-based Bender’s decomposition. While the classic Ben-

der’s decomposition does not allow integer decision variables in the subproblem, this is feasible

in the logic-based approach. However, in the classic Bender’s decomposition, the cuts (rows)

generated by the subproblem have a standardized. Contrarily, in a logic-based Bender’s de-

composition, they must be derived based on the problem’s characteristics. This approach was

preferred over a column generation (CG) approach for a few reasons: (i) To apply a CG approach,

it would be necessary to calculate the point of demand for each task and the associated families

as this is necessary to calculate walking times correctly. While this is certainly feasible, it would

create many nonlinear constraints that would slow down the problem. (ii) the problem represents

an integration of two problems that are typically solved sequentially. Therefore, solving those

problems and linking them in a logic-based Bender’s decomposition framework seemed to be a

straightforward approach. (iii) the costs obtained from the subproblems depend on a decision
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variable in the master problem. When translating this into a CG-based approach, this master

variable would need to be somewhat considered in the subproblems. Thus, the subproblems

would need to include the space variable, which would avoid a decomposition on a station level

and complicate the subproblems. Another option would be to handle this through some logical

constraints in the master, which would also complicate the master problem. To summarize,

we believe that a logic-based Bender’s decomposition is more suited than a column generation

based approach. Nevertheless, there may be a problem formulation that does not suffer from the

above-mentioned issues.

We decompose the problem in two stages: 1. A balancing stage, which determines the number

of stations, assigns tasks to stations, sizes the warehouse and supermarket, and determines

the use of traveling kits. This is also called the master problem 2. A feeding stage, which

determines the parts’ feeding policies and placement at the BoL. The second stage solves the

feeding problem and is referred to as the subproblem stage. For this, two types of subproblems

are distinguished: (i) subproblems that contain a single station, not served by a traveling kit;

and (ii) subproblems that contain multiple stations that are all served by the same traveling

kit. The subproblems’ solutions determine feeding costs and the amount of space required in the

warehouse and preparation area. Therefore, it needs to be verified if a solution to the master

problem is feasible concerning the preparation area space. To this end, we solve a feasibility

problem in a callback procedure that determines the minimum amount of space required in the

preparation area and adds lazy constraints accordingly.

Due to the problem’s intractability, a linear relaxation of the subproblems may be added (shown

in Appendix C). Finding an optimal solution to the master problem in each iteration also slows

down computations. Therefore, we utilize an ε-based approach (see, e.g., Rahmaniani et al.

(2017)), which interrupts the master problem when it finds a solution with an optimality gap of

ε or less. This epsilon is reduced based on a sigmoid function when a non-optimal solution is

found repeatedly.

It remains to be stated that, even though a master problem and all subproblems may be feasible,

the overall solution might be infeasible. This problem arises when the amount of space required

in the preparation area determined in the optimality subproblem is larger than the amount of

space designated by the master problem and ensured by the minimum space generated in the

callback. In the before-mentioned case, the entire line’s feeding needs to be optimized in a single

optimality subproblem. Figure 6.4 shows the proposed solution procedure for this decomposition

schematically.

The sequence of solving the feasibility subproblems in a callback and the optimality subproblems

after finding a (sufficiently good) master solution was chosen based on computational pretests.
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Figure 6.4 Algorithmic steps of logic-based Benders’ decomposition

Master problem

minimize
∑
s∈S

csys +
∑
l∈LT

clχl +
∑
a∈A

cava +
∑
b∈B

zb (6.1)

s.t.
∑
s∈Sf

xfs = 1 ∀f ∈ F (6.2)

αf ≤ αg ∀g ∈ F ∀f ∈ DPg (6.3)∑
s∈Sf

sxfs = αf ∀f ∈ F (6.4)

∑
f∈Fs∩Fm

tAf xfs ≤ ctys ∀s ∈ S ∀m ∈M (6.5)

ys ≤ ys−1 ∀s ∈ S : s > s+ 1 (6.6)∑
l∈LT :s∈SS

l

χl ≤ ys ∀s ∈ S (6.7)

∑
a∈A

va = 1 (6.8)
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∑
b∈B

ab ≤
∑
a∈A

aava (6.9)

ys = 1 ∀s ∈ S : s ≤ s (6.10)

ys ∈ {0, 1} ∀s ∈ S : s > s (6.11)

xfs ∈ {0, 1} ∀f ∈ F ∀s ∈ Sf (6.12)

χl ∈ {0, 1} ∀l ∈ LT (6.13)

va ∈ {0, 1} ∀a ∈ A (6.14)

ab, zb ≥ 0 ∀b ∈ B (6.15)

αf ∈ Z ∀b ∈ B (6.16)

As described above, the master problem addresses the balancing of the line (i.e., the assignment

of tasks to workstations and the opening of workstations), the use of traveling kits, and the sizing

of the preparation area. Those decisions also impact the objective function (see Equation (6.1))

as each of these decisions incurs specific costs. Constraints (6.2) and (6.3) ensure the assignment

of all tasks and adherence to the precedence relations, respectively. Cycle time restrictions are

ensured in Constraint (6.5). Constraint (6.6) ensures that a station is not used if the previous

station is not used either. While this constraint is often added to reduce symmetry in the solution,

it is essential to this study because of the discretization of traveling kits: the use of a certain

traveling kit is defined by the stations at which it enters and leaves. If stations in between are

not used, the number of stations served (and the related costs) is no longer correct.

In this research, we assume there is only space for one traveling kit at each station. Thus, only

one traveling kit may traverse a station (see Constraint (6.7)). Furthermore, this constraint

ensures that traveling kits only serve stations that are opened.

A third aspect of the master problem is to ensure that preparation space is sufficient. Since the

amount of space, however, depends on the solution to the subproblems, additional variables are

used to incorporate the information from the lazy callback (see Constraints (6.32) and (6.33)).

This information can then be used in Constraint (6.9).

Finally, the master problem considers optimality cuts generated from the optimality subproblems.

Whenever the master problem is solved, several subproblems are derived. The exact number de-

pends on the number of disconnected and connected stations in the solution of the master. In this

study, we use the notation for callback iterations (k) and master iterations (h) interchangeably.

Let Bh denote the set of subproblems of iteration h. Then, |Bh| =
∑
s∈S y

h
s −

∑
l∈LT

|SSl |χhl with

yhs being the stations opened and χhl being the set of traveling kits used in the current iteration

h. This translates into two types of subproblems. The first type describes a subproblem for each

station not served by any traveling kit. The second type solves a subproblem for each traveling

kit and includes all stations served by that traveling kit. For each subproblem of an iteration,

the set of stations in that problem is defined as Shb. Similarly, we define the set of locations Lhb,
the set of families Fhb, and the set of parts Ihb for that subproblem.
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Feasibility subproblem

This model builds upon the model described in Schmid et al. (2020). However, we made some

adjustments to incorporate cycle time constraints and to simplify the model’s representation.

minimize
∑
i∈Ikb

∑
p∈Pi

∑
l∈Lsikp

xiplaip (6.17)

∑
p∈Pi∩Pkb

∑
l∈Lsikp∩Lkb

xipl = 1 ∀i ∈ Ikb (6.18)

∑
p∈Pi∩Pkb

∑
l∈Lsikp∩Lkb

tiplkxipl + tAf ≤ tf ∀f ∈ Fkb ∀i ∈ If (6.19)

∑
f∈Fs∩Fm:sfk=s

tf ≤ ct ∀s ∈ Skb ∀m ∈M (6.20)

xipl ≤ χpl′pl ∀i ∈ Ikb ∀p ∈ Pi ∩ Pkb ∀l ∈ Lsikp ∩ Lkb
(6.21)∑

p∈P
χpl ≤ 1 ∀s ∈ Skb ∀l ∈ LBs (6.22)

xipl ≤ ψfpl ∀f ∈ Fkb ∀i ∈ If ∀p ∈ {S,K, T}

∀l ∈ Lsfkp ∩ Lkb (6.23)∑
i∈Is∩Ikb:sik=s

xiLl +
∑

f∈Fs∩Fkb:sfk=s

ψfSl ≤ 1 ∀s ∈ Skb ∀l ∈ Lkb \ LsT (6.24)

∑
i∈Is∩Ikb:sik=s

rirxiBl ≤ RBrχBl ∀s ∈ Skb ∀l ∈ Lkb ∩ LsB ∀r ∈ R (6.25)

∑
f∈Fm∩Fp∩Fkb

rfrψfpl ≤ Rprχpl ∀m ∈M ∀p ∈ {K,T} ∀l ∈ Lp ∩ Lkb

(6.26)∑
l∈Lbk∩Lsikp

xipl −
∑

l∈Lbk∩Lsjkp

xjpl = 0 ∀f ∈ Fbk ∀i, j ∈ If : i < j ∀p ∈ Pf (6.27)

xipl ∈ {0, 1} ∀i ∈ Ikb ∀p ∈ Pi ∀l ∈ Lsikp ∩ Lkb (6.28)

ψfpl ∈ {0, 1} ∀f ∈ Fkb ∀p ∈ Pf ∀l ∈ Lsfkp ∩ Lkb (6.29)

χpl ∈ {0, 1} ∀p ∈ P ∀l ∈ Lkb (6.30)

tf ≥ tAf ∀f ∈ F (6.31)

This model optimizes the assignment of parts to feeding policies while minimizing the space

needed in the preparation area (see Equation (6.17)). To that end, the model assigns each part

to a feeding policy and location (Equation (6.18). It should be noted that a location refers to

a discretized location as shown in Figure 6.3 for all feeding policies except traveling kits. In
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contrast, in the case of traveling kits, it refers to a specific traveling kit from the set of traveling

kits. Each traveling kit has a specific starting and ending point defined by the entering and leaving

locations at the border of line. Again, the cycle time must not be violated (Equation (6.20). To

this end, accurate task times are calculated in Constraint (6.19), taking into account searching

and walking times. The walking distances depend on the part positioning at the BoL and the

demand/assembly point at the line, where the part (family) is needed. These demand points

are calculated before solving this model based on the assembly times of all tasks at a station.

In Constraint (6.21), we introduce an indicator variable χpl that is linked to the assignment

variables xipl, and is used to ensure that no location is used for more than one policy (Constraint

(6.22)). The location(s) l′ that need to be blocked for a policy depends on the policy. For all line

feeding policies except traveling kits l′ = l. However, for traveling kits l′pl is different from l as it

refers to the discretized locations instead of the traveling kit’s index l. Another indicator variable

ψfpl is introduced in Constraint (6.23) to indicate whether any part of family f is assigned to

policy p and location l.

Next, the feasibility of part positioning is ensured. To this end, we allow either a single part to

be line stocked or a family to be sequenced at a single location (Constraint (6.24). Furthermore,

it is verified that all boxes assigned to a location fit into a rack (Constraint (6.25)), and all

parts assigned to a kit match its volume and weight capacities (Constraint (6.26)). Lastly,

Constraint (6.27) enforces the assignment of a family’s parts to the same feeding policy. This

equal assignment has multiple reasons: (i) it simplifies operations for the operator; (ii) possible

gains in relaxing this constraint are marginal (see Schmid et al. (2020)); and (iii) it simplifies

the solution of the model.

This model may be feasible or infeasible since the master problem is neglecting information

on walking and searching times and on the BoL space (if the master includes the subproblems

relaxation, it considers some information but only in a non-integral form). Let the optimal

solution of subproblem b in callback k be denoted by a∗kb. After solving each subproblem, lazy

constraints of type (6.32) or (6.33) will be added for each subproblem solved. The former is for

subproblems with a single, and the latter for subproblems with multiple stations. Potentially,

multiple lazy constraints are added based on a single subproblem.

a∗kb +M

 ∑
f∈Fkb

(xfs − 1)−
∑

l∈LT :s∈SS
l

χl

 ≤ ab ∀k ∈ K ∀b ∈ Bk : |Skb| = 1

∀s ∈ S : Fkb ⊆ Fs (6.32)

a∗kb +M

 ∑
f∈Fkb

(xfsfk
− 1) +

∑
l∈LT :SS

lkb
⊂SS

l

χl − 1

 ≤ ab ∀k ∈ K ∀b ∈ Bk : |Skb| > 1 (6.33)

If the subproblem is infeasible, too many families have been assigned to the set of stations in the

subproblem. Infeasibility can be rooted in the required operation times, i.e., the worker is not

able to perform all tasks within the allowed time (see Constraints (6.19) and (6.20)). Another
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cause for infeasibility may be space insufficiency (see Constraints (6.24)-(6.27)). Either way, the

number of tasks and parts in the subproblem is too high and must be reduced. To this end, one

of the following combinatorial cuts is added to the master as a lazy constraint. If the subproblem

contains a single station, the first cut is added, whereas the second cut is added if the subproblem

contains a linking traveling kit serving multiple stations.∑
f∈Fkb

xfs ≤ |Fkb| − 1 +
∑

l∈L:skb∈SS
l

χl ∀k ∈ K ∀b ∈ Bk ∀s ∈ S : Fkb ⊆ Fs

(6.34)∑
f∈Fkb

xfsfk
+

∑
l∈LT :SS

lkb
⊆SS

l

χlkb
≤ |Fkb| ∀k ∈ K ∀b ∈ Bk : |Skb| > 1 (6.35)

These cuts avoid a repetition of the same assignment. However, the use of a traveling kit may

avoid this infeasibility (see Constraint (6.34)) because it may reduce operation times or space

requirements at the border of line.

Optimality subproblem

The optimality subproblems start from a feasible master solution where each iteration is labeled

h, replacing k from the feasibility subproblems. This model determines the minimum feeding

costs for each subproblem given the assignment of families. This includes three cost parameters:

(i) cipla including investment, replenishment, preparation, and transportation costs ; (ii) cfpla

including investment, preparation, dispatch, and transportation costs ; and (iii) cpla including,

dispatch, and transportation costs. We will discuss the exact cost calculations in the next section.

∑
i∈Ihb

∑
p∈P

∑
l∈Lsihp

ciplahxipl +
∑
f∈Fhb

∑
p∈Pf

∑
l∈Lsfhp

cfplahψfpl +
∑
p∈P

∑
l∈Lp∩Lhb

cplahχpl (6.36)

s.t. (6.18)− (6.31)∑
i∈Ihb

∑
p∈Pi

∑
l∈Lsihp

aipxisihpl ≤ aah (6.37)

Due to the feasibility cuts based on the feasibility subproblem added in the callback, the opti-

mality subproblems are always feasible. Their solutions are used to add an optimality cut to the

master problem. Similar to the feasibility subproblems, optimality subproblems may be used to

generate multiple cuts. Let z∗b denote the optimal solution value to the subproblem at hand.

Then, either an optimality cut of type (6.38) or (6.39) is added to the master problem.
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z∗hb +M

 ∑
f∈Fhc

(xfs − 1) +
∑

a∈A:a>ah

va − 1−
∑

l∈LT :s∈SS
l

χl

 ≤ zb ∀h ∈ H

∀b ∈ Bh : |Shb| = 1∀s ∈ S : s ≥ sbk ∧ Fhb ⊂ Fs (6.38)

z∗hb +M

 ∑
f∈Fhc

(xfsfk
− 1) +

∑
a∈A:a>ah

va − 1 + (χlhb
− 1)−

∑
l∈LT :SS

l ⊂S
S
lhb

χl

 ≤ zb ∀h ∈ H

∀b ∈ Bh : |Shb| > 1 (6.39)

In case the master problem contains the subproblems’ relaxation, cuts must be adjusted. Most

importantly, these cuts can only be added if the sum of required space in the preparation area is

smaller than or equal to the available space. Otherwise, the relaxed costs of the master problem

might be higher than the costs determined in the subproblem. Lastly, the relaxation costs,

denoted zrhb have to be subtracted from the subproblem’s costs.

z∗hb − zrhb +M

 ∑
f∈Fhc

(xfs − 1) +
∑

a∈A:a>ah

va − 1−
∑

l∈LT :s∈SS
l

χl

 ≤ zb ∀h ∈ H

∀b ∈ Bh : |Shb| = 1 ∀s ∈ S : s ≥ sbk ∧ Fhb ⊂ Fs (6.40)

z∗hb − zrhb +M

 ∑
f∈Fhc

(xfsfh
− 1) +

∑
a∈A:a>ah

va − 1 + (χlhb
− 1)−

∑
l∈LT :SS

l ⊂S
S
lhb

χl

 ≤ zb ∀h ∈ H

∀b ∈ Bh : |Shb| > 1 (6.41)

Final step

After all the optimality subproblems are solved, the solution must be checked for preparation-

space feasibility. For this, the required preparation area space of all optimality subproblems in

iteration h is summed up: a∗h =
∑
b∈Bh

a∗hb. Then, the algorithm may proceed with one of the

following options:

• a∗h ≤ aah : The solution is optimal given the current master solution and feasible. Optimal-

ity cuts (see Constraints (6.38)-(6.41)) are added to the master problem, and the iteration

stops.

• a∗h ≥ aah : The solutions obtained from the optimality subproblems do not match the

solution of the master problem as preparation area space is insufficient. To obtain a feasible

solution, an optimality subproblem, including all stations, must be solved. Afterward, a

single optimality cut is given to the master.
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6.3.3 Cost calculation

The costs considered in this model are split up into multiple blocks as they depend on different

decisions and, therefore, on the value of different decision variables. Each of these blocks com-

prises different costs arising from the processes of replenishment (R), preparation (P), dispatch

(D), transportation (T), and usage (U) or investments (I), and space cost (S). The processes and

investment or space costs are described by a superscript. It is important to note that even one

costs parameter does not necessarily include the same processes when considering different line

feeding policies. E.g., transportation costs for line stocking are included in cipla whereas they

are included in cpla for stationary kits. The different cost blocks are cipla, cfpla, cpla, cs, ca, cl.

The former four consists of costs originating in different processes, whereas the latter only con-

sists of a single origin cost (see Equations (6.42)-(6.45). The individual cost components will be

described in the following subsections. The notation used throughout this section is presented

in Table 6.2. The table introduces the used symbols, described them, and provides some values.

However, for values that highly on the problem instance, this is indicated by var.

cipla = cIispl + cRispl + cPispl + cTispl ∀i ∈ I ∀s ∈ Si ∀p ∈ P ∀l ∈ Lsp (6.42)

cfpla = cIfpl + cPfpl + cDfpl + cTfpl+ ∀f ∈ F ∀p ∈ P ∀l ∈ Lfp (6.43)

cpla = cIpla + cDpla + cTpla ∀p ∈ P ∀l ∈ Lp (6.44)

cs = csS + csU + csI (6.45)

ca = cS (6.46)

cl = cI (6.47)

It is important to remark that this section’s cost calculations are not generalizable to any as-

sembly facility. However, we aimed to describe them such that adjustments can easily be made.

The following enumeration list the assumptions for cost calculations described in the following.

1. The same vehicle type transports all parts assigned to a particular line feeding policy.

Namely, forklifts are used for line stocking, tugger-trains for boxed-supply, sequencing, and

stationary kitting, and AGVs for traveling kitting.

2. The individual preparation cells are spread over the entire supermarket area. For the

estimation of transportation distances, only the width of the supermarket area and ware-

house are considered (see Figure 6.2. For replenishment, the entire warehouse width and

half the supermarket width are considered. For dispatching, half the supermarket width is

considered.

3. Whenever kits are used, it is assumed that each product requires a kit.

Table 6.2 Parameters used for cost calculations

Parameter Description Value

ALB Aisle length for boxed-supply preparation cells 50m
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εF Forklift utilization rate 90%

εL Utilization rate logistical operators 80%

εT Utilization rate tugger trains 90%

λ Demand for all products 15840

λf Normalized demand of part family f [31− 14, 436]

λm Demand for model m [1, 584− 11, 088]

λi Demand for part i [4− 57, 810]

aS Area of an assembly station 42− 69m2

aPa Area in supermarket for logistics facility a var

aWa Area in warehouse for logistics facility a var

ALf Aisle length for the sequencing cell of part fam-

ily f

var

AL
′
i Incremental aisle length caused by part i 0.8m

aoc Assembly operator costs 30$/h

bsp Preparation batch size for policy p {n.a., 5, 1, 12, 1}
ccp Depreciation cost for a container used for feed-

ing policy p

{n.a., 0.1, 0.3, 8.33, 8.33}($/month)

cal Investment cost assembly line 8.33$/(month m)

cfr Depreciation cost for a flow rack 5.33$/month

cnf Number of containers required for part family

f when sequenced

3

cni Number of boxes required for part i when box-

supplied

var

cnp Number of containers required for a kit (p ∈
{K,T})

{3, var}

cp Depreciation costs of a pick-by-light system at-

tached to a flow rack

2.08$/month

ct Cycle time 120s

cwr Depreciation cost for a rack spot in the ware-

house

1.67$/month

dda Dispatch distance for logistics facility a var

dial Transportation distance from warehouse to lo-

cation l when using logistics facility a

var

fv Forklift velocity 2.8m/s

lca Depreciation cost for an AGV 416.66$/month

lcf Lease costs for a forklift 1500$/month

lct Lease costs for a tugger train 500$/month

loc Costs for a logistical operator 20$/h

mrp Milk run length for feeding policy p var

nf Number of parts in a sequencing container for

family f

var

nip Number of parts of type i in a load carrier used

for feeding policy p

var

nal Number of AGVs required for tr. Kit l var

ov Operator Velocity 0.8m/s

pnip Number of pallets of part i stored in the ware-

house when fed with policy p

var

ptip Picking time in preparation area for feeding

policy p and part i

var

rdpa Replenishment distance for feeding policy p

and logistics area a

var
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sl Length of a station var

sc Space leasing/depreciation costs 16.67$/(month m2)

stp Searching time in preparation for feeding pol-

icy p

var

tD Dropp-off time for a pallet 17s

tPip Pickup time for part i and line feeding policy

p

var

ttc Tugger train coupling an loading time 30s

ttdp Tugger train dropoff time for feeding policy p {n.a., 18, 30, 30, n.a.}
ttv Tugger train velocity m/s

v Volume of a kit container 1.92m3

vi Volume of a box of part i var

vf Volume of a sequencing container of family f var

voc Cost for vehicle operators 25$/h

vtt Volume tugger train 3.84m3

Space costs

As shown in Figure 6.2, the space required for warehousing and preparation area depends on

the decisions made in the feeding systems. If many parts are preprocessed, more space is needed

in the preparation area and spatial requirement for the warehouse reduces. Therefore, several

possible different sizes for the logistics area are defined of which one will be selected (see Equation

(6.8)). Each logistics area is defined by a corresponding warehouse size and a preparation area

size. The size of the warehouse aWa and preparation area aPa can be directly linked and, therefore,

combined in this study. The costs of every option is simply calculated by the area aa in space

units multiplied with costs for a space unit sc.

ca = (aWa + aPa )sc ∀a ∈ A (6.48)

Space costs also need to be considered for the shop floor since the use of additional stations

increases the demand for space. Here, the space of a single station aS is also multiplied with the

costs per space unit sc

csS = aSsc (6.49)

Investment costs

Investment costs arise at multiple places: The provision of parts in any container requires to buy

several containers at a price of ccp. The numbers of containers for boxed-supply cni, sequencing

cnf and both types of kits cnp (see Equations (6.50)-(6.55)) may vary. Furthermore, one has to

consider the investment in warehouse racks that store pallets of parts. Thus, the the number

of pallets in racks pnip is multiplied with the cost for a rack spot cwr (see Equation (6.50)).

The number of pallets depends on the feeding policy, as line-stocked parts are stored in the

warehouse, whereas other feeding policies store parts in the warehouse and the supermarket.
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Another occurrence of investment costs is the placement of flow racks at the BoL, needed to

hold box-supplied parts. In this case, the depreciation or leasing costs of a flow rack cfr need

to be considered. Additionally, picking support systems, such as pick-by-light may be leased

depreciated with cost cp (see Equation (6.52)). Lastly, this research assumes that AGVs transport

traveling kits. Therefore, several AGVs nal need to be leased or depreciated at costs lca. nal

depends on the stations a particular kit is serving and considers that kits need to be refilled.

From an assembly line balancing perspective, additional costs arise for the investment in assembly

line conveyor technology, depending on the size of the stations and ultimately on the number of

stations (see Equation 6.56).

cIipla = pnipcwr ∀i ∈ I ∀s ∈ Si ∀p ∈ P \ {B} ∀l ∈ Lsp ∀a ∈ A (6.50)

cIiBla = cniccB + npiBcwr ∀i ∈ I ∀s ∈ Si ∀l ∈ Lsp ∀a ∈ A (6.51)

cIfSla = cnfccS ∀f ∈ F ∀l ∈ Lp ∀a ∈ A (6.52)

cIBla = cfr + cp ∀l ∈ LB ∀a ∈ A (6.53)

cIKla = cnKccK ∀l ∈ LK ∀a ∈ A (6.54)

cIl = cnT ccT + nallca ∀l ∈ LT (6.55)

csI = cal sl (6.56)

Replenishment costs

Replenishment costs occur when parts have to be delivered to the supermarket for boxed-supply,

sequencing, or kitting. Replenishment costs depend on the warehouse’s and preparation area’s

size. Additionally, pallet pickup times at the warehouse tPip and drop-off times at the supermarket

tD are considered in replenishment cost calculations. Since parts can either be stored (in multiple

layers) on the floor or in racks in the warehouse, pickup times may vary. A part’s feeding policy

determines whether a part is stored on the floor (also known as block stacking) or in a rack.

Since the number of pallets stored in the warehouse depends on the feeding policy, we utilize it

to determine whether a part is block-stacked or rack-stored. To this end, we defined a threshold

on the number of pallets. If the number of pallets is lower than this threshold, it is stored in a

rack, otherwise in block-storage.

For the calculation of replenishment costs, we consider (un-)loading and transportation times

and multiply it with forklift investment (lcf), and vehicle operator costs voc. Transportation

time consider the distance rdpa, forklifts velocity fv, and forklift utilization rate εF . Lastly, costs

are multiplied by the number of pallets transported, which is defined by the part’s demand λi

and the number of parts on a pallet niL.

cRipla = (voc+ lcf)((tPip + tD) +
rdpa
εF fv

)
λi
niL

∀i ∈ I ∀s ∈ Si ∀p ∈ Pi \ {L} ∀l ∈ Lsp ∀a ∈ A

(6.57)
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Preparation costs

Preparation costs are incurred by the logistics workers labor when picking parts and placing

them in a different load carrier such as boxes, sequencing containers, or kitting containers. In

sequencing and kitting parts are also presorted. Costs for preparation typically differ for each

feeding policy due the batch size, i.e., the number of load carriers that can be prepared simul-

taneously, the required accuracy (no sequencing vs. sequencing) and the size of the preparation

cell. A preparation cell describes a smaller area within the supermarket. In sequencing, e.g., each

cell contains all part (variants) of a specific part family. In kitting, all part families, supplied

with a certain kit, and their parts are included. Boxed-supply cells contain many different parts

from different families. The size of a cell, here measured by the length of an aisle, determines

the walking duration.

cPiBla = loc
λi

niBεLl

[ ALB
bsBov

+ stB + ptiBniB

]
∀i ∈ IB ∀l ∈ LB ∀a ∈ A (6.58)

cPfSla = loc
λf
niSεl

[ ALf
bsSov

+ (stS + ptiS)niS

]
∀f ∈ F ∩ FS ∀l ∈ LS ∀a ∈ A (6.59)

cPiKla = loc(
λi
εL

(stK + ptiK) +
λAL

′

i

bsKovεL
) ∀i ∈ I ∀l ∈ LK ∀a ∈ A (6.60)

cPiT la = loc(
λi
εL

(stT + ptiT ) +
λAL

′

i

bsT ovεL
) ∀i ∈ I ∀l ∈ Lsp ∀a ∈ A (6.61)

Equation (6.58) covers cost for boxed-supply if parts are loosely provided on a pallet and have to

be repacked. Equation (6.59) combines the costs for all parts of a family if provided in sequenced

containers. Equation (6.60) describes costs for parts in stationary kits and preparation costs

for parts in traveling kits are calculated in Equation (6.61). For kits, the kitting cell’s size is

unknown. Therefore, an incremental aisle length AL
′

i, depending on the pallets width, is used

to calculate walking distances.

Dispatch costs

After parts have been prepared, containers need to be placed in a dispatch zone, where they

are picked up for final transportation. This concerns only sequenced containers and stationary

kits. Line stocked parts do not undergo preparation and, therefore, do not require dispatching.

In this study, it is assumed that preparation areas for boxed-supply are placed at the dispatch.

Therefore, no dispatching activity is needed. Sequencing containers and traveling kits may be

prepared anywhere in the supermarket. Therefore, they need to be dispatched. It is assumed that

workers push the container to the dispatch zone. Since the distance depends on the factory’s size,

calculation is done similar to replenishment costs. In this study, traveling kits are transported

by dedicated AGVs. Therefore, dispatch is not needed either.

The dispatch distances dda are estimations based on the assumption that the average preparation

cell is placed in the center of the supermarket. In practice, one may arrange cells optimally.
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However, this level of detail is out of scope of this research. Based upon this assumption, the

operators have to travel half the width of the supermarket in both directions.

cDfSl = loc
λfdda
nfOV εL

∀f ∈ F ∀p ∈ Pi ∀l ∈ Lp (6.62)

cK l
D = loc

λdda
bsKOV εL

∀l ∈ LK (6.63)

Transportation costs

During the transportation process, parts are delivered to the BoL. The number of transports

depends on part demands divided by the number of parts in a load carrier. The result is multiplied

with vehicle operator costs voc and the investment or leasing costs for the forklifts lcf and

tugger trains lct, respectively. Lastly, this is multiplied by the time, which is calculated based on

transportation distance and (un)loading activities divided by the vehicles’ utilization rates (εF

for forklifts and εT for tugger trains). Transportation distances depend on the direct distances

dil for forklifts and the milk-run lengths for boxed-supply, sequencing, and stationary kitting.

Whenever tugger trains are used, only a fraction of their costs is calculated as they can typically

hold more than one load carrier. To this end, we divide the load carriers volume (vi for boxes,vf

for sequenced containers, and v for st. kits) by the tugger train’s volume ttv.

cTiLla = (vo+ lcf)
λi
niL

(
2dial
εF fv

+
tPiL + tD

εF
) ∀i ∈ I ∀l ∈ Li ∀a ∈ A (6.64)

cTiBla = (voc+ lct)
λivi
niBvtt

(
mrp
εT ttv

+
ttc+ ttdB

εT
) ∀i ∈ I ∀l ∈ Li ∀a ∈ A (6.65)

cTfSla = (voc+ lct)
λfvf

bsSnf ttv
(
mrS
εT ttv

+
ttc+ ttdS

εT
) ∀f ∈ F ∀l ∈ Lf ∀a ∈ A (6.66)

cTKla = (voc+ lct)
λv

ttv
(
mrK
εT ttv

+
ttc+ ttdK

εT
) ∀l ∈ LK ∀a ∈ A (6.67)

As transportation activities differ for most line feeding policies, cost calculations need to be

adjusted accordingly. Equation (6.64) calculates transportation costs for line stocked parts based

on the number of pallets required. Similarly, costs for box-supplied parts depend on the number

of boxes required (see Equation (6.65)). However, transportation is assumed to be conducted

by tugger-trains, whereas forklifts transport line stocked parts. Tugger-trains also transport

sequencing containers, but the number of transports depends on the families’ demand λf instead

of the individual part demands (Equation (6.66)). The transportation costs for stationary kits

are calculated in Equation (6.67). It is assumed that each final product requires a kit. Therefore,

costs are based on the product demand.
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Usage costs

Contrary to other studies (Limère et al., 2012; Schmid et al., 2020), usage costs are calculated

differently. The usage process consists of various activities such as identifying assembly instruc-

tions and required parts, walking to the parts’ storage locations, searching for the correct part,

fetching and handling the parts, and finally assembling the part. In contrast to calculating all

these activities’ costs, Constraint (6.20) ensures the execution of all activities within the cycle

time. If that cycle time is not sufficient, some activities may be shifted to another station. There-

fore, usage costs consist of the assembly operator costs per second multiplying by the number of

products λ and cycle time ct.

csU = aoc ctλ (6.68)

6.4 Case study

We applied the approach described above to optimize three assembly lines of an automobile

manufacturer. While we obtained feeding-related data, balancing-related data was unavailable.

Therefore, we reverse-engineered missing data based upon available information. Therefore, the

case does not represent real-life data exactly. However, we reverse-engineered multiple scenarios

to mitigate this problem.

6.4.1 Assembly line feeding data

Data related to assembly line feeding contains information about the demands of parts, delivery

quantities, physical characteristics, or costs for investment, space, and operations. Table 6.3

summarized some characteristics of the assembly lines under investigation. It contains the num-

ber of different product models assembled (#Models), the overlap of parts, i.e., the percentage

of parts that are used in at least two product models, the number of parts (#Parts), and part

families (#Families). Lastly, the range of the number of parts per family and the average part

demand, and its standard deviation are presented.

Table 6.3 Instance characteristics w.r.t. feeding

Lines #Models Overlap #Parts #Families Parts/ Family Daily
demand

Trim3L 3 56 265 138 [1-16] 148± 240
Final2EastL 3 89 75 47 [1-8] 195± 367
Final4 3 85 104 55 [1-20] 236± 422
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6.4.2 Assembly line balancing data

Since the company could not provide balancing-associated data, we reverse-engineered it based on

available information. For this problem, balancing data consists of assembly times and precedence

constraints. We create assembly times for each task, which we assume to be equal to a part family.

We are aware of two dataset generators in the literature (Otto et al., 2013; Serrano et al., 2014)

describing a simulation-based approach to generate precedence graphs and assembly times jointly.

The generation in both cases is based on probability distributions and randomized constructive

procedures. Contrary, we aim to reverse-engineer this data using real-world information such

as the number of tasks, the available cycle time, and the number of tasks per station. In the

following, we propose two methods to generate precedence data and assembly times separately.

Therefore, they can be combined arbitrarily. Table 6.4 shows the data obtained from these

methods and compares it to datasets from literature to evaluate their realism.

For this comparison, we utilize various metrics summarized by Otto et al. (2013). Amongst them

are number of tasks (Elmaghraby and Herroelen, 1980), order strength (Mastor, 1970), average

number of direct predecessors (Rosenberg and Ziegler, 1992), maximum task degree (Baybars,

1986), and the number of isolated tasks. Based on the value dispersion, one can conclude that

our approach produces realistic data.

Table 6.4 Instance characteristics w.r.t. balancing

Metric/Lines Scholl (1993) Otto et al. (2013) Trim3L Final2EL Final4L

Instances 269 7350 25 25 25
Tasks 7-297 20-1000 138 47 55
# Is. tasks 0-4 0-8 0 0 0
Average immediate pred. 0.86-1.93 0.65-2.81 1.22-1.46 1.32-1.66 1.29-1.44
Tasks w/o predecessors 1-26 1-30 3-3 3-4 4-5
Tasks w/o successors 1-34 1-373 1-1 1-2 1-1
Order strength 22.49-83.82 14.21-90.45 60 - 80 60 - 80 60 - 80
Min. task degree 0-2 0-2 1 1 1
Max. task degree 3-23 2-47 4-5 5-6 5-5
%Bottleneck tasks 0-11.11 0-15 0 0 0
% Chain tasks 0-57.14 0-95 12.32-55.80 10.64-40.43 20-38.19
Chain length 0-4.3 0-4.98 2.89-4.28 2.2-4.75 2.17-4.2
Convergence 51.09-90.91 34.89-1 68.15-81.55 58.75-74.19 68.35-76.01
Divergence 51.38-1 35.47-1 67.65-80.70 57.32-72.31 65.48-73.33
Tmin

c
[%] 0.06-17 2-41.8 2.5-2.5 2.5-2.5 2.5-2.5

Tmax
c

[%] 30-100 19-99.7 95-95.83 95-95.83 50.83-75.83
Std. dev. time 0.05-1 0.04-0.19 0.15-0.15 0.16-0.17 0.11-0.13

Precedence graphs

A precedence graph links some or all of the tasks under consideration with each other. The links

between those are typically distinguished in direct and indirect precedence relations. A classical

and easy to explain example is the precedence graph described in the preceding chapter (see Fig-

ure 5.1). Here, task 1 is a direct predecessor of task 3, whereas it is an indirect predecessor of task

5 since task 3 indirectly connects tasks 1 and 5. More generally, one could state that every two
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tasks that are linked without a task in between them are direct predecessors/successors. Tasks

that are linked through several intermediate tasks are called indirect predecessors/successors.

In addition to the metrics used in Table 6.4, we propose a new metric called station distance (SD)

for reverse-engineered precedence graphs. With a given line balance, precedence graphs could

be created somewhat arbitrarily. The only restriction is that a task assigned to a later station

can not be a predecessor of a task assigned to an earlier station. To diminish this arbitrariness,

we propose to link at least one task of each station to any task of a station with a maximum

distance. This maximum distance defines the SD metric:

SDs = max
f,g∈F :xfs=1∧g∈DP

f ∪D
S
f

|sxfs − sxgs| ∀s ∈ S (6.69)

We define the desired order strength and input the current assignment to a constraint program-

ming model to reverse-engineer precedence graphs. This model does not allow isolated tasks,

i.e., tasks without any predecessor or successor. This assumption is made because isolated tasks

occur rather seldom in real life (Otto et al., 2013; Sternatz, 2014). Before running the model

described in the following, tasks are given a number in increasing order such that tasks at earlier

stations have lower numbers than tasks at later stations.

s. t.: pfg + pgk = 2⇒ pfk = 1 ∀f, g, k ∈ F : f < g < k (6.70)∑
f∈F :f<k

pfk +
∑

f∈F :k<f

pkf ≥ 1 ∀k ∈ F (6.71)

∑
f∈F

∑
k∈F :f<k

pfk =
|F|2 − |F|

2
OS (6.72)

∑
f∈F :sf=s

∑
t∈S:t<s∧t≥s−SD

∑
g∈F :sg=t

pgf ≥ 1 ∀s ∈ S (6.73)

∑
f∈F :sf=s

∑
t∈S:t>s∧t≤s+SD

∑
g∈F :sg=t

pgf ≥ 1 ∀s ∈ S (6.74)

pfg + pgk = 2⇒ dfk = 0 ∀f ∈ F + ∀g ∈ F : f < g

∀k ∈ F : j < k (6.75)

pfg = 1⇒ dfg = 1 ∀f ∈ F + ∀g ∈ F : g = f + 1 (6.76)

dfg ≤ pfg ∀f ∈ F + ∀g ∈ F (6.77)

pfg = 1 ∧
∑

k∈F :f<k<g

pfkpkg = 0⇒ dfg = 1 ∀f ∈ F + ∀g ∈ F (6.78)

∑
f∈DP

j

dfg ≤ D ∀f ∈ F (6.79)

∑
f∈DP

j

dfg ≥ D ∀g ∈ F (6.80)

dfg, pfg ∈ {0, 1} ∀f ∈ F ∀g ∈ F : f ≤ g (6.81)
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This constraint programming model does not have an objective function since it only needs to

create a precedence graph with predefined properties. It will create a precedence graph with |F|
tasks by deciding for all task pairs f and g whether task f is a predecessor of task g, indicated

by the binary variable pfg. If f < g, g is either assembled at the same or a later station in

the current solution. Therefore, we exclude this precedence link. As stated above, this model

generates graphs that do not have isolated tasks, ensured by Constraint (6.71). Constraint (6.70)

ensures consistency in the links between tasks: If a task f is a predecessor of task g, which in turn

is a predecessor of task k, then f is an indirect predecessor of task k. Constraint (6.72) ensures

that this model will create a precedence graph with the desired order strength OS. Constraints

(6.73) and (6.74) represent the consideration of the station distance (forwards and backwards).

Constraints (6.75)-(6.78) calculate the number of direct predecessors. The binary variable dfg

indicates if task f is a direct predecessor of task g. Constraints (6.79) and (6.80) enforce upper

D and lower bounds D on the number of direct predecessors for each task.

We used this model to generate five different precedence graphs for each assembly line with

different order strengths, i.e., 60, 65, 70, 75, and 80%.

Assembly times

For the generation of assembly times, we utilized the cycle time and the number of tasks at

each station. For simplicity and without loss of much accuracy, we restrict ourselves to integer

assembly times. In this work, assembly time exclusively describes the actual assembly and the

handling of the part but does not contain times for searching and walking activities. To estimate

reasonable task times, we assume a specific cycle time and a reasonably efficient line balance.

Next, we generate a station time ts for each station by deducting some time for non-assembly

activities from the cycle time. These activities may include walking, searching, or idling. The

time deducted depends on the number of tasks at that station.

For the generation of task times, we propose a stochastic (linear) goal programming model. This

model assigns assembly times to tasks based on the station time and the tasks at that station.

For each station, multiple scenarios C are created. Those can be seen as multi-stage stochastic

programs with the execution of each task representing a stage. Each task’s probability depends

on the number of executions over a number of cycles. For clarity, consider a station with two

tasks. Task 1 needs to be executed 1000 out of 1000 times, whereas task 2 is only executed 700

out of 1000 times. With this information, two scenarios are created: (i) Only task 1 is executed

with probability 0.3 (1 · (1− 0.7)); and (ii) Both tasks need to be executed with probability 0.7

(1 · 0.7).

The program assigns task times to all tasks tAf while calculating the deviations from the goal, i.e.,

the stations time ts, and minimizes the sum of deviations over all scenarios uc weighted with the

scenarios’ probabilities pc. Only negative deviations are allowed since positive deviations would

violate the cycle time constraint. Also, each task is given an upper tf and a lower bound tf to

increase the variability of task times. These bounds are determined by drawing a number from

a trimodal distribution. When all tasks are assigned a value, these values are normalized based

on the station time ts. A deviation of, e.g., 50% from that value in both directions determines
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the bounds.

Minimize:
∑
c∈C

pcuc (6.82)

subject to:
∑
f∈Fc

tAf + uc = ts ∀s ∈ S ∀c ∈ C : sc = s (6.83)

tAf ≤ tf ∀f ∈ F (6.84)

tAf ≥ tf ∀f ∈ F (6.85)

tAf ∈ Z+ ∀f ∈ F (6.86)

uc ≥ 0 ∀c ∈ C (6.87)

This model requires the number of tasks, the line’s balance, and the tasks’ probabilities of

execution as an input. Table 6.4 summarizes the model’s results for the different assembly lines.

They are highly compliant with the values described by Sternatz (2014) for another automotive

company.

6.5 Results

This section will first provide an overview of the type of experiments conducted and their man-

agerial implications. Afterward, we will report on the solution quality in terms of optimality gaps

and computation times for the different experiments. The experiments are based on the problem

instances described in Table 6.4 and Table 6.3 and costs are optimized for a planning horizon

of one month. For each assembly line, five different assembly time and five different precedence

graphs have been created according to the methods described above. Those were combined in a

full-factorial settings to create 25 scenarios.

6.5.1 Managerial results

This section investigates the monetary value of an integrated planning approach for line balancing

and feeding. To this end, we consider and optimize various settings.

• Fixed balance, fixed feeding (FBFF): In this setting, the assembly line is optimally

balanced, as is currently the case at the company. It is assumed that all parts are supplied

in boxes, as this is a widely-used feeding method. Parts that cannot be delivered in boxes

due to their size or weight are either line stocked or sequenced. The former is applied if the

part family only consists of a single part, whereas the latter is applied if the part family

comprises multiple parts. This reflects an easy-to-implement decision rule as it may occur

in practical settings.

• Fixed balance, optimized feeding (FBOF): In this setting, the assembly line is bal-

anced exactly as in the previous setting. However, in this setting, part feeding is optimized.
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• Re-balance by 1 station, optimized feeding (RB1OF): In this setting, the assembly

line may be slightly re-balanced. Compared to the initial line balance, tasks may be shifted

by one station in each direction as long as precedence relations are considered. As in the

previous setting, part feeding is optimized.

• Re-balance by 2 stations, optimized feeding (RB2OF): Similarly to the previous

setting, the assembly line may be re-balanced compared to the initial balance. However,

in this setting, tasks may be shifted by up to two stations in each direction, as long as

precedence relations are considered. As in the previous setting, part feeding is optimized.

• Optimized balance, optimized feeding (OBOF): In this setting, the assembly line is

balanced entirely from scratch. At the same time, part feeding is optimized.

• Optimized balance, fixed feeding (OBFF): As traveling kits reduce the work load

for assembly operators, all parts are assumed to be delivered in traveling kits. If this is

impossible, parts are either line stocked or sequenced as in the first setting. This feeding

approach is used to balanced the line entirely from scratch.

The results for those different settings and the different assembly lines are summarized in Table

6.5. Most importantly, it can be seen that almost every setting outperforms the previous, more

restricted, setting. This is not true for the last setting, however, as it is much more restricted than

the previous. The table shows information on the different cost elements in different solutions,

and provides the number of stations and the size of the preparation area averaged over all

scenarios.

Simultaneous consideration of both problems allows an average cost reduction of 2.6% and a

maximum cost reduction of 11.44% when compared to solutions that are optimized individually

(FBOF). For approaches that determine line feeding on simple decision rules (FBFF), costs are

reduced on average by 8.1%, and at most by 18.83% when optimizing balancing and feeding

jointly (OBOF).

As demonstrated in Table 6.5, feeding costs can be minimized for a given balance. However,

simultaneously optimizing (re-)balancing and feeding may reduce the number of stations and thus

assembly costs. However, some lines seems to be more flexible than others. That is Final2EastL

and Final4L have rather many tasks per station with shorter assembly times, whereas Trim3L

has fewer tasks with longer assembly times. It seems the latter is less likely to benefit from the

integration of line feeding and balancing as only feeding costs could be decreased while balancing

costs remained more stable.

Figure 6.5 illustrates an example of an assembly line to which the different settings are ap-

plied. It is important to note that existing assembly facilities will likely be organized differently.

Nevertheless, decisions and costs are expected to be similar to the assumptions made in this

study.

2No instance of Trim3L could be solved within the specified computation time.
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Table 6.5 Influence of balancing decisions on overall costs

Setting Line Final2EastL Final4L Trim3L Change to [%]
# Scen. 25 25 25 prev. setting

FBFF

Cost sum 125078 130001 386807
Feeding costs 8947 30460 76932
Assembly costs 116131 99541 309875
Number stations 7 6 18
Preparation space 370 524 1292

FBOF

Cost sum 123071 114028 369924 [-12.6,-1.6]
Feeding costs 6940 14487 71302 [-54.3,-7]
Assembly costs 116131 99541 298622 [-3.6,0]
Number stations 7 6 18
Preparation space 265 412 1295

RB1OF

Cost sum 122362 112954 369781 [-5.7,2]
Feeding costs 6231 16731 71301 [-12.8,103.8]
Assembly costs 116131 96223 298622 [-16.7,0]
Number stations 7 5.8 18
Preparation space 234 429 1295

RB2OF

Cost sum 122272 107201 369811 [-9.2,1]
Feeding costs 6141 24250 71159 [-13.9,95]
Assembly costs 116131 82951 298622 [-16.7,0]
Number stations 7 5 18
Preparation space 231 454 1295

OBOF

Cost sum 122019 106783 370002 [-4.9,7.5]
Feeding costs 8542 22505 71379 [-47.1,149.2]
Assembly costs 113477 84278 298622 [0,20]
Number stations 7 5.1 18
Preparation space 231 438 1295

OBFF2

Cost sum 196437 206658 - [+49.5,+103.4]
Feeding costs 30536 40677 - [+40,+402]
Assembly costs 165901 165901 - [+42.8,+100]
Number stations 10 10 -
Preparation space 374 524 -
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Most importantly, Figure 6.5 demonstrates that an the optimization of feeding decisions affects

the assembly systems design and can significantly reduce feeding and overall costs. A key ob-

servation is that the FBFF setting does not utilize the entire space available at the BoL. When

optimizing feeding decisions, the utilization of BoL-space almost doubles. Furthermore, opti-

mal feeding decisions reduce the space requirements in both preparation area and warehouse

and, thus, reduce transportation distances. While a slight re-balancing (RB1OF) does only im-

pact feeding decisions, a less restrictive rebalancing, reduces the number of stations. At the

same time, feeding costs are strongly increasing. Nevertheless, overall costs could be reduced by

3.27%. When optimizing balancing for the entire line, even more costs can be saved.

The last setting demonstrates that the use of traveling kit may not necessarily benefit assembly

operations. Due to the limited capacity of a kit, the amount of parts that can be supplied to

the individual assembly stations is reduced. Therefore, additional stations need to be opened.

This result needs to be taken carefully, as we assume that traveling kits need to visit at least

two stations and not more than one traveling kit can supply a single station. In practice, there

may be workarounds to circumvent these assumptions. However, these results indicates that

switching to exclusive feeding via traveling kits certainly does not benefit logistics operations

and may even negatively affect assembly operations.

6.5.2 Computational results

The Bender’s decomposition approach described above is applied to solve all scenarios described

above. The approach was implemented in C++, and Gurobi 9.1 was used as a solver. Computa-

tions were executed on a High-Performance-Computer. For each instance, 16GB of Ram and six

cores of an Intel(R) Xeon(R) Gold 6130 were allotted. Since this study deals with tactical and,

therefore, medium-to-long-term decisions, the computation time was set to 3 hours. This strikes

a balance between resource requirements and reasonable computation times for such long term

problems which may easily use 12 hours or more. The relaxation, described in Appendix C, is

included for all tests. The ε, i.e., the allowed master optimality gap, was set to 0, 0, 0.15, 0.2,

0.25 and 0.2 for the different settings, respectively.

Table 6.6 Solving times and gaps when applying solving procedure

Scenario inst. time(h) #opt #unsolved avg. time avg. time opt. avg. gap all avg. gap

FBFF 75 3 75 0 9.12 9.12 0 n.a.
FBOF 75 3 50 0 3616 24.98 1.20 3.61

RB1OF 75 3 6 0 10209.97 3424.66 5.94 6.45
RB2OF 75 3 6 0 10440.24 7792.29 8.06 8.76
OBOF 75 3 2 0 10789.89 10420.75 14.05 14.43
OBFF 75 3 50 25 3855.44 590.56 33.33 100

Table 6.6 shows the computational results of optimizing the various scenarios described in the

Section 6.5.1. To this end, the table shows the number of instances solved (inst.) and the

maximum computation times given to solve an instance (time(h)). For each scenario, it is

reported how many instances could be solved to optimality (#opt), how many instances could
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not be solved (#unsolved). In addition, we report on the average solution time of all instances

(avg. time) as well as on the computation time for instances that were solved to optimality.

Similarly, the average gaps over all instances (avg. gap all) are compared to the average gaps

of instances that could not be solved to optimality (avg. gap). The results indicate that, as

expected, additional decisions complicate the solution procedure. However, gaps for rebalancing

settings seem reasonable small. Furthermore, it should be stated that more CPU-cores and

longer computation times may be used in practice.

6.6 Conclusion and future research

In this chapter, we propose an integrated approach for assembly line balancing and assembly

line feeding. This study comprises numerous novelties: (i) this study describes the integration

of assembly line balancing and feeding while considering five distinct line feeding policies; (ii)

the model accurately considers walking and searching times at the assembly line; (iii) the model

considers multiple traveling kits in a discretized manner; (iv) the assembly facility design is

incorporated in the model; and (v) a logic-based Bender’s decomposition scheme is proposed to

solve this complex problem.

Our findings indicate that simultaneous consideration of both problems allows an average cost

reduction of 2.8% and a maximum cost reduction of 12.9% when compared to solutions that are

optimized individually. For approaches that determine line feeding on simple decision rules, costs

are reduced on average by 6.7%, and at most by 14.46%. Therefore, we can confirm previous

findings (Battini et al., 2017; Sternatz, 2015) on the usefulness of this integration. However, the

extent of cost reduction is lower than in previous studies, which is likely to result from additional

line feeding policies. Besides, this may also be attributed to the broader scope of this research.

Future research may build upon this study to investigate the effect of multiple versions of each line

feeding policy. For example, kits may be provided in containers of different sizes, and sequenced

parts may be supplied in smaller boxes that are presented in flow racks, currently exclusively

used for boxed-supplied parts. Furthermore, it would be of interest to apply this model to a

multi-model setting, where different products are produced in batches on the assembly lines.

In between the different batches, parts at the BoL might need to be exchanged to suit an

entirely different product. Lastly, improving the solution approach is vital to optimize multiple

(dis)connected assembly lines at once. The proposed solution approach may serve as a benchmark

for (meta-)heuristic approaches in terms of the solution quality.



7
General conclusions and recommendations for

future research

“There will come a time when you believe everything is finished.

That will be the beginning”

Louis L’Amour
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7.1 Conclusions

This thesis consists of five studies on logistical and production processes within assembly systems.

More specifically, they are concerned with the ALFP, a kitting cell design problem, the ALBP,

and the integration of ALFP and ALBP. In the following, the studies are summarized, and the

research questions, posed in Section 1.3, are answered.

Chapter 2 provides a literature review on assembly line feeding problems and classifies various

problem characteristics utilizing a three-field classification scheme. While providing an overview

of existing literature, it also answers the first Research Question (RQ) of this thesis:

RQ 1.1: What constitutes the tactical assembly line feeding problem, and which decisions

are part of the problem’s scope?

In Section 2.2.4, the tactical assembly line feeding is delineated from strategic and operational

aspects. Tactical problems are concerned with logistical decision-making that affects in-house

logistical processes. These processes are replenishment, preparation, transportation, and usage.

Most importantly, the tactical assembly line feeding problem assigns parts to line feeding policies

as those have the most significant impact on the processes’ design. Besides, more specific decisions

such as vehicle selection or supermarket design may be incorporated. In contrast, operational

feeding problems are input with a given system (e.g., determined feeding policies and vehicles)

and target to improve short-term goals such as vehicle scheduling, loading, or kit preparation.

On the other hand, strategic feeding problems are long-term decisions, which affect tactical

decision-making processes. An excellent example of strategic decision-making is the outsourcing

decision of logistical tasks.

The second research question of this chapter is concerned with the provision of a formal problem

definition:

RQ 1.2: Which decisions, assumptions, and constraints are fundamental for the assem-

bly line feeding problem, and which aspects of this problem class are vital for the field’s

development?

To answer this question, we defined a fundamental tactical assembly line feeding problem that

assigns parts to feeding policies while minimizing the costs. Even though this model is rather

simplistic and does not consider many practical issues, we proved it to be NP-hard. As various

factors may be considered when optimizing assembly line feeding decisions, we provided a three-

field notation that includes product and feeding system characteristics and possible cost elements

for the objective function. Crucial aspects in this framework consider different line feeding policies

and the inter-relatedness of parts belonging to the same family and space considerations. We

identified those to be most promising for future investigations. Besides, we identified additional

aspects such as the material flow or facility design or the integration with assembly line balancing

as promising research areas.

Chapter 3 investigates the most important aspects identified in the previous chapter, i.e., multiple

line feeding policies, space considerations, and part-family links. As all prior studies in the

literature considered different subsets of line feeding policies, the first RQ is concerned with
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the simultaneous consideration of all line feeding policies identified in the literature and during

factory visits:

RQ 2.1: Is it useful to consider all five line feeding policies simultaneously and how can

such a decision model be modeled?

This study considered all line feeding policies identified beforehand, namely line stocking, boxed-

supply, sequencing, stationary kitting, and traveling kitting. To this end, we proposed an opti-

mization model assigning each part to a line feeding policy. The assignment of parts to policies is

mainly determined by the associated costs, as each assignment incurs a different cost. However,

the available space at each station restricts assignments. Furthermore, each feeding policy has

specific characteristics such as weight or volume constraints. We used the model to optimize line

feeding for various assembly lines. The results show that all line feeding policies are beneficial.

As expected, some may be more favorable than others. However, the use of a particular line

feeding policy ultimately depends on the assembly system’s configuration. For example, the sta-

tions’ sizing impacts decision-making. Additionally, the design of preparation areas affects cost

calculations and, therefore, decision making. Nevertheless, the results indicate that all feeding

policies provide some merit. Adjusting their execution may alleviate some of their drawbacks.

In this study, space at the assembly stations was modeled with higher accuracy than in previous

studies, i.e., it includes the parts’ placement at the station. Concerning spatial considerations,

the following two RQs emerged:

RQ 2.2: Does the placement of parts at specific locations affect the decision-making

process, and are there any patterns in the placement of items?

RQ 2.3: How does the possibility of space borrowing affect decision making for assembly

line feeding?

As the placement of parts along the line impacts the assembly operators’ walking distances, it

was investigated whether the placement may impact line feeding policies. To this end, we tested

whether an approach that optimizes the feeding policy in a first step and the parts’ locations

in a second step generates identical solutions to the integrated approach. Even though some

results were similar, they differ for the majority of assembly lines. On average, the integrated

approach reduced costs by around 2%, whereas a maximum cost reduction of almost 7% could

be achieved with an integrated approach. Furthermore, we tested the impact of moving vs. non-

moving assembly lines on the parts’ placement. At moving lines, the product is permanently

moving. Therefore, we assumed that parts are assembled at different locations, whereas they

are assembled at a joint location at non-moving lines. We could confirm that parts are placed

differently in those scenarios. For example, stationary kits are typically placed at the beginning

of the line for moving lines but mainly at the center for non-moving lines.

Also, we investigated whether a more flexible use of space at the assembly stations can reduce

costs. When many parts are assembled at a single station, it typically requires more space.

Therefore, we tested whether the use of space from an adjacent station, called space borrowing,

might result in a more efficient feeding system. Our results could confirm this hypothesis and

indicate that costs decrease when space borrowing is allowed. The maximum observed reduction

in costs was 6.82%.
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As many feeding systems make use of stationary or traveling kits, Chapter 4 is concerned with

the design of kitting cells:

RQ 3: How does the placement and determination of delivery quantities affect the cost of

operating a kitting cell?

To answer this RQ, we defined an optimization model that determines the design of kitting cells,

given the parts and part families kitted in these cells. The design consists of the kitting cell’s

size, the feeding policies used to provide parts, and the parts’ placements. As kits often contain

various parts, combined in almost arbitrary ways, we approached the problem by creating so-

called demand patterns, representing kits that mimic real-world demand. Each demand pattern

contains various parts as they may be combined while considering that a single kit can never

contain multiple different parts of the same family. We used the model to optimize a kitting

cell of an automobile company and compared it to the heuristic approaches. We found that

most parts should be fed by line stocking as another preparation step often increases costs.

However, some parts (often with low demand) should be delivered in boxes as this reduces the

cell’s spatial requirements and, therefore, the operators’ walking distances. In comparison to

heuristic approaches, the optimal solution saves between 7 and 11% of the costs. Besides, our

results indicate that the placement of parts within the cell may have a more considerable impact

than the parts’ feeding policies. However, this cannot be generalized as feeding policies and

placement show interactive effects.

Chapter 5 is concerned with a simple assembly line balancing problem of type E, i.e., maximizing

an assembly line’s efficiency. Minimizing both the line’s cycle time and the number of stations

increases a line’s efficiency. As we found in Chapter 3, spatial requirements are an important

factor in assembly lines, this research incorporates them into assembly line balancing. As this

assembly line balancing problem is tough to solve, the paper is concerned with solving this

problem more efficiently:

RQ 4.1: How can existing solution approaches for the SALBP-E problem be improved and

extended to include additional constraints such as the consideration of spatial requirements?

We extended a mixed-integer programming model, proposed by Esmaeilbeigi et al. (2015), by a

set of space constraints and made some minor improvements to the model. More importantly,

we proposed a strengthening approach combined with search algorithms. For this strengthening

technique, possible combinations of cycle times and the number of stations are listed. Those

combinations are then solved individually. As the cycle time and the number of stations are

fixed (i.e., the variable values are strengthened), the problems are easier to solve. We converted

the problem formulation into a constrained programming model that can solve these problems

more efficiently.

Furthermore, we were interested in the managerial implications that arise from the consideration

of spatial requirements:

RQ 4.2: To what extent does the consideration of spatial requirements alter an assembly

line’s performance?

To evaluate the impact of spatial requirements, we used a benchmarking dataset from the litera-
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ture and complemented it with spatial data. We optimized the problem instances in this dataset

with and without spatial requirements using the algorithm described above. For this, we set the

bounds on the number of stations equal for space-constrained and unconstrained instances to

guarantee a fair comparison. Based on those results, we could show that spatial requirements

reduce an assembly line’s effectiveness by 2.4–18.78%. However, it should be noted that the effect

may be more extensive for assembly lines with a given cycle time (SALBP-1) or a given number

of stations (SALBP-2) as the ALBP type-E is more flexible than SALBP-1 and SALBP-2.

Lastly, Chapter 6 integrates assembly line balancing and assembly line feeding. As both problems

are proven to be NP-hard and they are highly interactive (both problems affect each other), the

first RQ is:

RQ 5.1: How can this integrated problem be modeled accurately and solved efficiently?

Both in practice and theory, those two problems are mostly considered separately. Moreover, they

are considered hierarchical, i.e., first, the assembly line balancing problem is solved before using

the results as an input to the assembly line feeding problem. However, this approach is rather

simplistic as the line’s balance affects the line’s feeding costs, e.g., when assigning many part

families to one station. More importantly, the parts’ feeding policies and placement determine

how much time the assembly operator needs to spend on walking and searching. To tackle this

interdependence, we proposed a logic-based Bender’s decomposition approach that resembles the

‘traditional’ hierarchical approach, i.e., first balancing the line and then optimize the feeding, but

introduces a feedback loop. Whenever the line is balanced, its feeding is optimized. This approach

considers interaction effects and guarantees feasibility. Additionally, it minimizes feeding costs

and imposes them on the balancing problem, i.e., when the same balance occurs for a second

time, the feeding costs are included. Therefore, the balancing problem tries to find another

solution that has lower feeding costs.

We used the approach described above to test whether this integrated approach is superior to

the hierarchical approach:

RQ 5.2: Does the integrated consideration of assembly line balancing and feeding impact

a line’s balance? How much can be saved?

We applied the integrated planning approach to optimize three assembly lines in various scenarios,

i.e., differing assembly times and precedence graphs. The results indicate that a multitude of

line balances are optimal from a pure balancing perspective. From an integrated perspective,

however, these are not equally good. Our results indicate that seemingly indifferent line balances

may change overall costs more than 10%. Moreover, we tested the impact of predefined feeding

policies. For example, we used some simple rules of thumb that either assign most parts to

boxed-supply or traveling kits and compared those to optimized feeding policies. The results

prove that predefined feeding policies may increase both feeding and balancing related costs.

Comparing results for reasonably predefined feeding policies with optimized feeding policies, we

could observe an average cost reduction of around 7.7%. Likely, the most critical insight from

this study is that both balancing and feeding costs can be improved when jointly considering

these problems.
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This thesis contributes to the research domain of assembly systems both in a methodological

but also managerial manner. Both aspects have been discussed above, along with the research

questions. However, in the following, some of the most important practical/managerial aspects

will be highlighted. First and foremost, this thesis provides an overview of the decision problems

arising in assembly systems and examples of the industries that can benefit from investigating

these problems (see Figure 1.1). In the second chapter, many practical aspects such as vehicle

selection, policy definitions, or ergonomic aspects determining a feeding’s system operations

have been classified. The most important financial objectives are outlined. The next chapter

investigated optimal decision-making in feeding systems. One important finding is that each

feeding policy is worth considering (see RQ 2.1) as it may reduce overall costs. Next, we could

demonstrate that providing flexibility to the system by allowing space borrowing reduces costs

even further. While practitioners may not necessarily apply mathematical modeling techniques,

these insights can easily be transferred to practice. Similarly, Chapter 4 provides a framework

to improve kitting cells’ design by considering the placement and feeding policies of parts used

in a cell (see RQ 3). Practitioners may use this framework to either optimize their kitting cells

or use the heuristic approaches discussed in the chapter. Chapter 5 and 6 both address the

issue of spatial consideration in assembly line balancing. While the former is rather a proof of

concept, showing that assembly line design should incorporate spatial considerations, the latter

provides a straightforward method to optimize line balancing and feeding simultaneously. Most

importantly, our results demonstrate the impact of integrating both aspects on cost savings (see

RQ 5.2). Additionally, we also highlight the interaction effects of varying decisions and how they

shift costs within a system that may support decision-makers.

7.2 Practical implementation

We based the models discussed in this thesis on industrial demands and tried to make them as

generic as possible. Nevertheless, it may not always be straightforward to transfer them into

practice. Therefore, some pitfalls that may occur when applying the models and methods in

practice will be discussed in the following:

1. Robustness of the results.

2. Data collection.

3. Adaptations to the specific case.

4. User-friendliness and computational speed

Robustness As all models described in this thesis depend on various parameters, one may

be interested in the robustness of the solutions when parameter values change. The robustness

mostly depends on the parameter that changes. Many of the parameters occur in different cost

calculations for processes and line feeding policies. When these parameters are changing, one

may obtain different results in terms of costs, but the solution quality should be robust. Similarly,

changing parameters for a single part or part family will slightly change the costs of the solution.

However, the impact on overall feeding costs should be marginal. Nevertheless, other parameters
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may impact the solution more drastically. For example, the size of kitting containers or the

costs for the vehicle transporting sequenced containers may have a more significant impact.

Generally speaking, the solution quality may diminish for any change in the data but is only

expected to be heavily affected by parameters affecting a specific type of decision. Therefore,

it is recommended to test different parameter values when the parameter cannot be determined

well, and the parameter is primarily relevant for one type of decision.

Data collections The models described in this thesis are very data-driven and therefore re-

quire many input parameters. Based on discussions with practitioners, most of them should be

available in practice. However, some data may be available within a company but not accessible

by everyone. For example, there is a barrier in data sharing between line balancing (production

department), line feeding (logistics department), and product design (engineering department)

in many companies. Therefore, improving data accessibility across multiple departments is vital

to obtain good quality data. Furthermore, practitioners may use estimations from academic

literature and time studies. For example, searching, walking, and picking times may be challeng-

ing to measure but can be well estimated through time study methods such as the ”very easy

work-factor” (VWF).

Case-specific adaptations It will mostly be necessary to adapt the models presented in this

thesis to match a specific case in the real world. Many adaptations may occur in calculating costs

as some of the processes may be executed differently from what is described in this thesis. Fur-

thermore, some companies may have different types of kits or sequencing containers. Therefore,

including those as an additional option may become necessary. However, from a modeling point

of view, those adaptations should not alter the models drastically as they can mostly be modeled

by adding another index to those feeding policies. Other adaptations may result from relaxing

some of the assumptions, such as the exclusive use of any part for one particular station and task.

As mentioned in Chapters 2 and 6, we assumed that each part is used for a single task. When

using the same part multiple times at different stations, the spatial requirements for that part

in the preparation area or the walking times in a kitting cell may reduce. For example, when a

part is box-supplied at multiple stations, only one pallet needs to be present in the boxed-supply

picking area. An additional type of variable could be introduced to consider this. The variable

would then indicate whether any of the parts used for different tasks are boxed-supplied. Then

this variable would be used to consider the space requirement instead of each part’s variable. A

similar approach may be used for the determination of walking times in kitting cells.

User experience For the models presented in this thesis and similar models to get used

by practitioners, the development of intuitive, user-friendly software seems essential. While

providing a more graphical representation of the problem, such software may also support the

user by estimating parts of the data or automatically retrieving the data from the company’s

ERP system. Furthermore, such software should have short computation times. This may be

achieved by relying on (meta-)heuristic approaches to solve large problem instances more quickly.
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This would also allow the provision of multiple solutions with varying underlying assumptions

or parameters.

7.3 Future research

Considering the studies described in this thesis and the vast amount of literature that was only

touched upon in this thesis (e.g., on strategic issues or the integration of product design and

manufacturing), it should be evident that complex assembly system design and operation pose

many research opportunities. In the following, various concepts for future research are presented,

separated into extensions and new avenues.

7.3.1 Extensions and adaptations

Large parts of this thesis are concerned with providing new models to obtain insights into the

effects of using different line feeding policies. While we distinguish five line feeding policies,

these line feeding policies may occur in different variants, i.e., different load carriers may be

available for a single line feeding policy. For example, part families may be sequenced into small

boxes (provided parts fit in this box) and presented to the assembly operator in a flow rack.

In this case, flow racks provide both box-supplied and sequenced parts. Similarly, one may use

large traveling kits, as discussed in Chapter 6 and simultaneously smaller kits as discussed in

Chapter 3, placed on or within the product. When assembly lines are long or multiple lines are

connected, there may also be an option to use a single traveling kit to serve two separate line

segments or assembly lines. Ideally, optimization models would determine the size of each load

carrier individually and determine the line segments a single traveling kit serves.

Also, new line feeding policies may emerge in the future. One such policy could be called direct

feeding, which directly provides parts to the assembly operator or robot through conveyor belts,

drones, or robotic arms. Incorporating those feeding policy changes into the existing literature

may reveal additional cost savings.

Similarly, new transportation technologies may emerge. An example of a new transportation

concept is a vertical robotic storage and retrieval system (Tappia et al., 2020). These robots

may be used to automate the part picking process in the warehouse or supermarket and the

transportation of the load carrier to the assembly line.

One major limitation of this work is its focus on manual, large-scale assembly. Therefore, adjust-

ing the models and cost formulations for automated and small-product assembly (e.g., smart-

phones) will leverage their applicability to many more industries.

While the study presented in Chapter 6 includes warehouse and supermarket area sizing, it does

not determine their design in detail. As discussed in Section 2.3.2 it might be worthwhile to
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optimize the placement of different activities and thus the flow of parts in the assembly system

to achieve additional cost savings.

Lastly, some companies may be interested in outsourcing some preparation activities as repre-

sented in Figure 2.3. In those cases, it is essential to distinguish the type of outsourcing as there

are two possibilities: (i) outsourcing to a third party such as a logistics service provider and

suppliers; or (ii) outsourcing to a separate facility that the assembling company operates. In the

case of the former, the models can be easily adjusted by incorporating different options for each

line feeding policy, e.g., in-house and outsourcing options. Both options then have different costs

and space requirements. In case of outsourcing operations to another facility, this facility would

need to be sized appropriately. Those separate facilities may not only deliver parts to one but

potentially multiple sites. Therefore, it may of interest to investigate what parts these sites share

to pool more parts in this shared preparation site. However, outsourcing typically imposes the

risk of late delivery and line starvation. Therefore, transportation planning and vehicle loading

have to be considered carefully. Potentially, each facility may also require a small safety stock to

buffer against delivery delays. The models presented in this thesis may be used in combination

with other optimization models that individually optimize parts of the overall problem. The

solutions to the individual problems may then be linked and reiterated based on the results of

other models until a feasible and efficient solution is found.

7.3.2 Other research directions

While many studies on assembly systems focus on assembly line balancing and assembly line

feeding and their specific variants, studies with an overarching scope are scarce.

As many resources are becoming more difficult to mine or become an object of speculations or

geopolitical strategies, and (plastic) waste pollutes the environment, efforts need to be directed

towards recycling and reusing products that have reached the end of their life cycle. This is

especially true for assembled products such as smartphones or other consumer electronics as they

contain many valuable resources such as gold or rare earth elements. Organizing the efficient

collection of such goods may pose an interesting problem for researchers. Furthermore, recycling,

refurbishing, and reusing these products may complement classic production activities. Jointly

optimizing disassembly and assembly operations, therefore, poses new research opportunities.

Most research in assembly line feeding and balancing either directly or implicitly assumes that

the assembly facility is flexible in size and equipment (green-field factory). However, this may

not always be true in reality. Companies frequently have to plan their assembly activities within

an existing (brown-field) factory, which poses certain limitations such as shop floor size, ware-

house capacity, or construction-related obstacles. Reasons for this may be the introduction of

additional products, functional product changes, product version changes, or a change in de-

mand. Capturing those limitations while optimizing decision-making will provide high value to
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industrial decision-makers since assembly systems frequently require reorganization.

Another research opportunity is the optimization of assembly and logistics activities while consid-

ering modularization. As discussed in Section 2.2.4, logistical activities may be outsourced to 3rd

party logistics service provider (3PL). These may operate within the same facility or a separate

facility. Important decisions include the type of activities to be outsourced and the pricing, i.e.,

the determination of fees that make this option more profitable than conducting those operations

in-house. Similarly, this is true for assembly activities. It may be worthwhile to relocate the

pre-assembly of some larger components. Relocation may refer to a separate in-house production

or external sourcing. Nowadays, technological capabilities drive these decisions. However, there

may be economic, sustainability-related, or resilience-related opportunities in in- and outsourc-

ing. Supporting this decision-making process by quantitative approaches might reshape entire

assembly facilities.

Researchers developed many optimization models for different variants of balancing and feeding

problems. In balancing, for example, one may minimize assembly worker costs with a given

cycle time (see Chapter 6), or the assembly line’s efficiency may be maximized (see Chapter

5). Besides, one may include considerations such as flexibility, ergonomics, tool costs, or other

decisions. However, determining the best optimization approach may not be trivial. Production

managers may have to consider some of the following problems and make a decision on the line’s

configuration: (i) lines may be moving (paced) or non-moving (unpaced); (ii) unpaced assembly

lines may use buffers, i.e., storage areas that hold parts in between different production steps.

The size of such buffer areas needs to be determined; (iii) Assembly lines may be straight, U-

Shaped, or S-Shaped, and each station may be staffed with a single or multiple workers that

work from different positions (left side, right side, before/behind/above/below the product); (iv)

The design of the assembly line may encompass other problems such as tool requirements or

ergonomics; (v) Depending on the product and assembly technology, some line feeding policy

may not be considered or require adjustment; and (vi) Some tasks may be automated.

Additionally, when producing multiple product models or highly customized products, it must

be decided whether these should be produced on joint or separate assembly lines. In the latter

case, it also needs to be determined whether workers should switch between the lines (which

may be only operational when needed) or should all lines have a fixed set of operators and run

permanently.

The optimal answer to these questions largely depends on the product(s) characteristics. To

this end, decision support models may either incorporate these decisions as variables or optimize

different settings and select the best alternative. Another opportunity may be an in-depth

analysis of product characteristics. Machine learning algorithms may then guide decisions based

upon previous studies. However, this approach is unable to guarantee optimal solutions.
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Lastly, we would like to highlight the shift towards platform-based economies currently hap-

pening in various industries. This trend may also apply to production, and more particularly,

assembly. For manufacturing in a wider sense, this is termed Manufacturing-as-a-Service (MaaS).

In this case, manufacturing companies may set up assembly systems, and product designers may

commission those companies. An obvious example is the assembly of consumer electronics. In-

stead of producing in one or very few production facilities, companies may commission various

manufacturing companies in different markets to produce specific products. In this scenario, the

design of assembly systems becomes essential, especially as they have to be cost-efficient while

remaining flexible. Manufacturing facilities would likely specialize since they will not produce

cars in the same factory as electric toothbrushes. This specialization will pose problems in facility

location and facility design that may be of interest for future research. It will also be vital for

the manufacturing companies to determine which orders and contracts to accept. To this end,

researchers could investigate lead time and pricing agreements. Additionally, product designers

need to determine the best manufacturers, which may pose similar problems as supplier selection.

In summary, there are tremendous opportunities to optimize the operation and design of assembly

systems. Besides, new business models may arise, posing new challenges for both practitioners

and researchers.
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Coelho, F., Relvas, S., and Barbosa-Póvoa, A. (2021). Simulation-based decision support tool for

in-house logistics: the basis for a digital twin. Computers & Industrial Engineering, 153:107094.

Coffman, Jr, E. G., Garey, M. R., and Johnson, D. S. (1978). An application of bin-packing to

multiprocessor scheduling. SIAM Journal on Computing, 7(1):1–17.
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Göpfert, I., von Grünert, M., and Schmid, N. A. (2016). Logistiknetze der zukunft–das neue
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Gurevsky, E., Battäıa, O., and Dolgui, A. (2012). Balancing of simple assembly lines under

variations of task processing times. Annals of Operations Research, 201(1):265–286.

Hackman, S. T., Magazine, M. J., and Wee, T. (1989). Fast, effective algorithms for simple

assembly line balancing problems. Operations Research, 37(6):916–924.

Hanson, R. (2011). Effects of using minomi in in–plant materials supply. Journal of Manufac-

turing Technology Management, 22(1):90–106.

Hanson, R. and Brolin, A. (2013). A comparison of kitting and continuous supply in in-plant

materials supply. International Journal of Production Research, 51(4):979–992.

Hanson, R. and Finnsgard, C. (2014). Impact of unit load size on in-plant materials supply

efficiency. International Journal of Production Economics, 147:46–52.

Hanson, R. and Medbo, L. (2012). Kitting and time efficiency in manual assembly. International

Journal of Production Research, 50(4):1115–1125.

Hanson, R. and Medbo, L. (2016a). Aspects influencing man-hour efficiency of kit preparation

for mixed-model assembly. Procedia CIRP, 44:353–358.

Hanson, R. and Medbo, L. (2016b). Aspects influencing man-hour efficiency of kit preparation

for mixed-model assembly. Procedia CIRP, 44:353–358.

Hanson, R., Medbo, L., and Johansson, M. I. (2015). Order batching and time efficiency in kit

preparation. Assembly Automation, 35(1):143–148.

Hanson, R., Medbo, L., Jukic, P., and Assaf, M. (2016). Manual picking from large containers -

time efficiency and physical workload. IFAC-PapersOnLine, 49(12):1703–1708.

Hoffmann, T. R. (1963). Assembly line balancing with a precedence matrix. Management Science,

9(4):551–562.

Hu, S. J., Ko, J., Weyand, L., ElMaraghy, H. A., Lien, T. K., Koren, Y., Bley, H., Chryssolouris,

G., Nasr, N., and Shpitalni, M. (2011). Assembly system design and operations for product

variety. CIRP annals, 60(2):715–733.

Hua, S. Y. and Johnson, D. J. (2010). Research issues on factors influencing the choice of kitting

versus line stocking. International Journal of Production Research, 48(3):779–800.

Johansson, E. and Johansson, M. I. (2006). Materials supply systems design in product develop-

ment projects. International Journal of Operations & Production Management, 26(4):371–393.

Kagermann, H., Wahlster, W., and Helbig, J. (2013). Recommendations for implementing the

strategic initiative industrie 4.0.



References 187

Khajavia, S. H., Baumers, M., Holmström, J., Özcanc, E., Atkin, J., Jackson, W., and Li,
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Appendix A

Theorem 7.3.1. The upper bound on cycle time proposed by Hackman et al. (1989), calculated

as c = max{tmax, 2tsum/m}, does not hold for the more general version TSALBP-2 or any other

knapsack-constrained assembly line balancing problem.

Proof. Assume for contradiction that six serial tasks must be balanced on three stations. The

task times are: 1, 1, 1, 19, 3, 2, and the corresponding spatial requirements are 11, 10, 11, 1, 3, 3.

Thus, according to the calculations, tsum = 27 and c = 19. However, in this case, no solution can

be found, as tasks 1, 2, and 3 cannot be assigned to the same station due to spatial restrictions

when space is constrained by a value of 20. Therefore, tasks 3, 4, 5, and 6 had to be assigned

to station 3. However, this increases the cycle time to 25, whereas the solution for the problem

without space constraints would have a cycle time of 19 with tasks 1, 2, and 3 at station 1, task

4 at station 2, and tasks 5 and 6 at station 3.
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Appendix B

Table 7.1 Hardness list for instances from Scholl (1993)

Trivial instances

Prec. graph m m Prec. graph m m Prec. graph m m

Barthold 4 5 Bowman 3 5 Bowman 4 5

Buxey 3 13 Buxey 6 7 Buxey 9 13

Gunther 3 13 Heskiaoff 3 10 Jackson 3 7

Jackson 4 7 Jackson 5 7 Jaeschke 3 7

Jaeschke 4 7 Jaeschke 5 7 Jaeschke 6 7

Kilbridge 3 11 Kilbridge 4 11 Kilbridge 5 11

Kilbridge 7 11 Kilbridge 9 11 Kilbridge 10 11

Mansoor 3 5 Mansoor 4 5 Mertens 3 5

Mertens 4 5 Mitchell 3 9 Mitchell 4 9

Mitchell 6 9 Mitchell 7 9 Roszieg 3 10

Roszieg 4 10 Roszieg 7 10 Roszieg 9 10

Sawyer 3 13 Sawyer 4 13 Sawyer 5 13

Sawyer 6 7

Easy instances

Prec. graph m m Prec. graph m m Prec. graph m m

Arcus1 3 21 Arcus1 4 21 Arcus1 11 13

Arcus2 3 27 Arcus2 6 7 Barthold 3 15

Barthold 4 15 Barthold 7 15 Barthold 7 8

Barthold 10 15 Barthold 11 15 Barthold 13 15

Barthold 14 15 Barthold2 8 10 Buxey 4 13

Buxey 6 13 Buxey 10 11 Buxey 10 13

Gunther 4 13 Gunther 5 13 Gunther 6 13

Gunther 6 8 Gunther 10 13 Gunther 11 13

Gunther 12 13 Hahn 3 4 Hahn 3 8

Hahn 6 8 Hahn 7 8 Heskiaoff 5 10

Heskiaoff 6 10 Heskiaoff 7 10 Heskiaoff 8 10

Heskiaoff 9 10 Lutz1 3 11 Lutz1 5 11

Lutz1 6 11 Lutz1 7 11 Lutz1 8 11

Lutz1 10 11 Lutz2 3 49 Lutz2 11 13

Lutz2 15 17 Lutz2 20 25 Lutz2 21 24

Lutz2 21 25 Lutz2 22 24 Lutz3 3 23

Lutz3 4 23 Lutz3 5 23 Lutz3 7 9

Lutz3 8 9 Lutz3 11 23 Lutz3 12 14

Lutz3 12 15 Lutz3 17 23 Lutz3 18 21

Lutz3 18 23 Lutz3 19 20 Lutz3 19 21

Sawyer 6 13 Sawyer 9 13 Sawyer 10 11

Sawyer 10 13 Scholl 3 4 Tonge 4 23

Tonge 3 23 Warnecke 3 30 Warnecke 4 30

Warnecke 5 30 Warnecke 7 30 Wee-Mag 3 38

Wee-Mag 4 38 Wee-Mag 6 38 Wee-Mag 7 9

Wee-Mag 13 14 Wee-Mag 16 18

Less tricky instances
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Prec. graph m m Prec. graph m m Prec. graph m m

Arcus1 5 21 Arcus1 6 21 Arcus2 4 8

Barthold2 13 18 Barthold2 14 18 Lutz2 4 49

Lutz2 30 34 Lutz2 32 34 Lutz3 6 23

Scholl 6 7 Warnecke 11 13 Wee-Mag 5 38

Wee-Mag 36 38

Tricky instances

Prec. graph m m Prec. graph m m Prec. graph m m

Arcus1 8 9 Arcus1 11 21 Arcus2 6 8

Barthold2 3 28 Barthold2 12 28 Barthold2 20 25

Barthold2 21 25 Barthold2 23 25 Lutz2 7 49

Lutz2 11 49 Lutz2 18 28 Lutz2 20 26

Tonge 6 23 Warnecke 11 13 Warnecke 16 17

Very tricky instances

Prec. graph m m Prec. graph m m Prec. graph m m

Arcus1 7 21 Arcus1 8 21 Arcus1 11 12

Arcus1 15 17 Arcus1 15 21 Arcus1 16 17

Arcus1 19 21 Arcus2 4 27 Arcus2 5 8

Arcus2 10 16 Arcus2 10 27 Arcus2 11 16

Arcus2 12 16 Arcus2 13 16 Arcus2 14 16

Barthold2 3 52 Barthold2 6 28 Barthold2 8 28

Barthold2 13 28 Barthold2 20 28 Barthold2 22 25

Barthold2 27 28 Barthold2 30 34 Barthold2 30 52

Barthold2 32 33 Barthold2 32 34 Barthold2 36 39

Barthold2 36 52 Barthold2 37 39 Barthold2 41 52

Barthold2 43 49 Barthold2 43 52 Barthold2 44 48

Barthold2 44 49 Barthold2 45 47 Barthold2 45 48

Barthold2 51 52 Lutz2 10 49 Lutz2 15 49

Lutz2 18 49 Lutz2 30 49 Lutz2 42 44

Scholl 3 51 Scholl 6 51 Scholl 9 20

Scholl 9 51 Scholl 10 20 Scholl 11 20

Scholl 13 14 Scholl 13 20 Scholl 16 17

Scholl 16 20 Scholl 19 20 Scholl 22 26

Scholl 22 28 Scholl 22 30 Scholl 22 51

Scholl 24 26 Scholl 25 26 Tonge 7 23

Tonge 10 23 Tonge 11 12 Tonge 14 23

Tonge 16 17 Tonge 16 23 Tonge 19 23

Tonge 20 23 Tonge 21 23 Warnecke 10 30

Warnecke 15 30 Warnecke 19 20 Warnecke 19 30

Warnecke 22 30 Warnecke 25 30 Warnecke 27 30

Warnecke 28 30 Wee-Mag 7 38 Wee-Mag 11 38

Wee-Mag 13 38 Wee-Mag 21 24 Wee-Mag 22 24

Wee-Mag 35 38

Extremely tricky instances

Prec. graph m m Prec. graph m m Prec. graph m m

Arcus2 15 16 Arcus2 18 19 Arcus2 18 27

Arcus2 21 24 Arcus2 21 27 Arcus2 22 23
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Arcus2 22 24 Arcus2 26 27 Lutz2 36 49

Lutz2 46 48 Lutz2 42 49 Scholl 32 35

Scholl 32 40 Scholl 32 51 Scholl 34 35

Scholl 37 40 Scholl 38 39 Scholl 38 40

Scholl 42 51 Scholl 44 45 Scholl 44 48

Scholl 44 51 Scholl 47 48 Scholl 50 51

Wee-Mag 16 19 Wee-Mag 16 38 Wee-Mag 21 38

Wee-Mag 26 29 Wee-Mag 26 31 Wee-Mag 26 38

Wee-Mag 27 29 Wee-Mag 32 38
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Appendix C

As discussed in Section 6.3.2, one may include a relaxation of the optimality subproblems into the

master problem. In this case, the domain of the variables xipl, ψfpl, and tf need to be extended by

the set of stations. Furthermore, the following terms need to be added to the objective function.

Lastly, the constraints listed below need to be considered.

∑
i∈I

∑
s∈Si

∑
p∈P

∑
l∈Lsp

ciplxispl +
∑
f∈F

∑
s∈Sf

∑
p∈Pf

∑
l∈Lsp

cfplψfspl +
∑
p∈P

∑
l∈Lp

cplχpl

+
∑
i∈I

cRi d
R
i +

∑
f∈F

cDf d
D
f +

∑
l∈L

cDdDl (7.1)

∑
p∈Pi

∑
l∈Lsp

xispl = xfs ∀s ∈ S ∀f ∈ Fs ∀i ∈ If (7.2)

∑
p∈Pi

∑
l∈Lsp

tlxispl + tAxfs ≤ tfs ∀s ∈ S ∀f ∈ Fs ∀i ∈ If (7.3)

∑
f∈Fm∩Fs

tfs ≤ c ∀s ∈ S ∀m ∈M (7.4)

∑
i∈Is∩Ip

xispl ≤Mχpl′pl ∀s ∈ S ∀p ∈ P ∀l ∈ Lsp (7.5)

∑
i∈If

xispl ≤Mψfspl ∀f ∈ F ∀s ∈ Sf ∀p ∈ Pf \ {L,B}

∀l ∈ Lsp ∩ L (7.6)∑
i∈Is

xisLl +
∑
f∈Fs

ψfsSl + χBl + χKl + χTl ≤ 1 ∀s ∈ S ∀l ∈ LBs (7.7)

∑
i∈Is∩IB

rirxisBl ≤ RBrχBl ∀s ∈ S ∀l ∈ LsB (7.8)

∑
f∈Fs∩Fp

rfrψfspl ≤ Rprχpl ∀s ∈ S ∀p ∈ {K,T} ∀l ∈ Lsp

(7.9)∑
i∈I

∑
s∈Si

∑
l∈Lsp

xispl =
∑
s∈Si

∑
l∈Lsp

xjspl ∀f ∈ F ∀p ∈ Pf ∀j ∈ If (7.10)

∑
s∈Si

∑
l∈Lsp

dRpaxispl +M(va − 1) ≤ dRi ∀i ∈ I ∀a ∈ A ∀p ∈ Pi (7.11)

∑
s∈Si

∑
l∈LsS

dDa ψfsSl +M(va − 1) ≤ dDf ∀f ∈ FS ∀a ∈ A (7.12)

dDa χKl +M(va − 1) ≤ dDl ∀s ∈ S ∀l ∈ LsK ∀a ∈ A (7.13)

xispl ≥ 0 ∀i ∈ I ∀s ∈ Si ∀p ∈ Pi
∀l ∈ Lsp ∩ L (7.14)
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ψfspl ≥ 0 ∀f ∈ F ∀s ∈ Sf ∀p ∈ Pf \ {L,B}

∀l ∈ Lsp ∩ L (7.15)

tfs ≥ 0 ∀f ∈ F ∀s ∈ Sf (7.16)

dRi ≥ 0 ∀i ∈ I (7.17)

dSf ≥ 0 ∀f ∈ F (7.18)

dKl ≥ 0 ∀l ∈ L (7.19)

Cost in the relaxation need to be calculated differently than for the optimality subproblem. While

replenishment costs were calculated as in Equation 6.57 for the optimality subproblem, they need

to be set to 0 and cRi needs to be introduced to calculate costs as in Equation 7.20.

cRi = (voc+ lcf)
λi

niLεLfv
∀i ∈ I ∀p ∈ P (7.20)

Similar adjustments need to be made to the dispatch costs, presented in Equations 6.62 and 6.63.

Both equations need to be set to 0, but the following cost calculations need to be added:

cDf = loc
λf

nfOV εl
∀f ∈ F (7.21)

cD = loc
λ

bsKOV εl
(7.22)
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