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Abstract. Constructing a knowledge graph with mapping languages,
such as RML or SPARQL-Generate, allows seamlessly integrating het-
erogeneous data by defining access-specific definitions for e.g., databases
or files. However, such mapping languages have limited support for de-
scribing Web APIs and no support for describing data with varying ve-
locities, as needed for e.g., streams, neither for the input data nor for
the output RDF. This hampers the smooth and reproducible generation
of knowledge graphs from heterogeneous data and their continuous in-
tegration for consumption since each implementation provides its own
extensions. Recently, the Web of Things (WoT) Working Group released
a set of recommendations to provide a machine-readable description of
metadata and network-facing interfaces for Web APIs and streams. In
this paper, we investigated (i) how mapping languages can be aligned
with the newly specified recommendations to describe and handle het-
erogeneous data with varying velocities and Web APIs, and (ii) how such
descriptions can be used to indicate how the generated knowledge graph
should be exported. We extended RML’s Logical Source to support WoT
descriptions of Web APIs and streams, and introduced RML’s Logical
Target to describe the generated knowledge graph reusing the same de-
scriptions. We implemented these extensions in the RMLMapper and
RMLStreamer, and validated our approach in two use cases. Mapping
languages are now able to use the same descriptions to define the in-
put data but also the output RDF. This way, our work paves the way
towards more reproducible workflows for knowledge graph generation.

1 Introduction

Mapping languages, such as the RDF Mapping Language (RML) [6], allow defin-
ing mapping rules to describe how to generate a knowledge graph from hetero-
geneous data. This is achieved by aligning the mapping rules with access-specific
definitions for e.g., databases or files, to integrate data from heterogeneous for-
mats, e.g., CSV, XML, JSON. However, we observe that: (i) data velocity is not
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well supported in mapping languages and corresponding processors, compared
to data variety and volume [8,18,20]; and, (ii) the characteristics and destination
of the generated knowledge graph remain unexplored.

Mapping languages declaratively describe how to integrate heterogeneous
data without considering their data velocity, e.g., when new data is available
for retrieval. Consequently, processors cannot generate knowledge graphs from
data sources with varying data velocities, such as streams, as they lack the
descriptions that determine their execution. This results in non-reproducible
knowledge graph generation, because processors have each their own (use case-
depending) approach to deal with data sources with varying data velocities.

Mapping languages only partly align with Web APIs and streams descrip-
tions. When they do, they are limited to a set of protocols and do not describe
how authentication against Web APIs and streams should be performed. Exist-
ing approaches describe access Web APIs, but only for a subset of the HTTP
protocol, to retrieve data from Web APIs, while other protocols, e.g., MQTT or
CoAP, and use cases of Web APIs are not considered. Because of this, additional
steps outside the processor are needed to use other protocols. If authentication is
needed, data cannot be retrieved from Web APIs, as the processors do not know
how to handle authentication from the access description in mapping rules.

Last, mapping languages only define how a knowledge graph should be gen-
erated from heterogeneous data, but not how a knowledge graph should be ex-
ported and handled afterwards. Each processor has its own approach to retrieve
this information, using e.g. a configuration file or command line arguments as
this information is not declaratively described in the mappings. Furthermore,
the velocity of the input data, also influences the output velocity when export-
ing knowledge graphs. Thus, it is necessary to consider the data velocity when
retrieving the input data as well when exporting a knowledge graph.

We address the aforementioned issues by leveraging the recent W3C recom-
mendations of the Web of Things (WoT) Working Group [2,10,13]. On one hand,
we adapt the data source descriptions to describe how processors can access and
process Web APIs and streams with the WoT W3C recommendations. On the
other hand, we introduce a target description which declaratively describes how
a knowledge graph should be exported. The target description defines in which
format and where the knowledge graph is exported. Since the target description
reuses same access descriptions as the input data sources, the generated knowl-
edge graph can be exported in various ways, e.g., file dumps or triple stores.

We apply our proposed approach to the RDF Mapping Language (RML) [6].
Our contributions are: (i) RML’s Logical Source adaptation to the new
WoT W3C recommendations to support more data structures, data velocity
and authentication; (ii) RML’s Logical Target introduction to define how
the knowledge graph should be handled and exported; (iii) Implementation of
our proposed approach in the RMLMapper1 and RMLStreamer2; and (iv)
Validation of our approach in two use cases: ESSENCE and DAIQUIRI.
1 https://github.com/RMLio/rmlmapper-java
2 https://github.com/RMLio/rmlstreamer

https://github.com/RMLio/rmlmapper-java
https://github.com/RMLio/rmlstreamer
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Lack of access to data with different velocities and knowledge graph’s char-
acteristics’ descriptions hampers the knowledge graphs’ reproducible generation
from heterogeneous data. It also hampers their continuous integration for con-
sumption as additional steps are needed to retrieve the data and transform these
in an appropriate format. Our proposed approach shows how mapping languages
can use same descriptions for input data and output knowledge graph. This re-
duces the processor’s implementation costs, as the same descriptions are reused
for both input and output and all processors follow the same descriptions, re-
sulting in more reproducible knowledge graph generation.

Section 2 describes the state of the art and Section 3 our motivating use cases
and issues encountered in our use cases. Section 4 explains how we aligned the
WoT W3C recommendations with RML and how we implemented our approach
in the RMLMapper and RMLStreamer. We validate our approach in Section 5
with two real-life use cases. In Section 6, we discuss conclusions and future work.

2 State of the Art

In this Section, we describe our related work (Section 2.1), and introduce the
Web of Things W3C recommendations and RML (Section 2.2).

2.1 Related Work

We outline vocabularies (Table 1) to describe Web APIs and streams, and inves-
tigate how current approaches use these vocabularies to access Web APIs, deal
with streams’ varying velocities and export the generated knowledge graph.

Vocabularies for Web APIs and streams. Data sources on the Web come in vari-
ous forms and protocols while sharing common practices for identifying resources
or authentication schemes. Various vocabularies exist to describe access to Web
APIs and streams, e.g., Hydra, DCAT, HTTP, VoCaLS, and OWL-S.

The Hydra vocabulary [14] is proposed by the Hydra W3C Community Group
to describe Web APIs but it is not a W3C recommendation. The Hydra vocab-
ulary describes Web APIs but does not describe how a processor must perform
authentication against Web APIs or use protocol-specific features.

DCAT [16] is a W3C recommendation to describe data catalogs on the
Web. DCAT only describes datasets in a DCAT data catalog without cover-
ing protocol-specific features or authentication.

The HTTP W3C vocabulary [11] describes the HTTP protocol and can be
used to describe HTTP Web APIs. However, the HTTP W3C vocabulary is
limited to a single protocol, namely HTTP, does not describe how processors
must perform authentication against Web APIs, nor does it describe streams.

OWL-S is a W3C member submission to semantically describe Web ser-
vices [17] such as Web APIs and streams. OWL-S consists of Service Profiles
to describe what the service does, Service Models to specify how it works, and
Service Grounding which describes how to access the service. OWL-S’ Service
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Grounding leverages the Web Services Description Language [4] to describe ac-
cess to Web services. Although, OWL-S can describe access to Web services, it
does not cover authentication and never became a W3C recommendation.

VoCaLS [22] is a vocabulary and catalog description for data streams. It
extends the DCAT W3C recommendation to describe streams without being
limited to a specific stream protocol. VoCaLS can be used to describe access to
data streams, but not other Web APIs.

The Web of Things (WoT) W3C Working Group recently released recom-
mendations for describing IoT devices on the Web [2, 10, 13] by providing an
abstract layer to access Internet of Things (IoT) devices. WoT uses a similar
approach as OWL-S by applying binding templates to bind this layer to an un-
derlying protocol used by an IoT device. New protocols can be added by defining
a new binding template without influencing the access abstraction layer [13]. We
leverage the WoT W3C recommendations to showcase how processors can access
Web APIs and streams without depending on a specific protocol.

Vocabulary Protocol
independent

Authentication Web APIs Streams W3C
Recommendation

Hydra 3 7 3 7 7

DCAT 7 7 3 7 3

HTTP W3C 3 7 3 7 3

OWL-S 7 7 3 3 7

VoCaLS 3 7 7 3 7

WoT W3C 3 3 3 3 3

Table 1. Existing vocabularies for describing access to Web APIs and streams.

Mapping languages. Existing mapping languages share same principles for de-
scribing input data sources by defining iterators and access descriptions for
the data sources and leave the characteristics of exporting generated knowl-
edge graphs up to the implementation. Most mapping languages, e.g., RML
and SPARQL-Generate, reuse existing specifications e.g. R2RML and SPARQL
respectively, to define a mapping language for generating knowledge graphs
from heterogeneous data sources. RML [6] broadens the scope of R2RML [5]
from relational databases to heterogeneous data sources using RML’s Logical
Source, while still being backwards compatible. SPARQL-Generate [15] extends
SPARQL [9] instead of R2RML to integrate heterogeneous data sources into
knowledge graphs with iterators to access and iterate over the data sources.

Such mapping languages describe how processors should access various het-
erogeneous data sources except for Web APIs and streams. RML leverages the
Hydra vocabulary to provide access to Web APIs [7], SPARQL-Generate and
xR2RML define each their own approach to accomplish this [15, 19]. However,
they can only perform HTTP GET requests without authentication to retrieve
data from the Web. D2RML argues it is needed to describe access to Web APIs
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in more detail [3] but D2RML can only describe HTTP requests using the W3C
HTTP vocabulary, other protocols are not supported.

Data velocity. In recent years, there has been an increasing interest in gen-
erating knowledge graphs from data with different velocities than static data,
such as data streams. Several approaches were introduced, for example: Triple-
Wave [18], RDF-Gen [20], SPARQL-Generate [15], and Chimera [21]. However,
these approaches do not declaratively describe how different data velocities must
be handled during the knowledge graph generation.

TripleWave uses R2RML mappings for specifying the subject, predicate and
object of the generated RDF triples, but handles the data velocity problem in
its processor through a wrapper. This wrapper is mostly use case specific and
not reusable for other use cases. SPARQL-Generate provides access to data
streams, but delegates the processing and handling of the different data ve-
locities to the underlying SPARQL engine. RDF-Gen claims it can access and
process data streams but does not mention how different data velocities are han-
dled. CARML3 also access streams by extending RML with its own extension,
a single access description for streams (carml:Stream) but only describes the
name of the stream to use. Recently, a data transformation framework Chimera
was proposed [21] which allows to uplift data into a knowledge graph using
RML and lower this knowledge graph later on in various data formats through
Apache Velocity templates and SPARQL queries [21]. Chimera leverages Apache
Camel’s Routes [21] for constructing its data processing pipelines. Because of
this, Chimera can have multiple input and output channels and access data
sources included in the Apache Camel framework, such as Web APIs or streams.
However, no declarative access description is available to describe Web APIs and
streams; instead, the rml:source property in RML’s Logical Source refers to a
generic InputStream, an extension of RML used in Chimera, which only specifies
the name of the InputStream to use as data source.

RDF output. Mapping languages has not yet determined how the serialisation,
storage or velocity of the generated knowledge graph (output) should be handled,
exported, and described. Each processor of a mapping language has its own way
to handle the knowledge graph after its generation. Processors mainly use com-
mand line arguments (e.g., RMLMapper, RMLStreamer, SPARQL-Generate), or
configuration files (e.g., RMLMapper, SPARQL-Generate, Chimera) to specify
a single target such as a local file, access configuration of the SPARQL endpoint
containing the knowledge graph, or Kafka stream.

Exporting knowledge graphs to multiple output targets is not considered by
mapping languages, nor is generating a knowledge graph as a stream. While pro-
cessors such as SPARQL-Generate [15], RDF-Gen [20], and TripleWave [18] can
export their knowledge graphs as a stream during generation, these processors
do not enrich existing knowledge graphs but recreate the knowledge graph from
scratch when new data is retrieved. R2RML-Parser [12] avoids the former, but it
3 https://github.com/carml/carml

https://github.com/carml/carml
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only focuses on relational databases. In case multiple sets of targets are needed,
the same mapping rules need to be executed multiple times, one set for each
target. Since there is no declarative way for specifying where the output must
be directed, processors cannot send parts of a knowledge graph to different or
multiple output targets. Furthermore, these existing approaches lack the ability
to describe if compression should be applied when exporting a knowledge graph.

2.2 Preliminaries

W3C Web of Things. A set of W3C recommendations were published by the
W3C Web of Things Working Group for describing IoT devices and their capa-
bilities such as interfaces, security, or protocols [2, 10, 13]. This way, machines
can retrieve metadata about IoT devices (Listing 1.1 lines 3-4), understand how
to interact with them (lines 8-10). The WoT W3C recommendations also de-
scribe which security practices must be applied when interacting with the IoT
device (lines 5-6). These recommendations do not enforce a certain protocol,
instead, they provide an abstraction layer that describes the protocol that must
be used to interact with the device. External vocabularies, such as the W3C
HTTP vocabulary [11], are leveraged to describe protocol-specific options. This
way, new protocols can be added without changing the recommendation.

Listing 1.1. WoT Thing Description in JSON-LD for an MQTT illumance sensor
1 {
2 "@context": "https://www.w3.org/2019/wot/td/v1",
3 "title": "MyIlluminanceSensor",
4 "id": "urn:dev:ops:32473-WoTIlluminanceSensor -1234",
5 "securityDefinitions": {"nosec_sc": {"scheme": "nosec"}},
6 "security": ["nosec_sc"],
7 "events": { "illuminance": { "data":{"type": "integer"},
8 "forms": [ {
9 "href": "mqtt://example.com/illuminance", "contentType" : "text/plain",

10 "op" : "subscribeevent" } ] } }
11 }

RDF Mapping Language (RML). RML [6] broadens R2RML’s scope and covers
mapping rules from data in different (semi-)structured formats, e.g., CSV, XML,
JSON which define how heterogeneous data is transformed in RDF.

Listing 1.2. RML mapping definitions
1 <#Mapping > rml:logicalSource <#InputX> ;
2 rr:subjectMap [ rr:template "http://ex.com/{ID}"; rr:class foaf:Person ];
3 rr:predicateObjectMap [ rr:predicateMap [ rr:constant foaf:knows ];
4 rr:objectMap [ rr:parentTriplesMap <#Acquaintance > ] ].
5 <#Acquaintance > rml:logicalSource <#InputY> ;
6 rr:subjectMap [ rml:reference "acquaintance"; rr:termType rr:IRI;
7 rr:class foaf:Person ] .

The main building blocks of RML are Triples Maps (Listing 1.2: line 1).
A Triples Map defines how triples of the form subject, predicate, and object, will
be generated. A Triples Map consists of three main parts: the Logical Source, the
Subject Map, and zero or more Predicate-Object Maps. The Subject Map (line 2,



Leveraging WoT for knowledge graphs generation 7

6) defines how unique identifiers (URIs) are generated for the mapped resources
and is used as the subject of all RDF triples generated from this Triples Map. A
Predicate-Object Map (line 3) consists of Predicate Maps, which define the rule
that generates the triple’s predicate (line 3) and Object Maps or Referencing
Object Maps (line 4), which define how the triple’s object is generated. The
Subject Map, the Predicate Map, and the Object Map are Term Maps, namely
rules that generate an RDF term (an IRI, a blank node or a literal). A Term Map
can be a constant-valued term map (rr:constant, line 3) that always generates
the same RDF term, or a reference-valued term map (rml:reference, line 6)
that is the data value of a referenced data fragment in a given Logical Source, or
a template-valued term map (rr:template, line 2) that is a valid string template
that can contain referenced data fragments of a given Logical Source.

3 Motivation

In this Section, we introduce our motivating use cases, ESSENCE and DAIQUIRI
(Section 3.1), and derive open issues (Section 3.2) with existing mapping lan-
guages which we encountered while trying to address these use cases.

3.1 Motivating use cases: ESSENCE & DAIQUIRI

We describe here our motivating use cases, ESSENCE and DAIQUIRI.
In ESSENCE4, we had requirements related to data access, authentication

and knowledge graph export during knowledge graph generation. ESSENCE fo-
cuses on data storytelling in smart cities with IoT sensors. These IoT sensors
provides information about the weather or traffic in the city and their measure-
ments are available through multiple Web APIs. We need to generate knowledge
graphs from measurements of these sensors5, such as rain sensors, water flow me-
ters, and vehicle counters6, and the generated knowledge graphs are published
in a triple store. The measurements are available through various Web APIs,
each with their own way of authentication. The generated knowledge graphs are
exported to a triple store to be consumed by other partners, and are also stored
locally to create backups.

In DAIQUIRI7, we found requirements for data access, data velocity and
exporting knowledge graph to various targets. DAIQUIRI is also a use case on
data storytelling but for sports games, such as cycling or hockey. Athletes are
tracked through sensors to provide sport analysts interesting facts in real time
about the game. We integrate several sport tracking sensors into knowledge
graphs and export these graphs for consumption. Data from these sensors are
available from multiple infinite streams such as movement speed or heart rate.
4 https://www.imec-int.com/en/what-we-offer/research-portfolio/essence
5 https://open-livedata.antwerpen.be/#/org/digipolis/api/

weerobservatiecutler-actuelewaarden/v1/documentation
6 https://telraam-api.net/
7 https://www.imec-int.com/en/what-we-offer/research-portfolio/daiquiri

https://www.imec-int.com/en/what-we-offer/research-portfolio/essence
https://open-livedata.antwerpen.be/#/org/digipolis/api/weerobservatiecutler-actuelewaarden/v1/documentation
https://open-livedata.antwerpen.be/#/org/digipolis/api/weerobservatiecutler-actuelewaarden/v1/documentation
https://telraam-api.net/
https://www.imec-int.com/en/what-we-offer/research-portfolio/daiquiri
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Multiple types of tracking sensors are used. Consequently, each sensor has its
own data velocity. While in ESSENCE, we exported the graphs to a triple store,
in DAIQUIRI we export the generated knowledge graphs as an stream and create
local backups on disk. The generated knowledge graph is continuously enriched.

3.2 Open Issues
In this Section, we describe open issues we encountered in our motivating use
cases (Section 3.1). While these issues are inspired by our use cases, we generalize
them in this Section aiming to tackle them with generic solutions. The Knowl-
edge Graph Construction (KGC) Community Group also has a list of unsolved
challenges for mapping languages. Several issues we encounter in our use cases
were also highlighted by other researchers and companies8

Open Issue 1. Streams. Since mapping languages do not describe access to
data with different velocities, processors implemented their own extensions, even
for the same mapping language, e.g., RML9. We encountered this issue in our
use cases when retrieving sensor measurements through Web APIs and streams
which required a use case specific preprocessing step to overcome this obstacle.
This issue is encountered and acknowledged by the KGC Community Group as
well in their mapping challenges10, verifying that this issue goes beyond our use
cases. Mapping languages need to describe access to data with different velocities
and indicate to processors how to handle data with different data velocities.

Open Issue 2. Web APIs. While mapping languages have preliminary support for
Web APIs [7, 15, 19], they do not consider defining authentication, or protocol-
specific features such as custom HTTP headers or other HTTP methods be-
sides HTTP GET. As mentioned in Section 3.1, we encountered this issue when
accessing Web APIs in our ESSENCE use case. These Web APIs required au-
thentication with a custom HTTP header. We had to create a use case specific
preprocessing step to authenticate with the Web APIs and retrieve the data.
Mapping languages need to describe in detail how Web APIs must be accessed
by processors to avoid such preprocessing steps.

Open Issue 3. Description of the generated knowledge graph. Mapping lan-
guages do not describe how a processor must export a knowledge graph. In both
ESSENCE and DAIQUIRI, we had to store and publish the generated knowl-
edge graph of sensor measurements. Thus, processors cannot determine from
the mapping rules the serialization of a graph or where it must be exported.
Therefore, we created a postprocessing step in our use cases to export the gen-
erated knowledge graph. There is a need for mapping languages to describe the
characteristics of exporting a knowledge graph as RDF.
8 https://github.com/kg-construct/mapping-challenges/issues
9 CARML’s Stream: https://github.com/carml/carml

RMLStreamer’s RML extension: https://github.com/RMLio/rmlstreamer
Chimera’s InputStream: https://github.com/cefriel/chimera

10 https://github.com/kg-construct/mapping-challenges/issues/7

https://github.com/kg-construct/mapping-challenges/issues
https://github.com/carml/carml
https://github.com/RMLio/rmlstreamer
https://github.com/cefriel/chimera
https://github.com/kg-construct/mapping-challenges/issues/7
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4 Approach

In this Section, we describe how we leveraged WoT W3C recommendations to
extend RML’s Logical Source (Section 4.1) and introduce RML’s Logical Tar-
get (Section 4.2) to solve the open issues we discussed in Section 3.2.

4.1 WoT W3C recommendations as data access description

We leverage the WoT W3C recommendations as data source description in RML
to describe how processors access Web APIs and streams and perform authen-
tication, if needed (Open Issues 1 & 2). The access description of the Web API
or stream is described as td:PropertyAffordance (Listing 1.3: lines 3-9, 18-23)
which consists of an abstraction layer and protocol bindings. The abstraction
layer specifies the location of the resource (Listing 1.3: lines 4, 19), the content
type of the data (Listing 1.3: lines 5, 20), and if the property can be read (List-
ing 1.3: lines 6, 21). A td:PropertyAffordance can be combined with other
protocol-specific vocabularies through binding templates [13], e.g. the HTTP
W3C vocabulary [11] (Listing 1.3: lines 7-9, 23). This way, we describe com-
mon information, e.g., resource location, content-type, etc. in a generic way and
describe protocol-specific features in the mapping rules.

Listing 1.3. WoT based access description for performing an HTTP GET request
with authentication through an API key in a custom HTTP header and subscribing
to an MQTT stream with authentication embedded in the message body

1 <#WoTWebAPISecurity > a wotsec:APISecurityScheme;
2 wotsec:in "header"; wotsec:name "apikey".
3 <#WoTWebAPISource > a td:PropertyAffordance;
4 td:hasForm [ hctl:hasTarget "http://example.com/data.json";
5 hctl:forContentType "application/json";
6 hctl:hasOperationType td:readproperty;
7 htv:headers ([ htv:fieldName "User-Agent";
8 htv:fieldValue "Mapping language processor"; ]);
9 htv:methodName "GET"; ].

10 <#WoTWebAPI > a td:Thing ;
11 td:hasSecurityConfiguration <#WoTWebAPISecurity >;
12 td:hasPropertyAffordance <#WoTWebAPISource >.
13 <#LogicalSource1 > a rml:logicalSource;
14 rml:source <#WoTWebAPISource >;
15 rml:referenceFormulation ql:JSONPath; rml:iterator "$".
16 <#WoTMQTTSecurity > a wotsec:BasicSecurityScheme;
17 wotsec:in "body".
18 <#WoTMQTTSource > a td:PropertyAffordance;
19 td:hasForm [ hctl:hasTarget "mqtt://example.com/mqtt";
20 hctl:forContentType "application/json";
21 hctl:hasOperationType td:readproperty ;
22 mqv:controlPacketValue "SUBSCRIBE"; ].
23 <#WoTMQTT > a td:Thing ;
24 td:hasSecurityConfiguration <#WoTMQTTSecurity >;
25 td:hasPropertyAffordance <#WoTMQTTSource >.
26 <#LogicalSource2 > a rml:logicalSource;
27 rml:source <#WoT_MQTT_source >;
28 rml:referenceFormulation ql:JSONPath; rml:iterator "$".

We also use the WoT W3C recommendations to describe the authentica-
tion of Web APIs and streams. Processors use this information to know how
they must authenticate against the Web API or stream to retrieve the data.
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The WoT W3C recommendations provide several common authentication de-
scriptions such as wotsec:APISecurityScheme (Listing 1.3: lines 1-2) for token
based authentication or wotsec:BasicSecurityScheme (Listing 1.3: lines 16-17)
for authenticating with an username and password. These descriptions not only
describe the type of authentication (Listing 1.3: lines 1, 16) but also how the cre-
dentials must be provided to the Web API or streams (Listing 1.3: lines 2, 17).
This way, we declaratively describe the authentication of Web APIs and streams
in the mapping rules. However, the WoT W3C recommendations do not describe
the actual credentials such as token, username or password, needed to authen-
ticate with the Web API or stream to avoid leaking the credentials in the WoT
descriptions. To overcome this problem, existing vocabularies such as the Inter-
national Data Spaces Information Model11 can be used to specify credentials.
This way, we declaratively describe the credentials for processors and avoid to
leak them by keeping them separated from the mapping rules.

4.2 Introducing RML’s Logical Target
We introduce the Logical Target12 in RML which describes the characteristics of
the generated knowledge graph, e.g., serialization format, and target destination
of the generated knowledge graph, e.g., storage location (Open Issue 3).

While a Logical Source is part of a Triples Map, a Logical Target is a part of
a Term Map specified by rmlt:logicalTarget (Listing 1.4: lines 12, 15) which
expects a RML Logical Target description. This way, we have fine-grained control
over where each triple is exported to (Listing 1.4: lines 12, 15).

We follow the same approach for the output description as RML does for
the input description to specify how a target must be accessed and where the
knowledge graph must be exported to. We consider the same vocabularies, e.g.,
VoID [1], SD [23] or WoT, to describe the access to the target destination of the
generated knowledge graph as to specify the access to a data source.

A Logical Target describes how a processor accesses a target and the location
where the knowledge graph must be exported to with the rmlt:target13 prop-
erty (Listing 1.4: line 7). This way, we reuse the data source access descriptions
used in RML’s Logical Source to specify RML’s Logical Target. For instance,
we use a void:Dataset description as data target (Listing 1.4: lines 4-5) in a
Logical Target to export the generated knowledge graph to the local disk or
a sd:Service description to export to a triple store using SPARQL UPDATE
queries (Listing 1.4: lines 1-3).

A Logical Target also contains an optional rmlt:serialization14 property
(Listing 1.4: line 8) to specify which serialization format must be used to export
the generated knowledge graph. The rmlt:serialization property reuses the
existing W3C formats namespace15 as declarative description of the output
11 https://w3id.org/idsa/core
12 https://rml.io/specs/rml-target
13 http://semweb.mmlab.be/ns/rml-target#
14 http://semweb.mmlab.be/ns/rml-target#
15 https://www.w3.org/ns/formats/

https://w3id.org/idsa/core
https://rml.io/specs/rml-target
http://semweb.mmlab.be/ns/rml-target#
http://semweb.mmlab.be/ns/rml-target#
https://www.w3.org/ns/formats/
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RDF format. If no format is specified, the serialization format is N-Quads by
default.

We also added an optional rmlt:compression16 property to the domain of
RML’s Logical Target to describe which compression algorithm is used to save
network bandwidth and storage when exporting a knowledge graph (Listing 1.4:
line 9). rmlt:compression requires an object from the Compression (comp)
namespace17. By specifying the compression algorithm through the comp names-
pace, we declaratively describe the compression algorithms. When the property
is not specified, no compression is applied when exporting the knowledge graph.

Listing 1.4. RML Logical Target to export a knowledge graph to local disk as
N-Triples with GZip compression & SPARQL endpoint with SPARQL UPDATE.

1 @prefix sd: <http://www.w3.org/ns/sparql-service -description#> .
2 <#SPARQLUPDATE > a sd:Service;
3 sd:endpoint <http://example.com/sparql-update >;
4 sd:supportedLanguage sd:SPARQL11Update.
5 <#FileDump > a void:Dataset;
6 void:dataDump <file:///home/dylan/out.nq>.
7 <#LogicalTarget1 > a rmlt:LogicalTarget;
8 rmlt:target <#FileDump >;
9 rmlt:serialization formats:N-Triples;

10 rmlt:compression comp:GZip.
11 <#TriplesMap > a rr:TriplesMap;
12 rr:subjectMap [ rr:template "http://example.com/{name}";
13 rmlt:logicalTarget <#LogicalTarget1 > ];
14 rr:predicateObjectMap [ rr:predicate foaf:name;
15 rr:objectMap [ rml:reference "name";
16 rml:logicalTarget [ a rml:LogicalTarget; rml:target <#SPARQLUPDATE > ];
17 ];
18 ].

5 Validation

In this Section, we explain how we implemented our approach (Section 5.1) in
the RMLMapper and RMLStreamer, and how we applied our approach to two
use cases: ESSENCE (Section 5.2) and DAIQUIRI (Section 5.3)

5.1 Implementation

We implemented our approach in two RML processors, the RMLMapper18 and
RMLStreamer19, to show that our approach can be applied to any implementa-
tion following the RML specification. The RMLMapper follows a mapping-driven
approach by executing each Triples Map one by one to generate a single knowl-
edge graph. To the contrary, the RMLStreamer uses a data-driven approach by
executing the Triples Maps based on the retrieved data records. The knowledge
graph is generated continuously as a data stream.
16 http://semweb.mmlab.be/ns/rml-target#
17 http://semweb.mmlab.be/ns/rml-compression#
18 https://github.com/RMLio/rmlmapper-java
19 https://github.com/RMLio/rmlstreamer

http://semweb.mmlab.be/ns/rml-target#
http://semweb.mmlab.be/ns/rml-compression#
https://github.com/RMLio/rmlmapper-java
https://github.com/RMLio/rmlstreamer
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5.2 ESSENCE use case

Initial pipeline We created an initial pipeline (Figure 1) consisting of several
scripts and mapping rules to retrieve the measurement data, authenticate against
Web APIs, generate knowledge graphs, and export the generated knowledge
graphs to multiple targets. The mapping rules describe only how the retrieved
data need to be integrated into a knowledge graph. The authentication against
the Web API, the data retrieval, and export of the generated knowledge graphs
are not declaratively described. Instead, they are handled by the use case specific
scripts. Each script was especially written for the ESSENCE use case, and cannot
be reused for our other use cases.

Fig. 1. Above, the initial use case specific pipeline with use case specific scripts to
retrieve the data and export the generated knowledge graph. Below, our approach
which declaratively describes how the data should be retrieved and how the generated
knowledge graph should be exported.

Declaratively described pipeline In our approach20, we not only declaratively de-
scribe how the data must be integrated into a knowledge graph, but also how
processors must authenticate against Web APIs, retrieve the data from Web
APIs and how processors must export the generated knowledge graphs to mul-
tiple targets. This way, the mapping rules not only describe how the data is
integrated, but also how the data is accessed and how the knowledge graphs
are exported. We replaced our retrieval and authentication script with Web of
Things Web API access and authentication descriptions (Section 4.1, Figure 1).
This way, the RMLMapper can authenticate to the Web APIs and retrieve the
20 https://github.com/RMLio/web-of-things-icwe2021

https://github.com/RMLio/web-of-things-icwe2021
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necessary data. Since these descriptions are reusable in other use cases, our ap-
proach provides a generic solution for Open Issue 2. Afterward, we replaced the
export script as well with Logical Target descriptions (Section 4.2, Figure 1).
Consequently, the RMLMapper can export its generated knowledge graph di-
rectly to a triple store and local disk for backups. The local backups are also
compressed during the export to save disk space (Section 4.2).

5.3 DAIQUIRI use case

Initial pipeline As in ESSENCE, we first created an initial pipeline (Figure 1)
consisting of several scripts and mapping rules to retrieve the data from the
MQTT stream, integrate the data into knowledge graphs, and export the gen-
erated knowledge graphs to multiple targets. The mapping rules only describe
how the data is integrated, the actual data retrieval and export of knowledge
graphs are handled by use case specific scripts which cannot be reused in other
use cases. Since the RMLStreamer only supports Kafka and TCP streams, we
created a script to transform the MQTT stream into a Kafka stream and back
to an MQTT stream when exporting the knowledge graph.

Declaratively described pipeline By applying our approach to DAIQUIRI21, we
declaratively describe the knowledge graph generation pipeline from retrieving
the data until exporting the generated knowledge graphs to multiple targets. We
extended the RMLStreamer to support WoT descriptions for accessing MQTT
streams which allowed us to remove our initial data retrieval script. The WoT
descriptions contain sufficient information for the RMLStreamer to retrieve the
data directly (Section 4.1, Figure 1) which solves Open Issue 1. We also reused
the same descriptions in a Logical Target for exporting the generated knowledge
graphs as an MQTT stream and store compressed backups locally (Section 4.2).

Our approach was validated for both ESSENCE and DAIQUIRI regarding
to exporting a knowledge graph by using the same access descriptions for het-
erogeneous data sources in RML (Open Issue 3).

6 Conclusion

In this paper, we investigated how mapping languages can describe the char-
acteristics of (i) accessing data streams and Web APIs, and (ii) exporting a
knowledge graph. We validated our approach with two real-life use cases which
showcases that our approach can be used for accessing Web APIs and streams
and exporting knowledge graphs. This shows that our approach improves the
reproducibility of knowledge graph generation as we not only declaratively de-
scribe how the knowledge graph should be generated, but also how the Web APIs
and streams should be accessed, and the generated knowledge graph exported.
WoT W3C recommendations enable mapping languages to access Web APIs and
21 https://github.com/RMLio/web-of-things-icwe2021

https://github.com/RMLio/web-of-things-icwe2021
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streams without depending on a specific protocol. More, access descriptions can
be leveraged for describing how generated knowledge graphs must be exported.

Only a limited amount of protocol bindings are standardized so far. The
WoT Working Group released several recommendations, which are used in this
paper, but some parts of the recommendations are still in development such as
the protocol bindings. These protocol bindings provide descriptions for protocol-
specific options and need to be provided for each protocol separately. However,
if no protocol-specific options are needed, the abstraction layer of the WoT W3C
recommendations covers the necessary parts to access a Web API or stream.

Further research should be undertaken to investigate how pagination in Web
APIs can be handled as our work only covers access of Web APIs in mapping
languages. Furthermore, more investigation must be applied to determine that
our work covers all possible Web API use cases.
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