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ABSTRACT 3 

The interest in probabilistic methodologies to demonstrate structural fire safety has increased 4 

significantly in recent times. However, the evaluation of the structural behavior under fire 5 

loading is computationally expensive even for simple structural models. In this regard, machine 6 

learning-based surrogate modeling provides an appealing way forward. Surrogate models 7 

trained to simulate the behavior of structural fire engineering (SFE) models predict the response 8 

at negligible computational expense, thereby allowing for rapid probabilistic analyses and 9 

design iterations. Herein, a framework is proposed for the probabilistic analysis of fire exposed 10 

structures leveraging surrogate modeling. As a proof-of-concept a simple (analytical) non-11 

linear model for the capacity of a concrete slab and an advanced (numerical) model for the 12 

capacity of a concrete column are considered. First, the procedure for training surrogate models 13 

is elaborated. Subsequently, the surrogate models are developed, followed by a probabilistic 14 

analysis to evaluate the probability density functions for the capacity. The results show that 15 

fragility curves developed based on the surrogate model agree with those obtained through 16 

direct sampling of the computationally expensive model, with the 10-2 capacity quantile 17 

predicted with an error of less than 5%. Moreover, the computational cost for the probabilistic 18 

studies is significantly reduced by the adoption of surrogate models.  19 

Keywords: Structural fire safety, Probabilistic studies, Regression, Surrogate modeling, 20 

Reinforced concrete. 21 
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1 Introduction 23 

The fire safety design of structures is traditionally done through the application of prescriptive 24 

guidance and code-based recommendations, to meet prescribed nominal fire resistance 25 

requirements (ISO, 2019). The fire resistance requirements themselves, as well as the 26 

considered nominal fire exposures, load combinations, characteristic material properties, safety 27 

factors and limit criteria, all contribute to attaining an adequate level of safety in case the as-28 

built structure experiences a (real) fire. The obtained safety level when applying the traditional 29 

design procedure is, however, unknown, and the attainment of an adequate safety level is 30 

fundamentally based on precedent (Van Coile et al., 2019). The above implies that the updating 31 

of traditional design approaches to adjust to innovations in the built environment or to specify 32 

requirements for exceptional designs (Hopkin et al., 2017) relies on ‘lessons learned from 33 

failure’ (Spinardi et al., 2017). However to avoid disaster, to allow for the safe introduction of 34 

design innovation and the specification of adequate provisions for exceptional structures, and 35 

to properly mitigate evolving risk exposure (for example due to climate change and 36 

urbanization (McNamee et al., 2019), an explicit consideration of the risk profile of the structure 37 

is necessary (Van Coile et al., 2019). In other words, the full range of possible fires, and their 38 

associated probabilities must be taken into account, as well as the uncertainties in the structural 39 

fire performance and resulting consequences. The current paper is concerned specifically with 40 

the efficient probabilistic evaluation of structural fire performance. 41 

The probabilistic structural fire analysis can, in principle, be done through repeated evaluation 42 

of the structural model for different realizations of the stochastic variables. Such a “Monte 43 

Carlo” approach has been applied for example by Heidari et al. (2019) and Van Coile et al. 44 

(2014) for a fire-exposed concrete slab, and by Guo et al. (2013), Elhami Khorasani et al. (2015) 45 

and Hopkin et al. (2018) for an insulated steel member. A drawback of the Monte Carlo 46 

approach is the computational expense implied by the repeated sampling. More efficient 47 
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stochastic modelling procedures have been applied to structural fire engineering (SFE), for 48 

example by Gernay et al. (2019a) and Guo et al. (2015). While both studies managed to reduce 49 

the number of simulations drastically, both require additional expert knowledge and careful 50 

error analysis. Furthermore, these efficient methodologies still do not allow for quasi-51 

instantaneously updating the probabilistic structural fire analysis during design iterations. This 52 

limitation is especially relevant where the structural fire analysis involves a large and complex 53 

structural model. 54 

The preceding paragraphs indicate a need for a probabilistic structural fire analysis 55 

methodology which is (i) conceptually easy to understand; and (ii) allows for fast design 56 

iterations. One promising approach is the use of fragility curves. Commonly used to represent 57 

the exceedance probability of a predefined damage state in function of an intensity measure or 58 

engineering demand parameter, fragility curves have been derived for SFE, for example, by 59 

Gernay et al. (2016, 2019b) for steel frame buildings through Monte Carlo approaches, and by 60 

Ioannou et al. (2017) for reinforced concrete buildings through expert elicitation. If reference 61 

fragility curves are listed (i.e. are precalculated), or can be efficiently evaluated, then the 62 

probabilistic approach can find application in design practice. Such an approach is well-63 

developed in earthquake engineering and multiple SFE studies, such as Hamilton (2011), Lange 64 

et al. (2014) and Shrivastava et al. (2019), have focused on applying these earthquake 65 

procedures to structural fire design. In earthquake engineering, the computational expense is 66 

commonly limited by assuming a lognormal distribution for the fragility curve, see e.g. (Baker 67 

and Cornell, 2006). Such an assumption may allow for a more efficient evaluation, but can 68 

however be inappropriate for SFE, as illustrated in (Gernay et al., 2019b) and (Van Coile et al., 69 

2013). Furthermore, reducing the number of computationally expensive model evaluations is 70 

helpful, but does not resolve the fundamental issue that considerable effort and expert handling 71 

is required when running computationally advanced models. The option of pre-calculated 72 
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fragility curves being listed by industry organizations, academic institutions or standardization 73 

bodies (as is done for seismic design, see FEMA P58) has been advocated for SFE in (Van 74 

Coile et al., 2020), but is difficult to achieve without further simplification or intermediate steps, 75 

considering the infinite number of design alternatives, even when considering isolated 76 

members.  77 

In summary, for probabilistic approaches to find application in SFE design, a computationally 78 

efficient methodology which does not rely on the direct use of advanced numerical models to 79 

evaluate design iterations is advantageous. Taking into account recent applications of Machine 80 

Learning (ML) techniques for fire safety applications, e.g. Dexters et al. (2019), Naser (2019a), 81 

and Fu (2020), the hypothesis is put forward here that ML approaches can be instrumental in 82 

achieving the above computationally efficient methodology. More specifically, if the advanced 83 

numerical models currently used in SFE can be accurately approximated by a surrogate model 84 

developed through ML, then probabilistic studies for a fire exposed structure can be achieved 85 

quasi-instantaneously with limited loss of accuracy. Furthermore, fast design iteration can then 86 

be achieved at negligible additional computational cost. 87 

The study presented further acts as a proof-of-concept for probabilistic SFE evaluations 88 

supported by surrogate modelling. The structure of the paper is as follows. Section 2 starts with 89 

a succinct state-of-the-art discussion on ML techniques in SFE. It is concluded that regression-90 

based surrogate modelling will be explored further in this study, being both intuitive and 91 

straightforward in its implementation. Section 2 then continues with a description of the 92 

procedures for training a regression-based surrogate model. Subsequently, Section 3 93 

demonstrates the development and effectiveness of a surrogate model for (i) a computationally 94 

less demanding test case of a concrete slab with known temperature profile; and (ii) a concrete 95 

column taking into account geometric imperfections. Finally, in Section 4 fragility curves 96 

(cumulative density functions) are evaluated for the test cases, using both the original (“actual”) 97 
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model and the surrogate model. The comparison between the obtained distributions validates 98 

the proof-of-concept for probabilistic analysis of fire exposed structures through regression-99 

based surrogate models. 100 

 101 

2 Regression-based surrogate modelling 102 

Surrogate models derived through ML techniques have been used to evaluate the response of 103 

physical systems in a wide range of fields (Forrester et al., 2008; James et al., 2013). The applied 104 

techniques include regression, genetic algorithm, and artificial neural networks (ANN). These 105 

approaches, when properly used (within the boundaries of the physical system, maintaining 106 

interpretability and avoiding the black box effect for the trained model (Rudin, 2019)), provide 107 

useful and efficient tools for engineers. While application of ML approaches in fire safety 108 

engineering is relatively new, an increasing number of studies have been published in recent 109 

years. Dexters et al. (2019), for example, applied regularized logistic (lasso) regression for the 110 

prediction of flashover in a scaled fire compartment with sandwich panel walls. Their trained 111 

model was presented as a dynamic tool for specifying new test configurations. In the area of 112 

structural fire engineering (SFE), a series of studies have been initiated by Naser. In (Seitllari 113 

and Naser, 2019) for example, multi-linear regression, genetic algorithm and ANN were 114 

adopted to predict explosive spalling phenomena for a fire exposed concrete column. The 115 

genetic algorithm was reported to achieve a spalling prediction accuracy of about 95 %. Naser 116 

further explored ML methodologies for the prediction of the fire resistance of timber elements 117 

and bridge vulnerabilities (Naser, 2019a; Naser, 2019b). Other recent applications of ML in the 118 

field of SFE can be found for example in (Fu, 2020) and (Panev et al., 2021). This recent 119 

literature suggest a wide application range for ML techniques in fire safety engineering, hardly 120 

explored.  121 
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Regression is arguably better suited to construct interpretable surrogate models than other ML 122 

techniques such as ANN, especially when considering simple relationships such as polynomial 123 

functions, because the regression coefficients directly inform about the contribution of the 124 

respective parameters (features) in the considered model output. These features relate to the 125 

selected physical parameters, such as the concrete cover or fire load density, which are 126 

considered to govern the model output of interest, such as the fire resistance or the occurrence 127 

of flashover in a compartment. Considering the above, polynomial regression-based surrogate 128 

modeling is adopted here to approximate the response of fire exposed structural elements.  129 

Figure 1 shows the steps for the development of a regression-based surrogate model. These 130 

steps are discussed in detail in the following paragraphs. Firstly, the basic input variables must 131 

be selected, and a sampling scheme applied to obtain the corresponding model realizations 132 

(Section 2.1). Then, a (polynomial) regression function is specified which acts as a hypothesis 133 

for the surrogate modelling (Section 2.2). This surrogate model hypothesis defines the model 134 

‘features’, whose relationship determines the response of a physical system. Finally, the 135 

regression coefficients are determined through an optimization procedure, such as gradient 136 

descent, during which a ‘cost function’ is minimized (Section 2.3). The optimization however 137 

highlights a number of issues related to the varying magnitude and dimensionality of the 138 

features. To avoid these, the features are scaled (2.4). Furthermore, issues of overfitting and 139 

underfitting of the model may occur (2.5). Finally, the accuracy of the trained model must be 140 

determined, and the applied model (hyper-)parameters, such as the number of sampling points, 141 

must be confirmed, which is done through application of the cross-validation and test data (2.6). 142 
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  143 

Figure 1 Methodology for regression based surrogate modeling 144 

2.1 Selection of model variables, input data generation, and model evaluation  145 

The first step involved in the development of a surrogate model through polynomial regression 146 

is the selection of the model variables, on which the behavior of the computationally expensive 147 

physical system depends. If x=[ x1, x2, x3,…………. xr-1, xr] represent a vector of variables, then 148 

the response, y of the physical system, h(x) is given by:  149 

 ( )xy h=  (1) 150 

The surrogate model is generally developed for a specific purpose. It is thus not necessary to 151 

consider all possible parameters of the physical system as input variables for developing a 152 

surrogate model. This implies that parameters which are considered fixed within the scope of 153 

the model are not considered explicitly for the surrogate model development. Therefore, in the 154 

current study only the (independent) variables that are considered uncertain in the probabilistic 155 

assessment are considered as input variables for the surrogate model. 156 

Once the model variables are chosen, an appropriate sampling scheme needs to be adopted to 157 

evaluate the model realizations, yi, to train a surrogate model. These realizations are obtained 158 

Output data

L
H

S
 

sa
m

p
li
n
g

Selection of 

model variables

Input data

( ‘n’ realizations)

Model evaluation

(Thermo-mechanical analysis 

tool)

Feature scaling

Optimization (training of the model)

Validated surrogate model

Desired 

accuracy?

No

Yes

H
y
p

e
rp

a
ra

m
e
te

rs

(m
, 


a
n

d
 n

)

Surrogate model hypothesis

Learning curves

(J train , J CV , R2)



 

8 

 

with a sophisticated model of the physical system (e.g. a finite element model). The sampling 159 

scheme should cover the entire parameter space of interest, while at the same time limiting the 160 

number of realizations as much as possible (Forrester et al., 2008). A Latin Hypercube 161 

Sampling (LHS) scheme will be adopted in the current study for the input data (Olsson et al., 162 

2003). Importantly, modelling limitations of the finite element model will also apply to the 163 

surrogate model. If the finite element model is unable to capture shear failure, then the same 164 

limitation will apply to the surrogate model. 165 

2.2 Surrogate model hypothesis 166 

For polynomial regression, the hypothesis for the surrogate model is a summation of polynomial 167 

terms. A 2nd order polynomial hypothesis (m = 2) for the surrogate model, considering two 168 

independent variables x1 and x2 can be given by Eq.(2). Here ( )ˆŷ h= x  indicates the surrogate 169 

model approximation for the actual (physical) model ( )y h= x , [0, 1,…, 5] are regression 170 

coefficients, in which 0 refers to the bias term, x1 and x2 are the realizations of the independent 171 

variables, 2

1x  and 2

2x  are higher order terms, and x1x2 is the interaction term of the surrogate 172 

model. Together, the first order, higher order and interaction terms are the ‘features’ for the 173 

regression surrogate model. For further discussion on the regression hypothesis reference is 174 

made to (Forrester et al., 2008). 175 

 
2 2

0 1 1 2 2 3 1 4 2 5 1 2
ˆˆ ( ) θ θ θ θ θ θy h x x x x x x= = + + + + +x  (2) 176 

2.3 Cost function and model fitting 177 

The regression coefficients θ in Eq. (2) are estimated through the minimization of the cost 178 

function, ‘J()’, which is a measure of error in prediction for a given data. The cost function for 179 

training a surrogate model (James et al., 2013) is given by Eq. (3) and can be understood as the 180 

half the mean squared error of the prediction for the training data set. 181 
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 ( )
2

1

1 ˆ(θ) ( )
2

n

i

i

J h y
n =

= − i
x  (3) 182 

An optimization algorithm needs to be adopted for the determination of the coefficients 0, 183 

1,…, r, which minimize the cost function in Eq.(3). In this regard, numerous optimization 184 

algorithm for cost function optimization can be found for example in the Python Scipy library 185 

(Virtanen et al., 2020). In the current study, the gradient descent algorithm is selected (Forrester 186 

et al., 2008; Du et al., 2018). The gradient descent algorithm follows a downhill approach for 187 

the minimization of the cost function, whereby regression coefficients are updated at each 188 

iteration in the opposite direction to the positive gradient of J(). The regression coefficients 189 

for the surrogate model adopted at each subsequent iteration are given by: 190 

 θ θ α (θ)
θ

l l

l

J


= −


 (4) 191 

where,  is the learning rate of the surrogate model for gradient descent method. The iteration 192 

is done simultaneously for all coefficients l. Convergence is achieved once the difference in 193 

cost function evaluation between iterations falls below a predefined tolerance. The estimated 194 

regression coefficients can then be used to predict the response of the physical system. 195 

2.4 Feature scaling 196 

The procedure outlined above with the cost function of Eq. (3) has as disadvantage that the cost 197 

evaluation is dependent on the dimension of the model output. This makes it difficult to 198 

recommend a tolerance factor denoting convergence, and results in an unequal weighting of 199 

features in the coefficient updating of Eq. (4). Consequently, the features need to be scaled so 200 

that all variables are of comparable dimensions in order to implement regression algorithms. 201 

Here, a standardization technique is implemented which normalizes the independent variables, 202 

i.e. the features are scaled to have zero mean and unit variance. The normalized independent 203 



 

10 

 

variables are given by Eq. (5), with c the original feature value, µc the feature mean, σc the 204 

feature standard deviation, and cnorm the normalized feature value. 205 

 norm
c

c

c µ
c



−
=  (5) 206 

2.5 Fitting issues 207 

The predicted response for the surrogate model depends on how well it was trained, which 208 

relates to the adopted order of polynomial (m) and size of the sample (n). An inappropriate 209 

order of polynomial for the surrogate model might lead to underfitting or overfitting of the 210 

training data (Forrester et al., 2008). Although an overfitted surrogate model can accurately 211 

predict the response for training data, it might be incapable of predicting the results for unseen 212 

cases. In contrary, an underfitted surrogate model predicts the results for both the trained and 213 

untrained data inaccurately. Figure 2 illustrates these concepts. Likewise, if the size of the 214 

sample is not sufficient to map the entire sample space of the variables, the surrogate model 215 

might be incapable of predicting the response of the physical system precisely. Thus, an 216 

appropriate size of the LHS sample needs to be determined for training a surrogate model to 217 

predict the response accurately. 218 

    

(a) Overfitting (b) Underfitting 

Figure 2 Issues in developing surrogate model 219 
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The issue of overfitting of the training data can be addressed by introducing a regularization 220 

parameter () in the cost function. Eq. (6) gives an expression for a regularized cost function to 221 

train a surrogate model. 222 

 ( )
2

2

learn

1 1

1 λˆ(θ) ( ) θ
2 2

n r

i l

i l

J h y
n n= =

= − + i
x   (6)  223 

The regularization parameter penalizes the coefficients in the surrogate model. This means that, 224 

if higher order polynomials are adopted with more non-zero coefficients, the cost function is 225 

artificially increased by an additional cost term. As the value of the regularization parameter 226 

influences the result of the optimization, it needs to be chosen wisely. The same statement 227 

applies to the order of the polynomial model and the number of training samples. These 228 

parameters are known as hyperparameters and they can be determined through application of 229 

learning curves.  230 

2.6 Hyperparameters, learning curves and performance evaluation 231 

To evaluate and improve the performance of the machine learning algorithms (i.e. perform 232 

hyperparameter optimization), three different input data sets are considered: a training set, a 233 

cross-validation set and test data set. The training set is applied to find the optimum vector of 234 

coefficients, θ , for given hyperparameters, while the cross-validation data set is used to 235 

evaluate the optimum value of the hyperparameters, i.e. to distinguish between the different 236 

models trained on the training set. Finally, the test data set allows to evaluate the prediction 237 

accuracy of the surrogate model on an unseen set of datapoints.  238 

A complete LHS sample is considered as a training set to ensure that the entire sample space of 239 

independent variables is assessed by the computationally expensive physical system. The cross-240 

validation and test data set can however be generated randomly (Monte Carlo simulation). The 241 

prediction errors for the training (Jtrain) and cross-validation data sets (Jcv), are given by: 242 
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 ( )
2

train ,

1train

1 ˆ(θ) ( )
2

trainn

train i

i

J h y
n =

= − train,ix  (7) 243 

 ( )
2

,

1cv

1 ˆ(θ) ( )
2

cvn

cv cv i

i

J h y
n =

= − cv,ix  (8) 244 

Learning curves refer to the plot of these estimated training and cross-validation costs, where a 245 

hyperparameter to be optimized is varied, while other parameters are assumed constant. The 246 

hyperparameters in the current study are the regularization parameter value (), the order of the 247 

polynomial model (m), and the size of the LHS sample (n). The optimum hyperparameters are 248 

determined as those for which the cross-validation cost function indicates that further 249 

complexity does not result in a significant reduction in cross-validation cost (estimation error), 250 

or even results in a cost increase. 251 

After the evaluation of the hyperparameters, the performance of the developed surrogate model 252 

can be assessed based on test data set, for which the coefficient of determination, R2 (Draper 253 

and Smith, 1998) can be determined. The R2 value refers to the prediction efficiency of the 254 

model and is given by: 255 

 2 1 /res totR R R= −  (9) 256 

where, ( )
2

res ,

1

ˆ( )
testn

test i

i

R h y
=

= − test,i
x and ( )

2

tot ,

1

testn

test i test

i

R y y
=

= −  are the residual and total sum of 257 

squares, respectively, in which testy is the mean of the test data set. The value of the coefficient 258 

of determination ranges from 0 to 1, with ‘1’ representing a perfectly fitted surrogate model. 259 

 260 
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3 APPLICATION: SURROGATE MODEL DEVELOPMENT 261 

To demonstrate the application of regression-based surrogate models to SFE, a simple and an 262 

advanced non-linear model are considered as physical systems in this study. The terms ‘actual 263 

models’ and ‘physical systems’ are further used interchangeably. In the above “simple” refers 264 

to an SFE model which does not require numerical approaches. The considered simple model 265 

is presented in Section 3.1 and relates to the bending moment capacity of a simply supported 266 

concrete slab, considering known temperature for the reinforcement. The advanced model on 267 

the other hand involves significant computational cost. The considered advanced non-linear 268 

models is presented in Section 3.2 and relates to the load bearing capacity of a concrete column 269 

under fire considering second order effect.  270 

3.1 Simple non-linear model: concrete slab bending capacity for known rebar 271 

temperature 272 

3.1.1 Physical system: analytical equation for moment capacity of RC slab 273 

The analytical model adopted by Van Coile et al. (2013) to estimate the resisting moment of a 274 

fire exposed RC slab for a known rebar temperature is considered here as a simple non-linear 275 

model. The governing equation is given by Eq. (12) where, As is the area of tensile reinforcing 276 

bars in the slab,  is the diameter of the tensile reinforcing bars in the slab, h and b refer to the 277 

depth and width of the slab, c is the concrete cover to the reinforcement, fc,20C refers to the 278 

20°C compressive strength of the concrete, and fy,20C) and kfy(T) are respectively the 279 

reinforcement yield strength at 20°C and the yield strength retention factor at T degrees Celsius. 280 

 
y

y

2

s (T) y,20 C

R s (T) y,20 C

c,20 C

( )
( ) 0.5

2

f

f

A k f
M A k f h c

bf

 





= − − −  (12) 281 
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The RC slab is considered to be exposed to the fire at the bottom face, and to have sufficient 282 

depth for the concrete compressive zone to retain its strength (i.e. remain below approximately 283 

200°C). 284 

3.1.2 Development of the surrogate model 285 

To develop the surrogate model following the procedure of Figure 1, first the model 286 

variables based on Eq. (12) are identified as fc,20C, fy,T = (kfy(T)·fy,20C), c, h and As. The slab 287 

capacity is evaluated for a fixed unit width (b=1m) and the reinforcing bars are considered to 288 

be 12 mm in diameter. Next, the range of interest for the surrogate model is specified for each 289 

of the independent variables by an upper and a lower limit, as listed in Table 1. The surrogate 290 

model is intended to accurately simulate the physical system within these bounds for the 291 

variables, and therefore a uniform distribution is adopted, ensuring equal weighting in the 292 

subsequent sampling. Adopting the LHS scheme, the required input data are generated, as 293 

discussed in Section 2.1, for the cross-validation set a Monte Carlo scheme is applied. With Eq. 294 

(12) representing the physical system, the bending moment of the slab (the ‘model evaluation’ 295 

or output) can easily be evaluated for the considered combinations of input variables. The 296 

combinations of input variables and the corresponding bending moment capacities are then used 297 

to develop the surrogate model. 298 

Table 1: Model variables for the fire exposed RC slab case study, with their lower and upper 299 

limits for the sampling space and dimensions 300 

Independent variables Lower limit Upper limit Unit Distribution 

Concrete strength, fc,20C 15 80 MPa 

Uniform 

Rebar strength, fy,T 100 1000 MPa 

Concrete cover, c 20 70 mm 

Slab thickness, h 100 300 mm 

Reinforcement area, As 0.10 0.25 % (section area) 
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As discussed in Section 2.6, the surrogate model is dependent on the considered 301 

hyperparameters (number of training samples n, regularization parameter λ, order of the model 302 

m). The optimum values for the hyperparameters are estimated based on the cost functions (Jtrain 303 

and Jcv), i.e. by establishing learning curves. Figures 3 and 4 show the developed learning 304 

curves for the surrogate model to determine the hyperparameters in the test case. According to 305 

Figure 3, the 2nd order polynomial approximation has higher accuracy than the 1st order 306 

polynomial. However, there is no significant improvement for surrogate models with order 307 

‘m’ > 2. The computational burden also gradually increases with the adoption of a higher order 308 

hypothesis for the surrogate model, due to the increased number of features with higher order 309 

polynomials and interaction terms, complicating the optimization. Therefore, a 2nd degree 310 

polynomial is adopted as surrogate model hypothesis for the fire exposed RC slab. 311 

 312 

Figure 3 Cost function value for the surrogate model, in function of the order m of the 313 

regression model hypothesis 314 

Figure 4 helps determining the hyperparameters (n and ) for the considered surrogate model. 315 

Based on Figure 4(a), an optimum size of the LHS sample for training the surrogate model can 316 

be evaluated. In the figure, mean values for Jtrain and Jcv are plotted against the training sample 317 

size for a 2nd order surrogate model, considering a constant cross-validation set ncv of size 500. 318 

Mean values are listed because for low sample sizes, the cost evaluation can depend on the 319 
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specific set of LHS realizations. Therefore, a repeated sampling approach is adopted, where 103 320 

LHS samples for each of the training sets are developed. As the Jtrain and Jcv have converged 321 

for a training set of 2000 LHS samples, this sample size is observed to be sufficient (i.e. optimal) 322 

for the surrogate model. On the other hand, based on the learning curves 100 LHS sample points 323 

is insufficient for developing a precise surrogate model, as a further increase of n results in a 324 

significant decrease of Jcv. The regularization parameter has not been considered for the 325 

estimation of both the optimum order of polynomial and number of training sample size. For 326 

the considered surrogate model order and number of training samples this is reasonable, as 327 

demonstrated in Figure 4(b) where Jtrain and Jcv are plotted in function of the regularization 328 

parameter λ. The regularization parameter is found to have no influence over the developed 329 

surrogate model and thus can be neglected for the development of the surrogate model here. 330 

However, the regularization parameter becomes important when a larger model order is 331 

considered. These situations however do not result in a lower Jcv than for the hyperparameter-332 

combination (ntrain = 2000, m = 2 and λ = 0), while at the same time increasing computational 333 

cost significantly. 334 

  

(a) (b) 

Figure 4 Cost function value for the surrogate model, in function of (a) the number of training 335 

samples, ntrain and (b) the regularization parameter,  336 
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3.1.3 Evaluation of surrogate model performance and discussion 337 

Figure 5 represents the developed surrogate model based with assessed optimum 338 

hyperparameters (ntrain = 2000, m = 2 and λ = 0). In the Figure, the regression coefficients are 339 

shown for the normalized features of the surrogate model (2nd degree polynomial model). The 340 

values for these coefficients are also listed in the Annex. 341 

 

 

Figure 5 Obtained regression coefficients for 2nd order surrogate model with normalized 342 

features. Positive coefficients in the upper graph, negative coefficients in the lower graph. 343 

These regression coefficients, also referred to as ‘weights’ of a particular feature, indicate the 344 

influence of respective features on the response of the system. For example, the polynomial 345 

term ‘fy,T*h’ has a higher value for its regression coefficient than the other polynomial terms, 346 

and thus has higher influence on the moment capacity of the slab. The surrogate model thus can 347 



 

18 

 

also be helpful in assessing the influence of a particular variable or combination of variables on 348 

the response of the actual model. 349 

The performance of the developed surrogate model is evaluated by comparing the actual and 350 

predicted response for the test data set (unseen random data), where the coefficient of 351 

determination (R2) is estimated as stated in Section 2.6. Figure 6 shows the comparison of the 352 

moment capacity of the RC slab for the 500 realizations of the test set, as evaluated respectively 353 

by the actual model and the developed surrogate model. The R2 value for the surrogate model 354 

of RC slab is found to be 99.75 %, indicating very good accuracy. 355 

 356 

Figure 6 Performance of the developed surrogate model for the moment capacity of RC slab 357 

with known rebar temperature 358 

3.2 Advanced non-linear model: Finite element evaluation of RC column load bearing 359 

capacity 360 

3.2.1 Physical system 361 

This model deals with the axial load bearing capacity of an RC column exposed to the ISO 834 362 

standard fire on four sides. A probabilistic study for the considered column has been presented 363 
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in (Van Coile et al., 2020) and has been incorporated in ISO/TR 24679-8:2020 (ISO, 2020). 364 

The column capacity assessment is done through the dedicated Finite Element (FE) software 365 

SAFIR® (Franssen and Gernay, 2017). The column cross-section is 500 mm × 500 mm with 12 366 

reinforcing bars of 20 mm diameter. The height is 4 m and the column is pinned at the bottom 367 

and has a roller support at the top (Van Coile et al., 2020). The concrete is a C30/37 and the 368 

reinforcing steel is of grade 500. The thermal response is modeled in accordance with Eurocode 369 

EN 1992-1-2:2004. Figure 7 shows the thermal and mechanical response for the above 370 

considered RC column exposed to ISO 834 fire, with an axial load of 6000 kN at an eccentricity 371 

of 1.5 cm. In this specific evaluation, the column is found to have fire resistance of 140 min, 372 

with the temperature of the rebars reaching 598C. 373 

 
 

(a) Temperature distribution in the column 

at an ISO 834 duration of 140 min  

(b) Deflection-time history at mid-height for 

the column 

Figure 7 Thermal and mechanical response for RC column exposed to ISO 834 fire, with an 374 

axial load of 6000 kN at an eccentricity of 15 mm 375 

3.2.2 Development of the surrogate model 376 

Six variables are considered to govern the model response. These are the retention factor 377 

quantile parameters for the concrete compressive strength (kfc) and reinforcement yield stress 378 

(kfy), the concrete cover (c), average eccentricity (e), out of straightness (oos), out of plumbness 379 

(oop) and the applied load (P). The parameters kfc and kfy are parameters defining the quantile 380 
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of the retention factors at elevated temperature in accordance with the strength retention models 381 

by Qureshi et al. (2020). The model variables e, oos and oop refers to the three basic 382 

eccentricities associated with the column, as considered in JCSS probabilistic model code 383 

(2013).  384 

Next, the input data for the physical model evaluation is obtained through an LHS sample of 385 

the model variables. The considered range for the sample space is listed in Table 2. An initial 386 

training sample size of 104 realizations is considered, while a separate (fixed) Monte Carlo set 387 

of 1250 realizations is evaluated as a cross-validation data set.  388 

Having evaluated the physical model for the input realizations of the model variables, the 389 

surrogate modelling hypothesis is defined. To allow for comparison with the (numerically 390 

expensive) evaluations by Van Coile et al. (2020), the surrogate model is developed to predict 391 

the maximum load bearing capacity Pmax of the concrete column, considering a specified ISO 392 

834 exposure duration and specific realizations for the other model variables. In other words, 393 

the evaluated fire resistance time tE of the RC column is considered as input parameter for the 394 

surrogate model development, while the associated applied load P is to be considered as the 395 

response by the surrogate model. To elucidate the motivation for the above procedure further, 396 

note that in Van Coile et al. (2020) the maximum load Pmax for a given ISO 834 standard fire 397 

duration tE was determined through an iterative search algorithm for Pmax. The corresponding 398 

probabilistic analysis was very computationally expensive owing to the need to perform 399 

multiple finite element evaluations for each sample realization. The surrogate modelling 400 

procedure applied here is intended to result in a computationally much more efficient process. 401 

Note that for a given set of parameters, the SAFIR model evaluation is the same irrespective 402 

whether this set of parameters was obtained by an iterative approach to find Pmax for given tE.  403 
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It is important to note that the surrogate model aims at approximating the physical system 404 

(SAFIR model) and will thus incorporate the limitations and assumptions of the numerical 405 

model. General assumptions include for example perfect bond between concrete and steel. 406 

Limitations relate for example to the inability of the beam model to consider shear or spalling. 407 

For further overview on the general SAFIR modelling assumptions and limitations, reference 408 

is made to (Franssen and Gernay, 2017). Furthermore, in the current case study, the SAFIR 409 

model takes into account Eurocode material properties. The surrogate model can thus not be 410 

interpreted more generally considering material models from other guidance documents.  411 

Table 2. Model variable for the RC column case study, with their lower and upper limits for 412 

the sampling space and dimensions  413 

Independent variables Lower limit Upper limit Unit Distribution 

Concrete strength retention 

factor, kfc 
-4.00 4.00 - 

Uniform 

Rebar yield strength 

retention factor, kfy 
-4.00 4.00 - 

Concrete cover, c 16 96 mm 

Average eccentricity, e -0.03 0.03 mm 

Out of straightness, oos -0.03 0.03 mm 

Out of plumbness, oop -0.01 0.01 rad 

Applied load, P 1000 10500 kN 

Figure 8 shows the learning curves generated as part of the surrogate model development. Based 414 

on Figure 8(a), a 4th order polynomial is found more precise compared to polynomials with m 415 

 3. On the other hand, there is no further significant decrease in error for predictions on the 416 

cross-validation set for m ≥ 5. Thus, a 4th order polynomial approximation is adopted for the 417 

surrogate model. Similarly, based on Figure 8(b) a training set of 104 LHS samples is found 418 

adequate to develop surrogate model since the prediction error on the cross validation set shows 419 

signs of convergence with limited further reduction in Jcv for ntrain  6000. In the same way, 420 
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Figure 8(c) suggests that the considered surrogate model does not require a regularization 421 

parameter. It can be seen that the learning curves in Figure 8 indicate a higher prediction error 422 

for the training data as compared to the cross validation data. This is however not the case for 423 

ntrain = 103, see Figure 8(b). Taking into account this observation, and noting that the LHS 424 

sampling procedure ensures that training samples are generated across the entire space of model 425 

variables, it is hypothesized that the training data sets with a larger number of samples than the 426 

1250 cross validation samples result in a larger probability of obtaining ‘extreme cases’ for 427 

which the model performs less well. This hypothesis will be evaluated in detail as part of follow 428 

up research. 429 

  

(a) (b) 
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(c) 

Figure 8 Learning curves to develop surrogate model for RC column under ISO 834 fire 430 

3.2.3 Evaluation of surrogate model performance and discussion 431 

Figure 9 shows the performance of the developed surrogate model for the test data set. The R2 432 

value for the surrogate model was found to be approximately 95 %. As the considered 433 

evaluation of load capacity of column involves complex structural fire calculations, the 434 

estimated error can be considered reasonable. Thus, the surrogate model can be considered to 435 

effectively simulate the entire thermal and mechanical calculation for FE model of RC column 436 

and estimate the load bearing capacity of the RC column for a specified fire duration tE. It is 437 

noteworthy that the evaluation of the test set using the actual SAFIR model took about 60 core-438 

hours on a state-of-the-art PC, while the evaluation of the same test set through the surrogate 439 

model is quasi-instantaneous.  440 

 441 

Figure 9 Performance of the developed surrogate model for RC column under ISO 834 442 

exposure 443 

As discussed earlier in Section 3.1, the developed surrogate model can be helpful in determining 444 

the influencing parameters of the physical system. The duration of fire exposure (tE) has the 445 
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highest absolute value for the regression coefficients (1.32) compared to all other polynomial 446 

terms and thus can be regarded as the most influencing parameter. The bias term is almost equal 447 

to zero and thus has negligible effect on the physical system. 448 

4 APPLICATION OF SURROGATE MODELS FOR PROBABILISTIC STUDIES 449 

The proposed framework for probabilistic studies of fire exposed structures through regression 450 

based surrogate models is visualized in Figure 10. The first steps correspond to the development 451 

of the surrogate model as a substitute for the physical system. Once the surrogate model is 452 

adequately trained, the probabilistic distributions for the model parameters are considered 453 

(based on literature) for the specific design. The probability distribution of the model output is 454 

then evaluated by sampling the model variables according to their probabilistic distributions 455 

(LHS is adopted herein), and evaluating the surrogate model for each realization. As the 456 

surrogate model is not computationally expensive, the probabilistic evaluation can be assessed 457 

at limited computational cost. 458 

 459 

Figure 10 Framework for probabilistic studies of fire exposed structures through surrogate 460 

modeling approach 461 

The framework of Figure 10 is applied to probabilistic studies of the cases of Section 3. The 462 

obtained probability density functions (PDF) and cumulative density functions (CDF) are 463 
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validated against the traditional direct Monte Carlo evaluations of the numerical models (i.e. 464 

repeated sampling of the computationally expensive physical system). This is intended to 465 

demonstrate the feasibility of the proof-of-concept. Finally, the surrogate models will be 466 

employed for probabilistic studies for structural fire scenarios for which no computationally 467 

expensive validation is available, demonstrating the practical value of the proposed approach. 468 

The proposed approach however comprises 469 

4.1 Simple non-linear model: probabilistic study of a concrete slab bending capacity for 470 

known rebar temperature 471 

The surrogate model developed in Section 3.1 for the estimation of the moment capacity of an 472 

RC slab with known rebar temperature is applied. The temperature distribution in the slab is 473 

deterministic, and is evaluated taking into account the recommendations of EN 1992-1-2:2004, 474 

using the thermal model as presented by Thienpont et al. (2019). Table 3 shows the probability 475 

distribution of the variables, based on Thienpont et al. (2019). The steel yield strength retention 476 

factor is multiplied with the mean 20°C yield strength of 581 MPa. In this Table, µ denotes the 477 

mean value and σ denotes the standard deviation. To develop the fragility curves, an LHS 478 

scheme with 104 realizations is adopted. 479 

4.1.1 Nominal ISO 834 exposure 480 

A nominal exposure of 120 min ISO 834 at the bottom face is considered, with convection 481 

cooling applied at the top face. Figure 11(a) shows the comparison of the obtained probability 482 

density function (PDF) for the actual and surrogate model. The PDF obtained through the 483 

surrogate model (Ntrain = 2000) almost coincides with the one obtained through a direct 484 

evaluation of the actual model of Eq. (12). The PDF obtained from a surrogate model trained 485 

with 100 LHS samples (Ninsufficient) also agrees, but with a slightly larger difference. The mean 486 

value for the bending moment capacity at 120 minutes of ISO 834 exposure is 32.61 kNm 487 

according to the actual model, whereas the surrogate models trained with 100 and 2000 LHS 488 
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samples result in mean value estimates of 32.77 kNm and 32.58 kNm, deviating by 0.5 % and 489 

0.09 % respectively from the actual model’s result. 490 

Table 3 Probabilistic distributions for the model variables for the RC slab, known rebar 491 

temperature  492 

Stochastic variables Distribution Mean COV 

Concrete strength, fc,20C 

(fck,20 = 30 MPa) 
Lognormal 42.9 MPa 0.15 

Retention factor for yield 

strength of rebars, kfy 

Logistic model 

(Qureshi et al., 2020) 

Temperature-

dependent 

Temperature-

dependent 

Concrete cover, c Beta [µ-3σ; µ+3σ] 35 mm 
0.14 

σ = 5 mm 

Slab depth, h Normal 200 mm 
0.025 

σ = 5 mm 

Area of tensile 

reinforcement, As 

(nominal area As,nom = 

0.1965 % of section area) 

Normal 1.02 As,nom  0.02 

Likewise, Figure 11(b) compares the obtained cumulative density functions. Here, the 493 

difference for the surrogate model with ntrain = 100 is more noticeable, notably for the lower 494 

quantiles of the CDF. In Figure 11(b), the 10-2 capacity quantile (99 % probability of a larger 495 

capacity) for the RC slab is predicted as 14.91 kNm and 15.83 kNm based on the surrogate 496 

model developed from 100 and 2000 LHS sample, which is very close to the 15.89 kNm 497 

obtained through the actual model. Table 4 lists and compares the actual and predicted moment 498 

capacity of the heated RC slab for different capacity quantiles. The Table shows that even the 499 

10-4 quantile capacity of the slab is predicted with great accuracy by the surrogate model. 500 

Therefore, the direct CDF evaluation through 104 evaluations of the actual (physical) model 501 

can be accurately approximated by evaluations applying a surrogate model which has been 502 

trained using just 2000 (physical) model evaluations. Although the computational expense is 503 
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negligible for the considered case, the number of physical model evaluations is reduced 504 

significantly by adopting the surrogate modeling methodology. 505 

  

(a) (b) 

Figure 11 Comparison of (a) probability density function (PDF) and (b) cumulative density 506 

function (CDF) for the RC slab exposed to 120 min of ISO 834 fire 507 

Table 4 Capacity quantiles for the RC slab exposed to ISO 834 fire 508 

S.N CDF 

(.) 

MR of slab (kNm) for ISO fire 

ntrain=100 ntrain=2000 Actual model 

1. 10-1 23.21 23.39 23.40 

2. 10-2 14.91 15.83 15.89 

3. 10-3 10.86 12.08 12.04 

4. 10-4 8.45 9.45 9.34 

4.1.2 Parametric fire exposure 509 

The surrogate models can be applied directly for different fire exposure scenarios. Here, a 510 

Eurocode parametric fire (EN 1991-1-2:2002) with  = 1 and tmax = 120 min is considered. The 511 

temperature of the reinforcing steel bar is estimated considering a regression model proposed 512 

by Thienpont et al.(2019), which gives the reinforcement temperature for a given duration of 513 

heating phase and concrete cover. 514 

Figure 12 shows the CDF for the RC slab based on the actual and surrogate models. The 515 

estimated mean values for the minimum resisting moment of the slab during the parametric fire 516 
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exposure (‘burnout’ resistance; Gernay, 2019) based on 2000 and 100 LHS samples is 517 

approximately 27.27 kNm. Applying a direct evaluation of the ‘actual model’ the mean capacity 518 

of the slab is estimated as 27.28 kNm. Again, the fragility curve developed based on surrogate 519 

model agrees with that developed from the actual model, also for low capacity quantiles.  520 

 521 

Figure 12 Comparison of cumulative density function based on actual and surrogate model for 522 

RC slab under parametric fire ( = 1, tmax = 120 min) 523 

4.2 Advanced non-linear model: Finite element evaluation of RC column load bearing 524 

capacity 525 

The surrogate model developed in Section 3.2 for the evaluation of the load bearing capacity 526 

(Pmax) of an RC column exposed to ISO 834 standard heating is adopted. Table 5 shows the 527 

stochastic variables, adopted from Van Coile et al. (2019). The fragility curve is developed 528 

based on 104 LHS samples of the stochastic variables as considered in earlier sections. 529 

 530 

 531 
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Table 5 Probabilistic distributions for the model variables for the RC column exposed to ISO 532 

834 fire 533 

Stochastic variables Distribution Mean Standard deviation 

Retention factor for yield 

strength of rebars, kfy 

(fyk,20 = 500 MPa; µfy,20 = 

560 MPa) Logistic model 

(Qureshi et al., 2020) 

Temperature-

dependent 

Temperature-

dependent Retention factor for 

concrete strength, fc  

(fck,20 = 30 MPa; µfc,20 = 

42.9 MPa) 

Concrete cover, c Beta [µ-3σ; µ+3σ] 47 mm 5 mm 

Average eccentricity, e Normal 0 0.004 m 

Out of straightness, oos Normal 0 0.004 m  

Out of plumbness, oop Normal 0 0.0015 rad 

4.2.1 Validation for probabilistic studies 534 

Figure 13(a) shows the comparison of the PDF evaluated by 104 evaluations of the actual and 535 

surrogate models. The PDFs from the two models agree reasonably well. The mean predicted 536 

capacity of the RC column after 4 hours of ISO 834 fire exposure based on actual and surrogate 537 

model are 5038 kN and 5137 kN, respectively. Similarly, the CDF based on surrogate model 538 

for the RC column is in good agreement with the CDF from the actual model, especially for 539 

low quantiles of Pmax, as shown in Figure 13(b). As listed in Table 6, the 10-2 capacity quantile 540 

for the RC column is 2931 kN, which is predicted as 3010 kN (2.5 % error) through the 541 

surrogate model. From the perspective of computational expense, the probabilistic evaluation 542 

through the surrogate model was quasi-instantaneous, while the iterative evaluation of Pmax in 543 

the actual model required multiple core-weeks on a modern PC (evaluation done through multi-544 

processing in approximately 7 days). 545 
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Table 6 Capacity quantiles for RC column exposed to ISO 834 fire 546 

S.N 
CDF 

(.) 

MR of slab (kN) for RC column  

Surrogate model Actual model Error (%) 

1. 10-1 3987 3805 4.7  

2. 10-2 3010 2931 2.70 

3. 10-3 2475 2414 2.52 

4. 10-4 2240 2300 2.60 

 547 

  
(a) (b) 

Figure 13 Comparison of (a) probability density function and (b) cumulative density function 548 

for RC column under 240 min of ISO 834 fire exposure 549 

4.2.2 Generalized probabilistic evaluation 550 

The evaluation of Pmax through the actual model requires a computationally expensive iterative 551 

approach, see (Van Coile et al., 2020). This makes the updating of the probabilistic evaluation 552 

for design iterations impractical. Here, the surrogate model is applied to quasi-instantaneously 553 

perform probabilistic analyses for different ISO 834 exposure durations. Figure 14 shows 554 

obtained CDFs based on the surrogate model. The mean capacity of RC column after 1, 2, 3 555 

and 4 hr of standard fire exposure is estimated with the surrogate model as 8547 kN, 7290 kN, 556 

6210 kN and 5137 kN, respectively. Similarly, the 10-2 capacity quantile are 3010 kN, 3852 557 

kN, 4944 kN and 6513 kN. As the variable Pmax relates to the load bearing capacity of the 558 

column, the results in Figure 14 can also be directly understood as fragility curves, where the 559 
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horizontal axis relates to the ‘intensity measure’ of total applied load. Such efficient generation 560 

of fragility curves through surrogate modeling can be helpful in design iterations.  561 

  562 

Figure 14 Cumulative density function for RC column exposed to different duration of ISO 563 

834 fire 564 

5 CONCLUSIONS 565 

The potential of regression-based surrogate models for probabilistic studies of fire exposed 566 

structure has been demonstrated. As a part of the proof-of-concept, the approach has been 567 

applied to two structural fire engineering (SFE) models: (i) the bending moment capacity of a 568 

concrete slab during fire, as defined by a simple analytical equation; and (ii) the load bearing 569 

capacity of a concrete column during fire, considering an advanced numerical model. For both 570 

cases, the fragility curves obtained through the surrogate model match with those obtained 571 

through a direct application of the analytical/numerical model. The developed surrogate models 572 

could predict the 10-2 capacity quantiles with an error of less than 5 %. A very significant 573 

improvement in computational efficiency is observed. Furthermore, the surrogate modeling 574 

methodology for probabilistic analysis has the important advantage that it can be applied to 575 

quasi-instantaneously develop fragility curves considering modifications in the design or fire 576 

scenarios, allowing probabilistic methods to be used as part of fast design iterations. It is 577 
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concluded that surrogate modelling approaches are particularly promising for probabilistic 578 

structural fire engineering studies. As a next step in the application of surrogate models in SFE, 579 

one suggestion is for surrogate models to be developed by interested individuals, industry 580 

organizations, academic institutions and other. The latest surrogate models to be used by 581 

practitioners can be made available in online repositories, with background to the model 582 

training and validation made publicly available (e.g. through peer-reviewed journals). 583 
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 689 

Annex: Evaluation of concrete slab bending capacity for known rebar temperature (Simple non-690 

linear model) 691 

 692 

Table 1 Regression coefficients, with mean and standard deviation of polynomial terms of the 693 

surrogate model (m=2) 694 

S.N 
Polynomial 

terms, c 

Dimension Regression 

coefficients,  
Mean, µc 

Standard 

deviation, c 

0. Bias - 6.01E-15 1.00E+00 0.00E+00 

1. fc,20C N/m2 -1.66E-02 4.75E+01 1.88E+01 

2. fc,20C^2 N2/m4 -3.03E-02 2.61E+03 1.81E+03 

3. fc,20C× fy,T N2/m4 2.62E-02 2.61E+04 1.68E+04 

4 fc,20C×c N/m -4.10E-03 2.19E+00 1.05E+00 

5 fc,20C ×h N/m -1.008E-02 9.52E+00 4.81E+00 

6 fc,20× As N 6.26E-02 1.90E-02 8.06E-03 

7 fy,T N/m2 -5.47E-01 5.50E+02 2.60E+02 

8 fy,T^2 N2/m4 -3.46E-02 3.70E+05 2.92E+05 

9 fy,T×c N/m -2.601E-01 2.53+01 1.39E+01 

10 fy,T×h N/m 1.14E+00 1.10E+02 6.24E+01 

11 fy,T×As N 5.83E-01 2.20E-01 1.10E-01 

12 c m 1.50E-01 4.60E-02 1.15E-02 

13 c^2 m2 9.15E-03 2.25E-03 1.07E-03 

14 c×h m2 -3.67E-02 9.20E-03 3.57E-03 

15 (c×As) m3 -1.53E-01 1.84E-05 5.38E-06 

16 h m -4.57E-01 2.00E-01 5.77E-02 

17 h^2 m2 5.76E-03 4.33E-02 2.33E-02 

18 (h×As) m3 5.54E-01 8.00E-05 2.60E-05 

19 As m2 -1.25E-01 4.00E-04 5.77E-05 

20 As ^2 m4 -2.08E-02 1.63E-07 4.63E-08 
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The surrogate model was trained for normalized model output, with µMR =330743 Nm and σMR 696 

= 21605 Nm. Based on the above Table, the moment capacity of slab can be estimated as: 697 

 
20

0
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21605 330743i i
R i

i i

c
M Nm

=

  −
=  +  +     

  698 

 699 


