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Abstract: One of the most-used man-made materials is concrete, a mixture of ce-
ment, sand, aggregates, water, and admixtures. It can be seen everywhere: in tun-
nels, bridges, and high-rise buildings. Ever since concrete was rediscovered two
centuries ago, it has been studied in detail in order to optimize the material and
to solve its inherent problems. Most people know that concrete is gray, hard, and
strong, and expect it to last decades and even centuries. Unfortunately, this is
not always the case. Concrete is a material which can cope with high compressive
forces but when it is subjected to tensile forces, it may crack. This cracking is based
on several environmental and loading conditions, but the fact that concrete is prone
to crack is a big issue. When cracking occurs and potentially harmful substances
enter the interior of concrete, the concrete matrix may be damaged and even be de-
stroyed. That is the reason why a lot of maintenance and repair works are due in
order to increase the durability and lifetime of structures in civil engineering. One
way of dealing with these issues is the modification of the material itself, making it
less prone to cracking and the durability-related consequences. An example is the
use of reinforcements, coping with the tensile forces when concrete cracks. Cracks
are not harmful but intruding substances may trigger the corrosion of the iron rebars
leading to structural failure, which is again unwanted. In consequence, along the his-
tory, different materials were investigated and added to concrete to solve the previ-
ous adverted problems. So, why not try adding the white powder superabsorbent
polymers in the cementitious material in order to solve these issues?

5.1 Introduction

Almost two decades ago [1, 2], superabsorbent polymers (SAPs) found their way
into concrete technology and ever since were investigated in detail [3–7]. The typi-
cal SAPs used have the feature to absorb up to several hundred times their own
weight in aqueous solutions due to osmotic pressure, resulting in the formation of a
swollen hydrogel. Typically, SAPs made by polyacrylates (using acrylic acid and
acryl amide as main chains) or natural polymers (such as alginates) [3, 6] are added
dry to a cementitious mixture and used to solve various problems, which will be
discussed in the following sections. SAPs could have different shapes. The use of
SAPs with irregular shapes obtained by bulk polymerization or spheres obtained by
suspension polymerization are the most studied and used in this area. Moreover,

https://doi.org/10.1515/9781501519116-005

https://doi.org/10.1515/9781501519116-005


grape-shaped and fiber types are studied as well [8]. As SAPs swell, they will absorb
part of the mixing water causing the loss in workability of the fresh cementitious
mixture. It is commonly accepted to add additional water to compensate for this
loss in workability [3, 9–11]. How much they swell and which tests could be per-
formed to quantify the swelling ability are found in literature [5, 9, 12]. The main
tests to determine the swelling characteristics upon application in concrete are the
filtration test and tea bag test. For the filtration test, a predetermined amount of
SAPs is weighed. Next, an amount of liquid (water, seawater, sulfate solution, ce-
ment filtrate solution, etc.) is added. The SAPs are then able to absorb the liquid. At
a certain time interval, the whole is filtered and the amount of liquid not absorbed
by the SAPs is determined. Using the weight difference of the added liquid and the
remaining liquid over the initial mass of the SAPs, the absorption capacity is deter-
mined. When looking at the tea bag method, a predetermined amount of dry SAPs is
added in a sealed tea bag, which is submerged in the testing liquid. By weighing the
tea bag at regular time intervals, the amount of liquid absorbed can be determined
and used to calculate the absorption capacity. In case the swelling time is needed, a
vortex test can be used [5, 13]. This test uses a magnetic stirrer in a cup and a prede-
termined amount of SAPs to exactly absorb the amount of testing fluid. By measuring
the time for a vortex created by magnetic stirring to disappear, the swelling time can
be estimated. The swelling characteristics, next to the absorption and desorption
kinetics, are important parameters for the application in a cementitious material.
Furthermore, the stability of the polymer over time must be used during the ser-
vice life of a concrete structure [14].

In the following sections, various problems occurring in cementitious materials
are addressed. The first one is the control of rheology and the second is the occur-
rence of shrinkage cracks. Third, concrete is susceptible to freeze-thawing and scal-
ing in general. Fourth, it is permeable and, at last, it cracks. In all these cases, the
addition of SAPs to the cementitious mixing could solve these issues and their ap-
plication will be discussed in detail.

5.2 Changing the rheology by absorbing mixing
water

As SAPs are mixed in, they will absorb a fluid they may encounter. In this way,
they may change the interaction in a cementitious system, due to partial absorption
of the mixing water. The SAPs cause a change in rheology due to their swelling abil-
ity [1, 2, 15–17]. This swelling capacity is dependent on the composition of the mix-
ture and the composition of the SAPs. The resulting osmotic pressure is dependent
on the external fluid composition and the chemical structure, length, and cross-link-
ing degree of the SAP [14, 16–18]. Due to the uptake of mixing water by the SAPs, the
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workability decreases as less water is available in the cementitious matrix itself. Later
on, this water will be released for mitigating shrinkage, as will be discussed in the
next section.

In addition, the workability can be controlled, which is interesting for 3D printing
technologies using cementitious materials [19, 20]. Linked to shrinkage- and durability-
related issues, the 3D printing of cementitious materials still faces some problems such
as autogenous shrinkage, which may be counteracted using SAPs. Continuous layering
of printed specimens with SAPs (Figure 5.1) already proved to be successful [19]. This is
a recent field of study and many parameters may be investigated.

5.3 Shrinkage mitigation by internal curing

The first application of SAPs in cementitious materials was the use of their swelling
behavior and water-retention capability to induce internal curing in order to coun-
teract occurring shrinkage cracks [1, 2, 21–25]. Concrete, composed of the hydrating
cement and water, possesses the problem of shrinking when water is receding,
especially in systems with low water-to-binder ratios. The latter systems, such as
(ultra)high-performance concrete [26, 27], are used more often due to their denser
matrix, high strength, and featured workability. In the following sections, the dif-
ferent forms of shrinkage, the role that they play in a cementitious material and
the use of SAPs for its mitigation are discussed.

Figure 5.1: Three-dimensional printing of cementitious materials with SAPs by continuous layering.
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5.3.1 Plastic shrinkage mitigation

Shrinkage occurs from the start, due to drying and harsh environmental conditions.
This so-called plastic shrinkage may cause cracking during the first few hours after
casting [28]. Due to the quick drying and bleeding of concrete, high capillary
pressures are exerted in the cementitious matrix. If deformations are restrained,
for example, due to the formwork or the reinforcements, the concrete will show
cracking [29]. That is why concrete is postcured when possible. External curing,
for example, by (fog-)spraying or covering with a plastic sheet, is not as sufficient
as an internal curing approach. By using SAPs, internal curing is possible. The
approach is still new and a lot of research needs to be performed in order to opti-
mize the mitigation of plastic shrinkage. Currently, the SAPs were only able to
partially mitigate this type of shrinkage. It was found that by adding 0.6 m% of
SAPs (versus cement weight), the capillary pressures and plastic deformations
were reduced, while the settlement deformations increased [27]. A study using
nuclear magnetic resonance (NMR) to monitor the water kinetics with SAPs when
plastic shrinkage conditions were imposed showed that 0.22 m% of SAPs were
able to reduce plastic settlement and reduced plastic shrinkage cracking but were
not able to completely mitigate it [30]. The SAPs were able to protect the cement
paste internally from the harsh ambient drying conditions and were able to sus-
tain the internal relative humidity (RH) below 5 mm of the cementitious surface.
Results by the RILEM TC-260 RSC support these findings in an international
round robin test [31]. In this study, concrete slabs were subjected to harsh drying
and wind conditions in order to stimulate plastic shrinkage. SAPs were added
during mixing in amounts of 0.15 and 0.3 m%. The results on plastic shrinkage
mitigation seemed to be dependent on the type of SAP and whether they possess
retentive properties. The water can be released early to influence the bleeding
characteristics or can be released after setting to aid with internal curing. Both
effects seem to play a role. No additional information on the SAPs was disclosed,
and the main difference seemed to be the cross-linking degree [31, 32].

5.3.2 Autogenous shrinkage mitigation

Other forms of shrinkage include autogenous shrinkage as a result of cement hydra-
tion, thermally induced shrinkage, drying shrinkage due to the loss of water to the
surroundings, and shrinkage due to carbonation. As cement reacts with water, hy-
dration products precipitate in the water-filled spaces between the solid particles in
the cementitious material. The water in the remaining small capillaries forms me-
nisci and exerts hydrostatic tension forces. These capillary forces reduce the dis-
tance between the solid particles, leading to autogenous shrinkage. Chemical and
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autogenous shrinkage are theoretically shown in Figure 5.2 and autogenous shrink-
age will be the focus point in this section.

The formed hydrostatic tensile forces, especially in systems with a low water-to-
binder ratio, induce cracking. At first, these small and narrow cracks do not seem to
impose such a big problem but intruding substances may cause failure of the ma-
terial. The shrinkage is caused by the lowering of the internal RH [1, 2, 33] and
self-desiccation when no external water source is present. The internal micro-
cracks may interconnect flow paths for penetrating water and gases, possibly con-
taining harmful substances during the service life of concrete structures. By
maintaining the internal RH, this can be counteracted. That is why SAPs were first
used to mitigate autogenous shrinkage due to their internal curing effect. The ap-
plication of SAPs for this purpose proved to be successful as autogenous shrink-
age was reduced and even counteracted in time [1, 2, 21–25].

The principle of the SAPs for internal curing is found in Figure 5.3. During prep-
aration of a cementitious mixture, the SAPs will take up mixing water. The SAPs
will form water-filled inclusions, useful for internal curing [21] as the water is re-
leased again in time. The water released due to self-desiccation during cement
hydration can be used for further hydration and reduction of the autogenous
shrinkage [22]. The water present in the SAP will hereby be released into the cementi-
tious matrix due to the imminent drop in RH. Due to this water release, the internal
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Figure 5.2: Definition of chemical and autogenous shrinkage.
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RH is maintained. The SAP particles shrink and an empty macropore remains as
shown by means of neutron tomography measurements [34–38]. The macropore
showed a densification around its perimeter [39–41]. Due to the internal curing the
autogenous shrinkage can be completely mitigated in systems with pure cement, com-
bined with silica fume, fly ash, and blast furnace slag [10, 23, 24, 42–44].

For internal curing, the water kinetics of the SAPs are important [45]. If this
water is released too soon, it leads to a significant decrease in compressive strength.
But if this water is released at the ideal stage (beginning of concrete setting as the
earliest point), this water would serve as internal curing water [18]. It is very im-
portant to use a SAP with the ideal properties. If the water is released too fast (i.e.,
before setting), the microstructure will be completely different and if the water is
released too late (i.e., after a couple of days onwards), the purpose of internal cur-
ing vanishes. This was studied in detail using NMR where the entrained water signal
was distinguishable from the free water in the cementitious system. In time, the water
released from the SAPs toward the cementitious matrix could be studied [45]. More
recently, elastic wave nondestructive testing may also be a way to monitor the water
kinetics by the SAPs [46].

Typical amounts of 0.2–0.6 m% of cement weight of SAPs are used [3]. The
amounts are based on the theory of powers [47] stating the amount of additional
water needed to counteract autogenous shrinkage. Again, the type of polymer is im-
portant, as the absorption and release kinetics in a cementitious environment are
different [33, 48, 49]. The type of polymer and the interaction with specific ions and
cations play a role in terms of the absorption and release kinetics and were less re-
lated to the cross-linking density [18].

HardenedFresh state

Swelling of SAPs Water-filled
inclusions

Water for
internal curing

Remaining
macropores

Figure 5.3: Different steps for internal curing when SAPs are used in cementitious materials [8].
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5.4 Changing the microstructure to increase
the freeze–thaw resistance by the formation
of an internal void system

As soon as cement and water come into contact, hydration reactions start. The hy-
dration of a concrete mixture determines the microstructural development and
SAPs influence this formation. This was already extensively studied. Hardened mix-
tures with SAPs showed less capillary porosity at later ages if additional water was
used (compared to if no additional water was used). The water released from the
SAPs resulted in continued hydration, decreasing the microporosity at later ages
[23, 50], except from the macropores created by the SAPs. A reduction of the
amount of smaller capillary pores was seen [51]. This is due to two effects: (1) the
filling of the existing pores with hydration products due to internal curing [26] and
(2) the reduction of the initial microcracks in the interior of a cementitious matrix,
as autogenous shrinkage is partially reduced. Mixtures with the same effective water-
to-cement ratio (ratio of the mixing water not held by the SAPs over the cement con-
tent) showed the same capillary porosity [52–55]. The microstructure in between
SAPs was denser due to internal curing and the possible stimulated additional hydra-
tion caused by this release of water. The structure of a cementitious material was af-
fected by the apparent water-to-cement ratio. As SAPs take up the mixing water, the
apparent water-to-cement ratio appears lower, resulting in a closely packed matrix
and subsequent hydration due to the release of the stored water. Samples without
SAPs do not have access to this stored water. Therefore, the permeability was lower
in between SAP macropores in samples containing SAPs than of reference samples.
This was also shown by using neutron radiography [35, 36] and supported by model-
ing on mesoscale level [56, 57].

As can be expected due to the swollen size of the SAPs and the remaining mac-
roporosity, mixtures with SAPs showed a higher total porosity due to macropore for-
mation when additional water was used [21, 39, 58]. If no additional water was
added, the total porosity may be lower for mixtures with SAPs [39] as the overall po-
rosity decreased due to the densification even though macropores remain.

Microstructural properties, and especially the macropore formation, directly affect
the strength characteristics of the cementitious material. The flexural and compressive
strength decrease when SAPs and additional water are added [2, 3, 21–23, 36, 48, 53,
59–63]. Internal curing leads to further hydration and the effect of SAPs on strength
loss is reduced at later ages. The further hydration improves the mechanical proper-
ties but is mostly counteracted by the strength loss caused by macropore formation
due to the absorption of mixing water by the SAPs [64]. SAPs thus have both a posi-
tive and a negative effect on the mechanical properties. A decrease in strength is ob-
served at earlier testing ages (<7 days) while sometimes increases are obtained at later
ages [65], especially in systems with supplementary cementitious materials where the
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internal curing reservoirs are available for the longer term pozzolanic reactions. These
characteristics depend on the polymer, mixture composition, water-to-binder ratio,
amount of additional water, concrete versus mortar or paste, amount of SAPs added,
curing conditions, testing age, and so on. For example, an amount of 0.2–0.6 m% ver-
sus cement weight of SAP was used to reduce the autogenous shrinkage [3], while for
sealing and healing purposes, this amount was up to 1 m% [35, 66, 67]. This will influ-
ence the impact on the observed mechanical properties. Generally, in literature, a de-
crease in compressive strength is found [18, 26, 48, 68–73] as there is a change in
microstructure [53, 55, 58, 68, 71, 72, 74–76]. When no additional water is added, there
is a shift in effective water-to-cement ratio and a possible densification of the cementi-
tious matrix. One should be very careful when comparing the mechanical properties
of these different cementitious systems. Typical values are a decrease of 10–20% for
acrylate SAPs with a size of 300–500 µm and 30–50% for smaller SAPs with a size of
50–150 µm [53, 68] when 0.2–0.5 m% of SAPs are added. Even though the system of
macropores reduces the mechanical properties, this property is interesting consider-
ing the improvement of the impact strength in strain-hardening mixtures [60]. The
macropores serve as stress activators, increasing the ductility [77] and impact absorb-
ing features [60].

To limit the influence of the swelling SAPs on the mechanical properties, pH-sen-
sitive SAPs [78–82] or coated SAPs [83, 84] may be used. Alginates, for example, do
not reduce the strength due to their low absorption capacity [82, 85]. This lower swell-
ing capacity is interesting in order to limit the absorption in the initial stage and aim-
ing at other applications such as sealing and healing, needing a later swelling
capacity at later ages [66, 79, 80, 82, 83]. The strength can also be compensated by
the use of colloidal silica nanoparticles upon addition of SAPs [86–88]. The strength-
loss due to the macropore formation is compensated by incorporating these nanoma-
terials which strengthen the overall cementitious matrix.

As SAPs create an internal void system (Figure 5.4), they increase the freeze–
thaw resistance if properly designed [39, 40, 58, 89–94]. The voids act in the same
way as if an air-entraining agent is added. In case of this internal void system, the
freezing water has a pathway to expand, limiting the formation of cracks, scaling,
and general expansion of the cementitious matrix. Compared to a system with an
air-entraining agent, the SAP mixtures increase the freeze–thaw resistance without
extreme strength loss [89] and with proper mix stability. When using an air-entrain-
ing agent, the air bubbles may migrate upon long mixing times. The SAPs are thus
an interesting material to add to the cementitious matrix. As the absorption capac-
ity in the cementitious matrix is known, the formed macroporosity can be designed
to have the optimal sizes and spacing factors for a specific application. The addition
of SAPs in the range of 0.10–0.34% in relation to the mass of cement has been re-
ported to promote a reduction of at least 50% in the scaling after more than 25
freeze–thaw cycles in both cement mortars and concrete mixtures [95, 96]. Not only
the amount of SAPs but also their particle size and production process might have
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an impact on the scaling resistance. In addition, the time of adding the polymers dur-
ing plant-scale mixing is of importance. The addition of SAPs directly in the truck,
after the mixing procedure at the plant mixer, showed no significant impact on the
compressive strength of the concrete but an agglomeration of air void particles and
an inferior performance in terms of shrinkage reduction occurred [33, 49, 97]. Adding
SAPs on the materials’ belt, along with the dry materials, or in water-soluble bags
has shown promising results. This is of importance when using a specific concrete
for road construction applications.

5.5 Regaining the water impermeability through
self-sealing of cracks

Due to their swelling capacity upon contact with fluids, SAPs may cause a decrease in
permeability of cracked cementitious materials. When liquids enter a crack, SAP par-
ticles along the crack faces will swell and block the crack [7, 8, 35, 36, 38, 66, 98–105].

Figure 5.4: Internal void system with air bubbles and SAP pores, for increasing the freeze–thaw
resistance, using a thin section and fluorescent light microscopy. This picture has been partly
redrafted with (CC BY) license from [94].
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In this way, the impermeability of cracked cementitious materials can be regained
(Figure 5.5). Application of a superabsorbent resin in situ to repair concrete leak-
age can also be used, but this is rather considered to be manual applications [7,
106] while mixed in SAPs are always present to immediately seal the occurring
cracks. In 100–300 µm wide cracks, SAPs with a size of approximately 500 µm
were better in terms of sealing compared to 100-µm-sized SAPs as the latter were
washed out and were not able to fill cracks, even though high amounts (1 m% of ce-
ment weight) were used [8, 35, 67]. It was also found that due to the swelling effect of
the SAPs, the reduced water movement speed, which was critical to obtain autogenous
healing, was optimal as cracks were able to close due to deposited crystals. In refer-
ence specimens, the amount of autogenous healing – inherent part of a cementitious
system, see later on – was less compared to the specimens with SAPs. In water-retain-
ing structures like quays or cellars the SAPs may prove to be useful as the flow will be
reduced, sealing the cracks, but the crack may be sealed by deposited crystals as well.
This is also the case in large-scale specimens or observed underneath bridges and in
tunnels [107]. As studied by cryofracture scanning electron microscopy, SAPs swell
across voids including cracks, causing a sealing of the cementitious material [103].

Self-sealing is related to the initial decrease in permeability and is not permanent. This
is important to know, as a possible temporal self-sealing effect may not lead to a regain
in mechanical properties. This regain, on the other hand, is the result of self-healing.

Figure 5.5: Self-sealing concrete showing a cracked cementitious material with a 1 cm diameter and
20 mm height without SAPs (top) and with SAPs (bottom). The imposed water head is not stopped
in the reference material while a sealing effect is noticed with SAPs due to their swelling ability.
The time is mentioned in the upper right corner in seconds. This picture has been partly redrafted
with permission from Elsevier from source [35].
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5.6 Regaining the mechanical properties due
to promoted autogenous healing

Concrete already possesses the natural capacity of autogenous crack healing [4], as
first found by the French Academy of Science in 1836 (as stated in [108]). It seems
strange that this solid and gray material possesses this feature, but it can be seen
everywhere around us. When passing underneath a concrete bridge or through a con-
crete tunnel, whitish crystals can be seen near and on cracks throughout the mate-
rial. This is considered to be healing. One can design a concrete material to include
an additional healing capacity, the so-called autonomous healing (such as polymeric
foams and vascular systems) but autogenous healing is also inherent to concrete.
This latter term means that concrete is able to heal its own crack, using its initial con-
stituents or already formed products.

Four main mechanisms and their combined effect contribute to autogenous
healing of concrete cracks [108–117] (as shown in Figure 5.6):

1) The matrix may expand due to swelling of calcium silicate hydrates (C-S-H) as
the layering system of the gel becomes wider.

2) Loose and broken-off particles or impurities in the matrix, fluid, or surround-
ings may block the crack.

(b)

(a)

(1) (2)

(3) (4)

Figure 5.6: The four different healing mechanisms responsible for autogenous crack healing: (1)
expansion of calcium silicate hydrates, (2) blockage by loose particles, (3) crystallization of
calcium carbonate, and (4) further hydration combined with pozzolanic activity [8].
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3) Dissolved carbon dioxide from the ambient air in water may react with Ca2+

ions present from hydration products in the concrete matrix to form the often
observed white calcium carbonate (CaCO3) crystals.

4) Unhydrated cement grains present in the matrix and on the crack surfaces may
further hydrate when these particles are exposed to water. In addition, supple-
mentary cementitious materials such fly ash or blast furnace slag can still react
through pozzolanic or latent hydraulic activity. Pozzolans promote further hy-
dration as these materials react with water and Ca(OH)2 to form C-S-H.

The first two mechanisms (C-S-H expansion and blockage by impurities and other par-
ticles) are the inferior ones while the further hydration and calcium carbonate crystal-
lization are the dominant mechanisms in order to receive a strength regain. The
strength is mainly gained by further hydration as CaCO3 crystals do not have sufficient
strength compared to the cementitious hydration material [118]. However, the white
crystals are most often observed, in combination with the grayish further hydration
[111, 112, 119, 120], providing an aid in sustained promoted autogenous healing, even
up to several years [118]. In high-strength concretes showing a low water-to-cement
ratio, the healing is mainly due to the hydration of unhydrated cement grains on the
crack surfaces as more unhydrated cement remains present [113, 121, 122]. Also, the
younger the material is, the more healing will occur due to the higher amount of
unhydrated particles [118]. As the cement further hydrates in time, the healing ma-
terial formed at early ages is a combination of CaCO3, C-S-H, and Ca(OH)2. At later
ages, the healing material is mainly CaCO3 [110, 114, 118].

Assuming that specific chemical substances (Ca2+, CO2, etc.) are present in the
mixture composition or from the specific hydration products, the exposure to humid
environmental conditions (wet/dry cycles, submersion in water, etc.) and restricted
crack widths up to 30–50 µm for strain-hardening mixtures [67, 109] are the main
areas of focus. Only when building blocks, abundant water, and restricted crack
widths are present, the material may show optimal healing. In dry conditions, that is,
without the presence of liquid water such as at 95% RH, there was no healing visible
and it was concluded that the presence of water as a curing medium was essential.
As water is needed in all mechanisms [109, 111, 113, 123, 124], the role of SAPs be-
comes clear [67, 125]. Of course, the crack width and mixture composition play a
huge role. Pozzolanic fly ash [126, 127], blast-furnace slag [128], lime [129], or alkaline
activators [130] can be added to receive more autogenous healing. Additives like ex-
pandable geomaterials [131] or crystalline admixtures [132–136] stimulate the crack-
healing capacity even further. The use of SAPs has also been explored in combination
with expansive agents such as calcium sulfoaluminate in sulfur composites [137]. The
stimulated autogenous healing has also been studied in specimens containing pH-
sensitive SAPs or natural polymers in combination with a synthetic backbone [79, 80,
82, 85, 138]. In order to further increase the amount of calcium carbonate precipita-
tion in a wide crack of several hundreds of micrometers, SAPs can be combined with
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bacteria [139, 140]. The cross-linking of the SAPs is performed after addition of car-
bonate-precipitating bacterium, such as Bacillus sphaericus, in order to properly en-
trap them and protect them from the harsh alkaline environment.

As the cementitious material has a problem with healing large “fractures” or
“cuts” like the human body, the crack width should be restricted. This can be
achieved by adding synthetic microfibers to the cementitious mixture [4, 67, 109,
123, 141–148], or by using natural fibers as a greener solution [149, 150]. The use of
glass fibers can even be combined to have additional translucent properties of the
gray cementitious material [151]. So, as mentioned, SAPs can be added to further
stimulate the autogenous healing [8, 38, 60, 61, 66, 67, 107, 118, 125, 152–155], due
to their retentive capacity as shown in Figure 5.7. Closely resembling bone healing,
the links are made toward cementitious healing of narrow cracks. When a crack oc-
curs, the SAPs will be exposed to the environment. They will start to absorb a fluid
upon contact and/or the SAPs will start to adsorb moisture from the environment.
This will cause a physical sealing of the crack, slowing down the fluid flow through
a crack. This is related to the bleeding and clogging found in the human body. The
SAPs will release their absorbed water for stimulating the autogenous healing
mechanisms, especially during the drier periods. This process, like human bone re-
construction, continues until the complete crack is closed or the building blocks are
consumed or exhausted. In the end, and the ideal case, a healed cementitious mate-
rial is obtained with the same or even better mechanical properties compared to an
uncracked material. SAPs will remain present at their location and will be available
for subsequent healing if the conditions are again optimal with sufficient building
blocks, water or moisture, and narrow healable cracks.

When not completely submerged in water, only samples containing SAPs showed
self-healing properties due to moisture uptake [36, 67]. Even in an environment with
RH > 90%, there was noticeable healing, due to their moisture uptake capacity. If ref-
erence samples were stored in a climate room with a certain RH, there was almost no
autogenous healing, as water was not present to form the healing products. The sam-
ples with SAPs showed a regain in strength when stored in an RH of more than 90%.
The moisture uptake by SAPs (up to four times their own weight in moisture [55])
seemed to be sufficient to promote a certain degree of autogenous healing, especially
in the interior of the crack in the form of further hydration. In the RH condition of
more than 90%, the material with 1 m% showed a regain of 60%. At the crack
mouth, the crack was still clearly open and only at some distinct places, there was
some bridging of a crack by healing products.

Cracks smaller than 30 µm exposed to wet/dry cycles healed completely both
with and without SAPs after a healing period of 28 days. SAPs can contribute to the
internal healing of a crack after performing wet/dry cycles [67, 125]. Cracks between
50 and 150 µm healed partly in samples without SAP, but sometimes even some
cracks closed completely after 28 wet/dry cycles in a specimen containing SAPs
[67], as shown in Figure 5.8. Cracks larger than 200 µm showed almost no healing.
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The cracks are considered too wide to be healed properly within a 28-day period,
even though SAPs are promoting autogenous healing.

This healing product formation could be visualized by means of X-ray microto-
mography [155], as shown in Figure 5.9. The figure shows horizontal slices of small
6 mm wide samples without (top) and with SAPs (bottom), stored at high RH (>90%,
left) and in wet/dry cycling (right). The cracks are clearly seen in black, together with
the spherical air porosity. The irregular-shaped voids in the bottom part of the figure
are macropores formed by the swollen SAP right after final setting. The yellow colors
in the figure show the material that is adhered after performing the 28-day healing
cycle. This information was obtained by comparing the microtomograms prior and
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Figure 5.7: Use of superabsorbent polymers in cementitious materials to stimulate autogenous
healing, as a biomimicry of bone healing found in living creatures [8].
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Figure 5.8: Example of a specimen containing 1 m% of SAP after performing 28 days of wet/dry
cycling. The whitish healing products are mainly calcium carbonate with some further hydration [8].

(a) (b)

(c) (d)

Figure 5.9: (a, b) Cross sections of the specimens without (c, d) and with (a, c) superabsorbent
polymers stored at more than 90% RH (b, d) and in wet/dry cycling. Black depicts the porosity and
the crack, and yellow visualizes the formed healing products. The diameter of the specimen is
6 mm. This picture has been partly redrafted with permission from Elsevier from source [155].
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after healing. No healing was observed in specimens without SAPs when no liquid
water is present (Figure 5.9a), while some crystal formation was present near the vicin-
ity of SAPs in SAP specimens (Figure 5.9c). This amount of healing was comparable to
the amounts found in SAP-less specimens healed in wet–dry cycling (Figure 5.9b).
The largest amount of healing was observed in specimens with SAPs and stored in
wet/dry cycling (Figure 5.9d). Almost the complete crack was closed. Some other con-
clusions could also be drawn in the research performed. The largest amount of healing
was found in the region 0–100 µm below the surface. In the interior of a crack, the
amount of healing products was less and only at some distinct places, the healing
products bridge a crack, probably in the vicinity of a fiber (as they act as a nucleation
site for the calcium carbonate crystals [8, 118]). The healing at high RH occurred in the
vicinity of the SAP particles, stitching the crack at distinct locations [155]. This healing,
as well as in wet/dry cycling, was still stimulated in samples with 8 years of age [118].

The autogenous healing capability of cementitious materials was maintained
during subsequent loading cycles to a certain degree. SAP particles promote the self-
healing ability by renewed internal water storage upon crack formation and this
leads to regain mechanical properties such as the first cracking strength. In wet/dry
cycles, the plain material without SAPs was able to regain 45% of its first cracking
strength after a first healing cycle. After the second healing cycle, this regain was
28%. When SAPs were used, the regain was 75% and 66%, respectively [61]. The bet-
ter healing in specimens containing SAPs during first and second loading and
healing was also confirmed by natural frequency analysis [60]. Possible explana-
tions are the storage of a calcium-rich fluid (i.e., the pore solution) in the swollen
SAPs, and the reduced permeation through the crack. This provides the possibility
of the formation of the CaCO3 crystals in the crack. This caused the ideal condi-
tions for promoted autogenous healing. The regain in mechanical properties was
noteworthy.

The promoted healing capacity in systems with SAPs was also studied by means
of NMR testing [156]. This will prove to be essential for model verification and to in-
crease the simulations for this new type of material in future research. Adding 1 m%
of SAP to a cementitious material stimulated further hydration with nearly 40% in
comparison with a cementitious material without SAPs, in wet–dry cycling. At 90%
RH, no healing was observed in reference samples while specimens with SAPs
showed up to 68% of further hydration compared to a reference system without
SAPs healed in wet/dry cycling, due to the uptake of moisture by the SAPs. This
proved the differences in observed regain in mechanical properties.
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5.7 Practical applications of SAPs in the
construction industry

In 2006, a pavilion was built for the FIFA World Cup [3, 157]. It was a thin-walled
structure with very slender columns without conventional reinforcement. The low
water-to-binder structure did not show any kind of cracks due to the prevention of
autogenous shrinkage cracks by the included SAPs and the sustained internal
curing.

In China, SAPs have already been applied in several civil engineering construc-
tion projects. Examples are the Lanzhou–Urumqi railway where SAPs were used to
prevent massive concrete slabs from cracking. The concretes with SAPs were less
sensitive to moisture loss because of evaporation [63, 158]. Two other field applica-
tions were performed in southern China [159]. A shear wall structure that had di-
mensions of 20 × 50 x 0.85 m cast in one time did not show surface cracks after
7 days when SAPs were added. A cast-in-place concrete floor slab was cast in one
time and had dimensions of 12 × 8 x 0.12 m3 and no curing methods were used. No
cracks were observed and the used gel-type SAP showed potential to mitigate early-
age cracking.. SAPs were also applied in the China Zun tower [160]. It was found that
the SAPs reduced shrinkage by 46% and that the later age compressive strength was
not affected when 0.56 m% of SAP was added to the mixture.

A project on large-scale tunnel elements in Belgium, iSAP, will include the appli-
cation of large-scale elements for tunnel construction [97]. SAPs will hereby be added
as a mitigation measure for autogenous shrinkage. In this way, occurring shrinkage
cracks may be avoided. The SAPs will also possess self-sealing and self-healing prop-
erties. In this way, some remaining shrinkage cracks may be sealed and healed and
the structure will possess some sealing potential for observed cracking during its life-
time. This is interesting for the application in tunnels and other ground-retaining
structures, as the flow of harmful substances is stopped [33, 49].

5.8 Conclusions

In conclusion, there is still a lot of unraveling to do in order to apply SAPs into
practice. Possible applications of the self-sealing and self-healing material are
widely spread. Water-retaining structures may benefit and construction companies
may be interested. The principle of using SAPs has its possible applications for the
industry. Contractors are searching for a way to decrease shrinkage cracks and to
obtain a watertight structure. This is especially important for tunnel elements, un-
derground parking garages, basements, liquid containing structures, pavements,
and so on. Nowadays, contractors are often forced to apply crack repair right after
construction, due to the formation of shrinkage cracks and thermal cracks at early
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age. The shrinkage could be overcome by using SAPs as they may provide internal
curing to the construction element: they absorb water in the fresh concrete mix,
and provide it to the cement particles at the right moment in the hydration process,
in this way reducing the autogenous shrinkage. In hardened concrete, they may
seal occurring cracks, as they swell in contact with intruding water. This may re-
duce the uptake of harmful substances, most likely leading to an enhanced long-
term durability and service life. The SAPs will subsequently promote autogenous
healing of the crack since they provide water for further hydration of yet unhy-
drated cement particles and calcium carbonate precipitation, leading to even more
tight structures and possible regain of the mechanical properties. More research is
needed in terms of the long-term durability of these novel cementitious materials
with SAPs [161].

Microfiber-reinforced strain-hardening cementitious composites possess the qual-
ities of a high-strength concrete combined with tensile ductility and crack width con-
trol. Their small cracks are interesting in terms of autogenous healing where only
small cracks are able to heal completely, further stimulated by SAPs. Combined with
(promoted) self-healing it is a durable material and very promising to use in the fu-
ture. In regions with wet/dry cycles, water remains present in the SAPs during the
dry periods. Therefore, self-healing can prevail at all times. However, performance-
based durability concepts are still required to get a durability design framework for
these strain-hardening materials [162].

Furthermore, due to the self-compacting properties of the strain-hardening mix-
ture, thin forms are achievable [120]. Nature fits form to function. This is also true for
this material; the accretion of material to places where it is most needed, resulting in
adaptive structures. The form should be ideal to transfer loads, so that an excess of
material can be removed. This material will result in lighter and safer structures,
leading to a reduced safety factor as the structure may reach its optimal design.

The role of autogenous healing on corrosion prevention will also be important
in the future. If cracks are not sealed, water containing aggressive substances will
break down the passive film on the reinforcements. This aspect needs to be consid-
ered when autogenous healing is used in real-life structures. The maintenance and
longevity of these structures is hereby very important. The close investigation on
plastic shrinkage mitigation and other promising pathways for inclusion of SAPs in
cementitious materials are also key for the near future. This white powder thus will
be more accepted in the conservative building industry.

One general conclusion can be made; one should continue to build with na-
ture’s rules. The bleeding (water for SAPs), blood cells (building blocks), blood flow
vascular network (porous concrete), blood clothing (formation of healing products
near synthetic microfibers), skeleton and bone healing (crystallization) are only a
few properties studied in the field of construction healing. By mimicking nature to
enhance performance, constructions that are more durable will be designed, lead-
ing to a higher service life and better overall life quality.
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