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Abstract

Background: Dogs with portosystemic shunts have an altered blood amino acid pro-

file, with an abnormal branched-chained amino acid (BCAA)-to-aromatic amino acid

(AAA) ratio being the most common abnormality. Different liver diseases have dis-

tinctive amino acid profiles.

Objectives: Determine the changes in plasma amino acid profiles in dogs with extra-

hepatic portosystemic shunts (EHPSS) from diagnosis to complete closure.

Animals: Ten client-owned dogs with EHPSS closed after surgical attenuation.

Methods: Prospective cohort study. Medical treatment was instituted in dogs diag-

nosed with EHPSS. At least 4 weeks later, gradual surgical attenuation was per-

formed. Three months postoperatively, EHPSS closure was confirmed by transsplenic

portal scintigraphy. Clinical signs were scored and blood was taken before institution

of medical treatment, at time of surgery, and 3 months postoperatively. At the end of

the study, the plasma amino acid profiles were analyzed in batch.

Results: The median BCAA-to-AAA ratio was extremely low (0.6) at time of diagnosis

and remained low (0.5) at time of surgery, despite the fact that median neurological

score significantly improved from 22 to 2 after starting medical treatment (P = .04).

Three months after surgical attenuation, a significantly higher BCAA-to-AAA ratio

(1.5) was observed (P < .001).

Conclusions and Clinical Importance: Medical treatment does not improve the

BCAA-to-AAA ratio in dogs with EHPSS, despite substantial clinical improvement.

Although the ratio significantly increased after EHPSS closure, it was still indicative

of moderate to severe hepatic dysfunction in all dogs.
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1 | INTRODUCTION

The liver is an important organ involved in many essential meta-

bolic functions, including metabolism and synthesis of proteins,

carbohydrates, and fats.1 Portosystemic shunts (PSS) are vascular

anomalies that connect the portal system to the systemic circula-

tion, bypassing the liver parenchyma.2 Clinical signs associated

with PSS are growth retardation, hepatic encephalopathy (HE),

gastrointestinal signs, and urinary signs secondary to the develop-

ment of ammonium urate urolithiasis.3 Gastrointestinal signs can

occur because of decreased bile production secondary to hepatic

dysfunction, leading to maldigestion and malabsorption.3 Long-

term malabsorption can cause deficiencies in proteins, fatty acids,

and vitamins, resulting in growth retardation and skin and hair

coat changes.3,4

In dogs with hepatobiliary disease, an adequate amount of

high quality protein should be provided in the diet to avoid nega-

tive nitrogen balance.5,6 It is, however, important to assure that

dogs with HE do not receive an excessive amount of protein,

which can exacerbate clinical signs.6 Blood ammonia concentra-

tions often are linked to the presence of HE but ammonia concen-

trations can be normal despite the presence of HE.7 Other

substances such as increased amounts of glutamine, glutamate,

manganese, and systemic inflammation can contribute to HE.8-10

Also a decreased ratio of branched-chain amino acids (BCAA)-to-

aromatic amino acids (AAA) can induce derangements in central

neurotransmitter function that trigger HE.11

Two experimental studies, in which a portocaval shunt was cre-

ated in adult mongrel dogs clearly showed that amino acid profiles

changed over time. The most important alterations were a signifi-

cant increase of AAAs and a significant decrease of BCAAs, changes

that were linked to the development of HE.11,12 Similarly, a recent

study that assessed blood amino acid concentrations in dogs with

congenital PSS found lower concentrations of BCAA and higher con-

centrations of AAA in dogs with PSS compared with dogs with

chronic hepatitis and healthy dogs.13 Normal BCAA-to-AAA ratios in

dogs are reported to be 3.0 to 4.0, whereas dogs with severe hepatic

insufficiency have ratios <1.5.14 In an experimental study in dogs in

which a portocaval shunt was created after partial hepatectomy, a

BCAA-enriched diet did not have a beneficial effect on the severity

of HE.15

No research has been performed to identify the effect of med-

ical or surgical treatment on the amino acid profiles in dogs with

congenital PSS receiving medical treatment and undergoing surgi-

cal attenuation. Yet, this information is important because surgical

treatment is not always performed or successful, and conse-

quently a number of dogs with congenital PSS need life-long medi-

cal treatment.

Our aim was to determine whether the plasma amino acid profile

changes after starting medical treatment and if the plasma amino acid

profile normalizes in dogs with extrahepatic PSS (EHPSS) after com-

plete EHPSS closure.

2 | MATERIALS AND METHODS

2.1 | Animals

The study was approved by the local ethical (EC2017-49) and deonto-

logical committee (2017N06), and, before inclusion of their dog, all

owners signed an informed consent. Client-owned dogs with congeni-

tal EHPSS were prospectively enrolled. Inclusion criteria were dogs

that had not yet received medical treatment (including a liver-

supportive diet) at the time of diagnosis and that would undergo sur-

gical attenuation of the EHPSS.

After confirmation of the diagnosis of EHPSS, medical treatment

was given for a minimum of 4 weeks. All dogs received a strict liver-

supportive diet (Royal Canin hepatic, Royal Canin, Zaventem, Belgium)

divided into several small meals per day. Additional medication con-

sisted of lactulose (0.5 mL/kg q8h), metronidazole (7.5-10 mg/kg

q12h) or both lactulose and metronidazole. All dogs underwent grad-

ual attenuation of the EHPSS using either an ameroid constrictor or

thin film banding, always placed as close as possible to the systemic

circulation. Postoperatively, medical treatment was continued until

the 1-month follow-up visit. In dogs that had clinical signs compatible

with PSS or dogs with fasting ammonia concentration above the

upper limit 1 month postoperatively, lactulose was continued; in all

other dogs only the liver-supportive diet was continued until the

3-month follow-up visit. Three months postoperatively, transsplenic

portal scintigraphy was performed. After ultrasound-guided injection

of 99mTc pertechnetate into the spleen, the percentage of blood

bypassing the liver (shunt fraction) was calculated. Dogs with a shunt

fraction <4.3% were considered to have a closed EHPSS.16 Dogs that

had persistent shunting were excluded from the study.

Standardized questionnaires were completed by all owners at

diagnosis, surgery, and 1 and 3 months postoperatively, and body

weight and body condition scores (BCS, on a scale of 9) were

recorded at each visit. Gastrointestinal, urinary and neurological signs

were scored, based on a published scoring system (Table 1).17

2.2 | Blood tests

At diagnosis, at the day of surgery and 1 and 3 months after surgery,

a blood sample was taken from a jugular vein. Owners were asked to

fast their dogs for 12 hours before blood sampling. On all occasions,

1 drop of fresh blood was used to immediately measure fasting

ammonia concentration using a hand-held ammonia analyzer

(PocketChem BA, A. Menarini Diagnostics; upper limit, 45 μmol/L;

detection range, 8-285 μmol/L). At diagnosis, on the day of surgery

and 3 months after surgery, blood also was collected in a 2-mL

EDTA tube and centrifuged at 3500g for 5 minutes at 2�C. Obtained

plasma was aliquoted at 250 μL and stored at �80�C.

At the end of the study, frozen plasma samples were sent to an

external laboratory for analysis of a targeted metabolomics amino acid

panel, measuring 22 amino acids including the AAAs (phenylalanine,
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tryptophan and tyrosine) and the BCAAs (isoleucine, leucine and

valine). All samples were spiked with stable labeled internal standards,

extracted, and subjected to protein precipitation with an organic sol-

vent. After centrifugation, an aliquot of the supernatant was diluted

and injected onto an Agilent 1290/AB Sciex QTrap 5500 liquid

chromatography-tandem mass spectrometry unit equipped with a

C18 reversed phase ultra-high performance liquid chromatography col-

umn. The mass spectrometer was operated in positive mode using

electrospray ionization. The peak areas of the individual analyte parent

ions were measured against the peak areas of the parent ions of the

corresponding internal standards in pseudo-multiple reaction monitor-

ing mode. Quantification was performed using a weighted least squares

regression analysis generated from fortified calibration standards pre-

pared immediately before each run. Liquid chromatography-tandem

mass spectrometry raw data were collected and processed using SCIEX

OS-MQ software v1.7. Data reduction was performed using Microsoft

Excel for Office 365 v.16.

Sample analyses were carried out in 96-well plates containing

2 calibration curves and 6 quality samples per plate to monitor assay

performance. Accuracy was evaluated using high-, medium-, and low-

quality controls based on historical values from TAM146 validation.

Precision was evaluated using the quality control replicates in each

sample run.

The ratio of BCAAs-to-AAAs was determined for each dog by

dividing the sum of all BCAA plasma concentrations by the sum of all

AAA plasma concentrations at all 3 sampling points.

2.3 | Statistical analyses

Statistical analyses were performed using SPSS Statistics 26 (IBM,

Armonk). Friedman 2-way analyses were performed to assess changes

in body weight and BCS over time within dogs (at diagnosis, surgery,

1 and 3 months postoperatively). Kruskal-Wallis tests were used to

evaluate the median clinical scores and fasting ammonia concentra-

tions (at diagnosis, surgery, 1 and 3 months postoperatively) and the

median plasma concentrations of the different amino acid concentra-

tions and the BCAA-to-AAA ratio at different sampling points

(at diagnosis, surgery and 3 months postoperatively). Thereafter Fried-

man 2-way analyses were performed to assess changes in clinical

scores, fasting ammonia concentrations and in plasma amino acid con-

centrations and the BCAA-to-AAA ratio over time within dogs. If sta-

tistical differences in Friedman 2-way analyses and in Kruskal-Wallis

tests were present, pairwise multiple comparison tests using

Bonferroni correction were performed. Finally, Mann-Whitney U tests

were performed to assess differences in the different plasma amino

acid concentrations between dogs <1 year of age and dogs ≥1 year of

age. Results were considered significant if P < .05.

3 | RESULTS

3.1 | Study sample

Initially, 15 dogs were enrolled. Three months postoperatively, 5 dogs

were excluded because of persistent shunting. The remaining 10 dogs

had a median age of 12.5 months (range, 3-105 months); 5 were

<1 year of age. Eight dogs had a portocaval shunt, 1 had a

portophrenic shunt and 1 dog had both a portophrenic and

a portoazygos shunt. In the latter dog, both EHPSSs were attenuated

using an ameroid constrictor during 2 separate surgeries. In that dog,

only blood samples taken at diagnosis, at time of the first surgery and

3 months after the second surgery were analyzed. Surgical attenua-

tion using an ameroid constrictor was performed in another 7 dogs

and thin film banding was used in the 2 remaining dogs. Demographic

data, clinical scores and fasting ammonia concentrations are depicted

in Table 2. Both body weight and BCS significantly increased over

time (P = .001 and P = .01, respectively). Pairwise comparisons, how-

ever, only identified a significant increase in body weight from diagno-

sis to 3 months postoperatively (P = .001) and from 1 to 3 months

postoperatively (P = .004).

Within dogs, all clinical scores (gastrointestinal, urinary, and neu-

rological scores) significantly decreased over time (P < .001, P = .02,

and P < .001, respectively). Pairwise comparisons showed a significant

decrease in gastrointestinal scores from diagnosis to 3 months post-

operatively (P < .001), and a significant decrease in neurological scores

from diagnosis to 1 month postoperatively (P = .001) and from diag-

nosis to 3 months postoperatively (P < .001).

Fasting ammonia concentrations significantly decreased over time

within dogs (P < .001). Pairwise comparisons indicated that fasting

TABLE 1 Clinical scoring system, based on a previously published scoring system17

Frequency often - occasionally - never Multiplication factor Maximal score

Gastrointestinal signs

Salivation, decreased appetite, weight loss,

diarrhea, vomiting, melena, hematochezia

2 - 1 - 0 for each gastrointestinal sign �1 for each gastrointestinal sign 14

Urinary signs

Hematuria, stranguria, dysuria, pain while urinating 2 - 1 - 0 for each urinary sign �1 for each urinary sign 8

Neurological signs

Lethargic, unresponsive, disorientation, circling

head pressing, ataxia, blindness

2 - 1 - 0 for each neurological sign �2 for each neurological sign 40

Seizure activity, comatose �3 for each neurological sign
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ammonia concentration significantly decreased from diagnosis to

1 and to 3 months postoperatively (P = .002 and P < .001, respec-

tively) and from surgery to 1 and to 3 months postoperatively (P = .02

and P = .01, respectively).

3.2 | Amino acids

Median plasma concentrations of the different amino acids at differ-

ent time points are presented in Table 3.

For the AAAs, significant decreases were found in the plasma

concentrations of phenylalanine and tyrosine within dogs from diag-

nosis to 3 months postoperatively (P = .01 and P = .003, respectively)

and from surgery to 3 months postoperatively (P < .001 and P = .001,

respectively). No significant changes were found in plasma tryptophan

concentrations within dogs (P = .67).

Regarding BCAAs, plasma valine concentrations were the only

concentrations that changed significantly within dogs, with a signifi-

cant increase from surgery to 3 months postoperatively (P = .04).

The median BCAA-to-AAA ratios at diagnosis and surgery were

0.6 (range, 0.43-0.95) and 0.5 (range, 0.32-1.07), which were both sig-

nificantly lower than the median BCAA-to-AAA ratio 3 months post-

operatively (1.5; range, 0.58-2.24; P = .004 and P < .001,

respectively). Friedman 2-way analysis determined that the BCAA-to-

AAA ratio within dogs was significantly higher 3 months postopera-

tively compared to the BCAA-to-AAA ratio at diagnosis as well as at

time of surgery (P = .004 and P = .002, respectively).

Concerning the remaining amino acids, a significant increase in

plasma concentrations of both methionine and serine were found

within dogs from diagnosis to surgery (P = .02 and P = .01, respec-

tively), these plasma concentrations, however, significantly decreased

again from surgery to 3 months postoperatively (P = .02 and P < .001,

respectively). Plasma concentrations of arginine, citrulline, and trans-

hydroxyproline significantly increased within dogs from diagnosis to

3 months postoperatively (P = .02, P = .01, and P = .02, respectively).

Finally, plasma concentrations of glutamine, histidine and proline sig-

nificantly decreased within dogs from surgery to 3 months postopera-

tively (P = .01, P = .01, and P = .04, respectively).

Aspartic acid was significantly higher at diagnosis in dogs <1 year

of age compared to older dogs. No other statistical differences

between dogs <1 year of age and older dogs were identified.

4 | DISCUSSION

Our study determined that the plasma concentrations of individual

amino acids changed differently over time. The AAAs phenylalanine

and tyrosine, but not tryptophan, were significantly higher at the time

of diagnosis and surgery compared to 3 months postoperatively. The

plasma concentration of valine, a BCAA, was significantly higher

3 months postoperatively compared to diagnosis and surgery. The

BCAA-to-AAA ratio was extremely low at the time of diagnosis (0.6)

and did not improve after a minimum of 4 weeks of medical treat-

ment. Although the BCAA-to-AAA ratio significantly increased

3 months after gradual surgical attenuation, it was, at 1.5, still indica-

tive of the presence of moderate to severe liver dysfunction.14 The

plasma concentrations of arginine, citrulline and trans-hydroxyproline

were significantly lower at time of diagnosis compared to 3 months

postoperatively, whereas the plasma concentrations of glutamine, his-

tidine, and proline were significantly lower 3 months postoperatively

compared to the time of surgery.

Both BCAAs and AAAs are considered to be key factors in the

pathogenesis of HE.20 In contrast to other amino acids, BCAAs are pri-

marily metabolized in muscle tissue,21 where they serve as precursors

of other amino acids and as an energy substrate.22 In the presence of

hyperammonemia, BCAA metabolism in muscle tissue changes and

helps to detoxify ammonia by forming glutamine.20,23 Also in brain tis-

sue, BCAAs are used as an alternative pathway to detoxify

TABLE 2 Median (range) of demographic data, clinical scores, and fasting ammonia concentrations at diagnosis, surgery, 1 and 3 months
postoperatively of dogs with closed congenital extrahepatic portosystemic shunts after surgical attenuation

Diagnosis Surgery 1 month postoperativelya 3 months postoperativelya

Body weight (kg) 3.0 (1.4-8.0) 2.9 (1.8-9.8) 3.0 (1.6-10.0) 3.3 (2.0-11.4)

Body condition score (on scale of 9) 3 (2-6) 3.5 (3-7) 3.5 (2-7) 4 (4-9)

Weeks since start medical therapy NA 6 (4-7) 11.5 (10-28) 20.5 (19-37)

Gastrointestinal score 5 (2-10) 2 (1-4) 2b (0-5) 0c (0-2)

Urinary score 0 (0-4) 0 (0-1) 0 (0-1) 0 (NA)

Neurological score 22 (2-40) 2d (0-18) 0b (0-10) 0c,e (0-12)

Fasting ammonia (μmol/L) 150 (43-256) 76 (21-high) 14.5b,f (low-32) 14c,e (low-24)

Abbreviations: EHPSS, extrahepatic portosystemic shunts; NA, not applicable.
aOnly data after the second surgery are reported of the dog with 2 single EHPSS that underwent 2 surgeries.
bSignificant difference between median concentrations at diagnosis and 1 month postoperatively.
cSignificant difference between median concentrations at diagnosis and 3 months postoperatively.
dSignificant difference between median concentrations at diagnosis and time of surgery.
eSignificant difference between median concentrations at time of surgery and 3 months postoperatively.
fSignificant difference between median concentrations at time of surgery and 1 month postoperatively.
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TABLE 3 Median plasma concentrations of different serum amino acids at different sampling points (diagnosis, surgery, 3 months
postoperatively) in dogs with closed congenital extrahepatic portosystemic shunts after surgical attenuation. Essential amino acids are depicted in
italic. Ranges of amino acids in healthy dogs, published previously, are added

Diagnosis

nmol/mL (range)

Surgerya

nmol/mL (range)

3 months postoperativelya

nmol/mL (range)

Ranges in

healthy dogs18,19

Aromatic amino acids

Phenylalanine 115.3 137.2 49.5b,c

(85.1-175.8) (83.3-181.0) (41.2-70.5) 51.1-75.2

Tryptophan 57.1 50.5 48.0

(41.7-109.2) (39.6-128.2) (33.4-159.5) 35.7-94.8

Tyrosine 83.1 87.8 29.0b,c

(49.9-127.3) (60.5-129.8) (21.8-44.8) 32.9-81.5

Branched-chain amino acids

Isoleucine 37.1 35.7 47.0

(22.2-79.2) (26.2-59.2) (32.3-74.4) 37.1-77.1

Leucine 74.7 71.9 98.3

(45.3-163.4) (53.6-124.4) (67.8-150.7) 61.4-187.5

Valine 101.0 87.7 133.9c

(97.0-107.0) (60.2-169.1) (83.2-202.2) 97.8-230.0

Other amino acids

Alanine 271.3 363.3 371.0

(169.1-505.2) 261.1-542.6) (278.7-612.4) 353.6-726.5

Arginine 86.8 100.8d 119.7

(47.1-99.9) (64.9-180.3) (80.3-182.1) 69.9-158.9

Asparagine 55.3 60.0 50.0

(38.7-108.5) (32.8-89.4) (31.1-68.3) 37.2-78.3

Aspartic acid 2.7 3.1 3.2

(2.1-4.8) (2.0-6.6) (2.2-4.4) NA

Citrulline 34.1 67.2 69.2

(10.7-100.8) (19.1-156.0) (33.9-126.2) 22.2-127.3

Glutamic acid 26.2 25.9 28.5

(13.5-44.2) (16.3-48.6) (11.9-44.4) 14.1-52.2

Glutamine 912.2 888.9 629.6b,c

(565.0-1171.0) (556.6-1489.7) (535.4-936.5) 557-1003.4

Glycine 190.4 226.9 215.7

(132.2-292.4) (132.2-392.2) (128.4-279.2) 145-335.3

Histidine 80.1 101.7 68.6c

(53.3-105.3) (65.5-128.4) (60.4-77.2) 67.7-95.3

Lysine 128.8 143.5 176.6

(47.0-243.0) (44.6-250.7) (82.9-244.3) 87.6-254.2

Methionine 42.8 62.5d 44.7c

(32.9-92.2) (55.4-89.0) (35.0-71.0) 51.0-83.6

Ornithine 15.0 18.8 14.8

(6.7-29.3) (10.3-26.8) (9.8-22.6) 7.3-31.2

Proline 124.6 162.7 121.0

(55.8-169.6) (94.5-263.9) (76.4-139.6) 70.5-376.7

Serine 151.2 226.2d 116.6c

(111.8-204.8) (144.3-278.0) (73.8-195.6) 59.1-222.9

(Continues)
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ammonia,24 which becomes the main route of detoxification in case

of malnutrition.25 The glutamine that is formed, however, causes

astrocyte swelling, which in turn can aggravate HE.26 Previous experi-

mental studies, in which portocaval shunts were created in adult mon-

grel dogs that subsequently developed HE, indeed found a decrease

in plasma BCAA concentrations, which might be the consequence of

increased BCAA metabolism secondary to hyperammonemia.11,12

Nevertheless, BCAA concentrations in cerebrospinal fluid remained

stable.11 Meanwhile, it was found that plasma AAA concentrations

increased, and simultaneously, AAA concentrations in cerebrospinal

fluid increased substantially.11,12 Increased concentrations of AAAs in

cerebrospinal fluid can exacerbate HE by increasing the availability

of precursors for neurotransmitters in the brain and by disturbing

brain neurotransmission by promoting the synthesis of cerebral

catecholamines and false neurotransmitters, such as phe-

nylethanolamine and octopamine.27 In a recent study in which

amino acid profiles of dogs with congenital PSS, dogs with chronic

hepatitis, and healthy dogs were analyzed, serum concentrations

of BCAAs were significantly lower whereas serum concentrations

of tyrosine and phenylalanine (both AAAs) were significantly

higher, leading to a lower BCAA-to-AAA ratio in dogs with congen-

ital PSS compared to healthy dogs and dogs with chronic hepati-

tis.13 Although both tyrosine and phenylalanine concentrations

were very high at diagnosis in our study, all BCAAs were at the

lower end of the reference range reported in dogs,18,19,28-30 which

is consistent with previous studies.11-13 Although valine signifi-

cantly increased after surgical attenuation, it remained within nor-

mal limits. This observation suggests that changes in AAAs are

more important than changes in BCAAs, both before and after

surgery.

After starting medical treatment, clinical scores improved sig-

nificantly, but, in contrast, fasting ammonia concentrations and the

BCAA-to-AAA ratio did not. Medical treatment mainly aims at

decreasing absorption of ammonia from the intestine on the one

hand and by providing a highly digestible protein source on the

other hand. This improvement was not entirely unexpected

because clinical signs are influenced by several other substances

and situations such as manganese and systemic inflammation.9,10

A previous experimental study in dogs concluded that an overall

improved nutritional state is more important in improving clinical

signs than the proportions of amino acids that are present within

the food.11 In contrast to BCAAs, AAAs typically have a very high

extraction ratio and are rapidly metabolized by the liver,31 which

can explain why AAAs significantly decreased after surgical attenu-

ation of the EHPSS. In our study, gradual attenuation devices were

used to obtain EHPSS closure. Although ameroid constrictors are

used for gradual attenuation, complete EHPSS closure can occur as

early as 10 days postoperatively.32 Thin film banding typically is

reported to cause slower EHPSS closure, which can take up to

8 weeks if the internal diameter of the vessel is decreased to

<2.5 mm.33 Although liver perfusion is normalized once the EHPSS

is completely closed, it might take longer for liver function to

completely normalize and to restore amino acid balance. Further

research is needed to verify if the BCAA-to-AAA ratio will

completely normalize in the long-term.

In our cohort of dogs, the installed medical treatment device

did not improve the overall amino acid profile. This is an important

finding, because some dogs with PSS require life-long treatment in

case of persistent shunting after surgical attenuation or if owners

prefer not to have the EHPSS treated surgically. Because the liver

plays a critical role in the metabolism of most amino acids,31 it is

important to identify which amino acid imbalances are present, in

order to try and adjust the diet to compensate for these imbalances.

Liver-supportive diets are diets specifically manufactured for dogs

with liver disease. Liver diseases, however, are very diverse, and

amino acid profiles found in dogs with different types of liver dis-

eases vary markedly.18,28 Dogs with focal liver masses have higher

plasma glutamic acid concentrations compared to age-matched

healthy dogs regardless of whether the lesions were benign or hepa-

tocellular carcinomas, and plasma glutamic acid concentrations were

not significantly different 3 to 6 months after surgical resection of

hepatocellular carcinomas.18 Dogs with superficial necrolytic derma-

titis (also called hepatocutaneous syndrome) have mean plasma

amino concentrations that are significantly lower than those of dogs

with acute and chronic hepatitis, most likely because of increased

hepatic catabolism.28 In dogs with acute and chronic hepatitis, many

plasma amino acid concentrations however are increased because of

compromised hepatic metabolism.28 The liver-supportive diet used

in our study contains 16% protein in kibble, with the main ingredi-

ents being rice, corn, animal fat, soy protein and hydrolyzed animal

TABLE 3 (Continued)

Diagnosis

nmol/mL (range)

Surgerya

nmol/mL (range)

3 months postoperativelya

nmol/mL (range)

Ranges in

healthy dogs18,19

Threonine 76.4 103.0 138.1

(55.8-164.5) (40.1-223.9) (64.3-189.8) 147.8-444.8

Trans-hydroxyproline 13.6 16.4 22.2

(2.8-27.6) (3.9-33.3) (4.8-28.0) NA

Abbreviations: EHPSS, extrahepatic portosystemic shunts; NA, not applicable.
aOnly data after the second surgery are reported of the dog with 2 single EHPSS that underwent 2 surgeries.
bSignificant difference between median plasma concentrations at diagnosis and 3 months postoperatively.
cSignificant difference between median plasma concentrations at time of surgery and 3 months postoperatively.
dSignificant difference between median plasma concentrations at diagnosis and time of surgery.
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protein. In the canned food, 6.5% protein is present; the main ingre-

dients are corn, rice, and poultry liver. In the dry food, methionine

and lysine are supplemented; no amino acid supplements are added

to the canned food.

After at least 4 weeks of medical treatment using a liver-

supportive diet, only methionine and serine concentrations increased

significantly. Surprisingly, both amino acid concentrations decreased

again to the concentration observed initially at diagnosis, 3 months

after surgical attenuation, despite any change in diet. Both methionine

and serine have a high liver extraction ratio.31 The most likely explana-

tion for this finding is the relatively high intake of both amino acids in

the liver-supportive diet that could only be metabolized efficiently

after surgical attenuation of the EHPSS. Methionine is an essential

amino acid that is converted into S-adenosylmethionine in the liver,

and has important physiological roles such as decreasing tissue oxida-

tive stress.34 In human medicine, controversy exist as to whether

methionine supplementation is useful in patients with chronic liver

disease.35 Our findings suggest that the liver-supportive diet used

might not be ideally balanced in terms of amino acids for dogs with

portosystemic shunting. A double-blind cross-over study found that

clinical signs of HE significantly improved in dogs with PSS

that received a diet based on soy instead of meat protein.35 Yet, the

BCAA-to-AAA ratio of the soy-based diet was only 2.05 compared to

2.30 for the meat-based diet. Despite a lower BCAA-to-AAA ratio in

the food, improved HE scores in that study were attributed to the fact

that vegetable proteins are highly digestible leading to a higher

absorption of amino acids in the small intestine and subsequently less

nitrogen reaching the colon.36 Blood amino acid concentrations were

not examined in that study. The digestibility of amino acids in food is

dependent not only on the protein source, but also on the way the

food is processed and on the presence of other components in

the food. It remains to be investigated how the composition of diets

can influence blood amino acid profiles in dogs with impaired hepatic

function.37-39

Our study had some limitations. Only a small number of dogs was

included; different small dog breeds were represented and half of the

dogs were young at the time of inclusion. In dogs, it has been shown

that blood amino acid concentrations differ between small and large

breeds.40 Because only small breed dogs were included in the study,

no influences are expected based on the breed. In people, it is well

known that blood amino acid concentrations are age-specific, with

histidine, arginine, cysteine, tyrosine and taurine being semi-essential

amino acids in children because these are important in normal devel-

opment and growth.41,42 Similar age-specific blood amino acid con-

centrations would be expected in dogs. Nevertheless, no age-specific

differences were identified in our study between dogs with EHPSS

<1 year of age and those that were older.

An age- and size-matched healthy control group could have been

included to strengthen our findings. Blood amino acid concentrations

in healthy dogs however vary among studies, with all studies describ-

ing relatively wide ranges.18,19,30 In addition, differences in reported

normal values can be explained by the fact that most studies only

included a small number of apparently healthy dogs that received

different types of food, and also by the fact that amino acids were

analyzed using different laboratory techniques.

The fact that dogs were fed different foods at inclusion makes

interpretation of concentrations obtained at diagnosis difficult. Never-

theless, our study clearly showed that even if dogs were subsequently

placed on a standardized liver-supportive diet, no differences in the

amino acid profile occurred, apart from the increases in methionine

and serine concentrations. Therefore, the influence of diets the dogs

were receiving before treatment did not seem to have much impact.

In accordance with previous studies, dogs with EHPSS had a mar-

ked decreased BCAA-to-AAA ratio. Medical treatment did not influ-

ence this ratio, notwithstanding the fact that clinical signs attributable

to HE improved substantially. Despite the fact that the BCAA-to-AAA

ratio increased significantly after surgery, it still indicated moderate to

severe liver dysfunction in all dogs with closed EHPSS, suggesting that

functional recovery requires more time than does clinical recovery.
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